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Fuzzy Diagnosis of Turbomachines
M. Yang and Q. Shen

Abstract— This paper presents a fuzzy knowledge-based system
for turbomachinery diagnosis. Given symptoms associated with a
vibration problem, the system can identify and rank possible causes
by performing incremental forward chaining. The diagnostic system
incorporates an attribute weighting component to reflect the relative
significance of conditional attributes, thereby allowing the system
to produce more accurate diagnoses. The ability of this system to
identify causes of typical vibration problems in rotating machinery
is supported with tests on real cases.

I. I NTRODUCTION

The success of many industrial plants depends on the
continued and safe operation of their rotating machinery.
Shutting down a machine for repair can be a very expensive
business [11]. A fast and reliable diagnosis is, therefore,
required whenever a vibration problem occurs so that the
actual cause can be identified and fixed as soon as possible.
An early diagnosis helps to avoid extensive damage to the
machine and hence to reduce the downtime for repair. Yet,
diagnosing vibration problems in turbomachinery requiressub-
stantial domain specific knowledge. With modern machinery
becoming more and more complex and diagnostic knowledge
becoming more and more difficult to possess by ordinary
field operators, the need becomes more and more pressing
for a computer-based solution or a knowledge-based system
for turbomachinery diagnosis.

Uncertainty permeates the way of problem solving in the
real world, however. The domain expertise in turbomachin-
ery diagnosis involves considerable constituents of uncertain
knowledge. This usually includes vague concepts, such as
“high” in the proposition “if the vibration at twice running
speed is high, then the cause is misalignment”, and unde-
terministic choices, such as “either thrust bearing damageor
temporary rotor bow may cause the predominant frequency
to become high”. Thus, the reliability of a turbomachinery
diagnostic system relies upon its ability of reasoning under
uncertain situations.

Fortunately, there exist many techniques useful for copying
with uncertainty in knowledge-based systems. In particular,
fuzzy systems have proved to be an effective tool for repre-
senting and reasoning about vague knowledge. This is rooted
in their use of fuzzy logic as the mathematical foundation in
providing a natural framework for uncertainty management.
This is, in turn, because fuzzy representation allows every-
thing to be, though need not be, a matter of degree. Unlike
conventional logics, the transition from one concept to another
in fuzzy logic is gradual, rather than abrupt. This helps reduce
the difficulty in encoding imprecise or incomplete knowledge
typically employed in a knowledge-based system, and allows
a possibly inexact conclusion to be inferred from inexact
premises. Inspired by these observations, this paper presents

a successful application of fuzzy systems in implementing an
automated diagnostic tool for identification of vibration causes
in turbomachines.

The rest of the paper is organised as follows. To be com-
plete, a brief introduction to the conventional turbomachinery
diagnosis is first given in section II. A detailed account of the
requirements and design of the fuzzy rule-based diagnostic
system is then presented in section III. To demonstrate the
effectiveness of the system, the results of typical experiments
on real cases are reported in section IV. Finally, the paper
is concluded in section V, with future directions of research
pointed out.

II. TURBOMACHINERY DIAGNOSIS

Turbomachinery include gas turbines, turbocompressors,
steam turbines, etc. It is natural for machines to have vibra-
tions, in terms of motions of a machine or machine part back
and forth from its rest position. However, if the vibration of a
machine becomes excessive, some mechanical fault is usually
the reason. As indicated in [11], for typical rotating machines,
there may exist over 30 possible causes for machine vibration,
such as initial unbalance, temporary rotor bow, misalignment,
bearing damage, etc. and 88 different possible symptoms that
can be classified into the following 10 symptom categories:

• predominant frequency of vibration
• direction of predominant amplitude of vibration
• location of predominant amplitude of vibration
• amplitude response to speed increase
• amplitude response to speed decrease
• predominant sound of vibration
• effect of operating conditions
• effect of oil pressure, temperature and flow
• history of machine
• damage or distress signal

For simplicity, throughout this paper a symptom category
is simply referred to as a symptom (which can have different
values) unless otherwise stated.

Traditionally, people working with turbomachinery usually
perform vibration diagnosis using their field experience and
textbook knowledge. One popular tool for turbomachinery
diagnosis is Sohre’s charts given in [11], developed by a
professional turbomachinery consultant. The charts relate the
subjective probability of the occurrence of a symptom to an
underlying cause. For example, look at a small part of the
charts as shown in figure 1, when “misalignment” is found to
be the cause of a vibration problem, the probabilities of the
occurrence of the predominant frequencies 1/2xRPM, 1xRPM
and 2xRPM are 0, 0.3 and 0.6 respectively, where RPM
stands for revolution per minute, a unit for rotations frequency
(and x is simply a connective notation, e.g. 2xRPM means



2 revolution per minute). In light of the popularity of these
charts, they are used as the major source of domain knowledge
required by the diagnostic system to be presented below.
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5                        90      5       5

 30                      90      5       5

20                      90      5       5

10     10    10     60     20     10

         20             40     20                                        10

10     10     10    20     10     10                      10     10    10

20     20     20    30     10     10                      10     10    10

5       10             30     60     10                                       10

5       10             30     60     10                                       10

Fig. 1. Predominant frequency symptoms vs. vibration causes

Having recognised the significance of applying knowledge-
based techniques to help finding faults in turbomachines, there
have been many such diagnostic systems developed in the
literature. For example, the work of [15], [16] provided an
initial expert system architecture for health monitoring and
vibration based diagnosis of turbomachinery. In this research,
diagnosis is based on a combination of general fault matrix
analysis, machine specific experience, symbolic modellingand
computer simulation. A similar approach is more recently
reported in [17], supported with full implementation. This
system aims at aiding plant operators in diagnosing the cause
of abnormal vibration for rotating machinery. Again, a de-
cision table based on the cause-symptom matrix is used as
a probabilistic method for diagnosing abnormal vibration.In
addition, decision-tree based inductive learning [6] is adopted
to obtain and represent diagnostic knowledge in a structured
format.

There have been alternative approaches to conventional
expert systems for monitoring and diagnosis of turbomachines.
For instance, while treating diagnosis as a pattern classification
task and based on the vibration characteristic spectrum, the
approach proposed in [3] exploits the rough set theory [9] to
facilitate diagnoses. In particular, it obtains accurate diagnostic
results directly from a set of complete fault spectrum samples,
and satisfactory diagnostic results from a set of incomplete
fault spectrum samples. Also based on rough sets, a method
for steam turbine-generator vibration fault diagnosis waspro-
posed in [8]. This work applies the rough attribute reduction
algorithm [13] to select the key features that will have the most
significant impact upon the classification process in order to
perform diagnosis.

Systems developed following all aforementioned research
have enjoyed much success in real-world applications. Yet,
neither of these has addressed the type of uncertain knowledge
that is considered in this paper. Thus, the work described
herein forms a useful complementary approach to automated
monitoring and diagnosis of turbomachines.

III. T HE APPROACH

A. System Requirements

The task of the fuzzy knowledge-based system introduced
herein is to determine possible causes of a vibration problem
and rank them according to their possibilities incrementally. In
particular, the system is required to produce an intermediate
diagnostic result for each symptom presented by the user.
Otherwise, it could be tedious, or of little use, if the system
had to await the user to present all observed symptoms before
generating some hypotheses.

In general, basic vibration characteristics are very useful in
performing diagnosis on rotating machines [5]. The system to
build should therefore, first allow the user to provide inputof
whether any of such symptoms is observed from the machine
under diagnosis. In practice, most of the possible causes can
be eliminated after important vibration symptoms have been
presented, and so there are normally not many causes under
investigation which would require observations of other types
of symptom. Given each symptom, the system should generate
currently possible causes. The user can then decide whetheror
not to continue the diagnostic process. This decision pointhas
shown to be helpful in diagnosis as the user may already be
able to guess what to check given only the partial diagnostic
result.

The system should also be able to provide a what-if analysis
facility, in order to help the user to investigate the impacts of
potentially different symptoms upon the diagnostic result. At
the end of a consultation, the user should be allowed to change
any of the given symptoms to see if there are alternative
symptoms which may affect the diagnoses significantly. In so
doing, the reliability of the diagnoses can be examined and
the diagnostic results may be revised (if necessary).

B. Knowledge Representation

The domain knowledge extracted from Sohre’s charts is
represented in a set of symptom-cause diagnostic rules; many
of which are used to deduce causes with given symptoms,
whilst some of which are used to eliminate a certain cause
given a particular symptom. The latter type of rules are
acquired from those parts of the charts where no possible
link exists between a given symptom and a certain cause, in
order to ensure full coverage of possible associations between
conditional attributes and conclusions. The rules used for
diagnostic deduction are of the following general form:

If Symptom is A then Cause is B

Based on a careful analysis of the domain knowledge, two
types of symptom can be identified:

• Crisp symptoms: Symptoms whose values are precise,
such as the location of predominant amplitude.

• Fuzzy symptoms: Symptoms whose values are imprecise
or vague, such as the direction of predominant amplitude
of vibration.

For crisp symptoms, they can be easily represented as
variables taking precisely defined (symbolic) values. A fuzzy
symptom is, however, represented as a linguistic variable



taking fuzzy values defined on its underlying universe of dis-
course. As an example, the symptom of direction of predomi-
nant amplitude is fuzzy because its possible values “vertical”,
“horizontal” and “axial” are vaguely defined concepts. The
transition from one direction to another is not abrupt but
gradual. These values may be defined as fuzzy sets as shown in
figure 2, where V stands for “vertical”, H for “horizontal” and
A for “axial”. The three dimensional nature of the directionis
herein simplified into two dimensional, without altering their
underlying relationships.

Degree of
membership

1

0

        

V H

Direction

V A H A

35 55 90 125 145 180 215 235 270

Fig. 2. Fuzzy sets for the direction of predominant amplitude of vibration

Another interesting example is to represent the values of the
symptom conveyed by the predominant frequency of vibration.
The possible values of this symptom are 1/2xRPM, 1xRPM,
2xRPM, etc. These symbolic values are themselves precisely
defined, with exact boundaries between them. Unfortunately,
it is difficult for the user to tell exactly if a particular vibration
frequency is predominant with regard to its amplitude. Figure
3 shows a typical vibration amplitude vs. frequency plot. It
can be seen from the plot that apart from the two significant
predominant frequencies “oil whirl” and “1xRPM”, there
exists another less significant, but still important frequency.
This frequency may be an indication of some potential fault
and hence should be considered also.
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Fig. 3. Vibration amplitude vs. frequency plot

It is, however, not practical to use a numerical threshold to
decide whether the amplitude of a frequency is high enough to
be considered predominant, as the amplitudes of frequencies
vary in different machines. A frequency with a height of 80%
of the maximum in one machine may be equivalent to that
of 50% in another. In practice, therefore, the amplitudes of
a frequency are usually described in one of the three elastic
linguistic terms “high”, “close to limit” and “low”, generally
suitable for different machines. As commonly assumed in
turbomachinery diagnosis, by setting the limit to around 20%

of the maximum height, these terms may be represented by
the fuzzy sets shown in figure 4.

Degree of 
membership

Percentage of
maximum height

20 1000
0

1
    

CLOSE
      TO
LIMIT

LOW HIGH

Fig. 4. Fuzzy sets for the terms “high”, “close to limit” and “low” in the
description of vibration amplitudes

With regard to the two different types of symptom, the
diagnostic rules are also classified into two types: crisp-
crisp rules and fuzzy-crisp rules. The knowledge base directly
extracted from Sohre’s charts therefore consists of a collection
of diagnostic rules belonging to either of these two types, plus
those rules used to eliminate impossible causes. In particular,
a crisp-crisp rule is one whose condition and conclusion are
both crisp propositions. For example,

If location of predominant amplitude is shaft
then possible cause is initial unbalance

A fuzzy-crisp rule, on the other hand, is one whose condi-
tion is a fuzzy proposition whilst whose conclusion is a crisp
proposition. For example,

If direction of predominant amplitude is axial
then possible cause is initial unbalance

and

If predominant frequency is 1xRPM (high)
then possible cause is initial unbalance

Incidentally, in the last example, 1xRPM (high) means
that the frequency 1xRPM is predominant with its amplitude
considered to be high.

C. Weighting of Conditional Attributes and Rules

The directly extracted rules are however, obtained by treat-
ing different symptoms equally. In reality, different conditional
attributes may have very different effects upon the derivation
of a conclusion. This is of particular importance for the diag-
nostic problem at hand, where a closer investigation into the
rules reveals that many of them may have the same conclusion
while having rather different conditions. Thus, a method that
would allow the reflection of the relative significance of the
different symptoms in relation to the same possible underlying
cause is highly desirable.

Fortunately, in monitoring and diagnosing rotating machines
a good number of useful past cases have been collected. This
allows for the estimation of the relative degrees of dependency
of a conclusion upon a given conditional attribute. Note that
such derived if-then rules are actually acausal in describing
the underlying relationships between symptoms and causes.
This is because a real cause-effect relation only makes sense
the other way round, with the conditions (i.e. the symptoms)
depending upon the conclusion (i.e. the cause).



Computationally, the estimation of the dependency degrees
is a fairly straightforward task because the fuzzy symptom-
cause rules directly derived from the Sohre’s charts are gener-
ally relating only one symptom to a possible cause. Thus, the
relative (acausal) dependency degree of a conclusion upon a
condition can be estimated via counting the number of times
of those past cases where the found cause did lead to the
observed symptom and that of the total past cases where the
same cause led to all of those different observed symptoms.
The quotient resulting from dividing the first count by the
second is the weight associated with the rule that links that
specific condition with the given conclusion.

Formally, given a set ofK directly derived rules of the form

Rj : If Symptom isAj then Cause isB, j = 1, 2, ..., K

the relative degree of dependency ofB uponAi is:

WRj
(B, Aj) =

αAj

∑K
i=1

αAi

, j ∈ {1, 2, ..., K}

where αAi
stands for the count of the number of times in

which attribute Ai, i = 1, 2, ..., K is associated with the
conclusionB.

For simplicity, in the following presentation, such an esti-
mated rule weight is denoted byWj unless otherwise stated.
In so doing, each of those directly derived rules will then be
attached with a rule weight and represented as follows:

Rj : If Symptom isAj then Cause isB (Wj)

It is this kind of rules that are actually used to implement the
diagnostic system.

In addition to the above weighting scheme for individual
rules, to facilitate the capturing of the significance possibly
established with an observation or with a conclusion, every
quantity is hereafter also attached with a weight. More details
on this will be given below.

D. Reasoning Method

The basic inference method used in the fuzzy knowledge-
based diagnostic system is forward chaining. Namely, the
search for solution starts from given evidence to see how far
the conclusions can be pushed via executing the rules in the
knowledge base. Forward chaining is adopted because most
of the facts about a vibration problem are given initially and
as many as possible causes should be considered. Given the
observation of a symptom, rules with their conditions satisfied
by that piece of evidence (or fact) will be applied so that
possible causes are deduced and definitely impossible ones
eliminated.

During a consultation of the system, a crisp-crisp rule is
applied only when its condition exactly matches the given
fact, whilst a fuzzy-crisp rule is fired so long as the fuzzy set
associated with its condition has some degree of overlap with
the fuzzy set associated with that fact. The intuition behind
the way of firing a fuzzy-crisp rule is the following: Given
that both the value of the conditional attribute and that of
the fact are both represented by fuzzy sets in general (which
are defined on the same universe of discourse), the degree of

overlap between these two fuzzy sets reflects the similarity
between them and hence the similarity between the condition
and the fact.

In this paper, the technique reported in [1] is used to
measure fuzzy set similarity. This measure of similarityS is
based upon the measure of possibilityP and that of necessity
N . Given the fuzzy set associated with the condition,Fc, and
the fuzzy set associated with the fact,Ff , the measure of
similarity S is defined by

S =

{

P (Fc|Ff ), N(Fc|Ff ) > 0.5
(N(Fc|Ff ) + 0.5)× P (Fc|Ff ), else

where

P (Fc|Ff ) = max(min(µFc
(u), µFf

(u))), ∀u ∈ U

(with U being the universe of discourse) and the measure of
necessityN is defined by

N(Fc|Ff ) = 1 − P (¬Fc|Ff )

When firing a crisp-crisp rule the weight of the conclusion
is then calculated as follows:

Wconclusion = Wfact × Wrule

By analogy, the weight of the conclusion of a fuzzy-crisp
rule when fired is calculated as follows:

Wconclusion = Wfact × Wrule × S

whereWfact andWrule have the obvious meanings of being
the weight associated with the fact and that with the rule fired,
respectively.

This approach captures the intuition well: The higher the
value of S, the more similar the fact to the condition value,
and so the higher the weight of the conclusion. In particular,
if the fuzzy set of the conditional attribute and that of the
fact are identical,S will be equal to 1 andWconclusion =
Wfact × Wrule.

If a deduced conclusion already exists, its weight is updated
by the following:

Wconclusion = Wnew + Wold − Wnew × Wold

This once again reflects the intuition in that the more
evidence there exists which supports a conclusion, the higher is
the significance of that conclusion. Indeed, the weight of a fact
lies in the interval [0, 1]. In the present work, the threshold for
rule firing is set to zero so that all symptoms can be considered
no matter how low their weights are (though this threshold can
be easily reset should a higher value be preferred in order to
increase the diagnostic efficiency of the system).

As an example, consider the following rules:

R1 If direction of predominant amplitude is vertical
then possible cause is misalignment (W = 0.2)

R2 If direction of predominant amplitude is horizontal
then possible cause is misalignment (W = 0.3)

R3 If location of predominant amplitude is shaft
then possible cause is misalignment (W = 0.3)

R4 If location of predominant amplitude is casing
then possible cause is misalignment (W = 0.2)



RulesR1 andR2 are fuzzy-crisp rules whilst rulesR3 and
R4 are crisp-crisp rules. Suppose that the values of “direction
of predominant amplitude” are represented by the fuzzy sets
as shown in figure 2 and that the following facts are given by
the user:

a. location of predominant amplitude is shaft (W = 1)
b. direction of predominant amplitude is vertical (W = 1)

Following the method described above, ruleR3 is fired and
the weight of the conclusion “possible cause is misalignment”,
W1, is equal to1.0×0.3 = 0.3. RuleR1 is also fired because
the fuzzy set associated with its condition and that with the
fact a are the same, both being “vertical”. In this case,S is
equal to 1 and the weight of the conclusion,W2, is equal to
1.0× 0.2× 1.0 = 0.2. Since the conclusion already exists, its
new weightW3 is calculated as follows:

W3 = W1 + W2 − W1 × W2

= 0.3 + 0.2 − 0.3 × 0.2
= 0.44

Because the fuzzy sets denoting the values “vertical” and
“horizontal” have some degree of overlap, ruleR2 also fires.
Suppose that the degree of similarityS between the two fuzzy
sets is calculated to be 0.1. The weightW4 of the conclusion
obtained from firing ruleR2 is then equal to1.0×0.3×0.1 =
0.03. This new weight is again combined with the existingW3

to update the weight of the same conclusion such that

W5 = W3 + W4 − W3 × W4 = 0.46

Clearly, with the accumulation of evidence partially supporting
a conclusion the weight of this conclusion will be (correctly)
increased.

In addition to allowing partial matching between rule con-
ditions and given facts, the utilisation of fuzzy logic allows
the user to have a good flexibility in providing inputs to the
system. For example, suppose that the fuzzy sets representing
the values “vertical”, “horizontal” and “axial” as shown in
figure 2 are denoted byFvertical, Fhorizontal and Fvertical

respectively. If the user indicates that the value of the direction
of predominant amplitude is “vertical or horizontal”, this
value can be easily represented by the fuzzy setFvertical ∪
Fhorizontal. In this case, given the fact that

“direction of predominant amplitude is vertical or hori-
zontal”,

the first two rules provided above will be fired. The weight of
the conclusion due to firing ruleR1 is calculated based on the
degree of overlap betweenFvertical∪Fhorizontal andFvertical,
and that due to ruleR2 is computed based on the degree
of overlap betweenFvertical ∪ Fhorizontal and Fhorizontal.
Furthermore, the user can give qualified uncertain inputs using
fuzzy hedges [2], [4] such as “extremely”, “very” and “quite”
to indicate the detail of information and hence, to allow more
accurate diagnoses to be generated.

IV. EXPERIMENTAL RESULTS

The performance of this system, implemented in Fuzzy-
CLIPS [7], has been verified with a number of real cases.
The results of two typical case studies are presented here.

Before going on, it is worth noting that the diagnostic
system has a threshold for returning ranked possible causes
which can be set by the user. This is merely for use in
reporting diagnostic results and should not be confused with
the threshold of an internal weight for rule firing (which is
set to zero as indicated previously). Only those causes found
whose weights are larger than the set threshold are reported
to the user. This facility allows the user to concentrate on
important diagnoses only. In both experimental cases below,
the threshold is set to 0.5.

A. Case I

The actual underlying cause of this case is “oil whirl” and
the symptoms observed are:

(a) predominant frequency of vibration: 40-50% (high)
(b) direction of predominant amplitude: vertical
(c) location of predominant amplitude: shaft
(d) amplitude response to speed increase: coming suddenly
(e) amplitude response to speed decrease: dropping out sud-

denly
(f) predominant sound of vibration: low frequency rumble

As mentioned earlier, the system performs diagnosis
incrementally with respect to each symptom presented by the
user. After the “predominant frequency” symptom is given,
the intermediate result is shown as follows:

The following causes are possible:
(Numbers in brackets indicate their
possibilities.)

1. thrust bearing damage (0.91)
2. bearing and support excited vibration (oil

whirls, etc.) (0.64)

>> Do you want to continue the diagnosis?

yes/no:

As can be seen, in response to the initial symptom given,
only two possible causes are found and one of them is
the actual cause “oil whirl”. Now the user can continue
the diagnosis to volunteer more symptoms observed. Given
another symptom, “direction of predominant amplitude”, the
new intermediate result generated by the system is shown as
follows:

The following causes are possible:
(Numbers in brackets indicate their
possibilities.)

1. thrust bearing damage (0.94)
2. bearing and support excited vibration (oil

whirls, etc.) (0.81)
3. foundation distortion (0.6)
4. bearing damage (0.55)
5. rotor rub axial (0.55)
6. casing distortion (permanent) (0.55)
7. casing distortion (temporary) (0.55)

>> Do you want to continue the diagnosis?

yes/no:

Although five more causes are found to be possible, the
weight of “oil whirl” has increased to 0.81. The final result



generated by the system after all the symptoms available have
been presented is given below:

SYMPTOM(S):

1. Predominant frequency of vibration:
40-50% oil whirl frequency (high)

2. Direction of predominant amplitude:
vertical

3. Location of predominant amplitude:
shaft

4. Amplitude response to speed increase:
coming suddenly

5. Amplitude response to speed decrease:
dropping out suddenly

6. Predominant sound of vibration:
low frequency rumble

POSSIBLE CAUSE(S):

1. bearing and support excited vibration (oil
whirls, etc.) (1.0)

2. thrust bearing damage (0.99)
3. casing distortion (temporary) (0.97)
4. rotor rub axial (0.94)
5. bearing damage (0.93)
6. seal rub (0.87)
7. piping forces (0.82)

>> Do you want to perform what-if analysis on

>> the result?

yes/no:

From this result, it is clear that the underlying cause “oil
whirl” is ranked the top and has the highest significance weight
of 1. However, given limited observations and a knowledge
base manually derived fromad hoc charts, some causes other
than “oil whirl” are also found to have a very high weight
such as “thrust bearing damage”. Yet, an important task of the
system is to rank possible causes so that the user can know
which ones are important and should be checked. Therefore,
if possible, those causes with a very high weight value should
be checked as well as “oil whirl”.

The system allows the user to perform what-if analysis and,
hence, to study the possible impact of changes of any given
symptoms upon the diagnostic result. With the help of the
what-if analysis facility, when the predominant frequencyis
changed for instance to 1xRPM (high) in the above example,
the updated diagnoses can be generated as presented below
(without the need of starting a new consultation from the
beginning):

SYMPTOM(S):

1. Predominant frequency of vibration:
1xRPM (high)

2. Direction of predominant amplitude:
vertical

3. Location of predominant amplitude:
shaft

4. Amplitude response to speed increase:
coming suddenly

5. Amplitude response to speed decrease:
dropping out suddenly

6. Predominant sound of vibration:
low frequency rumble

POSSIBLE CAUSE(S):

1. temporary rotor bow (1.0)

2. thrust bearing damage (0.99)
3. casing distortion (temporary) (0.99)
4. bearing damage (0.95)
5. rotor rub axial (0.95)
6. seal rub (0.88)
7. piping forces (0.86)

>> Continue what-if analysis?

yes/no:

This result is quite different from what was shown earlier.
“Oil whirl” has been correctly eliminated and the most likely
cause becomes “temporary rotor bow”, which was not even
present before. This updated, most likely cause is indeed the
one for the amplitude of the frequency 1xRPM to become
high.

B. Case II

In this case, the actual underlying cause is “thrust bearing
damage”, and the symptoms observed are:
(a) predominant frequency of vibration: 1xRPM (high) and

2xRPM (high)
(b) direction of predominant amplitude: horizontal
(c) location of predominant amplitude: shaft
(d) amplitude response to speed increase: increase
(e) amplitude response to speed decrease: decrease
(f) predominant sound of vibration: loud roar

Similar to case I, when the user inputs the symptoms one by
one, the system generates intermediate diagnoses accordingly.
Instead of repeating a similar consultation process, the final
diagnostic result produced by the system is presented here:

SYMPTOM(S):
1. Predominant frequency of vibration:

1xRPM (high), 2xRPM (high)
2. Direction of predominant amplitude:

horizontal
3. Location of predominant amplitude:

shaft
4. Amplitude response to speed increase:

increases
5. Amplitude response to speed decrease:

decreases
6. Predominant sound of vibration:

loud roar
POSSIBLE CAUSE(S):

1. thrust bearing damage (1.0)
2. journal and bearing eccentricity (1.0)
3. foundation distortion (1.0)
4. casing distortion (permanent) (1.0)
5. casing distortion (temporary) (1.0)
6. temporary rotor bow (1.0)
7. permanent bow or lost rotor parts (1.0)
8. initial unbalance (1.0)
9. bearing damage (0.99)

10. seal rub (0.99)
11. piping forces (0.98)
12. misalignment (0.98)
13. rotor rub. axial (0.98)

>> Do you want to perform what-if analysis on

>> the result?

yes/no:



In this case, the knowledge-based system identifies 13
possible causes, each having a very high significance weight.

V. CONCLUSIONS AND FURTHER WORK

This paper has presented a fuzzy system for turbomachinery
diagnosis, which combines fuzzy logic and weight approaches
for representing and reasoning about domain specific knowl-
edge. According to the results of experiments carried out so
far, the diagnostic system can identify the underlying cause(s)
of a real problem. As with any fuzzy rule-based system, where
the system’s knowledge is induced from given examples, the
applicability of this diagnostic system can be expected when
used to help finding faults of experienced nature. However,
it should not be expected for the proposed system to work
universally well for any situations, especially for the situations
where unseen faults may occur.

In fact, the current approach relies upon the assumption
that a full coverage of symptom-cause associations can be
extracted from Sohre’s charts. Although this may be the case
for commonly applied rotating machines, knowledge regarding
certain new types of machine may not be complete. For
effective diagnosis the natural next step in improving this
system is to include a mode of unknown cause. Such a
revision to the system will require (a) the introduction of a
rule concluding on an unexperienced fault for each category
of possible symptom that full-coverage is not guaranteed, and
(b) the recalculation of the weights of all the relevant rules.
Alternatively, the ideas of applying qualitative model-based
reasoning, as per the Tiger system that is presented in [14],
may be borrowed to address this problem.

It is also worth noting that the second example given in
the experimental studies reveals an important limitation of
the current system: Although the actual cause “thrust bearing
damage” is ranked the top, there are 7 other causes found to
have a weight of 1. Albeit multiple causes for vibration may
be common in rotating machines, there would not normally
exist so many of them at the same time. Further investigations
into how to reduce the number of returned faults are needed.
Nevertheless, this does not affect the usefulness of the present
system, since what the user often requires is typically a piece
of advice of what might be the possible causes for the observed
symptoms.

Finally, the present computation mechanism for the rule
weights is rather simplistic. There are other alternativesthat
may be employed, including the use of measures of entropy
[10], rough dependency [9] and fuzzy-rough dependency [12].
This remains an interesting future investigation.
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