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Abstract

Random fuzzy theory offers an appropriate mechanism to model random fuzzy phenomena,

with a random fuzzy variable defined as a function from a credibility space to a collection of

random variables. Based on this theory, this paper presents the results of an investigation into

the representation of properties of alternating renewal processes that are described by sequences

of positive random fuzzy vectors. It provides a theorem on the limit value of the average chance

of a given random fuzzy event in terms of “system being on at time t”. The resultant model

coincides with that attainable by stochastic analysis when the random fuzzy vectors degenerate

to random vectors.

Keywords: Fuzzy variable; Stochastic process; Renewal process; Random fuzzy variable; In-

terarrival time

1 Introduction

Alternating renewal process is one of the most common and popular processes in renewal theory. In

classical alternating renewal processes, one of assumptions is that the process behaviour can be fully

characterized by probability theory with parameters such as interarrival times or system lifetimes

assumed to be random variables. Details of classical alternating renewal processes can be found in

reference texts [2], [3], [5], [23], [25] and [27].

However, estimation of the probability distributions of such parameters can be very difficult

in many processes due to the uncertainties and imprecision of data. Fuzzy set theory has been

introduced to develop the renewal theory by several authors, in an effort to avoid or minimise

this difficulty. In fuzzy renewal theory, the interarrival times and other variables are often deemed
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to be known inexactly and characterized as fuzzy variables. For example, Dozzi et al provided a

limit theorem for counting renewal processes indexed by fuzzy sets [4]. Zhao and Liu discussed a

fuzzy renewal process depicted by a sequence of positive fuzzy variables and established the fuzzy

elementary renewal theorem and renewal reward theorem [28]. Hong considered a renewal process

in which the inter-arrival times and rewards are characterized as fuzzy variables which are operated

on with t norm-based fuzzy operators [6].

Nevertheless, in practice, fuzziness and randomness may jointly occur within one process. Two

distinct approaches can be applied to deal with this. One is to employ the fuzzy random theory [8]

[9] which informally speaking describes process variables by a measurable function from a probability

space to a collection of fuzzy sets. Based on this theory, models for fuzzy random renewal processes

have been proposed in the literature. In particular, Hwang investigated a renewal process in which

the interarrival times are considered as independent and identically distributed (iid) fuzzy random

variables, providing a usful theorem on the fuzzy rate of a fuzzy random renewal process [7]. Popova

and Wu considered a renewal reward process with fuzzy random interarrival times and rewards,

focusing their attention on the long-run average fuzzy reward per unit time [22]. Zhao et al discussed

two kinds of process—fuzzy random renewal processes and fuzzy random renewal reward processes

[31]. In modelling the former, they presented the fuzzy random elementary renewal theorem on the

limit value of the expected renewal rate of the process; and in dealing with the latter, they proved

the fuzzy random renewal reward theorem on the limit value of the long-run expected reward per

unit time. Also, further interesting properties of fuzzy random renewal processes, e.g. fuzzy random

Blackwell’s renewal theorem and Smith’s key renewal theorem were given in [30]. In addition,

fuzzy random homogeneous Poisson processes, fuzzy random compound Poisson processes and fuzzy

random delayed renewal processes have been introduced in [10] [11].

The other approach is based on the random fuzzy theory [13]. Briefly, a random fuzzy variable

is a function from a credibility space to a collection of random variables. This theory is applied

to extend the scope of renewal process modelling and to enhance the utility of such models for

more complex applications. In particular, a random fuzzy renewal process model has been built

[29] with a random fuzzy elementary renewal theorem and the respective version of Blackwell’s
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theorem established. To further develop such work, this paper is set to describe a theory on the

representation of alternating renewal processes that are each depicted underlyingly by a sequence

of random fuzzy vectors. Throughout the paper emphasis is put on the limit value of the average

chance of the event that “the system is on at time t”.

The remainder of this paper is organized as follows. In Sections 2 and 3, basic concepts and

properties regarding fuzzy variables and random fuzzy variables are briefly reviewed, in terms of

their features as defined on a credibility space [13][15][17]. In Section 4, random fuzzy alternating

renewal processes are formalised, including a theorem on the limit value of the average chance of

the event that a system under consideration is deemed working at a given time.

2 Fuzzy Variables on Credibility Space

Let ξ be a fuzzy variable on a credibility space (Θ,P(Θ),Cr) (for the concept of the credibility

space, see [13][15][17]), where Θ is a universe, P(Θ) is the power set of Θ and Cr is a credibility

measure defined on P(Θ).

Definition 1 ([16]) Let ξ be a fuzzy variable defined on the credibility space (Θ,P(Θ),Cr). Then

its membership function is derived from the credibility measure by

µξ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ <.

Definition 2 Let ξ be a fuzzy variable and α ∈ (0, 1]. Then

ξ
′
α = inf{r ∣∣ µξ(r) ≥ α} and ξ

′′
α = sup{r ∣∣ µξ(r) ≥ α} (1)

are called the α-pessimistic value and α-optimistic value of ξ, respectively.

Definition 3 ([17]) Let ξ be a fuzzy variable. The expected value E[ξ] is defined as

E[ξ] =
∫ ∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr (2)

provided that at least one of the two integrals is finite. Especially, if ξ is a nonnegative fuzzy variable,

then E[ξ] =
∫∞
0

Cr{ξ ≥ r}dr.

Proposition 1 ([19]) Let ξ be a fuzzy variable with finite expected value E[ξ]. Then

E[ξ] =
1
2

∫ 1

0

[
ξ
′
α + ξ

′′
α

]
dα, (3)
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where ξ
′
α and ξ

′′
α are the α-pessimistic value and the α-optimistic value of ξ, respectively.

Definition 4 ([20]) The fuzzy variables ξ1, ξ2, · · · , ξn are said to be independent if and only if

Cr

{
n⋂

i=1

{ξi ∈ Bi}
}

= min
1≤i≤n

Cr{ξi ∈ Bi} (4)

for any sets B1, B2, · · · , Bn of <.

Proposition 2 ([19]) Let ξ1 and ξ2 be two independent fuzzy variables with finite expected values.

Then for any real numbers a and b, E[aξ1 + bξ2] = aE[ξ1] + bE[ξ2].

Definition 5 ([14]) The fuzzy variables ξ1, ξ2, · · · , ξn are said to be identically distributed if and

only if

Cr{ξi ∈ B} = Cr{ξj ∈ B}, i, j = 1, 2, · · · , n (5)

for any set B of <.

Proposition 3 ([14]) Let (Θi,Pi(Θ),Cri), i = 1, 2, · · ·, be an arbitrary sequence of credibility spaces

and Θ =
∞∏

i=1

Θi. Define Cr on P(Θ) such that

Cr{(θ1, θ2, · · ·)} = Cr1{θ1} ∧ Cr2{θ2} ∧ · · · .

Then the function Cr is a fuzzy measure on P(Θ) and (Θ,P(Θ),Cr) is a credibility space (called an

infinite product credibility space of (Θi,Pi(Θ),Cri), i = 1, 2, · · ·).

Remark 1 Let (Θ,P(Θ),Cr) be an infinite product credibility space of (Θi,Pi(Θ),Cri), i = 1, 2, · · ·

For any A ∈ P(Θ),

Cr{A} =





sup
(θ1,θ2,···)∈A

min
1≤i

Cri{θi},

if sup
(θ1,θ2,···)∈A

min
1≤i

Cri{θi} < 0.5

1− sup
(θ1,θ2,···)∈Ac

min
1≤i

Cri{θi},

if sup
(θ1,θ2,···)∈A

min
1≤i

Cri{θi} ≥ 0.5.

3 Random Fuzzy Variables on Credibility Space

In the presentation below, it is assumed that (Ω,A,Pr) is a probability space, and that F is a

collection of random variables defined on probability space (Ω,A,Pr).
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Definition 6 ([13]) A random fuzzy variable is a function from a credibility space (Θ,P(Θ),Cr) to

a collection of random variables F .

Example 1 Let X be the lifetime of a system under consideration. Then, it might be known that

the lifetime X is an exponentially distributed random variable with an unknown mean λ,

φ(x) =





1
λ

e−x/λ, if 0 ≤ x < ∞
0, otherwise.

In statistic theory, an interval estimate or point estimate of the value of λ is provided by sufficient

experiment data. In many practical situations, however, there often lacks such data. If the value of

λ is provided as a fuzzy variable defined on the credibility space (Θ,P(Θ),Cr), then X is a random

fuzzy variable defined as

X(λ(θ)) ∼ EXP(λ(θ)),

where λ is a fuzzy variable on (Θ,P(Θ),Cr), and EXP(·) stands for exponential distribution.

Remark 2 ([29]) If Θ consists of a single element, then a random fuzzy variable degenerates to a

random variable. For instance, in (1), the fuzzy variable λ(θ) becomes a crisp number when there

is only a single element θ ∈ Θ. In such case, the random fuzzy system lifetime X degenerates to an

exponentially distributed random variable. If F is a collection of real numbers (rather than random

variables), then Definition 6 superposes the definition of a fuzzy variable. In such a case, a random

fuzzy variable also degenerates to a fuzzy variable.

Definition 7 A random fuzzy variable ξ defined on the credibility space (Θ,P(Θ),Cr) is said to be

positive if and only if Pr{ξ(θ) ≤ 0} = 0 for each θ ∈ Θ with Cr{θ} > 0.

Proposition 4 ([14]) Let ξ be a random fuzzy variable defined on the credibility space (Θ,P(Θ),Cr).

Then, for θ ∈ Θ,

(i) Pr{ξ(θ) ∈ B} is a fuzzy variable for any Borel set B of <; and

(ii) E[ξ(θ)] is a fuzzy variable provided that E[ξ(θ)] is finite for each θ ∈ Θ.

Definition 8 ([19]) Let ξ be a random fuzzy variable defined on the credibility space (Θ,P(Θ),Cr).

The expected value E[ξ] is defined by

E[ξ] =
∫ ∞

0

Cr{θ ∈ Θ | E[ξ(θ)] ≥ r}dr −
∫ 0

−∞
Cr{θ ∈ Θ | E[ξ(θ)] ≤ r}dr
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provided that at least one of the two integrals is finite. Especially, if ξ is a nonnegative random fuzzy

variable, then E[ξ] =
∫∞
0

Cr{θ ∈ Θ | E[ξ(θ)] ≥ r}dr.

Remark 3 ([13]) If the random fuzzy variable ξ degenerates to a random variable, then the expected

value operator becomes

E[ξ] =
∫ ∞

0

Pr{ξ ≥ r}dr −
∫ 0

−∞
Pr{ξ ≤ r}dr,

which is just the conventional mathematical expectation of random variable ξ. If a random fuzzy

variable ξ degenerates to a fuzzy variable, then the expected value operator becomes

E[ξ] =
∫ ∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr,

which is just the expected value of fuzzy variable ξ.

Definition 9 ([18]) Let ξ be a random fuzzy variable. Then the average chance, denoted by Ch, of

a random fuzzy event characterized by {ξ ≤ 0} is defined as

Ch{ξ ≤ 0} =
∫ 1

0

Cr
{
θ ∈ Θ

∣∣ Pr {ξ(θ) ≤ 0} ≥ p
}

dp. (6)

Remark 4 If ξ degenerates to a random variable, then the average chance degenerates to

Pr {ξ ≤ 0} ,

which is just the probability of random event.

Remark 5 If ξ degenerates to a fuzzy variable, then the average chance degenerates to

Cr {ξ ≤ 0} ,

which is just the credibility of fuzzy event.

Proposition 5 ([18]) Let ξ be a random fuzzy variable. Then

Ch{ξ > 0} = 1− Ch{ξ ≤ 0}. (7)

Definition 10 ([12]) Random fuzzy variables ξ1, ξ2, · · · , ξn are independent if

(1) ξ1(θ), ξ2(θ), · · · , ξn(θ) are independent random variables for each θ; and
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(2) E[ξ1(·)], E[ξ2(·)], · · · , E[ξn(·)] are independent fuzzy variables.

Definition 11 ([12]) The random fuzzy variables ξ and η are identically distributed if

sup
Cr{A}≥α

inf
θ∈A

{Pr{ξ(θ) ∈ B}} = sup
Cr{A}≥α

inf
θ∈A

{Pr{η(θ) ∈ B}}

for any α ∈ (0, 1] and Borel set B of real numbers.

Finally, the following shows useful observations regarding stochastic ordering which is usually

employed for comparison of renewal processes.

Definition 12 A collection of random variables F is said to be a totally ordered set with stochastic

ordering if and only if, for any given ζ1,ζ2 ∈ F and r ∈ <, either

Pr{ζ1 ≤ r} ≤ Pr{ζ2 ≤ r} (denoted by ζ2 ≤d ζ1)

or

Pr{ζ1 ≤ r} ≥ Pr{ζ2 ≤ r} (denoted by ζ1 ≤d ζ2).

Remark 6 It follows from Definition 12 that, for any given ζ1, ζ2 ∈ F ,

E[ζ1] ≤ E[ζ2] ⇔ ζ1 ≤d ζ2. (8)

A number of common families of random variables, which satisfy (8), have been discussed in [24];

these include such as families of exponential distributions, Poisson distributions, and normal distri-

butions as well as other families of nonnegative random variables.

Lemma 1 ([29]) Assume that {ζi, i ≥ 1} and {ζ ′i , i ≥ 1} are two mutually independent sequences

of random variables. Let Sn =
n∑

i=1

ζi and S
′
n =

n∑
i=1

ζ
′
, n = 1, 2 · · · If ζi ≤d ζ

′
i , i = 1, 2, · · ·, then

Sn ≤d S
′
n, n = 1, 2, · · ·

Lemma 2 Let F1 and F2 be the probability distribution functions of random variables ζ1 and ζ2,

respectively. Then, ζ1 ≤d ζ2 if and only if

∫ ∞

−∞
f(x)dF1(x) ≤d

∫ ∞

−∞
f(x)dF2(x)

for any monotonic nondecreasing function f(x), x ∈ <.
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4 Modelling Random Fuzzy Alternating Renewal Processes

Consider a system that can be in one of two operating states: on or off. Initially it is on and it

remains on for a time ξ1; it then goes off and remains off for a time η1; it then goes on for a time

ξ2; then off for a time η2, and so forth. Without losing generality, suppose that ξi, i = 1, 2, · · · ,

are random fuzzy variables defined on credibility space (Θi,P(Θi),Cri) and ηi are random fuzzy

variables defined on credibility space (Γi,P(Γi),Cr
′
i). If the random fuzzy vectors (ξi, ηi), i = 1, 2 · · ·

are iid, then the process depicting by the sequence {(ξi, ηi), i ≥ 1} is called a random fuzzy alternating

renewal process, defined on the credibility space (Θ,P(Θ),Cr), where (Θ,P(Θ),Cr) is the infinite

product credibility space characterized by

Θ =
∞∏

i=1

(Θi,Γi)

and

Cr{((θ1, γ1), (θ2, γ2), · · ·)} = Cr1{θ1} ∧ Cr
′
1{γ1} ∧ Cr2{θ2} ∧ Cr

′
2{γ2} ∧ · · ·

for any θ = ((θ1, γ1), (θ2, γ2), · · ·) ∈ Θ.

The rest of this research is developed on the basis of the following assumptions;

Assumptions

(a) The random fuzzy vectors (ξi, ηi), i = 1, 2, · · · are iid, especially, ξi and ηi are independent.

(b) The image sets of ξi and ηi are totally ordered sets with stochastic ordering, i = 1, 2, · · · .

For any fixed θ ∈ Θ, by Definition 6, ξi(θ) and ηi(θ) are the random variables and E[ξi(θ)]

and E[ηi(θ)] are just the expected values of ξi(θ) and ηi(θ). However, when θ is varied all over in

Θ, E[ξi(θ)] and E[ηi(θ)], as functions of θ, are fuzzy variables and their α-pessimistic values and

α-optimistic values can be written as

E[ξi(θ)]
′
α = inf

{
r

∣∣ Pos{E[ξi(θ)] ≤ r} ≥ α
}

, (9)

E[ξi(θ)]
′′
α = sup

{
r

∣∣ Pos{E[ξi(θ)] ≥ r} ≥ α
}

, (10)

E[ηi(θ)]
′
α = inf

{
r

∣∣ Pos{E[ηi(θ)] ≤ r} ≥ α
}

, (11)

E[ηi(θ)]
′′
α = sup

{
r

∣∣ Pos{E[ηi(θ)] ≥ r} ≥ α
}

, (12)
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where α ∈ (0, 1].

Stochastic alternating renewal processes focus on the limit of probability of the random event

that the system under consideration is on at time t. However, in random fuzzy alternating renewal

processes, the event {system is on at time t} is complicated with not only randomness but also

fuzziness. Thus, it is interesting to the average chance of such as event.

It follows from Definition 9 that

Ch{system being on at time t} =
∫ 1

0

Cr
{
θ ∈ Θ

∣∣ Pr{system being on at time t} ≥ p
}

dp. (13)

For convenience, let

P (t) = Pr{system being on at time t}. (14)

From Proposition 4 it is know that P (t) is a fuzzy variable.

Definition 13 A positive random variable ζ is said to be lattice if and only if there exists d ≥ 0

such that
∞∑

n=0
Pr{ζ = nd} = 1.

Theorem 1 Let {(ξi, ηi), i ≥ 1} be a sequence of iid positive random fuzzy vectors which satisfies

Assumptions (a) and (b). Assume that the distribution functions of ξi(θ) and ηi(θ), for any given

θ ∈ Θ, are nonlattice, the α-pessimistic values and the α-optimistic values of the fuzzy variables

E[ξi(θ)] and E[ηi(θ)], i = 1, 2, · · · are continuous at the point α0, α0 ∈ (0, 1], and E [ξ1 + η1] < ∞,

then

lim
t→∞

P
′
α0

(t) =
E [ξ1(θ)]

′

α0

E [ξ1(θ)]
′
α0

+ E [η1(θ)]
′′
α0

(15)

and

lim
t→∞

P
′′
α0

(t) =
E [ξ1(θ)]

′′

α0

E [ξ1(θ)]
′′
α0

+ E [η1(θ)]
′
α0

, (16)

where E [ξ1(θ)]
′

α0
, E [ξ1(θ)]

′′

α0
, E [η1(θ)]

′

α0
, E [η1(θ)]

′′

α0
, P

′
α0

(t) and P
′′
α0

(t) are the α0-pessimistic

values and the α0-optimistic values of ξ1(θ), η1(θ) and P (t), respectively.

Proof. Let Ai = {θi ∈ Θi

∣∣ µ(θi) ≥ α} and Bi = {ϑi ∈ Γi

∣∣ µ(ϑi) ≥ α}. Since the α-pessimistic and

α-optimistic values of the fuzzy variables E[ξi(θ)] and E[ηi(θ)], θ ∈ Θ, i = 1, 2, · · · are continuous

at the point α0, there must exist points θi1 , θi2 ∈ Ai and ϑi1 , ϑi2 ∈ Bi such that

9



E[ξi(θi1)] = E[ξi(θ)]
′
α0

, E[ξi(θi2)] = E[ξi(θ)]
′′
α0

E[ηi(ϑi1)] = E[ηi(θ)]
′
α0

, E[ηi(ϑi2)] = E[ηi(θ)]
′′
α0

.
(17)

It follows from (9) to (12) that

E[ξi(θi1)] ≤ E[ξi(θi)] ≤ E[ξi(θi2)], ∀θi ∈ Ai

and

E[ηi(ϑi1)] ≤ E[ηi(ϑi)] ≤ E[ηi(ϑi2)], ∀ϑi ∈ Bi.

Hence, it follows from (8) and Assumption (b) that

ξi(θi1) ≤d ξi(θi) ≤d ξi(θi2), ∀θi ∈ Ai (18)

and

ηi(ϑi1) ≤d ηi(ϑi) ≤d ηi(ϑi2) ∀ϑi ∈ Bi. (19)

Given that E[ξi(θ)], i = 1, 2, · · · are iid fuzzy variables, taking θ11 = θ21 = · · · and θ12 = θ22 = · · ·

from Ai such that ξi(θi1) and ξi(θi2) are iid random variables, i = 1, 2, · · · , and ϑ11 = ϑ21 = · · · and

ϑ12 = ϑ22 = · · · from Bi such that ηi(ϑi1) and ηi(ϑi2) are iid random variables, i = 1, 2, · · · , then

the following three processes can be obtained:

(1) Process A characterized by {(ξi(θi1), ηi(ϑi2)), i ≥ 1};

(2) Process B characterized by {(ξi(θi2), ηi(ϑi1)), i ≥ 1}; and

(3) Process C characterized by {(ξi(θi), ηi(ϑi)), i ≥ 1}.

It is obvious that both Processes A and B are standard stochastic alternating renewal processes.

Let

P1(t) = Pr{process A being on at time t}, (20)

P2(t) = Pr{process B being on at time t}, (21)

P3(t) = Pr{process C being on at time t}. (22)

Then,

P1(t) ≤ P3(t) ≤ P2(t). (23)

10



Without the loss of generality, it is sufficient to prove the left inequation of (23). To do so, it is

presumed that a renewal takes place each time the system goes on. Conditioning on the time of

that last renewal prior to or at time t yields

P1(t) = Pr
{
process A being on at time t

∣∣ SA = 0
}

Pr{SA = 0}

+
∫ ∞

0

Pr
{
process A being on at time t

∣∣ SA = y
}

dFSA
(y)

and
P3(t) = Pr

{
process C being on at time t

∣∣ SC = 0
}

Pr{SC = 0}

+
∫ ∞

0

Pr
{
process C being on at time t

∣∣ SC = y
}

dFSC
(y),

where SA represents the time of the last renewal prior to or at time t in process A, SC the time

of the last renewal prior to or at time t in process C, FSA
(y) the distribution function of SA and

FSC
(y) the distribution function of SC . Furthermore,

Pr
{
process A being on at time t

∣∣ SA = 0
}

= Pr
{

ξ
′
1,α(ω) > t

∣∣ ξ
′
1,α(ω) + η

′′
1,α(ω) > t

}
,

Pr
{
process C being on at time t

∣∣ SC = 0
}

= Pr
{
ξβ1(ω) > t

∣∣ ξβ1(ω) + ηγ1(ω) > t
}

,

and for y < t,

Pr
{
process A being on at time t

∣∣ SA = y
}

= Pr
{

ξ
′
1,α(ω) > t− y

∣∣ ξ
′
1,α(ω) + η

′′
1,α(ω) > t− y

}
,

Pr
{
process C being on at time t

∣∣ SC = y
}

= Pr
{
ξβ(ω) > t− y

∣∣ ξβ(ω) + ηγ(ω) > t− y
}

,

where ξβ(ω) and ηγ(ω) are the β-pessimistic (or β-optimistic) and γ-pessimistic (or γ-optimistic)

values of the last on and off times prior to or at time t in process C.

By Lemma 1 and Lemma 2, it is obvious that

P1(t) ≤ P3(t). (24)

Similarly, P3(t) ≤ P2(t). Since points θi and ϑi are arbitrary in Ai and Bi, respectively, the process

characterized by {(ξi(θi), ηi(ϑi)), i ≥ 1} is an arbitrary process defined on the σ-algebra containing

all rectangles of Cartesian product
∞∏

i=1

(Ai, Bi) = A1 ⊗B1 ⊗A2 ⊗B2 ⊗ · · ·. Hence,

P1(t) = P
′
α0

(t) and P2(t) = P
′′
α0

(t) (25)

where P
′
α0

(t) and P
′
α0

(t) are the α0-pessimistic and α0-optimistic values of the fuzzy variable P (t).
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Furthermore, using the result of stochastic alternating renewal processes (see [23]),

lim
t→∞

P1(t) =
E [ξ1(θ11)]

E [ξ1(θ11)] + E [η1(ϑ12)]
(26)

and

lim
t→∞

P2(t) =
E [ξ1(θ12)]

E [ξ1(θ12)] + E [η1(ϑ11)]
(27)

provided that E [ξ1(θ11)] + E [η1(ϑ12)] < ∞ and E [ξ1(θ12)] + E [η1(ϑ11)] < ∞. It follows from (17)

that

lim
t→∞

P1(t) =
E [ξ1(θ)]

′

α0

E [ξ1(θ)]
′
α0

+ E [η1(θ)]
′′
α0

(28)

and

lim
t→∞

P2(t) =
E [ξ1(θ)]

′′

α0

E [ξ1(θ)]
′′
α0

+ E [η1(θ)]
′
α0

. (29)

Finally, it follows from (25) that the results of (15) and (16) hold. The theorem is proved.

Remark 7 If {(ξi, ηi), i ≥ 1} degenerates to a sequence of iid random vectors, then the results of

(15) and (16) in Theorem 1 degenerate to the form

lim
t→∞

Pr{system being on at time t} =
E [ξ1]

E [ξ1] + E [η1]
,

which is just the conventional result in stochastic case (see [23]).

Remark 8 If {(ξi, ηi), i ≥ 1} degenerates to a sequence of fuzzy vectors with the same member-

ship function, then, for each α0 ∈ (0, 1], the α0-pessimistic and α0-optimistic values of ξ1 and η1

degenerate to four real numbers (denoted by ξ
′
α0

, ξ
′′
α0

, η
′
α0

, η
′′
α0

). The results of (15) and (16) in

Theorem 1 respectively degenerate to the form

lim
t→∞

P
′
α0

(t) =
ξ
′
α0

ξ′α0
+ η′′α0

and

lim
t→∞

P
′′
α0

(t) =
ξ
′′
α0

ξ′′α0
+ η′α0

. (30)

Remark 9 Let

Q(t) = Pr{system being off at time t} (31)

12



which is a fuzzy variable by Proposition 4. Also, let Q
′
α0

(t) and Q
′′
α0

(t) be the α0-pessimistic and

α0-optimistic values of Q(t), respectively. Then, under the conditions of Theorem 1,

lim
t→∞

Q
′
α0

(t) =
E [η1(θ)]

′

α0

E [ξ1(θ)]
′′
α0

+ E [η1(θ)]
′
α0

(32)

and

lim
t→∞

Q
′′
α0

(t) =
E [η1(θ)]

′′

α0

E [ξ1(θ)]
′
α0

+ E [η1(θ)]
′′
α0

. (33)

Theorem 2 Let {(ξi, ηi), i ≥ 1} be a sequence of iid positive random fuzzy vectors which satisfies

Assumptions (a) and (b). Assume that the distribution functions of ξi(θ) and ηi(θ), for any given

θ ∈ Θ, are nonlattice, E [ξ1 + η1] < ∞ and E

[
ξ1

ξ1 + η1

]
< ∞, then

lim
t→∞

Ch{system being on at time t} = E

[
ξ1

ξ1 + η1

]
. (34)

Proof. It follows from Definition 9 and Proposition 1 that

Ch{system being on at time t} =
∫ 1

0

Cr
{
θ ∈ Θ

∣∣ Pr{system being on at time t} ≥ p
}

dp

=
1
2

∫ 1

0

(
P
′
α(t) + P

′′
α (t)

)
dα.

(35)

By Theorem 1,

lim
t→∞

P
′
α(t) =

E [ξ1(θ)]
′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

(36)

and

lim
t→∞

P
′′
α (t) =

E [ξ1(θ)]
′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

(37)

provided that E [ξ1(θ)]
′

α, E [ξ1(θ)]
′′

α, E [η1(θ)]
′

α and E [η1(θ)]
′′

α are continuous at point α, α ∈ (0, 1].

Furthermore, it follows from the definition of the limit that there exist two real numbers t1 and t2

with t1 > 0 and t2 > 0 such that

0 ≤ P
′
α(t) ≤ 1 +

E [ξ1(θ)]
′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

, ∀t ≥ t1 (38)

and

0 ≤ P
′′
α (t) ≤ 1 +

E [ξ1(θ)]
′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

, ∀t ≥ t2. (39)

Therefore, for any t ≥ max(t1, t2),

0 ≤ P
′
α(t) + P

′′
α (t) ≤ 2 +

E [ξ1(θ)]
′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

+
E [ξ1(θ)]

′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

. (40)
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Note that

E

[
ξ1

ξ1 + η1

]
=

1
2

∫ 1

0

(
E [ξ1(θ)]

′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

+
E [ξ1(θ)]

′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

)
dα. (41)

Since E
[

ξ1
ξ1+η1

]
is finite, then E[ξ1(θ)]

′
α

E[ξ1(θ)]
′
α+E[η1(θ)]

′′
α

+ E[ξ1(θ)]
′′
α

E[ξ1(θ)]
′′
α+E[η1(θ)]

′
α

is an integrable function of α ∈

(0, 1]. Hence, it can be deduced that 2 +
(

E[ξ1(θ)]
′
α

E[ξ1(θ)]
′
α+E[η1(θ)]

′′
α

+ E[ξ1(θ)]
′′
α

E[ξ1(θ)]
′′
α+E[η1(θ)]

′
α

)
is an integrable

function of α ∈ (0, 1].

It follows from Fatou’s lemma that

lim inf
t→∞

∫ 1

0

(
P
′
α(t) + P

′′
α (t)

)
dα ≥

∫ 1

0

lim inf
t→∞

(
P
′
α(t) + P

′′
α (t)

)
dα

and

lim sup
t→∞

∫ 1

0

(
P
′
α(t) + P

′′
α (t)

)
dα ≤

∫ 1

0

lim sup
t→∞

(
P
′
α(t) + P

′′
α (t)

)
dα.

Since

lim
t→∞

(
P
′
α(t) + P

′′
α (t)

)
=

E [ξ1(θ)]
′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

+
E [ξ1(θ)]

′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

and E [ξ1(θ)]
′

α, E [ξ1(θ)]
′′

α, E [η1(θ)]
′

α and E [η1(θ)]
′′

α are almost surely continuous functions (see [26])

of α, α ∈ (0, 1], it follows that

lim
t→∞

Ch{system being on at time t} =
1
2

∫ 1

0

lim
t→∞

(
P
′
α(t) + P

′′
α (t)

)
dα

=
1
2

∫ 1

0

(
E [ξ1(θ)]

′

α

E [ξ1(θ)]
′
α + E [η1(θ)]

′′
α

+
E [ξ1(θ)]

′′

α

E [ξ1(θ)]
′′
α + E [η1(θ)]

′
α

)
dα

= E

[
ξ1

ξ1 + η1

]
.

The proof is completed.

Remark 10 If {(ξi, ηi), i ≥ 1} degenerates to a sequence of iid random vectors, then the result in

Theorem 2 degenerates to the form

lim
t→∞

Pr{system being on at time t} =
E [ξ1]

E [ξ1] + E [η1]
,

which is just the conventional result in stochastic case (see [23]).

Remark 11 If {(ξi, ηi), i ≥ 1} degenerates to a sequence of fuzzy vectors, then, the result in Theo-

rem 2 degenerates to the form

lim
t→∞

Cr{system being on at time t} = E

[
ξ1

ξ1 + η1

]
.
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Remark 12 Under the conditions of Theorem 2, it follows from Proposition 5 that

lim
t→∞

Ch{system being off at time t} = 1− lim
t→∞

Ch{system being on at time t}

= E

[
η1

ξ1 + η1

]
.

(42)

Theorem 2 extends the asymptotic result in the stochastic case to the random fuzzy case, enabling

more complex alternating renewal processes to be modelled.

5 Conclusions

It is well known that probability theory provides the mathematical foundation for stochastic renewal

processes, while possibility theory provides the mathematical foundation for fuzzy renewal processes.

In this paper, random fuzzy theory is introduced to further develop the alternating renewal theory so

that more complex processes, especially, those with fuzziness and randomness, can be modelled. In

a random fuzzy alternating renewal process, the event “system being on at time t” is a random fuzzy

event and thus the average chance can be used to measure it. By considering the α-pessimistic and

α-optimistic values of random fuzzy vectors, useful properties of random fuzzy alternating renewal

processes can be readily elicited from the foregone results of the conventional alternating renewal

processes. Such techniques can be extended to coping with other processes and applications. For

example, in the domain of crime prevention, when analyzing forensic data, it might be known that

the concentration of aluminium in c-glass may be an exponentially distributed variable associated

with an unknown parameter [1]. If this parameter is itself regarded as a fuzzy variable, then the

aluminium concentration is a random fuzzy variable.
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