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Abstract

We propose a method for matching non-affinely related sparse model and data point-sets of identical cardinality, similar
spatial distribution and orientation. To establish a one-to-one match, we introduce a new similarityK-dimensional tree. We
construct the tree for the model set using spatial sparsity priority order. A corresponding tree for the data set is then constructed,
following the sparsity information embedded in the model tree. A matching sequence between the two point sets is generated
by traversing the identically structured trees. Experiments on synthetic and real data confirm that this method is applicable
to robust spatial matching of sparse point-sets under moderate non-rigid distortion and arbitrary scaling, thus contributing to
non-rigid point-pattern matching.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:K-dimensional tree; Non-rigid point-pattern matching; Non-rigid pose estimation; Robust point-pattern correspondence; Motion
capture

1. Introduction

Point-pattern matching (PPM) and related topics have
been extensively studied within a rich literature encompass-
ing both theoretical and practical issues in areas such as
computer vision, pattern recognition, computational geom-
etry, astronautics, computational biology and computational
chemistry[1–7].

We propose another application relating to PPM, arising
from marker-based optical motion capture (MoCap) sys-
tems, widely used in clinical gait analysis, animation and
computer games, emphasising human motion representa-
tion [8,9]. For MoCap, passive reflective markers acting as
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feature points are attached on a human subject. The subject’s
movement can be accurately recorded in “real-time”, rep-
resented by a sequence of three-dimensional (3D) feature-
point data. Reconstruction of the subject’s movement re-
quires an additional step ofmodel-basedidentification of
the captured point data. The state of the art for model gen-
eration makes use of manual identification of feature points
in one frame captured from a design pose of the subject,
such as shown inFig. 1. Typically, the same marker proto-
col and design pose are used on many different subjects, yet
manual labelling is still needed for every new subject model
generated. This applies even when the same subject is used
in different MoCap trials, if markers have become detached
or displaced. Model generation is labour intensive, highly
non-productive and consequently costly in commercial sit-
uations.

In this study, we relegate the model generation issue in
MoCap systems in general to the robust one-to-one PPM
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Fig. 1. Capture of 3D human pose data in Vicon-512 system.

with underlying non-rigidity. Formally, we consider two
point sets that are extracted from two subjects with under-
lying non-rigidity and non-uniform scaling, one being the
model set with known point identities and the other repre-
senting the observed data. There exists neither a global nor
local affine transformation between the point-sets. Assume
we have an identified point-setP={pi ∈ (R3, labeli ), i=
1, . . . , M} of one subject in a design pose, called themodel
point-set. We require to match this model point-set to the cor-
responding observed point-setQ={qj ∈ R3, j=1, . . . , M}
of another subject in a similar pose. SetsP and Q have
overall spatial distribution similarity and identical cardinal-
ity. However, the data setQ is generally corrupted by dis-
tribution errors, due to underlying non-rigid poses and po-
sition displacement of feature-point attachment. Scaling is
also not uniform. There are neither global nor local affine
transformations between the model and data sets.

PPM is a fundamental, commonly encountered, yet still
open problem. Feature-based methods for object recogni-
tion, motion analysis and image registration often rely on
point pattern analysis to establish a correspondence within
two related point-sets. However, work relevant to PPM is
largely restricted to rigid objects in Euclidean motions, or
perspective matches under affine transformations, or piece-
wise approaches for non-rigid correspondence[2–5,10]. Ad-
ditionally, uniform scaling is taken into account. In these
cases, geometric hashing[11], a “world-view vector”[12],
or graph/tree-based representation[13,14], being based on
geometric invariance, might be used to seek an exact one-to-
one correspondence in sparse cases under rigid/affine trans-
formations. Constraint satisfaction, in a manner of least-
squares optimisation[15], Hausdorff-distances[16–18] or
the well-known heuristic iterative closest point (ICP) algo-
rithm [19,20], is used to find approximate correspondences
and motion estimation for dense point sets. However, in the

absence of rigidity, while yet demanding the exact corre-
spondence between sparse point sets required for the PPM
problem considered here, the above methods are not appli-
cable.

To deliver an exact correspondence for sparse distribu-
tion with underlying non-rigidity, distribution discrepancy
and non-uniform scaling, we appeal to a novel spatial index
approach that is robust for matching such data. Benefiting
from the well-studied multidimensional binary search tree
(abbreviatedK-dimensional (K-d) tree) techniques, we pro-
pose a newsimilarity K-d tree to address the PPM problem
presented above.

In the following section, we give a brief review of re-
latedK-d tree techniques. In Section 3, we give details for
the proposedsimilarity K-d tree developed for robust PPM.
Experimental results using real MoCap data are given in
Section 4. The algorithm analysis using synthetic data and
conclusions are stated in Sections 5 and 6.

2. Brief review of K-d trees

Many data structures for the tasks of matching and search-
ing multidimensional databases are instances of the gen-
eral class ofbinary space partition(BSP) trees, such as
the K-d trees. TheK-d tree was first introduced by Bent-
ley [21], extended to anadaptive K-d tree in Refs.[22,23],
and modified with many variants to facilitate implementa-
tion of efficient storage and search[24,25]. K-d trees have
been used to solve a number of “geometric” problems in
statistics and data analysis, and provide efficient and ver-
satile methods for accessing large databases, for searching
nearest- or farthest- neighbours and indexing structured data
[13,20].

Flavours ofK-d trees differ mainly in the partition strate-
gies for selecting cutting hyperplanes, and in the meaning
of interior nodes and leaves. Typically, classicalK-d trees
[21] recursively use axi-orthogonal hyperplanes formedian
partition, to divide more-or-less in half the data set associ-
ated with an interior node. Splitting proceeds hierarchically
until a desired number of points remains in the leaves. The
hyperplanes are chosen in sequence to be perpendicular in
turn to each of theK axes in a cyclic order. SuchK-d trees
have excellent depth property, being well balanced under
median partitioning.

AdaptiveK-d trees[22,23] are constructed in a similar
way to classicalK-d trees with, however, hyperplane direc-
tions chosen in a non-fixed order. Taking data tendency into
account, theadaptive K-d tree hyperplane at each node is
chosen to be perpendicular to an axis with the largest data
extension. Data is split on that axis into a balanced number
of points on each side of the splitting plane bymedian par-
tition, or split through amean-positionof the data set, to
achieve a good aspect ratio. For tree construction bymedian
partition, the choice of orthogonal axis is recorded at each
interior node; while formean-positionpartition, orthogonal-
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axis and absolute coordinates of the hyperplane are both
stored.

The basicK-d tree structures[13,25] and many of their
variants have been devised for general or specific practical
applications. However, most partition strategies employed in
K-d trees pay little consideration to data distribution. Planes
may very possibly split a dense data portion at an early stage
of partition, or pass through some points, making the tree
shapes very sensitive to point position and producing com-
pletely different trees for two similar point-sets with distri-
bution errors. Moreover, tree representation through abso-
lute coordinates cannot lead to consistent tree construction
for a corresponding scaled point-set. While a hybridK-d tree
may prove a fruitful line in future research, we concentrate
in this paper on developing a new variant—thesimilarity
K-d tree—to address robust PPM for sparsely distributed
non-rigid data.

3. The new similarity K-d tree

We propose a similarityK-d tree with partitioning based
on adaptive spatial low-density priority order. Like most
K-d trees, we use axi-orthogonal hyperplanes to recursively
partition a point-set into subsets, but the splitting hyper-
plane is located at thebisection of the largest projected
interval, along the orthogonal coordinateH� forming the
hyperplane-axis. For aK-dimensional point-setP� = {pi ∈
�K } of cardinality|P�| at an interior node�, the hyperplane-
axis H� ∈ K of the splitting plane is determined from
Eq. (1) by the largest�-projected interval��,� of the data
coordinates,

H� := max
�∈K

��,�, (1)

where��,�=maxpki
∈P�((pki+1−pki

)�|(pki+1)� �(pki
)�)

is the maximum coordinate interval in the direction� and
i = 1 . . . |P�| is an ordering index. If there is a tie among
maximal candidate intervals,��,�1

and��,�2
, in the sense

that

|��,�1
− ��,�2

|
(��,�1

+ ��,�2
)/2

< 0.1, (2)

the choice is biased towards median partitioning for tree
balance, and reducing the maximal data extent in direction
� : maxpi ,pj ∈P� |(pi − pj )�|, to maintain a favourable

aspect ratio[23].
In this study, we emphasise tree consistency and robust-

ness not only to distribution error, but also to non-uniform
scaling. For this goal, we store at each interior node during
tree construction the orthogonal hyperplane-axis identifier
H� (e.g.x, y or z in 3D) and the number of points|Pl | split
to the left subtree. Using the number of left-child points
rather than an absolute partitioning coordinate not only im-
proves the tolerance to distribution errors and scaling, but

also guarantees a feasible consistent interpretation (refer to
Section 4.2) for a corresponding scaled point-set.

An intuitional illustration of the similarityK-d tree using
the 2D example data is given inFig. 2. We observe that the
hyperplanes are so chosen that points with the nearest normal
distances from the cutting planes are maximally distant from
those planes. The planes, in effect, locate the sparsest point
distributions in thex andy directions. Splitting prioritised
by sparse intervals provides a good heuristic for reducing
distribution error ambiguities. We summarise the similarity
K-d tree construction algorithm inFig. 3.

4. Using the similarity K-d tree for robust PPM

We demonstrate the ability of the proposed similarity
K-d tree to solve the sparse PPM problem in MoCap sys-
tems as described in the introduction, for a difficult situation
of matching captured feature points from human subjects
with underlying non-rigidity, as illustrated inFig. 1. All 3D
feature point data were obtained from a commercial marker-
based MoCap system—the Vicon 512, composed of 7 cam-
eras with infrared illumination. The measurement accuracy
of marker position in 3D is to a level of a few millimetres
in a control volume spanning metres in linear extent.

4.1. Point-set alignment

In our motion capture system, the world coordinate sys-
tem has its origin on the ground, thexy-plane is parallel to
the ground, and thez-axis is vertical. In the case of motion
capture, the two point-setsP = {pi ∈ R3} andQ = {qj ∈
R3} with identical cardinalityM may be obtained in differ-
ent coordinate systems of distinct location and orientation.
They need to be aligned to a consistent coordinate system
by centring and rotating. Firstly, the vector centroidscP and
cQ are calculated as in Eq. (3).

cP =
∑M

i=1 pi

M
, cQ =

∑M
j=1 qj

M
. (3)

Secondly, the orientation vectorsoP and oQ in the co-
centered systems are determined from the weighted sum in
the form of second distribution moments,

oP = 1

M

∑

i

(pi − cP)‖pi − cP‖2,

oQ = 1

M

∑

j

(qj − cQ)‖qj − cQ‖2. (4)

Finally, for alignment, each point inP andQ is transformed
with respect to the corresponding centroidcP, cQ and ori-
entation vectoroP, oQ, through suitable translation and
rotation.
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Fig. 2. A similarity K-d tree with 2D example data: p1(6, −4), p2(4,2), p3(−7, 7), p4(3, −1), p5(7,0), p6(2, −8), p7(5, −6), p8(−8, 9),
p9(8,8), p10(−3, −4).

Fig. 3. BuildSimilarityK-dtree(P�).

4.2. Consistent interpretation of point-sets by similarity
K-d trees

We apply the similarityK-d tree construction (Fig.3) to
the aligned model point-setP, to obtain the similarityK-d
tree TP for the model. Left–right traversal outputs leaves
in an ordered list of labelled model points. Construction
information for the orthogonal-axis and number of points
in the left subtree is stored at each interior node during the
model tree building.

Having available the model treeTP, we proceed recur-
sively to extract a consistent interpretation treeTP(Q) for

the aligned observed dataQ. We follow the structural in-
formation embedded in its model tree, as shown inFig. 4.
Left to right traversal of the leaves of treeTP(Q) then

yields an output sequence of the points in the dataQ.
This point list, together with the output point list from
the model tree construction, serve to define correspond-
ing point-pair matches between model setP and data
setQ.

A practical implementation requires only the logical exis-
tence of the treeTP(Q). It need not actually be constructed,
as only the output list of left–right traversed leaves is re-
quired from the structure, as inFig. 4.
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Fig. 4. ConsistentSimilarityK-dtree(Q�, V ).

4.3. Experiment results

Illustrative identification results, all with perfect corre-
spondences, are shown for a number of human subjects of
heights 1.2–1.8 m inFig. 5 with representative marker at-
tachments. Identified points in the observed data sets are
labelled consistently through correspondence with their left-
displayed models (labels are omitted inFig. 5(c) for space
limitations). We also link identified points according to the
model protocol for meaningful representation of the under-
lying non-rigid poses.Fig. 5(a) shows a routine lower-limb
marker protocol used in clinical gait analysis, andFig. 5(b)
a typical marker set for human character animation. The ex-
ample inFig. 5(c) investigated a dense distribution with 51
markers.

The construction of the modelK-d tree need only be per-
formed once for a specific point distribution of an identified
model setP. Subsequent identifications under similar dis-
tributions require only the logical construction and traversal
of the data tree for each new point setQ. The current burden
of manually identifying numerous subject data sets with the
same marker protocol in intensive applications is thereby
much reduced.

Factors that support correct identification are close pose
similarity and low point density. Generally, tree generation
for denser point-sets is sensitive to smaller pose differences.
In this case, pose similarity is a stricter requirement than
in the case of matching sparser point-sets. For instance,
to identify a 23 or 33 feature-point pattern as inFig. 5(a)
and (b), we always achieved a 100% correct identification
rate, despite obvious differences in flexion, separation and
relative position of legs and feet, and in the case ofFig. 5(b),
the opening out, bending and level of the arms. But an
extremely dense and complex pattern, such as shown in
Fig. 5(c), may easily result in wrong matches for unideal

data poses, such as obtained from substantial lowering or
raising of the arms compared to the model.

5. Discussions

5.1. Evaluation and comparison of usingK-d trees for
PPM

To evaluate the robustness of the similarityK-d tree for
PPM, we tested the algorithm on synthetic data in the 3D
case and compared the identification performance with two
typical K-d trees: the classical and adaptive, the latter in
both median partition and mean-position partition versions.
We assess theK-d trees with respect to the vital problem
of distribution noise in PPM. We generated a set ofM ran-
dom points in a cube of edgeE = 1000 units as a model
set in 3D, forM = 50, 75, 100 and 200 points withaver-
age coordinate interval̄l = E/M of 20, 13.3, 5 and 2.5
respectively. To obtain corrupted observed data, we applied
zero-mean Gaussian noise of standard deviation� to each
of the model point coordinatesx, y andz, respectively. The
parameterN = 2�/l̄ is used to obtain a normaliseddimen-
sionless noiselevel. Effectively,N indicates the ratio of
the coordinate noise-spread±� to the average interval̄l
in that coordinate. The purpose of expressing noise in di-
mensionless units is to provide a meaningful normalisation
for overlaying identification rates obtained at different axial
point densities 1/l̄. The results shown inFigs. 6d and7 are
based on the average fraction of correctly identified points in
500 randomly generated trials at each dimensionless noise
levelN.

Identification rates for 50 and 100 points obtained with
similarity K-d trees, classicalK-d trees and adaptiveK-d
trees versus the dimensionless noise levelN are shown in
Fig. 6. We observe that the similarityK-d tree has the best
identification rate over otherK-d trees. In particular atN=1,
when the noise spread is of the same order as the average
coordinate interval, the similarity tree alone suffers little
identification failure. The method takes advantages of (1) a
low-density prioritised partition strategy, (2) subset counting
during model tree building, and (3) data tree reconstruction
consistent with its model tree. All contribute to distribution
noise tolerance. The classicalK-d tree chooses hyperplanes
in a fixed order and utilises median-partitioning, simulat-
ing “subset counting”, thereby also guaranteeing an inher-
ent consistency of tree building for both model and data
sets. It can tolerate data distribution error to a moderate de-
gree. Compared to the similarityK-d tree, the classical tree
structure is more sensitive to the data distribution, as it may
place a partition plane through a dense data portion without
concern to property (1) above. By contrast, conflicting with
consistency property (3), adaptiveK-d trees consider inde-
pendently the data tendency of setsP� andQ� during the
partitioning process, causing ambiguity on the interpreta-
tion tree and lowered identification rates. AdaptiveK-d trees
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Fig. 5. PPM for non-rigid human subjects: model sets (left) followed by three correctly identified observed data sets.
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Fig. 6. Identification rate obtained by similarity, classical and adap-
tive (median and mean)K-d trees.

with mean-partitioning, indicated by absolute coordinates,
further degrade tolerance to distribution noise compared to
median-partitioning advantaged by “subset counting”.

Fig. 7shows identification rates for various point numbers
M randomly generated in a cube of edgeE= 1000 units, for
similarity and classicalK-d trees. At a given dimensionless
noise levelN, we observe a systematic dispersion in the
identification curves, favouring higher identification rates at
higher point densities. We ascribe this phenomenon to the
manner of data partitioning at the tree nodes. Each partition
of the node data derived from sorting reduces the number of
points in the child partitions, yet still samples the full pre-
partition extents in the otherK − 1 coordinate axes. This
leads to a reduced density in those coordinates. Such a divide
and conquer strategy associates greater noise tolerance and
reduced likelihood of identification error with each new tree
level. Higher point numbers within the cube will generate
deeper tree structures, hence favouring higher identification
rates at a given dimensionless noise level.

The classicalK-d tree shows only a modest improvement
of identification rate with increased point density. It bene-
fits from the divide and conquer strategy only in a statistical
sense, as median partitioning may occur in locally dense
data regions throughout the algorithm. By contrast, the sim-
ilarity tree maximises the advantage of increased sparseness
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Fig. 7. Identification rate for different point numbersM in a cube.

by dynamically seeking the least dense region among all
dimensions for placing the partition. Moreover, the method
takes advantage of the increased statistical likelihood of find-
ing wider departures from the mean in the distribution of
coordinate intervals, as the number of pointsM within the
cube increases. Our empirical investigation shows that the
relativespatial gainl̄max/l̄, denoting the average maximum
coordinate interval divided by the average coordinate inter-
val l̄, rises with increasingM (refer also to[26,27]). The
similarity tree therefore achieves a further systematic iden-
tification gain, particularly at shallower tree levels. The ob-
served increased dispersion (Fig. 7(a)) in the identification
curves for similarity trees over those of the classical trees
(Fig. 7(b)) verifies the expected identification advantage of
similarityK-d trees over the classicalK-d trees at increasing
point densities for a given noise levelN.

5.2. Complexity

An efficient implementation of the similarityK-d tree
PPM algorithm reduces sorting at interior nodes to sorted
sublist extraction. The complexity of such an approach is
discussed here.

To create the modelK-d tree for the setP of M points,
there is an initial requirement of full sorting of theM points
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along each of theK Cartesian coordinate axes, with com-
plexity O(KM logM). We additionally cross-link the sorted
K coordinate lists of the data, so that given any one coordi-
nate of any point, we can locate the other coordinates of that
point in the lists. Cross linking has anO(KM) overhead on
storage and processing.

With cross-linked sorted coordinate lists available, a split-
ting plane at node� will maintain the initial relative ordering
in the split left and right subsets, partitioned at the biggest
gap along the splitting plane axisH�. Cross linking will en-
able partitioning of parent lists into left/right child sublists,
reorganised so as to be sorted in each of the coordinates.
This allows the hierarchical tree building to continue.

Each complete tree level requiresO(KM) complexity
to manage the list splitting. An average ofO(logM) tree
levels therefore entails a total tree building complexity of
O(KM logM), including initial sorting. This complexity
degenerates in a worst case scenario, where just one point
splits off at each tree level, toO(KM2). Using similar ar-
guments, establishing the correspondence for the data set
Q leads to the same average and worst complexity as for
model tree construction.

6. Conclusion

We propose a new similarityK-d tree method for sparse
PPM with underlying non-rigidity and non-uniform scaling
between the model and data sets. The similarityK-d tree
emphasises the robustness to data distribution by adaptive
partitioning in low-density priority order. Optimal splitting
planes prioritised by maximal sparse intervals eschew denser
portions. Moreover, data appearing dense in one hyperplane
need not appear dense in another hyperplane, so the adaptive
choice of hyperplanes maximises the possibility of finding
sparse regions in the child partitions. The orientation of the
splitting plane and the count of the points in the split subsets
are recorded at each interior node, making the tree construc-
tion invariant to scaling. Therefore, construction of the data
tree, consistent with respect to the counts and optimal split-
ting planes of the model tree, yields data points in left-right
leaf traversal that robustly correspond to the model points
in left-right leaf traversal. Heuristically, the correspondence
is least affected by distribution errors and scaling.

The similarityK-d tree has been shown to give superior
PPM compared to otherK-d trees in synthetic trials, and
has been found effective for real-world PPM application
in MoCap. Experimental results demonstrate its successful
performance in a difficult situation: matching point-sets
obtained from diverse human subjects. This method has
benefited a number of commercial and medically oriented
MoCap projects, automatically identifying various sub-
jects’ design pose data with respect to a predefined model.
This research enriches the usage of trees for non-rigid
PPM.
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