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Abstract: Chitosan is a polysaccharide commonly used, together with its derivatives, in the 

preparation of hydrogel formulations, scaffolds and films for tissue engineering applications. 

Chitosan can be used as such, but it is commonly stabilized by means of chemical crosslinkers. 

Genipin is one of the crosslinkers that has been considered that is a crystalline powder extracted 

from the fruit of Gardenia jasminoides and processed to obtain an aglycon compound. Genipin is 

gaining interest in biological applications because of its natural origin and anti-inflammatory 

actions. In this paper, the ability of chitosan-based materials crosslinked with genipin to exert anti-

inflammation properties in applications such as bone regeneration was studied. Powders obtained 

from chitosan–genipin scaffolds have been tested in order to mimic the natural degradation 

processes occurring during biomaterials implantation in vivo. The results from osteoblast-like cells 

showed that specific combinations of chitosan and genipin stimulate high permissiveness towards 

cells, with higher performance than the pure chitosan. In parallel, evidences from monocyte-like 

cells showed that the crosslinker, genipin, seems to promote slowing of the monocyte-macrophage 

transition at morphological level. This suggests a sort of modularity of pro-inflammatory versus 

anti-inflammatory behavior of our chitosan-based biomaterials. Being both the cell types exposed 

to microscale powders, as an added value our results bring information on the cell–material 

interactions in the degradative dynamics of chitosan scaffold structures during the physiological 

resorption processes. 

Keywords: chitosan; genipin; biomaterials; inflammation; cell–material interactions 

 

1. Introduction 

Due to its abundance, versatility and biocompatibility, the polysaccharide chitosan (CS) is 

currently investigated for a wide range of tissue engineering and biomedical applications [1]. CS and 

its derivatives are largely adopted in the formulation of hydrogels, sponges and films developed for 

tissue engineering scaffolds [2–5]. Being able to favor attachment and proliferation of bone-forming 

cells and formation of mineralized bone matrix, CS is especially attractive as bone scaffold material 

[6,7]. 

The chemical and physical properties of this polymer have been studied for over 30 years, as 

well as its biological responses [8]. Despite the wealth of existing literature about its biomedical uses 

[9,10], data regarding the nature and strength of immune responses (immunoreactivity) induced by 
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CS, e.g., administered through parenteral injection and/or implantation, are scarce and conflicting. In 

this respect, CS has been sometimes viewed as an inactive biomaterial, other times as able to induce 

specific inflammatory responses by molecular recognition. In literature, the immunoreactivity of CS 

is dependent on its deacetylation degree, molecular weight and the endotoxin content from the 

deacetylation process of chitin [11–13]. Although many studies describe that CS may differently elicit 

immune responses, e.g., based on the different commercial source. On the other hand recent and less 

recent works agree on the definition of general pro-inflammatory properties of CS [14,15]. 

In biomaterials research targeting to biomedical uses, CS is usually stabilized by chemical cross-

linkers [16]. Among these is counted the genipin (International Union of Pure and Applied 

Chemistry-IUPAC name: methyl(1R,4aS,7aS)-1-hydroxy-7-(hydroxymethyl)-1,4a,5,7a-

tetrahydrocyclopenta[c]pyran-4-carboxylate), an aglycon compound extracted from the fruit of 

Gardenia jasminoides. In the last few years, the scientific interest in genipin utilization is increasing, 

due to its natural occurrence, potential cytocompatibility [17–19] and the ability to elicit anti-

inflammatory activity [20]. Our previous investigations have been preliminarily addressed to the 

chemical–physical and mechanical suitability of genipin crosslinked CS scaffolds, specifically 

intended for bone repair and regeneration. In such research, different genipin concentrations have 

been described as modular factors in terms of porosity and mechanical strength of the scaffolds (by 

inducing different structures, cross-linking degrees and degradation rates), even though it did not 

exert a significantly different impact on the proliferation dynamics of bone-like cell types in the CS-

based scaffolds [21]. 

Aim in the present work is to further study a CS-based material with biocompatible 

characteristics suitable for bone regeneration. The inflammatory response after implantation of 

biomaterials is a key step for the activation of regeneration processes (in fact, mechanisms triggering 

the inflammatory reaction are intertwined with the general responses to implantation). Nevertheless, 

it is a Janus-faced factor when becoming chronic as it impairs the integration with the surrounding 

tissue through the excessive recruitment of monocytic cells to the injury site that leads to 

encapsulation of the biomaterial in a fibrotic capsule [22]. In this view, here genipin was evaluated 

because of its dual role of crosslinker and anti-inflammatory agent which helps in enhancing both 

the structural material and biocompatibility of CS as biomaterials for bone tissue implantation. The 

aim of this study was to use of CS-based materials grinded into powder starting from the initial 

membrane/scaffold form in a way that could mimic the occurrence of natural degradation processes 

starting once the biomaterial is implanted in vivo. [23,24]. Thus, the material grinding and its cell-

based analyses have the following objectives: (a) to investigate the interaction of cells with irregular 

(shapeless) scaffold fragments and (b) to detect biological effects of the genipin molecules putatively 

released from the fragmented scaffold on cells responding to the genipin’s anti-inflammatory 

properties. As follow up of a work previously published [21], we carried out cytocompatibility 

studies using the human osteoblast-like MG63 cells, widely adopted for in vitro bone research [25–

27]. For further biological evaluation, we used the human monocyte-like THP-1 cells, to evaluate their 

morphological responses towards the suspension–adhesion transition under treatments with 

Phorbol-12-myristate-13-acetate (PMA), i.e., proinflammatory compound commonly used to induce 

the monocyte activation [28]. 

2. Materials and Methods 

2.1. Materials 

Chitosan (CS) at medium molecular weight, 75% deacetylation degree and viscosity 200–800 cps 

(1 wt % in 1% acetic acid, 25 °C) was purchased from Sigma-Aldrich (prod. N. 448877; CAS 9012-76-

4; origin: shrimp shells), as well as acetic acid and ethanol (purity 98%). This CS has been selected 

among those with low and high molecular weight due to the balance between solubility and 

capability to react with genipin, producing hydrogel with modular mechanical properties. Genipin 

(purity 98% (HPLC)) was purchased from Wako chemicals USA (prod. N. 078-03021). All the 

products were used without any further purification. Eagle’s minimum essential medium (E-MEM), 



Biology 2020, 9, 159 3 of 15 

 

Roswell Park Memorial Institute medium (RPMI-1640), fetal bovine serum (FBS), L-glutammine, 

penicillin/streptomycin antibiotic mix, Dulbecco’s phosphate buffer saline (D-PBS), 

paraformaldehyde (PFA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

were purchased from Sigma-Aldrich. All reagents, medium supplements and plastic-ware were 

purchased as the cell-culture was tested. Phorbol-12-myristate-13-acetate (PMA; prod. n. P8139; CAS 

0016561298), propanol and HCl were purchased form Sigma-Aldrich. 

2.2. Preparation of Material Powders 

Different dry material powders were prepared starting from scaffold membranes synthesized 

by freeze-drying according to the method of our previous work [21], i.e., containing 1.5% (w/v) of CS 

and genipin content variable from 1% to 3.5% and 7.5% (w/w) of the dry CS. CS powder free of genipin 

was also prepared by the same method. Briefly, after synthesis membranes were processed by 

immersion in liquid nitrogen and subsequent crushing in a porcelain mortar under sterile conditions. 

The obtained powders are reported as GNp (genipin 1% of CS), GN1p (genipin 3.5%) and GN2p 

(genipin 7.5%). For cell culture experiments, all powders were dispersed in sterile Petri dishes and 

sterilized by UV exposure (2 h) before adding to the cell culture medium; the GNp, GN1p, GN2p and 

CS powders were added to the treatment solutions at concentrations 1.5 mg/mL, 0.15 mg/mL and 

0.015 mg/mL (serial dilutions) in the cell culture medium. 

2.3. Morphological Analysis of Powders by Scanning Electron Microscopy (SEM) 

The surface morphology of the GNp, GN1p, GN2p and CS powders were analyzed by scanning 

electron microscopy (ZEISS EVO 40, Carl Zeiss AG, Oberkochen, Germany) in low-vacuum modality 

and applying a voltage of 25 kV. Dried samples were placed on SEM sample holder, using double-

sided adhesive tape and then observed without any modification. Images were acquired at 500× 

magnifications. 

2.4. Cell Culture 

In vitro cytocompatibility of powders and the qualitative analysis of cell–material interactions 

were performed adopting the human MG-63 osteoblast-like cell line (ATCC® number CRL-1427™). 

MG-63 cells were maintained in sterile plastic flasks with E-MEM supplemented with 10% (v/v) fetal 

bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin and 100 ng/mL streptomycin, in a water-

saturated atmosphere of 5% CO2 and 95% air (37 °C). For propagation, cells at 70–90% confluence 

were washed twice in D-PBS and detached with a 0.3% (v/v) trypsin solution, and then harvested by 

centrifugation; cell pellets were finally resuspended and transferred to new flasks. For the 

proinflammatory assays, the THP-1 human-derived monocyte-like cells (ATCC® number TIB-202™) 

were grown in suspension in RPMI-1640 medium supplemented with 10% FBS (v/v), 2 mM L-

glutamine and penicillin/streptomycin (100 U/mL; 100 ng/mL resp.). For propagation (every 3–4 

days), cells at a growth density between 5 × 105 and 1 × 106 cells/mL were harvested by centrifugation, 

diluted in fresh culture medium and finally transferred to new flasks. All experiments were 

performed using cells between passages 3 and 10. 

2.5. Evaluation of Cell Viability by MTT Assays 

The powders and genipin were tested in time/dose dependence analyses performed using the 

MG-63 cells. Briefly, 1 × 105 cells/mL were seeded in 24-well plates. After 24 h, the growth medium 

was replaced by medium containing 1.5 mg/mL, 0.15 mg/mL and 00.15 mg/mL of GN1p, GN2p and 

CS powders; in parallel, the cytotoxic effects of free genipin (gn) were analyzed adding gn at 0.75 

µg/mL and 1.65 µg/mL (i.e., genipin content nominally present in 1.5 mg of the synthesized GN1p 

and GN2p materials, respectively) to the culture medium subsequently diluted at 1:10 and 1:100 (in 

this way, gn effects were tested in the range from 0.75 × 10−2 to 1.65 µg/mL). After treatments, MTT (3 

[4,5, Dimethylthiazol 2 y1] 2,5 diphenyltetrazolium bromide) assays [29] were performed by adding 

MTT solution in D-PBS to the culture medium, at the final concentration of 50 µg/mL. After 4 h 
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incubation at 37 °C, the medium has been removed and cells were washed 2–3 times with D-PBS until 

complete removal of the material powders. Finally, 500 µL of 2-Propanol/HCl 1N solution were 

added to each well to lyse cell membranes and dissolve the dark-blue formazan crystals produced by 

MTT intracellular metabolization in viable cells. The optical densities (ODs) of solutions from each 

sample were measured at λ = 550 nm by spectrophotometry, with a Multiskan Fc Microplate 

Photometer (Thermo Fisher Scientific, Waltham, Massachusetts, USA). For each experimental 

condition, data derived from mean values of n = 6 biological replicates; all tests were performed trice. 

OD data were normalized and expressed as percentage of metabolic activity (viability) with respect 

to the control mean values (untreated cells, 100% viability). 

2.6. Hematoxylin/Eosin Staining of MG3 Cells 

MG63 cells were seeded on UV-sterilized coverslips laid at the bottom of 6-well plates (1.5 × 105 

cells per well); after 24 h (50% ≤ confluence ≤ 70%), cells were treated with the GNp, GN1p, GN2p 

and CS powders. After treatments, the medium was removed and coverslips were washed twice with 

D-PBS, afterward cells on coverslips were fixed by overnight incubation at 4 °C with 4% (w/v) 

paraformaldehyde (PFA) in D-PBS. The day after, a standard hematoxylin/eosin (HE) staining 

protocol was performed as follows: (1) D-PBS washing (3×, 10 min each); (2) washing (1×) with 

distilled water for 5 min; (3) hematoxylin staining for 15 min and quick washing with distilled water 

(1×); washing with running water for 15 min; (4) rapid washing with distilled water and staining by 

eosin (acidified with glacial acetic acid) for 1 min; (5) after washing with distilled water, dehydration 

by increasing concentrations of ethanol in alcohol/distilled water solutions (50%, 70%, 95% and 100% 

v/v, 2 min each); (6) rapid immersion in xylene (2 min) and (7) mounting on microscope slides with 

the Eukitt® (Merck KGaA, Darmstadt, Germany) acrylic resin mix and 12–18 h drying before final 

image acquisition. Bright/fluorescence images of samples were acquired with a Nikon AZ-100 

stereoscopy system equipped with the Nikon (Miniato, Japan) NIS-Elements D package software. 

2.7. PMA (Phorbol 12-Myristate 13-Acetate) Treatments of THP-1 Cells 

THP1 cells were seeded into gelatin-coated 6-well plates (7.5 × 104 cells/well). The GNp, GN1p, 

GN2p, CS or the gn solutions were added (genipin concentrations were applied as described above) 

and cells were incubated for 24 h. Afterwards, cells were treated for 48 h with 100 nM PMA (Phorbol 

12-Myristate 13-Acetate) that was added to the RPMI-1640 medium. THP-1 cells treated with PMA 

alone were used as a positive control. At the end of incubation, supernatants (containing both 

materials and non-adherent cells) were removed and adherent cells were washed with D-PBS. Cells 

were fixed on the well bottom by 4% PFA for 2 h at 25 °C and subsequently washed twice in D-PBS 

before image acquisition. For each treatment condition, two replicates were prepared. Four cell 

counts in four different areas of the two biological replicates were performed (cell counts n = 8). The 

morphological analysis of the suspension–adhesion transition of cells undergoing treatments has 

been performed by definition of three arbitrary stages corresponding to three morphological shapes: 

(a) MPM (monocytes, pre-macrophage): adhered monocyte-like cells; (b) AI (adhered stage I, low 

morphological complexity): adhered spindle-shaped cells with n = 1 pseudopodial elongation and (c) 

AII (adhered stage II): adhered cells with n ≥ 2 pseudopodial elongations (advanced morphological 

complexity). 

2.8. Statistical Analysis 

If not otherwise stated, statistical analysis of the differences in the measured values of the 

experiments was performed with a Student’s t-test. All data are presented as means ± standard error 

of mean (S.E.M.). Differences were considered statistically significant when the p values were p < 0.05. 
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3. Results and Discussions 

3.1. Morphological Analysis of Material Powders by Using SEM 

Figure 1 shows SEM images of GNp (B), GN1p (C), GN2p (D) and CS (A) fragments from 

material powders. SEM images demonstrated that the freeze-drying method allows obtaining sample 

surfaces with high roughness, and interconnected porosity [21]. As expected, no morphological 

differences between materials powders containing different concentrations of genipin were 

highlighted, proving that genipin acts only at the molecular level. Conversely, the sample of pure CS 

seems to present some differences, especially if observed on the surface level, showing an increased 

thinner roughness, with less sharp edges. This can be due to the effect of the crosslink that, creating 

a stiffer polymer matrix, influences the growing rate of ice crystals in samples including genipin, 

during the freeze-drying treatment. 

 

Figure 1. SEM morphological surface analysis of fragments from CS (A), GNp (B), GN1p (C) and 

GN2p (D) powders, 500× magnification. 

3.2. Evaluation of Cell Viability in the Presence of GNps, CS Powder and Genipin 

As it is largely debated in literature about the dubious neutrality of CS in terms of 

immunoreactivity [11,12], likewise the effects of genipin in terms of cytocompatibility have not been 

comprehensively elucidated. As reported by several authors, genipin is less cytotoxic than chemical 

cross-linkers commonly used for modifying CS [17–19]. On the other hand, as a plant extract 

compound, it may produce adverse effects when used for in vivo biomedical applications [30]. In 

addition, genipin cytotoxicity can vary depending on the cell types, when tested in vitro [17], 

impeding a precise prediction of a safe range of concentrations to use for targeted applications. Based 

on our previous findings on the viability of MG63 osteoblast-like cells seeded and grown in genipin-

crosslinked CS scaffold structures [21], the possible cytotoxic effects of materials reduced in powders, 

i.e., GN1p and GN2p, as well as of CS powder and gn were investigated. As the osteoblast-like cell 

model, MG63 are anchorage-dependent cells (ADCs), which are influenced by the extracellular 

matrix and the extracellular surface in growing and proliferating [31–33]. Overall, the in vitro 

expansion, growth and phenotype regulation of ADCs are processes directly depending on the 
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mechanical and morphological features of the growth surface, which interacts with cell membranes 

at both the nano- and meso- or microscale level [34]. 

Cell viability was investigated at 24, 48 and 72 h after exposure to the material powders and gn 

at different concentrations. As reported in Figure 2, after 72 h of exposure to the maximum tested 

concentration, i.e., 1.5 mg/mL, MG63 cells treated by the CS powder showed a time-dependent 

significant reduction of metabolic activity vs. the untreated control (66 vs. 100%, respectively), while 

no significant changes were detected at the lower concentrations (0.15 mg/mL and 0.015 mg/mL) at 

each time point (Figure 2 A). When effects of the GN1p powder were analyzed, no significant 

reduction of cells metabolic activity was detected in treated cells vs. control, for each experimental 

concentration and/or time point (Figure 2 B). On the other hand, by exposing cells to the presence of 

GN2p, a time-dependent decreasing trend was observed with both 0.15 mg/mL and 1.5 mg/mL 

concentrations, but metabolic activity was significantly lower with respect to untreated control only 

in the presence of the highest concentration at 72 h (59 vs. 100% respectively; Figure 2 C). 

It can be noticed that in this test, specifically, the GNp sample was not tested. For this 

formulation, the reaction kinetics were very low at room temperature. In fact, in a previous work we 

have demonstrated that the crosslinking reaction of GN1p and GN2p takes place only when the 

activation energy is greater than the thermal degradation [21]. This mechanism is a barrier to the 

production of reproducible scaffolds when the gn concentration is lower than the amount used for 

GN1p production, since to activate the reaction temperature should be used, and this promotes a 

consistent uncontrolled degradation of the polymer, thus implying lower structural interest. 

 

Figure 2. Analysis of the viability of MG63 cells in the presence of the CS, GN1p and GN2p powders. 

MTT assays were performed on MG63 cells cultured in the presence of serial dilutions (1.5, 0.15 and 

0.015 mg/mL) of (A) CS powder, (B) GN1p and (C) GN2p at different time points (24, 48 and 72 h). 

Data are reported as mean values from n = 6 biological replicates and are expressed as % viability (± 

S.E.M.) with respect to the untreated control cells (Ctr) at each time point. Statistical analysis was 

assessed by a Student’s t-test (* p < 0.05). 
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In parallel, the cytotoxic effects of gn were analyzed, from 2.2 × 10−3 to 1.65 µg/mL, chosen as a 

concentration range covering the genipin content according to the synthesis of GNp, GN1p and GN2p 

materials [21] and their dilutions as experimentally tested. As shown in Figure 3, with concentrations 

equal to or higher than 0.075 µg/mL, cell viability invariably decreased with the time-dependent 

trend from 24 to 72 h treatments. Additionally, it could be observed that no significant dose-

dependent trend was detected with concentrations equal to or higher than 0.165 µg/mL, at each time 

point analyzed. By using the more diluted gn solutions (1.65 × 10−2 and 0.75 × 10−2 µg/mL), the overall 

viability changes were not significant with respect to the untreated control cells. 

 

Figure 3. Analysis of viability of MG63 cells in the presence of serial dilutions of free genipin (gn). 

MTT assays were performed on MG63 cells cultured in the presence of gn solutions at different time 

points (24, 48 and 72 h). Data are reported as mean values from n = 6 biological replicates and are 

expressed as % viability (± S.E.M.) with respect to the untreated control cells (Ctr) at each time point. 

Statistical analysis: Student’s t-test (* p < 0.05; ** p < 0.01). 

Taken together, the results gave interesting information about the cytocompatibility/toxicity of 

genipin as the constitutive component of the investigated material powders. In fact, it is noteworthy 

that at each time point, GN1p did not retain the toxicity shown by the corresponding amount of 

soluble gn, specifically at higher concentrations (see 0.075 and 0.75 µg/mL in Figure 3). Additionally, 

at 72 h and 1.5 mg/mL, cells grown in the presence of GN1p had a better performance in terms of 

metabolic activity (85% vs. the 100% of the untreated control, without statistical significance) than in 

the presence of the CS component alone (66% vs. 100% of the untreated control, statistically different). 

Interestingly, these findings could be ascribed to changes in the morphological and/or structural 

features of the different material powders [35]. This behavior can be explained with the differences 

in terms of the mechanical responses to the cell–material surface interaction between crosslinked 

(GN1p) and not crosslinked (CS) materials; genipin induces differences in the stiffness of the material 

by acting on the presence of crosslinks between the different chitosan backbones [21]. As the overall 

results suggest, it can be also noticed that GN2p induces a statistically significant reduction of the 

metabolic activity of cells with respect to its control whilst metabolic activity is not statistically 

different from the control in the presence of GN1p; despite this, GN2p does not show the strong 

toxicity of its own genipin content administered at higher concentrations (see 0.165 and 1.65 µg/mL 

in Figure 3). The same consideration on the effect of the stiffness of the material on cell viability can 

be reported for GN2p. When the material became stiffer cells are able to sense the mechanical 

response of the material surface and interact by modifying their proliferation cues. 
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3.3. Evaluation of Cell–Material Interactions by Imaging of Osteoblast-Like Cells Cultured in the Presence of 

CS and GN1p Powders 

The observation of cell–material interactions on the material surface is regarded as a key 

determinant for assessing the performance of a biomaterial. Cell morphology, adhesion and 

spreading provide clear indication about the growth behavior and appropriate cellular responses to 

the tested materials [36]. Based on the viability results, the morphological cell–material interactions 

were investigated by culturing the MG63 cells grown in the presence of the CS and GN1p powders. 

Cell cultures were observed 72 h after exposure to the material powders at different concentrations. 

The imaging of morphology and adhesion of MG-63 cells proliferating in the presence of (1.5, 0.15 

and 0.015 mg/mL) CS or GN1p indicated no evident differences compared to the untreated control 

cells; in both treatments, cells appeared homogeneously distributed, regularly adhering and 

migrating on the culture surface, exhibiting their regular thin and elongated shape (data shown in 

Supplementary Material, Figure S1 a,b); neither changes of the morphological phenotype nor 

inhibition of migration possibly due to the presence of material fragments could be detected 

compared to the untreated cells (Supplementary Material, Figure S1 c,d). 

A more detailed analysis could be assessed based on the fluorescence imaging of the HE-stained 

cells. By focusing on the interaction of cells proliferating/migrating in the presence of the material 

powders, remarkable affinity of MG63 cells for the GN1p material was detected (Figure 4 A–D). In 

fact, cells adhered and migrated onto the surface of the material fragments, i.e., the GN1p surfaces 

showed to highly favor cell invasiveness within the material’s mesh and infoldings regardless of the 

3D structural complexity. Moreover, by fluorescence imaging the absence of morphological 

differences between cells spreading in the presence or in the absence of GN1p was also confirmed. 

The cell–CS powder interactions were also analyzed. Interestingly, lower affinity between the 

spreading cells and the CS material seemed to occur, suggesting a lower permissiveness of the CS 

fragments in terms of cell adhesion and migration (Figure 4 C,D). These evidences were corroborated 

by bidimensional cell counts performed in selected areas of the culture surface with or without 

material fragments (see representative Figure 4 B). Intriguingly, for GN1p no statistically significant 

differences were found between the average number of cells counted in areas without fragments (9 ± 

1) and the average number of cells counted on the fragments’ surface (8 ± 1; see table in Figure 4); 

contrariwise, a lower number of cells seemed to be able to migrate and populate the surface of the CS 

fragments, although without significant difference. It is worth to note that these differences in the 

behavior of migrating cells and in the material biocompatibility seems to mirror the apparent 

differences in the surfaces’ roughness as evidenced by the SEM morphological analysis of the material 

fragments. 
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Figure 4. Evaluation of cell–material interactions by imaging of MG63 cells cultured in the presence 

of CS and GN1p powders. HE staining and fluorescence imaging of MG63 cells grown in the presence 

of GN1p (A–D) and CS powder (E,F). Representative pictures after 72 h growth in the presence of 1.5 

mg/mL material powders. (A) Bright-field image of the cells growing on a surface area surrounding 

a GN1p fragment. (B) Fluorescence image (red fluorescence) of the same fragment. (C,D) Additional 

images showing cell adhesion on GN1p fragments with heterogeneous shapes; pictures show high 

efficiency of the cell spreading onto the fragments regardless size and morphology. (E,F) Bright-field 

and fluorescence images of cells in the presence of a CS powder fragment (stereoscope magnification 

10×; scale bar 300 µm; Nikon red fluo filter (mcherry) ex. 562/40 em. 641/75). In B, representative 300 

µm × 300 µm squares are reported to depict the selection of the areas for the cell counts. In the table 

below: cell numbers from three different counts per biological replicate (3 different replicates) were 

performed; data are reported as mean values (±S.E.M.); statistical analysis: Student’s t-test; 

different/equal letters indicate statistically different/equal values. 
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3.4. Analysis of Pro-/Anti-Inflammatory Responses in THP-1 Monocyte-Like Cells 

The evaluation of possible anti-inflammatory properties of the material powders has been 

assessed in the human-derived THP-1 cells exposed to the PMA-mediated inflammatory stimulus. 

Cells grown in the presence of 0.15 mg/mL CS powder, 0.15 mg/mL GNp, GN1p and GN2p or the 

corresponding gn content (0.022, 0.075 and 0.165 µg/mL, respectively) were treated with PMA for 48 

h. Cells undergoing the only PMA inflammatory stimulus were used as a positive control. THP-1 

have been largely used to monitor significant changes in cell morphology/morphometry related to 

the monocyte–macrophage transition consequent to chemical, physical and/or mechanical stimuli 

[37–41], in addition to targeted molecular assays for evaluating the differentiation of THP1 cell to 

monocyte-derived macrophages, e.g., by identifying surface markers and production of certain 

cytokines [42]. We analyzed the THP-1 morphology changes as early hallmarks of the macrophagic 

induction. Being the pro-inflammatory PMA treatments able to elicit the suspension–adhesion 

transition of cells, their morphological spreading and formation of pseudopodia and elongations [42], 

we evaluated the basic effects of PMA on THP-1 adhered monocytes in terms of their initial 

progression of morphological complexity. In this view, we focused on three stages/shapes: (a) 

adhered monocyte-like cells (MPM; monocytes, pre-macrophage); (b) adhered spindle-shaped cells 

with single pseudopodial elongation and low morphological complexity (AI; adhered stage I) and (c) 

adhered cells with n ≥ 2 pseudopodial elongations and advanced morphological complexity (AII; 

adhered stage II). By analyzing the morphology of cells adhered to the culture plates, differences 

could be detected among the positive control (i.e., cells treated with PMA alone) and all the 

material/genipin treatments. As expected, the PMA-treated control cells underwent transition, 

adhering to the culture plate and showing diverse shapes and heterogeneous morphological 

complexity, from globular (MPM) to elongated, and star shapes with mono- (A I) or multiple (A II) 

pseudopodial formations (Figure 5 A). Interestingly, cells grown in the presence of CS powder and 

treated with PMA adhered to the culture plate showing the same heterogeneous morphological 

pattern of the PMA-treated positive control (Figure 5 B). Even more interesting were the observations 

on THP-1 cells treated with GNp, GN1p and GN2p material powders and stimulated by PMA (Figure 

5 C); in fact, adhered cells predominantly revealed a rounded shape (MPM) rather than elongated, 

with less presence of star-shaped cells. Finally, PMA-treated cells, which were exposed to 0.022 

µg/mL free gn (i.e., corresponding to the GNp genipin content), showed morphology and adhesion 

patterns similar to those of the GNp, GN1p and GN2p conditions with the apparent increase of the 

MPM rounded cells (Figure 5 D). It has to be noticed that in our hands the PMA-treated cells exposed 

to higher gn concentrations (i.e., 0.075 and 0.165 µg/mL corresponding to GN1p and GN2p) mainly 

showed very limited adhesion; moreover, only MPM adhered cells could be detected, while A I and 

A II cells were almost absent (data not shown). In this respect, besides the limited adhesion and 

monocyte–macrophage transition of THP-1 cells, such higher concentrations of free gn may induce 

complex responses implying the triggering of unresponsive and/or quiescent states, which 

specifically deserve further investigation. 
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Figure 5. Morphological analysis of THP-1 cells grown in the presence of the material powders or 

genipin and treated with 100 nM PMA for 48 h. (A) Positive control of THP-1 cells treated by the only 

PMA inflammatory stimulus. (B) PMA-treated cells + CS powder (0.15 mg/mL). (C) PMA-treated cells 

+ GN1p (0.15 mg/mL); the representative picture is comparable to data not shown for the GNp and 

GN2p treatments. (D) PMA-treated cells + gn (0.022 µg/mL). MPM: monocytes pre-macrophage cells; 

AI: adhered stage I, cells showing low morphological complexity, with n = 1 pseudopodial elongation; 

AII: adhered stage II, adhered cells with n ≥ 2 pseudopodial elongations and advanced morphological 

complexity (Bright field images, 10× magnification, scale bar: 50 µm). 

Based on the qualitative observations, counting of cells of the MPM, A I and A II stages were 

performed for a relative-quantitative assessment of the THP-1 cellular responses to the pro-

inflammatory stimulus of PMA. As summarized in Figure 6, the count results overall confirmed the 

qualitative observations. First, the numbers of adhered monocyte-like cells (MPM) as well as of A I 

and A II cells (low and advanced morphological complexity) was comparable between the PMA-

treated positive control and the PMA/CS-treated cells; in particular, in the presence of CS an 

increasing of the number of cells at the A II stage seems to occur. Remarkably, when PMA-treated 

cells are exposed to the GNp, GN1p and GN2p material powders, the number of MPM cells is 

increased with respect to CS while the number of A I and A II cells is decreased: noteworthy, the 

MPM increase and the A I-II decrease are parallel to the increasing amount of genipin in the GNp, 

GN1p and GN2p materials. In other words, as the plotted data of cell counts suggest (Figure 6), CS 

seems to induce the A II stage more than the genipin-containing powders, which in turn hold higher 

potential to avoid the monocyte–macrophage transition. These trends are coherently enhanced by the 

analyses of the effects of PMA on cells exposed to the free gn solutions. In fact, the number of cells at 

the MPM stage was found to increase further. Cell counting analyses showed that CS crosslinked by 

genipin generated a cell response that was in between the positive control (PMA-treated cells) and 

the PMA-gn-treated cells. Additionally, these data suggest that genipin can be used as a crosslinking 

agent for the CS biomaterial while limiting the differentiation of monocytes into macrophages (Figure 

6). 
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Figure 6. Plotting of the cell counts for the MPM, A I and A II stages. For each treatment condition, 

the table below reports each percentage (±S.E.M.) with respect to the total cell count (100%). Cell 

counts were performed in 4 different areas of the culture plate, of 2 biological replicates. Statistical 

analysis: Student’s t-test; different/equal letters indicate statistically different/equal values (p < 0.05). 

MPM: monocytes pre-macrophage cells; AI: adhered stage I, cells showing low morphological 

complexity, with n = 1 pseudopodial elongation; AII: adhered stage II, adhered cells with n ≥ 2 

pseudopodial elongations and advanced morphological complexity. 

4. Conclusions 

The evaluation of the basic biocompatibility of CS, together with the disclosure of potential anti-

inflammatory properties of genipin, shows the potential in using genipin biomaterials as 

bioresorbable implants. Overall, our experiments with the osteoblast-like cells showed that specific 

combination of CS and genipin (e.g., the GN1p material) promotes the proliferation and migration of 

cells, which also implies tissue integration properties higher than the pure CS. On the other hand, the 

evidence from the monocyte-like cells indicated that the use of genipin as a cross-linker seems to 

reduce the reported CS-induced monocyte–macrophage transition, at least at the morphological 

level. These properties can be exploited to enhance the modularity of pro-inflammatory versus anti-

inflammatory behavior of the CS-based biomaterials to promote bone regeneration by a tissue 

engineering approach. By exposing both the studied cell lines to materials powders, the study was 

able to provide new insights on the cell–material interactions occurring during the process of 
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resorption of CS scaffolds. Further investigations are needed to reveal in detail the impact on gene 

expression that may be causing the observed differences in biocompatibility. To this end, the analysis 

of marker proteins possibly belonging to the adeshome-inflammasome intersection network may 

represent, intriguingly, the basis, currently lacking, for the experimental steps necessary to move 

towards the in vivo validation of the investigated materials. 

Nevertheless, in this work, the role of genipin as crosslinker of CS has been found to have the 

additional advantage of improving the biomaterial biocompatibility. Moreover, results could suggest 

the opportunity to use these materials not only for tissue engineering applications, but also for 

targeted therapeutic treatments of inflammed injuries. Genipin therefore emerges as a key element 

for the success of CS as a biomaterial. Unlike other crosslinker, genipin is non-toxic. On the other 

hand, it is a bioactive molecule exerting a key activity on cells involved in the tissue repair process. 

This is a step forward towards the establishment of pharmacological effects that can be exploited in 

bioactive scaffolding systems able to finely tune the role of inflammatory cells towards a regenerative 

phenotype while avoiding the chronic inflammation and the resulting fibrotic capsule. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-7737/9/7/159/s1, 

Supplementary material S1, Figure S1. 
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