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Abstract: HIF-1 is a master regulator of oxygen homeostasis involved in different stages of cancer 

development. Thus, HIF-1 inhibition represents an interesting target for anti-cancer therapy. It 

was recently shown that HIF-1 interaction with NQO1 inhibits its proteasomal degradation, thus 

suggesting that targeting the stability of NQO1 could led to destabilization of HIF-1 as a 

therapeutic approach. Since the molecular interactions of NQO1 with HIF-1 are beginning to be 

unraveled, we review here our current knowledge on the intracellular functions and stability of 

NQO1, its pharmacological modulation by small ligands, and the molecular determinants of its 

roles as a chaperone of many different proteins including cancer-associated factors such as p53 and 

p73. This knowledge is then discussed in the context of potentially targeting the intracellular 

stability of HIF-1 by acting on its chaperone, NQO1. This could result in novel anti-cancer 

therapies. 

Keywords: HIF-1;NQO1; hypoxia; angiogenesis; cancer; protein:protein interactions; ligand 

binding; proteasomal degradation  

 

1. HIF-1: structure, function, regulation and disease 

Oxygen homeostasis is one of the main principles of life for most organisms, especially metazoa. 

The availability of oxygen regulates many physiological processes that are strictly controlled by a 

complex network of molecules in the organism. In metazoa, the master transcription factor that 

supervises this regulatory network is the Hypoxia-induced factor 1 (HIF-1). HIF-1 regulates the 

expression of a multitude of genes in response to oxygen availability and plays a fundamental role in 

many physiological and pathological processes  [1, 2]. 

 

1.1. HIF-1  structure and function 

HIF-1 is a DNA-binding complex composed of two subunits (α and β), both basic 

helix-loop-helix (bHLH) proteins of the PER-ARNT-SIM (PAS) family. HIF-1β (initially named aryl 

hydrocarbon nuclear receptor translocator, ARNT) is constitutively expressed, and thus, its 

expression and activity are oxygen-independent. In contrast, HIF-1α is strongly repressed in 

normoxia and induced in hypoxia  [3]. In response to low oxygen, both subunits of HIF-1α dimerize, 

and HIF-1 binds to the hypoxia response element (HRE) of the promoter or enhancer region of the 

target genes to induce transcription. HIF-1 induces the transcription of numerous genes  [4, 5] 
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involved in many biological processes, such as angiogenesis, erythropoiesis, anaerobic metabolism, 

cell survival, and cell proliferation. Thus, it is crucial for cancer development (see Section 1.3). 

 

 

Figure 1. Structure and regulation of HIF-1α. (A) Schematic representation of human HIF-1α and 

H1β structure. Both proteins form part to HLH–PAS transcription factor family and contain a 

N-terminal bHLH domain (implicated in DNA binding) and two PAS domains (responsible of its 

dimerization). HIF-1α contains an oxygen-dependent degradation domain (ODDD) that mediates 

oxygen-regulated stability, and two transactivation domains (TAD), that mediate its transcriptional 

activity and its stability. (B) In normoxia, HIF-1α is subjected to oxygen-dependent hydroxylation 

by PHD hydroxylases, conducting HIF-1α to ubiquitination by the pVHL and proteasomal 

degradation. MDM2/p53 are also involved in ubiquitination and degradation of HIF1A protein in 

the VHL‐independent manner. Under low oxygen levels (as well as some metabolites of TCA cycle) 

PHD is inhibited, HIF-1α translocates to the nucleus and promotes the activation of target genes. 

Transactivation of HIF-1α could be also induced by PI3K/MAPKs signaling pathways upon 

activation of some growth factor, hormones and cytokines. 

 

The basic domain and the carboxy-terminus of PAS are specifically required for DNA binding 

of HIF-1 to the HRE DNA sequence 5V-RCGTG-3V, whereas the HLH domain and the 

amino-terminus of the two subunits of PAS proteins mediate their dimerization  [6]. In addition to 

ubiquitous HIF-1α and HIF-1β, both subunits exist as a series of isoforms encoded by distinct 

genetic loci with different splice variants  [7, 8, 9, 10]. HIF-1α constitutes the most prominent 

member of the three HIF-1α subunits in the human genome. The most important structural elements 

of HIF-1α are summarized in Figure 1A. HIF-1 has two nuclear location sequences (NLS) at the 

amino (residues 17-74) and carboxyl (residues 718-721) ends of the protein  [11]. The stability of the 

protein is mainly regulated at the oxygen dependent degradation domain (ODDD). This domain 

contains two peptide sequences rich in proline (P), glutamic acid (E), serine (S), and threonine (T) at 
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residues 499-518 and 581-600  [3]. PEST-like motifs are present in short-lived proteins rapidly 

targeted for intracellular degradation. They mediate HIF-1 degradation by the ubiquitin-proteasome 

pathway  [12, 13]. HIF-1 also contains two transactivation domains, N-TAD (residues 531-575) and 

C-TAD (residues 786-826)  [14]. Under hypoxia several co-activators such as CBP/p300/SRC-1 

interact with the C-TAD inducing HIF-1 transcriptional activity, while N-TAD is responsible for 

stabilizing HIF-1α against degradation  [15].     

 

1.2. Regulation of HIF-1  expression, protein levels and transcriptional activity 

Although HIF-1 is tightly regulated at the transcriptional, translational and posttranslational 

levels  [4], protein degradation plays a dominant role in regulating its activity.  

1.2.1. Oxygen-dependent regulation 

Most of HIF-1 regulation is mediated by the HIF-1α subunit. Under normoxic conditions, 

HIF-1α protein is constitutively synthesized and rapidly targeted for ubiquitination and 

proteasomal degradation, thus keeping minimal steady-state levels. In this scenario, HIF-1α 

becomes hydroxylated by members of the prolyl hydroxylase domain (PHD) family on two specific 

prolines (P402 and P564) of the ODDD and NTAD domains, respectively  [16, 17, 18]. Hydroxylation 

of these proline residues generates a binding site for an E3-ubiquitin ligase complex that contains the 

von Hippel Lindau protein (pVHL), elongin B (ELB), elongin C (ELC), cullin 2 (CUL2), and ring box 

protein 1 (RBX1). As a result, HIFα is polyubiquitinated and degraded by the proteasome  [19, 20, 21, 

22] (Figure 1A).  

In addition to this oxygen-dependent regulation of HIF-1α stability, oxygen affects DNA 

binding and transcriptional activity as well. This effect is mediated by the factor inhibiting HIF-1 

(FIH-1), an asparagyl hydroxylase that catalyzes the hydroxylation of Q803 within the C-TAD 

domain of HIF-1α. Hydroxylation of Q803 leads to a steric clash that prevents the binding of the 

p300 and CBP coactivators to HIF-1α, abolishing their transactivation  [23].  

In hypoxia, impaired hydroxylation of HIF-1 allows dimerization of the transcriptional 

complex and the subsequent expression of its target genes. The mitochondrial electron transport 

chain (MEC) consumes the vast majority of cellular oxygen and may play an important role in 

HIF-1α regulation by determining the amount of oxygen available to PHD enzymes  [24, 25, 26]. In 

this sense, pharmacological or genetic inhibition of mitochondrial respiration may prevent the 

accumulation of HIF-1α in hypoxia  [27, 28]. However, there are other ways in which mitochondria 

affect the stability of HIF-1α (Figure 1B). Thus, in addition to requiring 2-oxoglutarate as a 

co-substrate, several metabolites of the tricarboxylic acic (TCA) cycle, especially succinate and 

fumarate, inhibit the HIF hydroxylases  [26, 29, 30, 31]. In addition, reactive oxygen species 

produced by MEC in hypoxia also increase the stability of HIF-1α  [27, 32, 33, 34, 35]. 

1.2.2. Growth factor signaling pathways 

HIF1 is induced by numerous stimuli other than hypoxia, including growth factors, cytokines 

and hormones  [36, 37, 38, 39, 40, 41]. These signals lead to the activation of mTOR (by PI3K/AKT) 

and the mitogen activated protein kinases (MAPK) (by the RAS/RAF/MEK/ERK kinases cascade) 

which can phosphorylate 4E-BP1 favoring cap-dependent translation of HIF-1α mRNA  [42, 43, 44]. 

MAPKs also play an important role in the regulation of the transactivation activity of HIF-1. Once 

activated, members of this family phosphorylate HIF1α, enhancing the binding of the coactivator 

p300/CBP  [43, 45]. 

1.2.3. The Mdm2 pathway 

A complex interplay exists between p53 and HIF-1α. On one hand, HIF-1α binds to Mdm2 (the 

mouse's double minute 2 homologue), inhibiting Mdm2-dependent degradation of p53  [46]. On the 

other hand, p53 also mediates HIF-1α activity. In this sense, at moderate expression levels, p53 

competes with HIF-1α for p300, consequently decreasing the transcriptional activity of HIF-1α. 
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Moreover, high levels of p53 expression lead to HIF-1α degradation  [47]. This is due to binding of 

p53 to HIF-1α that allows Mdm2-mediated ubiquitination of HIF-1α and its proteasomal 

degradation [48] (Figure 1B).  

1.2.4 Heat shock protein 90 (Hsp90) 

HIFα stability is also regulated by other signaling pathways, such as Hsp90 inhibitors that 

promote HIFα degradation in a pVHL-independent manner  [49, 50]. In addition, Hsp90 is known 

to bind directly with HIF-1α inducing some conformational changes in its structure to fit and couple 

with HIF-1β initiating its transactivation  [51] (Figure 1b). 

 

1.3. HIF-1  in cancer 

Cancer is defined as the autonomous growth and spread of a clone of somatic cells, under 

selective pressure, which is able to use multiple cellular pathways to modify its environment in 

favor of its own proliferation and against the needs of the organism, escaping physiological 

constraints on cell growth, including immune surveillance  [52].  

As the cell clone grows, its core becomes further removed from the blood supply and changes in 

oxygen availability are key for tumor cells to reorganize their metabolism in order to match oxygen 

supply with cellular demands. Thus, hypoxia becomes one of the key features of tumor 

microenvironment  [53], a fact first reported in early studies where hypoxic cells were shown to 

surround the necrotic center in histological sections of lung carcinomas  [54] and later demonstrated 

in essentially all solid tumors (reviewed in  [53]). Intratumoral hypoxia is widespread and almost 

independent of tumor size, grade, stage, or histology  [55]. Numerous studies have elucidated the 

molecular mechanisms involved in the cellular response to hypoxia, and three leaders in the field 

have been awarded recently the Nobel Prize in Medicine for their achievements, including their 

seminal work on HIF-1α, a critical transcription factor for adaptation to hypoxia  [56, 57] 

(https://www.nobelprize.org/prizes/medicine/2019/summary/). 

HIF-1α regulates a number of physiological pathways involved in cancer, such as cell 

proliferation, survival, apoptosis, angiogenesis, glucose metabolism, immune cell activation and 

stem cell regulation  [56, 58]. In particular, HIF-1α plays an important role in at least two of the main 

biological capabilities acquired during the multistep process of tumor development (the "hallmarks" 

of cancer,  [52]): reprogramming cell metabolism and inducing angiogenesis.   

1.3.1 Role of HIF in reprogramming cancer cell metabolism 

When oxygen is available to mammalian cells, MEC and oxidative phosphorylation allow the 

highest yield of ATP from glucose, but many tumor cells choose oxygen-independent glycolysis 

even in normoxia conditions ("aerobic glycolysis" or Warburg effect) to extract smaller amounts of 

ATP but also valuable metabolites essential for the rapid growth of neoplasms  [59]. Reaching this 

"sweet spot" of optimal utilization of glucose that maximizes cell growth requires a well-coordinated 

rearrangement of cell metabolism. Although HIF-1α has long been recognized as a key player in 

response to hypoxia, hypoxia-independent mechanisms for HIF-1α signaling have also been recently 

reported when oxygen is available to the cell (“pseudohypoxic” conditions)  [60].  

Reviewing the number of cancer types where HIF-1α is part of the oncogenic process exceeds 

the aim of this article. In the recent Pancancer analysis of more than 2500 cancer genomes, VHL, a 

tumor suppressor gene (TSG) and the key regulator of HIF-1α, was among the most commonly 

mutated TSGs, following the highly prevalent TP53, CDKN2A/B, PTEN and SMAD4  [61]. Given its 

historical relevance, we will center this review on renal cancer, a type of malignancy that was central 

to the understanding of the role of hypoxia, angiogenesis and metabolism in cancer  [62]. The study 

of hereditary cancer syndromes was, like in other examples of TSGs, crucial to the discovery of the 

mechanism of disease involving VHL. VHL (von Hippel-Lindau) family members carrying 

loss-of-function (LoF) mutations at the VHL gene are predisposed to kidney cancers. In particular, 

carriers display an autosomal dominant risk for clear cell–type renal cell carcinoma (ccRCC) in 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 March 2020                   doi:10.20944/preprints202003.0285.v1

https://doi.org/10.20944/preprints202003.0285.v1


 5 of 29 

 

addition to other health problems  [63]. Moreover, another type of RCC, named papillary-type 2 

RCC, where VHL mutations are not involved, is known to harbor mutations in the gene for 

Fumarate Hydroxylase (FH), an enzyme of the TCA cycle. These mutations deregulate HIF 

expression also, underscoring the important role of angiogenic and metabolic responses in renal 

carcinoma.  

LoF mutations at VHL are observed in a majority of ccRCC, interfering with HIF-1α 

degradation and promoting a pseudohypoxic metabolic reprogramming of cancer cells. Stabilized 

HIF-1α translocates to the nucleus, where it dimerizes with HIFβ and upregulates transcription of 

genes related to cellular metabolism, reprograming it towards aerobic glycolysis by increasing 

conversion from pyruvate to lactate (via upregulation of LDHA) and by blocking pyruvate 

conversion to acetyl-CoA by PDH (via upregulation of PDK1). Stable HIF also increases 

transcription of transporters for nutrients such as glucose and glutamine, ultimately enhancing the 

glycolytic and reductive carboxylation pathways, respectively  [64]. In addition, HIF suppresses 

aerobic respiration by increasing levels of BCL2-related BNIP3 and BNIP3L, which leads to 

mitochondrial autophagy  [65, 66]. HIF also interferes with aerobic respiration via microRNAs, such 

as miR-210, which disrupts Fe-S clusters necessary for the MCE  [67]. Another important 

consequence of HIF stabilization in cancer is that, by upregulating the expression of glycolytic 

enzyme pyruvate kinase M2 (PKM2), it amplifies its own transcriptional activity, resulting in a 

positive-feedback mechanism  [68]. 

1.3.2 Role of HIF in cancer neoangiogenesis 

The capability to induce abnormal vascular growth that ensures abundant supply of nutrients is 

another important hallmark of cancer and it has been one of the most successful targets of modern 

cancer therapy  [52]. Neoangiogenesis is particularly conspicuous in renal cell carcinoma and 

prominent vascular remodeling as been linked to HIF disregulation as a consequence of VHL 

mutations  [69]. The key molecular event in tumor angiogenesis is the increase in Vascular 

Endothelial Growth Factor (VEGF)-A induced by the hypoxia resulting from tumor growth but also 

from mutations in the HIF pathway  [70]. Many other factors are involved in blood vessel growth in 

tumors  [71]. These complex angiogenesis patterns and disregulation of vessel stabilization and 

maturation have been also well documented in renal carcinoma  [72].  

1.3.3 Association of HIF-1 expression and cancer prognosis 

Although the complexities of cancer prognosis (the high variability of tumor mutations, 

histological types, grades and stages) makes it too simplistic to think that the levels of expression of a 

single gene such as HIF1A might have significant impact on prognosis, increased HIF-1α and HIF-2α 

protein levels in diagnostic tumor biopsies have been correlated with poor prognosis in other types 

of cancer also, such as brain, breast, colon, cervix, endometrium, head/neck, lung, ovary, pancreas, 

prostate, rectum and stomach (reviewed in  [1]). More recently, high HIF-1α expression has been 

studied in triple-negative breast cancer (TNBC)  [73]. TNBC are a heterogeneous group of poorly 

differentiated, highly aggressive and metastatic breast cancer type. They lack specific 

molecular-targeted therapy and there is an urgent need to find effective biomarkers rather than 

relying of their lack of hormone receptors and Her2 expression to define this subgroup. These 

authors  [73] found that HIF-1α and c-Myc expression detected by immunohistochemistry could 

add to the development of a prognostic nomogram including histological grade and stage of cancer 

(based on tumor size (T), lymph node involvement (N) and distant metastases (M), known as TNM 

status). In an effort to validate the proposed nomogram in our institution, we are currently 

evaluating the feasibility of including HIF-1α immunohistochemistry in the biomarker profile 

(Figure 2). As a transcription factor induced in tumor cells by hypoxic environmental stress, HIF-1α 

could regulate a variety of downstream genes, thereby increasing the invasive ability of tumors and 

their resistance against standard radiotherapy and chemotherapy.  
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Figure 2. Nuclear HIF-1 expression (brown staining) in clear cell renal carcinoma. Common 

deletions of the VHL gene result in lack of HIF1 degradation, with the subsequent activation of HIF1 

as a nuclear transcription factor that drives tumor cell proliferation. 

2. NQO1 as a protein chaperone: current knowledge and potential application to target 

HIF-1 stability   

The recent description of NQO1 as a protein chaperone protecting HIF-1 against 

degradation  [74] supports that targeting this protein-protein interaction (PPI) could allow 

inactivation of HIF-1. Since our knowledge on this particular PPI is very limited, in this section we 

will describe a wealth of information available for the activity and stability of NQO1, focusing on 

what we know on other PPI by which NQO1 acts as a chaperones and how small ligands and 

missense mutations are capable of modulating these PPI. 

 

2.1. Overview of NQO1 expression, regulation and functions: on the potential roles of O2 levels and HIF-1 

NAD(P)H quinone oxidoreductase 1 (NQO1; DT-diaphorase; EC 1.6.5.2) functions as a 

homodimer of 31 kDa subunits  [75, 76]. Each subunit contains two domains: an N-terminal domain 

(NTD, comprising approximately residues 1-225), that binds tightly one molecule of FAD and is 

capable of folding and assembly into dimers autonomously, and a C-terminal domain (CTD, 

comprising the last 40-50 residues) that completes the monomer:monomer interface and the binding 

sites of NAD(P)H and the substrates (Figure 3A) [75, 77, 78, 79, 80, 81]. Its main enzymatic function is 

to catalyse the two electron reduction of quinones, thus avoiding the production of reactive, and 

potentially cytotoxic, semiquinones (Table A1)  [82]. Since one of its substrates is menadione 

(vitamin K3) it can function in blood clotting, although its role appears to be minor compared to 

vitamin K oxidoreductase  [83]. Other substrates include α-tocopherol-quinone and ubiquinone, 

which are maintained in their reduced (antioxidant) forms by the enzyme  [84, 85]. NQO1 can also 

catalyse the reduction of superoxide radicals and thus plays a role in directly protecting the cell from 

reactive oxygen species  [86]. The enzymatic cycle of NQO1 follows a ping-pong mechanism with 

two main steps or semireactions (Figure 3B): in a first one, NAD(P)H binds to the holo-form 

(NQO1holo) of the enzyme (FAD is not released during the cycle), consequently reducing the flavin to 

FADH2 and releasing NAD(P)+. This reductive half-reaction is extremely fast, with a rate constant in 

the range of 109 M-1·s-1. Importantly, the rate of this reductive half-reaction is strictly 

NADH-dependent, and thus, should be accelerated due to the HIF-mediated enhancement of 

aerobic glycolysis (raising cytosolic NADH levels, section 1.3.1); in a second and slower step (with a 

rate constant of 105-106 M-1·s-1), the oxidative half-reaction, the substrate binds and is reduced by the 
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FADH2, thus releasing the reduced substrate and regenerating the holo-enzyme  [76, 79]. 

Dicoumarol, a potent anticoagulant and mitochondrial uncoupling agent, acts as a competitive 

inhibitor of NAD(P)H during the NQO1 cycle (Table A1)  [87].  The high level of NQO1 expression 

in some cancer cells, coupled with its role in defence against ROS, has led to the suggestion that 

NQO1 inhibition may be a novel therapy for the disease. Dicoumarol is an effective inhibitor of 

pancreatic cancer cells in culture, but no NQO1 inhibitors are yet in clinical use  [88].  

 

Figure 3. Structure and enzymatic cycle of NQO1. (A) Three-dimensional structure of NQO1dic (with 

FAD and dicoumarol bound)(PDB ID 2F1O). The N-terminal (NTD) and C-terminal (CTD) domains 

are indicated. MMI stands for the monomer:monomer interface. (B) Schematic representation of the 

catalytic cycle of NQO1. 

The NQO1 protein has also non-enzymatic functions in which it mostly participates in PPI, 

mediating the stability of its binding partners (Figure 4 and Table A2). Indeed, and as we will further 

discuss in sections 2.2 and 2.3, several of the ligation states populated of NQO1 during the catalytic 

cycle (NQO1holo, either oxidized and reduced, or the dead-end complex of the holo-enzyme with 

dicoumarol, NQO1dic) are very relevant to the discussion of PPIs developed by NQO1.   

NQO1 is also known to undergo different post-translational modifications (PTMs), some of 

which have been characterized in a site-specific manner revealing that these modulate NQO1 

function and stability in different manners. Phosphorylation of NQO1 at T128 by the kinase Akt 

results in polyubiquitination and degradation of NQO1 via the proteasome  [89]. A 

phosphomimetic mutation on S82 showed reduced FAD binding affinity and consequent loss of 

intracellular protein stability, although the kinase involved in this phosphorylation event has not 

been identified yet  [90]. Consequently, phosphorylation of NQO1 at different sites may have an 

impact on the intracellular stability of its protein partners through destabilization of NQO1.  

NQO1 is expressed in most human cell types 

(https://www.genecards.org/cgi-bin/carddisp.pl?gene=NQO1) and its expression can be 

upregulated in response to stress. Two control elements are located upstream of the human NQO1 

gene – the antioxidant response element (ARE) and the xenobiotic response element (XRE)  [91, 92, 

93, 94]. A key regulator of the ARE is nuclear factor erythroid 2-related factor 2 (Nrf2). This 

transcription factor from the basic leucine zipper family is located in the cytosol under non-stressed 

conditions. Here it interacts with Kelch like-ECH-associated protein 1 (KEAP1) that targets it for 

ubiquitin-mediated proteasomal degradation  [95, 96].  Oxidative stress is sensed by the oxidation 

of disulphide bonds in KEAP1  [97]. This releases Nrf2, which translocates to the nucleus and, 

together with members of the small musculoaponeurotic fibrosarcoma protein family (sMaF), binds 

to AREs  [98]. This results in the recruitment of the Mediator complex, the acetylation of Nrf2 and 

the activation of a range of genes involved in antioxidant defense, including NQO1  [99, 100, 101]. 
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Nrf2 also upregulates genes for NADPH generation, thus ensuring that enzymes like NQO1 have 

sufficient reduced cofactor  [102, 103]. The ARE also responds to some antioxidants (e.g. resveratrol 

and quercetin), by upregulating the expression of NQO1 and other antioxidant enzymes  [104, 105]. 

Interestingly, the ARE that controls the expression of NQO1, is also activated by hypoxic 

conditions  [106]. Thus, NQO1 protein levels increase under hypoxic conditions  [107]. 

Consequently, NQO1 is overexpressed in tumours due to their hypoxic environment. 

 

Figure 4. The NQO1 interactome. (A) NQO1 protein partners described in at least one report. (B) 

Connectivity between NQO1 partners. The shorter the radial distance between a partner and NQO1 

indicates a higher interconnectivity. Partners in yellow are from mouse and in blue from human. (C) 

A zoom from panel B shows the most highly interconnected partners of NQO1. (F-J) Interactions 

between NQO1 partners in panel C and other proteins to highlight their different interconnectivity. 

The thickness of connecting yellow lines is related to the number of reports describing the interaction. 

Data were retrieved from the BioGRID database (https://thebiogrid.org/108072)  [108]. 

The XRE is activated by the aryl hydrocarbon receptor (AhR), a basic helix-loop-helix 

transcription factor. The protein binds to a wide range of hydrophobic xenobiotics and translocates 

to the nucleus in response. Here it heterodimerises with aryl hydrocarbon nuclear translocator 

(ARNT or HIF1β) and binds the XRE  [109, 110]. In the case of the NQO1 gene, AhR at the XRE and 

Nrf2 functionally cooperate to regulate its expression  [111]. Like the ARE, the XRE can be induced 
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by hypoxia  [112].  Although HIF-1α also partners with HIF1β to regulate transcription, siRNA 

silencing of the HIF1α gene does not affect NQO1 expression  [113]. This suggests that HIF1α is not 

directly involved in regulating NQO1 expression. 

 

2.2. NQO1 macromolecular interactions 

To date, there are 47 protein partners of NQO1 compiled in the BioGRID database 

(https://thebiogrid.org/108072)  [108]. This set includes 33 human proteins (actually one is a 

pseudo-gene product). The remaining 14 are from rodents and belong to different subunits of the 

20S proteasome (Figure 4A). In addition, NQO1 can interact specifically with certain RNAs 

modulating their expression  [114]. Focusing on protein partners, there is certain evidence within 

the NQO1 interactome supporting that different partners (i.e. nodes) of this network can interact not 

only with NQO1 but also among each other, Consequently, this could generate regulatory circuits 

upon interaction of different partners in two- or multiple-way manners (i.e. binary, ternary, 

quaternary….complexes; Figure 4B). This also suggests that we may affect the properties (e.g. 

intracellular activity or stability) of one node by targeting different adjacent nodes in the network, an 

effect that could be amplified particularly in nodes with high connectivity. The most representative 

and consistently reported nodes with such a high connectivity for NQO1 are shown in Figure 4C and 

Table A2. Importantly, HIF-1 belongs to this group.  

A critical reason for better understanding the interactome of NQO1 emerges from a well-known 

consequence on its interaction with partners: it leads to changes in the stability of the partner against 

(Ub-dependent or –independent) proteasomal degradation. Thus effects on the intracellular levels of 

NQO1 or in the strength of its interaction with partners may translate into altered stability of the 

nodes in the interactomic network. For instance, reducing the availability of the FAD precursor 

riboflavin leads to increased population of the flavin-free NQO1apo state, which is very sensitive to 

proteasomal degradation through ubiquitin-dependent and -independent mechanisms  [115, 116]. 

This is in part caused by the destabilization of the CTD of NQO1 in the absence of bound FAD that 

promotes its ubiquitination and degradation  [116]. Remarkably, addition of the inhibitor 

dicoumarol does not stabilize the NQO1 protein intracellularly but seems to reduce its ability to 

interact with and stabilize these protein partners (see Table A2). Binding of NAD(P)H, which 

reduces the bound flavin cofactor, seems to enhance the interaction of NQO1 with these protein 

partners ( [117], Table A2). A recent study also suggested that NQO1 with a reduced flavin cofactor 

could be a physiologically important state in the cell  [118], and thus very relevant to understand the 

interactome dynamics of NQO1 (note that the population of this state can be promoted due to 

HIF-mediated increased levels of cytosolic NADH, section 1.3.1). Additional factors modulating 

NQO1 intracellular stability, such as protein phosphorylation events, small ion binding or single 

amino acid changes  [119, 120, 121, 122, 123], may thus propagate and amplify these effects to the 

stability of the NQO1 protein partners. 
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Figure 5. Subcellular location of NQO1 interacting human partners based on data from GeneCards® . 

For all the interactors, the subcellular compartment (location) and its confidence (1-5, from the lowest 

to the highest) were retrieved from GeneCards® . (A) Accumulated score for each organelle as the 

sum of the numerical degree of confidence for all partners found in a given compartment. The 

highest accumulated score (i.e. for the nucleus) was used to normalize yielding the Score. As Fraction, 

we refer to the fraction of all the partners found in a given organelle. Note that the ratio 

Score:Fraction gives a measure of the degree of confidence for finding a given partner in a given 

subcellular location. (B) Subcellular location of NQO1 partners in the three subcellular locations of 

NQO1 reported with confidence (i.e. equal or higher than 3) as the fraction of the total of NQO1 

partners. Overlapping regions in the Venn diagram reveal the presence of an NQO1 partner in at 

least two subcellular locations.  

Another critical issue for understanding the interaction of NQO1 with its partners and 

subsequent effects of these interactions on the stability of its interactome is the subcellular location of 

NQO1 and its partners. It is generally accepted that NQO1 subcellular location is primarily cytosolic, 

where it can fulfill its roles as antioxidant/detoxifiying enzyme and is able to interact with protein 

and RNA partners. However, there is also certain evidence supporting its location in other 

subcellular compartments, mostly mitochondria and the nucleus (with low confidence in other 

organelles)(Figure 5A; GeneCards® ; 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=NQO1&keywords=NQO1). Importantly, most 

of the protein partners of NQO1 also seem to primarily localize in the nucleus and the cytosol, and to 

a moderate extent in the mitochondria, cell membrane and extracellularly, apparently coexisting 

between more than one subcellular location (Figure 5A-B). In the case of the cytosol and the nucleus, 

about 50% of NQO1 partners may operate in any of these locations and translocate between these 

two to fulfill their roles in cytosolic and nuclear processes such as control of DNA expression (p53, 

HIF-1  c-FOS, NRF-2, NME1, FUBP3), regulation of RNA and translation (POLDIP3, 

YTHDF1, NXF1, MOV10, DAZAP1, RPS19), regulation of nuclear protein function (PARP1 and 

TRIM25), protein folding and degradation (BAG-3, eIF4G1, DCAF15, HSPA4, STUB1, UBE2D1). In 

addition, a number of metabolic enzymes in the cytosol and mitochondria (ODC, NDUSF7, NME1, 

ADK, GOT1, AK4) could also interact with NQO1 in these compartments. Indeed, NQO1 
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overexpression in mice is known to enhance glycolytic and mitochondrial respiration activities and 

enhance metabolic flexibility, mimicking the beneficial effects of caloric restriction  [124]. It is worth 

noting that the proteasomal protein degradation machinery may operate through rather similar 

mechanisms in the cytosol and the nucleus  [125, 126], and thus, the well-known chaperone role of 

NQO1 for different protein partners (see Table A2), may indeed operate in the cytosol thus 

increasing the levels of cytosolic proteins amenable to import to other organelles (such as nucleus or 

mitochondria;  [74, 127]) and plausibly by stabilizing these proteins upon import of both the partner 

and NQO1 in these organelles. Noteworthy, although more rarely described, the presence of NQO1 

in other subcellular locations such as cytoskeleton may explain other roles of the multifunctional 

NQO1 protein. For instance, recent studies have supported that NQO1 may provide an adequate 

supply of NAD+ for deacetylase activity of different sirtuins associated with microtubule 

dynamics  [118, 124, 128]. These studies also highlight the potential plasticity of NQO1 subcellular 

location during different cellular conditions or stages (e.g. the recruitment of cytosolic NQO1 to 

cytoskeletal structures during cell division  [118]). 

 

 

Figure 6. Structure and dynamics of NQO1 upon binding different ligands. (A) Structural overlay of 

the X-ray structures of NQO1holo (1D4A), NQO1holo:NAD+ (kindly supplied by Profs. Mario Bianchet 

and Mario Amzel, John Hopkins University Medical School, Baltimore, USA) and NQO1dic (2F1O). 

The lower panel shows a zoom highlighting the position of the FAD (orange, NQO1dic and red, 

NQO1holo:NAD+), NAD+ and dicoumarol (Dic). (B) Dicoumarol binding causes long-range effects on 

the structural dynamics of NQO1 WT. Residues shown in dot representation are those for which the 

structural dynamics is reduced according to HDXMS  [129]. (C) Most of the residues whose 

dynamics is reduced upon dicoumarol binding are solvent-exposed. The plot in the right shows the 

solvent accessible surface area (SASA) for the each residue as calculated in  [129] and colour circles 

indicate the magnitude of the change in structural dynamics. The figure on the left shows the 

structural location of solvent-exposed residues (SASA > 20%). The color scales in panels B and C 

reflect the magnitude of the changes in protein dynamics according to  [129] and red arrows indicate 

the position of dicoumarol. 
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2.3. Changes in NQO1 stability, structure and dynamics upon ligand binding: implications for the stability of 

its protein partners 

The functional chemistry of NQO1 is remarkably complex. At least four different ligation states 

(with small molecules bound) are relevant to understand the intracellular stability and enzymatic 

activity of NQO1 as well as its effects on the function and stability of its macromolecular partners: i) 

NQO1apo, which has no ligand bound; ii) NQO1holo, which contains a molecule of oxidized FAD per 

NQO1 monomer; iii) NQO1holo-red , containing the FAD cofactor reduced upon interaction with 

NAD(P)H and hydride transfer; and iv) NQO1dic, a ternary complex of NQO1holo with the inhibitor 

dicoumarol bound.  These different ligation states interact differently with NQO1 protein 

partners  [78, 117, 127]. High-resolution structural models for these complexes are, to the best of our 

knowledge, not reported. Thus, we will focus in this section on the structural and dynamic 

consequences of ligand binding to NQO1 in an attempt to obtain some insight into their regulatory 

effects on NQO1 interactions with protein partners (always from an NQO1 point of view). 

NQO1apo exists as a stable and expanded dimer characterized by significantly large 

conformational flexibility  [76, 78, 79, 80, 119, 130, 131, 132]. Although no high resolution structural 

model is available for this state, recent kinetic studies using hydrogen-deuterium exchange mass 

spectrometry (HDXMS) have identified a minimal stable core that holds the protein dimer while 

most of the protein exists forming a highly dynamic structural ensemble, including the FAD and 

substrate binding sites in non-competent states for binding  [129]. This remarkable conformational 

flexibility makes NQO1apo likely the most relevant state to understand the intracellular stability of 

NQO1, since the flexible CTD acts as initiation site for rapid degradation through 

ubiquitin-dependent and -independent proteasomal pathways  [90, 116]. It is plausible that this 

unstable and highly dynamic NQO1apo state is not capable of interacting with NQO1 protein 

partners, or at least, does so with lower affinity  [78].  

Binding of FAD triggers a large conformational change leading to compaction of the protein 

dimer, increase in ordered secondary structure, overall conformational stabilization and a large 

decrease of protein dynamics that is sensed in almost the entire protein structure  [78, 79, 80, 119, 

129, 130, 131, 133]. This NQO1holo state is amenable for high-resolution structural studies [81](Figure 

6A). This state is also known to be intracellularly stable and likely to interact with protein partners 

quite efficiently  [115, 116, 117, 119, 123].  

Binding of NAD(P)H results in FAD reduction, leading to a state we named NQO1holo-red. This 

reaction is extraordinarily fast (close to the diffusion limit) and this state is likely unstable unless 

strongly reducing and/or anaerobic conditions are used (at least in vitro,  [79]). Consequently, 

detailed structural analyses on this state are non-existant. However, it is worth commenting on some 

studies carried out under less stringent (i.e. aerobic) conditions, particularly because a wealth of 

work support that generally, this state may strongly interact with NQO1 protein partners  [117, 127]. 

Using biochemical in vitro assays with NADP(H), it has been reported that NQO1holo-red influences 

the conformation of the CTD affecting the interaction with antibodies raised against it  [118] and 

apparently increasing the thermodynamic stability of this domain  [80, 118]. Intriguingly, the 

changes in conformation and stability of the CTD reported for NQO1dic and NQO1holo-red are 

strikingly similar, suggesting again that subtle differences in structure and dynamics between these 

two states are likely responsible for their opposing effects on the interaction of NQO1 with protein 

partners. 

Binding of dicoumarol (or NAD+) causes small structural rearrangements in the protein 

structure  [75, 78, 81, 131, 134](Figure 6A). Therefore, from NQO1 structural point of view, it is not 

straightforward to understand how NQO1dic prevents binding to or largely decrease binding affinity 

for macromolecular partners with subsequent effects on the stability of these partners  [78, 127]. An 

alternative explanation has emerged from studies on NQO1 protein dynamics by HDXMS  [129]. 

Binding of dicoumarol to WT NQO1 causes strong effects on NQO1 protein dynamics, affecting the 

local stability of the protein core and these effects propagate through long distances in the protein 

structure (Figure 6B). Some of these effects are sensed by the CTD (Figure 6B), which may explain 

how dicoumarol binding mildly increases the thermodynamic stability of this domain by about 1.5 
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kJ·mol-1  [80, 135]. Interestingly, a significant fraction of the residues whose stabilities are affected by 

dicoumarol binding appear on the protein surface and far from the ligand binding site (Figure 6C). 

This may imply that NQO1dic interacts differently with macromolecular partners through changes in 

the local stability and dynamics of the(se) binding site(s), which are likely located on NQO1 protein 

surface.  

2.4. Mutations and polymorphisms in NQO1. Disease and protein interactions 

The association of NQO1 activity with several human diseases with a huge social impact, 

particularly cancer, HIV infection and neurological and cardiovascular diseases, has attracted the 

attention towards the effects of naturally-occurring single amino acid changes on NQO1 and the 

predisposition provided by these changes towards disease  [76, 79, 116, 119, 122, 123, 130, 133, 136, 

137, 138, 139, 140, 141]. There are 106 missense variants described in human population (ExAC and 

gnomAD databases; 

https://gnomad.broadinstitute.org/gene/ENSG00000181019?dataset=gnomad_r2_1) and 47 missense 

variants in the COSMIC database 

(https://cancer.sanger.ac.uk/cosmic/gene/analysis?ln=NQO1#variants). By far, the two most 

common single amino acid variants are p.P187S and p.R139W, with allelic frequencies in human 

population of about 0.25 and 0.03, respectively. Consequently, these two polymorphisms have been 

characterized in some detail. In addition, and to the best of our knowledge, only one other 

naturally-occurring single amino acid variant, p.K240Q (found in gnomAD and COSMIC databases), 

has been characterized. Since the studies aimed at characterizing the effects of these single amino 

acid variants have been recently reviewed  [76, 132], we will just outline in this section some of the 

key features described for them focusing on their potential impact on the interaction with protein 

partners and with those ligands known to modulate NQO1:protein interactions.   

The intracellular effects of p.P187S can be ascribed to changes in its stability and activity, 

respectively. This variant decreases by 10- to 40-fold the affinity for FAD thus promoting the 

population of NQO1apo  [79, 120, 122, 133, 136, 142]. Unlike WT NQO1, p.P187S in both NQO1holo 

and  NQO1apo are degraded similarly, due to a strong thermodynamic destabilization of the CTD in 

NQO1holo that triggers ubiquitination and degradation  [78, 79, 116, 119, 120, 122]. Remarkably, the 

crystal structure of p.P187S in the NQO1dic state is virtually identical to that of the WT enzyme  [79]. 

This seems to be paradoxical, because P187 is fully buried in the protein structure, close to the NQO1 

dimer interface and belongs to the minimally stable core of NQO1apo, and thus, a mutation to serine 

should have catastrophic effects on protein structure and function  [129, 136]. Detailed biochemical, 

biophysical, computational and mutational studies have shown that the effects of p.P187S are 

pleiotropic in the structure, function and stability of NQO1apo and NQO1holo, highlighting the critical 

role of propagation of the local stability effects due to p.P187S to long distances in the protein 

structure and affecting the dynamics and stability of critical regions of NQO1 function  [78, 79, 90, 

119, 120, 122, 131, 133, 136, 137]. These studies on p.P187S have also supported that different 

functional sites located far (over 10-20 Å ) in the structure are functionally and energetically coupled, 

and thus, we might modify the interaction of NQO1 with its partners by using an allosteric site (i.e. a 

ligand binding or mutated site) far from the protein:protein binding site. p.P187S is known to affect 

the interaction with NQO1 partners and lead to their destabilization, although it is not clear whether 

the origin of these alteration resides mainly in altered protein:protein interactions (i.e. binding 

affinity) or in the decreased intracellular stability of this variant that is reflected in those of the 

partners  [78, 115, 116, 119, 120, 123, 143].  

The polymorphism p.R139W represents a beautiful example in which a single nucleotide 

change may affect protein functionality at post-transcriptional and translational levels. In the one 

hand, it affects normal processing of NQO1 mRNA leading to exon 4 skipping, that produces a 

shorter version of the NQO1 protein that is extremely unstable inside cells due to the lack of part of 

the catalytic site (residues 102-139) critical for protein folding and stability  [144]. On the other hand, 

full-length NQO1 is also translated containing the single amino acid exchange p.R139W, which has 

only small effects on protein stability and function  [119, 130, 133]. Consequently, the former effect is 
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likely the prevalent one to explain the loss of intracellular NQO1 activity due to this 

polymorphism  [119, 130, 133, 144]. In addition, it must be expected that the decrease in full-length 

NQO1 protein caused by this polymorphism may negatively impact the stability of protein partners, 

although to our knowledge, no experimental evidence for this is available.  

The rare mutation p.K240Q was investigated to determine whether variable structural 

perturbations (mutations to glutamine as well as more perturbating variants such as changes to 

glycine and glutamate) in the CTD could propagate through the NQO1 structure to affect different 

functional sites  [122, 136]. K240 is a solvent-exposed residue involved in a highly-stabilizing 

electrostatic network in the CTD  [122]. This site accepted different types of mutations without 

compromising protein levels, activity, stability and solubility upon expression in E. coli.  [122, 136]. 

However, detailed biophysical and biochemical experimentation, actually revealed that the p.K240Q 

mutation affected locally the stability of the CTD, and this effect was more pronounced in the more 

perturbing in the mutations p.K240G and p.K240E  [122, 136]. A similar gradual effect was observed 

on the affinity for FAD, a remarkable result considering that the FAD binding site is located at 20 Å  

from the altered site  [122, 136]. Studies with this mutation thus highlighted the plasticity of the 

NQO1 protein in different ligation states to transmit the effects of single amino acid changes and 

ligand binding. Due to this plasticity, we may anticipate that rare mutations found in cancer cell 

lines (COSMIC) or whole-genome sequence studies (gnomAD) such as p.K240Q would have certain 

effects on NQO1:protein interactions and consequently the stability of its partners. This hypothesis 

awaits to be tested experimentally.  

3. Targeting the chaperone role of NQO1 to inactivate HIF-1: future perspectives 

The chaperone role of NQO1 on HIF-1 has been recently addressed in some detail in relation 

with hypoxia and normoxia  [74]. While hypoxic and normoxic conditions provided somewhat 

different effects, the overall consequence of NQO1:HIF-1 interaction was the stabilization of 

HIF-1 upon interaction. The expression levels of NQO1 consistently modulated the levels of 

HIF-1 likely due to the specific interaction of NQO1 with the ODD domain HIF-1 in the cytosol, 

rather than to changes in HIF-1 mRNA at the transcriptional level  [74]. This interaction enhances 

the intracellular stability of HIF-1 by suppressing its ubiquitination in the cytosol, and thus 

promoting its nuclear import and transcriptional activity  [74]. This chaperone effect is enhanced 

under hypoxic conditions due to increased expression of NQO1  [74, 107]. Intriguingly, the presence 

of the p.P187S polymorphism did not prevent the chaperone action of NQO1, although it is well 

known to reduce NQO1 protein levels due to intracellular destabilization (see Section 2.4). 

We could envision different strategies to disrupt NQO1 interaction with HIF-1 leading to 

increased degradation of the latter:  

i) To prevent PPI by targeting the PP binding site or an allosteric site. We must note that 

allosterism is likely a critical feature for the multifunctionality of both NQO1 (sections 2.3 and 2.4) 

and HIF-1  [145, 146]. Allosterism in HIF-1  is dramatically exemplified by the negative effector 

CITED2, that competes with HIF-1  for the same binding site on CBP/p300 attenuating the 

transcriptional activity of HIF-1  [145, 146] Remarkably, CITED2 and HIF-1  show the same 

binding affinity for CBP/p300, although the former is much more efficient in displacing the latter 

from binary complexes with CBP/p300 due to enhanced HIF-1 release linked to the intrinsic 

disorder of the C-TAD domain. We must note that an important caveat to rational screening for 

ligands is the lack of high-resolution structural models neither for a complex of NQO1 with a partner 

nor for the ODD of HIF-1. There is also no detailed biochemical mapping of the interaction site or 

plausible molecular models. In addition to identifying non-covalent binders, potential, specific 

covalent modifiers should also be considered (cf the cysteine modification of Giardia lamblia triose 

phosphate isomerase by omeprazole which destablises the dimer  [147]). 

ii) A high-throughput screen for ligands that target the formation of the NQO1: HIF-1 complex. 

Both (i) and (ii) would require a rapid, reproducible, robust assay for the interaction in vitro, for 

example labeling of the proteins with a fluorophore and a quencher. A cell-based assay would also 
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be required to test hits from the screen under in vivo conditions, for example proteins labeled with 

FRET donors and acceptors, co-immunoprecipitation or indirectly by measuring amounts of HIF1α. 

Although challenging due to several highly disordered regions in the HIF-1 protein, such screening 

would be still feasible as recently reported for inhibiting PPI in the cancer-associated and 

intrinsically disordered protein NUPR1  [148, 149]. 

iii) To use dicoumarol-like molecules that may target that interaction with lower second-site 

effects  [150, 151, 152]. It must be noted regarding this approach that the effect of NADH or 

dicoumarol have not been tested for the interaction of NQO1 with HIF-1. Many dicoumarol 

analogues that function as NQO1 inhibitors have been reported. It is reasonable to assume that they 

would also antagonize the protein’s interactions with binding partners in a similar way to 

dicoumarol. As such, they represent immediately available compounds, which could be tested for 

their ability to antagonize the NQO1/HIF1α interaction. However they are likely to inhibit or 

antagonize many of NQO1’s functions and may, therefore, cause significant off-target effects. Some 

of these may be undesirable in the context of cancer therapy, e.g. the antagonism of the NQO1/p53 

interaction and consequent down-regulation of p53-mediated apoptosis  [153, 154]. 
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Appendix A 

Tables A1 and A2 compile information on known NQO1 substrates, inhibitors and protein partners. 

 

Compound Comments References 

                    Substrates 

Dichlorophenolindolphenol (DCPIP) Non-physiological, but often used in in vitro assays  [155, 156] 

Menadione (Vitamin K3) Reaction occurs in vivo but enzyme likely to play only a minor role in blood clotting  [83, 156] 

Coenzyme Q10 (ubiquinone) NQO1 maintains this, and related compounds, in the reduced form  [157, 158] 

Superoxide ions Likely physiological role in directly combatting oxidative stress in vivo.  [86] 

Fe(III) ions Probably non-physiological  [159] 

Idebenone Important in the metabolism of this drug (a coenzyme Q10 mimic)  [160] 

(3-hydroxymethyl-5-aziridinyl-1-methyl-2-(H-indole-4, 7-indione)-propenol) 

EO9 

Reduction activates this anticancer compound  [161] 

Quinone epoxides Potentially important if members of this group of compounds used as drugs.  [162] 

β-lapachone Futile cycling involving NQO1 results in reduced cellular concentrations of NAD(P)H contributing to 

cell death 

 [163, 164] 

Mitomycin C Reduction activates this akylating cytotoxic drug  [165, 166] 
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Tirapazamine and other heteroaromatic N-oxides Slow reaction.  Superoxide also produced  [167] 

Benzofuroxans Reduction by NQO1 may play a minor role in cytotoxicity  [168] 

Nitroaromatics Reactivity correlates with electrode potential  [169, 170] 

Aminochrome Reaction is important in protection against Parkinson’s Disease and other neurological diseases  [171, 172] 

                         Inhibitors 

Dicoumarol and derivatives thereof High affinity; competes with NAD(P)H; negatively cooperative; often used in experimental studies; 

derivatives may be anticancer lead compounds; dissociates NQO1-p53 complexes resulting in increased 

p53 degradation and inhibition of apoptosis 

 [143, 151, 154, 156, 

173, 174] 

Curcumin May dissociate NQO1-p53 complexes resulting in increased p53 degradation and inhibition of 

apoptosis.  Other studies suggest it may enhance the NQO1-p53 interaction in vivo 

 [175, 176] 

Resveratrol Potent inhibitor of the related protein NQO2; only weakly inhibits NQO1  [177] 

Warfarin NQO1 is a secondary target for this anticoagulant  [174, 178] 

Table A1.  Selected substrates and inhibitors of NQO1. 
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Macromolecule Effect on partner 

stability 

Effect of NAD(P)H Effect of dicoumarol General comments References 

p53 Binds to, and stabilises, the 

full-length protein, protecting it 

from proteasomal degradation 

Increases affinity of 

interaction. 

Antagonises interaction. Interaction promotes p53-mediated apoptosis.  

Dicoumarol down-regulates this by promoting release of 

p53 from NQO1 and consequent degradation of p53. 

 [117, 143, 153, 179, 

180] 

p73α Binds to, and stabilises, the 

full-length protein, protecting it 

from proteasomal degradation. 

Increases affinity of 

interaction; effect not 

observed with NAD+. 

Antagonises interaction. Interaction promotes p73α-mediated apoptosis.  

Dicoumarol down-regulates this by promoting release of 

p73α from NQO1 and consequent degradation of p73α.  

No interaction with p73β which lacks a SAM domain at 

the C-terminus.  The SAM in p73α is responsible for the 

interaction. 

 [78, 117] 

Ornithine 

decarboxylase (ODC) 

NQO1 binds to, and stabilises 

ODC, preventing proteasomal 

degradation 

Not known. Antagonises interaction ODC monomer (inactive) degradation is enhanced by 

binding antizyme 1 (AZ1) which targets the ODC/AZ1 

complex to the proteasome.  NQO1 protects monomeric 

ODC by binding the ODC/AZ1 heterodimer. 

 [181, 182] 

mRNA encoding 

SERPINA1 

(α-1-antitrypsin) 

No effect on stability Not known Not known Does not affect the amount of mRNA, but does enhance the 

translation by binding to 3’-UTR.  This results in more 

protein 

 [114] 

20S proteasomal 

subunit 

Not known No effect Not known NQO1 interacts with the proteasome and negatively 

regulates proteolytic activity.  NQO1-apo is degraded by 

the proteasome. 

 [115] 

HIF-1α NQO1 binds HIF-1α, stabilises 

it and prevent proteasomal 

degradation 

Not known Not known Interaction occurs in cytoplasm. 

NQO1 enhances transcription of HIF-1α regulated genes, 

presumably by increasing the amount of HIF-1α. 

See also main text. 

 [74] 

Hsp70/HSPA4 Interaction most likely occurs Not known Not known NQO1-p.P187S only interacts very weakly.  [183] 
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with newly synthesised NQO1, 

presumably stabilising it and 

assisting folding. 

STUB1/CHIP Not known Not known Not known NQO1 ubiquitination is mediated upon binding to STUB1 

which triggers NQO1 degradation. 

NQO1-p.P187S and apo-NQO1 are degraded efficiently 

by this mechanism. 

STUB1’s TPR domain is required for the interaction. 

 [116, 184] 

c-FOS NQO1 binding to c-FOS 

protects the former from 20S 

proteasomal degradation 

Not known Not known NQO1 localises c-Fos (at least partly) to the cytoplasm.  

Free c-Fos or c-Fos in complex with other transcription 

factors, is localised to the nucleus. 

 [185] 

Bcl2-associated 

Athanogene 3 (BAG3) 

Not known Not known Not known BAG3 regulates the proteasome.  siRNA knockdown of 

BAG3 reduces proteasomal activity. 

 [186] 

ING1B (p33) 

 

NQO1 binds to p33ING1b 

tumour suppressor protecting 

the former from 20S 

proteasomal degradation. 

Increases affinity of 

interaction 

Not known NQO1 binds preferentially to Ser-126 phosphorylated 

p33ING1b.  This phosphorylation is induced by genotoxoic 

stress and increases the in vivo half-life of the protein from 

5.7 h to 16.8 h. 

 [187, 188] 

 

HIV-1 Tat HIV-1 Tat binds to NQO1 

stabilizing the former 

Not known, but assumed to 

promote interaction. 

Antagonises interaction. HIV Rev downregulates NQO1 destabilizing HIV/Tat 

complex and thus resulting in increased Tat degradation. 

Dicoumarol inhibits HIV replication. 

 [138] 

 

eIF4GI 

 

eIF4GI binds to NQO1 leading 

to protection of the former 

against proteasomal 

degradation 

Not known. Antagonises interaction. This interaction modulates mRNA translation.  

Dicoumarol downregulates translation. 

Interaction does not require RNA binding by eIF4GI. 

Oxidative stress reduces the amount of cellular eIF4GI. 

 [189] 

Homocysteine-induced 

endoplasmic reticulum 

Stabilises Herp by protecting it 

from protasomal degradation 

Not known Antagonises interaction Herp is up-regulated in the unfolded protein response 

(UPR).  Herp’s cellular half-life is increased by NQO1. 

 [190, 191] 
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protein (Herp) 

PGC-1α Stabilises this intrinsically 

disordered protein and protects 

it from proteasomal 

degradation. 

Enhances interaction Antagonises interaction Cellular levels of NQO1 and PGC-1α are correlated.  

Stabilisation of PGC-1α by NQO1 leads to induction of 

genes encoding enzymes of gluconeogénesis. 

 [192] 

 

RIL 

(reversion-induced 

LIM domain protein; 

PDLIM4) 

NQO1 binds and stabilises 

unstructured C-terminal región 

of one alternately spliced 

isoform (RILaltCterm) 

protecting it from proteasomal 

degradation. 

Not known Increases RIL proteasomal 

degradation, presumably by 

antagonising RIL/NQO1 

interaction 

RILaltCterm accumulates in response to oxidative stress 

and stimulates actin cytoskeleton rearrangement. 

 [193] 

TAp63γ Stabilises TAp63γ and protects 

it from proteasomal 

degradation. 

Not known Not known NQO1-p.P187S does not interact. 

Interaction occurs in response to genotoxic stress. 

 [194] 

Table A2.  Macromolecular binding partners of NQO1 and effects of ligand binding. 
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