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U shape or to the exponential configuration, but this is a range of pressures for which seating 
and other experimental errors are likely to be particularly important. 

Exponential expressions like equation (2) of the discussion are most nearly applicable to 
soils that have small or no preconsolidation. With increasing preconsolidation the U shape of 
the D against p or equivalent plots becomes more and more pronounced. The effect of pre- 
consolidation on the shape of the plot is illustrated in the accompanying Fig. 4 for three 
different types of soil, i.e. (a) a remoulded organic clay with liquid limit of 82x, plasticity 
index of 27%, silt and clay sizes of 86’?, specific gravity of 2.83 and initial water content of 
56%; (b) a remoulded clayey sand with liquid limit of 31x, plasticity index of 14x, silt and 
clay sizes of 43 %, specific gravity of 2.75 and initial water content of 28 %; and (c) loose non- 
plastic sand with silt sizes of 5 %, 48 % passing through sieve No. 50, 99 % passing through 
sieve No. 10, specific gravity of 2.64, subangular, initial dry density of 1.10 g/cm3. From each 
of the three soil samples used, a series of five, as nearly identical as possible, oedometer 
specimens were prepared in a very loose condition; one of the specimens in each series was 
tested without preconsolidation but the remaining four were tested after first loading to 
0.75 kg/cm’, I.50 kg/cm’, 2.25 kg/cm’ and 3.00 kg/cm* and then unloading (Fig. 4). 

As exponential expressions (such as equation (2) of the discussion) are applicable to soils 
that have a small or no preconsolidation, they could be regarded as a particular form of the 
more general case of the U shape curve, with the left half of the U reduced to trivial size. 
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A Note on Hvorslev’s intake factors 
LOWTHER, G. (1978). G&otechnique 28, No. 4, 46546 

E. G. Youngs, Physics Department, Rothamsted Experimental Station 

The Author draws attention to a difficulty encountered in the evaluation of permeability 
values from data obtained from tests on boreholes and piezometers. He notes that the formulae 
given by Hvorslev (1949, 1951) for the cases of a well point-filter are, in the limit of zero length 
of filter, different from those given for a flush bottom well, although they should be identical. 
This is not so surprising, since Hvorslev himself points out the approximate nature of some of 
the formulae he uses. This discussion outlines the physical basis of their derivation, and gives 
a comprehensive table of values of the shape factor which allows the determination of per- 

meability from borehole tests for different lengths of filter and depth of well. 
In the derivation of the intake formulae, which have the general form 

q = SkHD . . . . . . . . . . (1) 

where q is the discharge, k the permeability of the soil, H the head causing the flow, D the dia- 
meter of the well point-filter, and S a shape factor the value of which depends on the shape of 
the cavity and its depth relative to the impervious boundary, Hvorslev (1951) notes that some- 
times assumptions concerning the shape of the well point-filter (or cavity below the end of the 
well) were made. 

This was the case for the formulae obtained by Dachler (1936), quoted by Hvorslev, for the 
well point-filter or hole extended both in an infinite uniform soil and at an impervious 
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boundary. Hvorslev notes particularly that Dachler emphasized that the formulae can provide 
only approximate results when they are applied to cylindrical intake or well points. 

Dachler’s formula for a well point-filter or cavity extended in an infinite uniform soil, in 
which case the shape factor S in equation (1) has the form 

2rcLID 

’ = ln {L/D+J[~+(L/D)~I} . ' ' . ' . * 
(2) 

was derived on the basis of flow from a line source for which the equipotentials are ellipsoids. 
It would be expected to be better for a long cavity than for a short one since, when the length 
is zero, the value of the shape factor reduces to 

s=27r . . . . . . . . . . . (3) 

that obtained theoretically for a spherical intake cavity. Thus, when compared with that 
obtained in the experiments of Harza (1935) and graphically by Taylor (1948) (Hvorslev, 1951) 
for the flush well bottom for which Hvorslev (1951) could find no analytical solution, a large 
discrepancy must be expected as the Author found. 

Similarly, for the well point-filter or cavity at an impervious boundary, Dachler’s formula 
for which S takes the value 

2rcLID 

S =ln (2L/D+J[1+(2L/D)‘l) ’ ’ ’ . ’ ’ (4) 

assumes the cylindrical cavity to be approximated by a semi-ellipsoid. Thus for a cavity of 
zero length 

s=rL . . . . . . . . . . . . (5) 

the theoretical value of the shape factor for a hemispherical cavity at an impervious boundary. 
This is to be compared with the value 

S=2 . . . . . . . . . . . . (6) 

obtained by potential theory for a well bottom flush with the impervious boundary. The 
discrepancy in this case is not quite so large as when the well point-filter is in an infinite uniform 

soil. 
Hvorslev’s tests were designed for confined aquifers. Piezometers and lined tubes are used 

also in the determination of permeability (hydraulic conductivity) in the groundwater zone 
near the soil surface for the purpose of land-drainage design (Kirkham, 1946; Luthin, 1957; 
van Schilfgaarde, 1974). In this situation, however, the upper boundary is a water table and 
the method requires an initial depression of the water level in the well, followed by an observa- 
tion of the intake rate. Because of the different boundary condition at the upper surface of the 
flow region, the shape factors S in the intake formula (equation (1)) in this situation are dif- 
ferent from those in Hvorslev’s intake formulae. For the tests in unconfined aquifers compre- 
hensive tables of the shape factor, found by electric analogue, have been presented by Youngs 
(1968). Values calculated from potential theory using a computer by Boast (1969) agreed with 
the electric analogue values. While these shape factors are not generally applicable to the 
confined case, the boundary values for the confined and unconfined cases become the same 
for the well point or cavity at an infinite depth below the upper surface. Thus the shape factors 
given by Youngs (1968) for cavities at depth below the water table in an infinitely deep soil 
may be used also in the confined situation for a well point extended in infinite uniform soil. 
Youngs’ table of shape factors shows that there is little change in the shape factor for a given 
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cavity when the cavity is deeper than about six well diameters below the water table, especially 
for small cavity lengths, so that values at the greatest depth given of ten diameters may be 
taken as those for infinite soil in both the unconfined and confined situations. In Table 1 
values given by equation (2) are compared with these electric analogue values. It is seen that 
agreement is poor for small ratios of L/D, the ratio of the length of cavity to diameter, but is 
within 10 %, accurate enough for practical purposes, for L/D > 0.8. Youngs’ value of 2.80 for 
L/D = 0 agrees well with that of 2.75 given by Hvorslev. 

Table 1. Comparison of shape factors; Sv after Youngs (I%@, 
SH from Dachler’s (1936) formulae, quoted by Hvorslev (1951), 
SA new analogue values 

Well point in Well point at 
infinite soil impervious boundary 

- 

LID SY S” S.4 

0 2.80 6.28 - 3.14 2.00’ 
0.25 4.35 6.34 2.40 3.26 3.08 
0.5 5.30 6.52 3.15 3.56 3.78 
1.0 6.90 7.13 4.55 4.35 5.08 
2.0 9.30 8.70 6.80 6.00 7.18 
4.0 13.45 12.00 10.70 9.05 11.05 

- 

1 Theoretical value. 

Table 2. Shape factors for well point-filters 

Values of S for B/D 
___________ ___-- 

LID co 4.0 2.0 1.0 0.5 0.25 0 
_________ ____~ 

0 2.80 2.75 2.65 2.50 2.30’ 2.15l 2.00 
0.25 4.35 4.30 4.15 3.85 3.50 3.301 3.08 
0.5 5.30 5.20 5.00 4.65 4.20 4.00’ 3.78 
1.0 6.90 6.75 6.40 5.95 5.45 5.301 5.08 
2.0 9.30 9.00 8.65 8.15 7.65 7.401 7.18 
4.0 13.45 13.15 12.75 1203 11.50 11.20 11.05 

1 Interpolated values. 

For the case of the well point at an impervious boundary, values given by Youngs (1968) for 
cylindrical cavities in deep soils and which rest on a lower impermeable bed may be used as an 
approximation except for very small values of L/ D. These values are also given in Table 1, and 
are compared with those given by equation (4). Also shown for comparison are newly deter- 
mined electric analogue values for cases of L/D # 0; for L/D = 0, we can take the theoretical 
value of S = 2.0. In this case, values given for S by equation (4) are within 12 % of the ana- 
logue results for L/D>O.25. The values taken from Youngs (1968) are poor below L/D = 0.5, 
but are more accurate than equation (4) for L/D> 1.0, being only 3 % different from the ana- 
logue results at L/D = 4-O. 

This discussion indicates the degree of accuracy which may be expected in using the intake 
formulae given by Hvorslev (1951). 

For greater accuracy, Table 2 has been drawn up to take into account the depth of the well 
point-filter below the impervious layer. The values in Table 2 have been taken from Youngs 
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(1968), together with the analogue and theoretical results shown in Table 1. The shape factors 
at a depth B below the impervious floor may be assumed to approximate to the values given in 
the tables of Youngs (1968) for cavities at depth and at heights B above an impermeable floor, 
since even at the extreme values of B = 0 for L/D>O.5, the shape factors obtained in this way 
are in error by only 20% even though the flow is through the cylindrical sides only because of 
the impermeable floor. Thus for values of B/D not equal to zero or infinity, for which we have 
accurate values obtained by electric analogue, we may confidently use Youngs’ analogue 
results using interpolated values for low values of B/D. Table 2 may thus be regarded as a 
comprehensive table of shape factors to be used in the intake formula (equation (1)). 

Author’s Reply 

I would like to thank Mr Youngs for his most interesting contribution. The historical 
introduction is particularly elegant, laying emphasis as it does on the fact that the originators 
of the various theories were only too well aware of their approximate nature. His Table 2 
should be a most valuable aid in obtaining more satisfactory permeability values. Though 
inspection of it shows how very rapidly the shape factor varies at small values of L/D. Conse- 
quently the depth of the borehole and lining tubes must be known with adequate precision if 

reasonable accuracy is to be obtained. 
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A discrete numerical model for granular assemblies 
CUNDALL, P. A. & STRACK, 0. D. L. (1979). GPotechnique 29, No. 1, 47-65. 

B. C. Burman, Coffey & Partners Pty Ltd 

The Authors have produced an interesting paper on the application of numerical modelling 
of discontinua to the investigation of constitutive relationships for granular materials. The 
Writer (Burman, 1972) was involved in similar work between 1969 and 1971, the results of 
which are belatedly published (Trollope & Burman, 1980). 

The senior Author and the Writer have independently developed similar but different 
approaches to the numerical analysis of discontinua with a view to mathematically modelling 
the behaviour of jointed masses in problems of rock mechanics. While Cundall chose to 
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