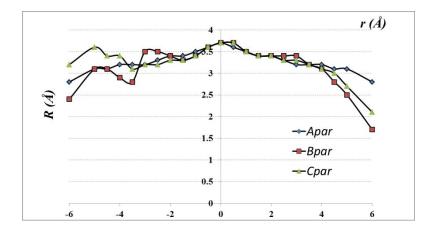
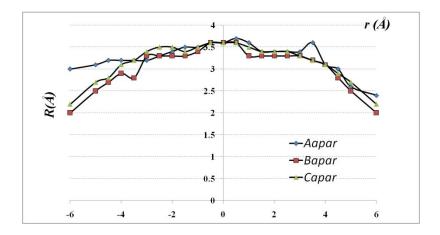
Supplementary Information

PHENOL AND TOLUENE STACKING INTERACTIONS, INCLUDING INTERACTIONS AT LARGE HORIZONTAL DISPLACEMENTS. STUDY OF CRYSTAL STRUCTURES AND CALCULATION OF POTENTIAL ENERGY SURFACES

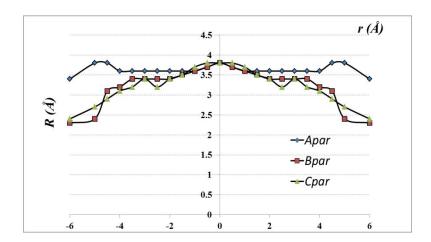
Jelena M. Živković ^a Ivana M. Stanković ^b, Dragan B. Ninković ^a and Snežana D. Zarić *c


^aInnovation Center of the Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia;

^bInstitute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, Belgrade, Serbia;


^cFaculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.

The optimized phenol geometry was planar distorted hexagonal ring, with bond lengths of (O)C-C 1.394 Å, C-C 1.393 Å, O-H 0.966 Å, ortho C-H 1.086 Å, meta C-H 1.084 Å and para C-H 1.083 Å. The optimized toluene geometry was also planar distorted hexagonal ring, with bond lengths of (C)C-C 1.397 Å, C-C 1.393 Å, C-H 1.093Å, ortho C-H 1.086 Å, meta C-H 1.084 Å and para C-H 1.084 Å.


The minimum of interaction energy of two parallel phenol molecule at the r=0.0 Å and R=3.8 Å is -1.67 kcal/mol.

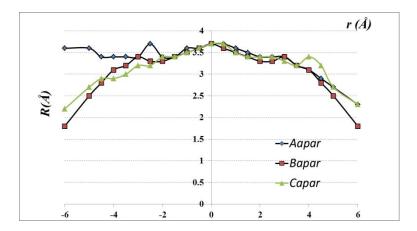

Figure SI 1. The optimal normal distances (R) for three different parallel orientations of phenol-phenol molecules plotted as a function of the r value. The A_{par} , B_{par} and C_{par} orientations are presented in **Figure 13**.

Figure SI 2. The optimal normal distances (R) for three different antiparallel orientations of phenol-phenol molecules plotted as a function of the r value. The A_{apar} , B_{apar} and C_{apar} orientations are presented in **Figure 14**.

Figure SI 3. The optimal normal distances (R) for three different parallel orientations of toluene-toluene molecules plotted as a function of the r value. The A_{par} , B_{par} and C_{par} orientations are presented in **Figure 18**.

Figure SI 4. The optimal normal distances (R) for three different parallel orientations of toluene-toluene molecules plotted as a function of the r value. The A_{apar} , B_{apar} and C_{apar} orientations are presented in **Figure 19**.