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ABSTRACT
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of

several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF

system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in

cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical

rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such

therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other

treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.

INTRODUCTION
The insulin and insulin-like growth factor (IGF) signalling sys-

tem has been implicated in a vast array of both physiological

and pathological cellular processes. The IGF family principally

comprises three ligands (insulin, IGF1 and IGF2), three receptors

[the insulin receptor (IR), the insulin-like growth factor 1 recep-

tor (IGF1R) and the insulin-like growth factor 2 receptor

(IGF2R)] in addition to six high affinity ligand binding proteins

(IGFBP1-6), and accessory proteins such as IGFBP-specific pro-

teases. The signalling through IR/IGFR is complex (see Fig. 1).

IR and IGF1R are tyrosine kinase receptors that share a high

degree of structural homology and can exist as either homo- or

heterotetramers (hybrid receptors). Additional complexity arises

through alternative splicing of the INSR gene resulting in two IR

subunits IR-A and IR-B, which have differing affinities for insulin

and the IGF ligands (Seino & Bell, 1989). This results in a total of

seven different receptors. Insulin can signal through any recep-

tor containing at least one IR subunit while IGF1 can signal

through any receptor containing at least one IGF1R subunit.

IGF2 can signal through the same receptors as IGF1 in addition

to the IR-A homotetramer as well as the IGF2R homodimer (re-

viewed in Simpson et al., 2017). IGF2R is structurally unrelated

to IR/IGF1R and possesses no tyrosine kinase activity or

autophosphorylation sites. The IGF2R receptor can bind to G-

proteins, however, and despite previous assertions that IGF2R

functions only to control IGF2 ligand levels by acting as a sink

receptor, it is possible that it can initiate downstream signalling

(El-Shewy et al., 2007). While signalling through the IR-A/B and

IR-B receptors mainly contributes to glucose homeostasis, sig-

nalling through the IGF1R hetero- and homotetramers generally

leads to activation of both anti-apoptotic mechanisms resulting

in increased cell survival and increased cellular proliferation and

growth in normal and malignant tissues.

ROLE OF IGF SYSTEM IN TESTICULAR FUNCTION:
LESSONS LEARNED FROM GENETIC MODELS
Signalling through the insulin and Igfr receptors are absolutely

required for sex determination in mice (Nef et al., 2003). There is

complete XY sex reversal due to failure to upregulate Sry and a

complete failure of the testicular genetic programme in mouse

embryos with homozygous deletion of the Insr and Igf1r genes.

Ovarian differentiation is also delayed in XX gonads in the same

model, although the ovarian genetic programme is eventually

initiated several days later than in control embryos (Pitetti et al.,

2013a). It has subsequently been shown that specific ablation of

the Insr and Igf1r genes in Sertoli cells drastically influences tes-

tis size, Sertoli cell number and sperm production, whereas dele-

tion of these genes in just the germ cells themselves results in

normal testicular function and size (Pitetti et al., 2013b). The

same study showed that a disruption to the neonatal action of
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follicle-stimulating hormone (FSH) on immature Sertoli cells

occurred in the absence of Insr/Igf1r (IIR) signalling. A more

recent study concluded that although foetal Leydig cell function

is normal, adult Leydig cells fail to mature using the constitutive

double knockout model (Neirijnck et al., 2018).

IGF1 has reversed testicular atrophy induced by cirrhosis of

the liver in rats (in which IGF1 levels are reduced), resulting in

full recovery of testicular weight and reversal of all histopatho-

logical abnormalities (Castilla-Cortazar et al., 2000). Although

specific abrogation of IIR signalling in germ cells did not appear

to impair testicular function in mice, there is evidence that germ

cell function is profoundly affected by IGF signalling. In keeping

with the recognized role of IGF1 as an inhibitor of apoptosis,

in vitro organ culture of mouse testicular fragments supple-

mented with IGF1 increased the density of germ cells by

decreasing apoptosis (Yao et al., 2017). Mice carrying a trans-

gene-expressing IGFBP1 exhibited defects in spermatogenesis

with altered production and quality of spermatozoa, attributed

to the lack of bio-available IGF1 caused by increased binding of

IGFBP1 (Froment et al., 2004). IGF1 administration was able to

reverse the decrease in germ cell numbers observed in rats with

surgically induced unilateral undescended testes (Bingol-Kolo-

glu et al., 2010). Co-culture of Leydig cells with mouse sper-

matogonial stem cells (SSCs) and subsequent blockade of IIR

signalling led to loss of expression of pluripotent genes in SSCs,

supporting the idea that IGF1 produced by Leydig cells can

maintain SSC pluripotency (Huang et al., 2009). IGF1 has also

been shown to influence steroidogenesis in cultured Leydig cells

(Lin et al., 1986). Insulin receptor substrate 2 (IRS2) is one of the

key downstream effectors of IIR signalling and has itself been

implicated in testicular development. Mice with homozygous

deletion of the IRS2 have reduced testicular weight with lower

numbers of Sertoli cells, spermatogonia and spermatocytes

(Griffeth et al., 2013).

In a zebrafish model, either ectopic overexpression of IGF-I or

dominant negative expression of IGF receptors in primordial

germ cells (the putative cells of origin in TGCT) leads to defects

in migration of these cells to the genital ridge (Sang et al., 2008).

A separate study found that knocking down the IGFR1b gene in

zebrafish embryos resulted in both mismigration and elimina-

tion of primordial germ cells (Schlueter et al., 2007). In C.ele-

gans, mutations in the daf-2 gene (the single gene encoding an

insulin/insulin-like growth factor receptor in this species) led to

infertility (Tissenbaum & Ruvkun, 1998) and a study using a con-

ditional daf-2 allele demonstrated the necessity of IIR signalling

for larval germ cell proliferation by promoting cell cycle progres-

sion (Michaelson et al., 2010). Together, these studies provide

evidence for an essential role of IGF signalling in supporting the

normal development of germ cells.

ROLE OF IGF SYSTEM IN CANCER RISK
There are several lines of long-standing evidence linking

higher serum levels of IGF1 (associated with increased growth)

and decreased serum levels of some IGFBPs (associated with

suppressing growth through binding IGF1) with additional can-

cer risk (reviewed in Crowe et al., 2011). The congenital over-

growth disorder, Beckwith–Wiedemann syndrome, is associated

with increased cancer risk and is frequently associated with dis-

rupted imprinting of the IGF2 gene. The gene encoding the

potent mitogen IGF2 is imprinted in normal somatic cells, with

Figure 1 Insulin and IGF ligand specificity for INSR/IGF1R receptors. Each of the insulin receptors INSR-A, INSR-B and IGF1R transcripts encodes a single

polypeptide chain, which undergoes proteolytic cleavage to produce an a and b subunit. Each ab subunit forms homo- or heterotetramers. Insulin and the

IGF ligands can bind competitively to these receptors as shown. Bioavailability of IGF ligands is regulated by insulin-like growth factor binding proteins 1–6
(IGFBPs). IGFBPs bound to ligands can also bind the acid labile subunit (ALS) in the bloodstream to form a ternary complex which is thought to be unable

to cross the capillary endothelium unless partially dissociated. Insulin signalling primarily affects glucose metabolism (but can also regulate other functions

including growth), signalling through the INSR-A homotetramer or any receptor containing IGF1R subunits results in downstream activation of pathways

involved in proliferation, prevention of apoptosis and migration. The structurally unrelated IGF2R receptor binds IGF2, the functional significance of which is

yet to be fully established but may act to regulate extracellular IGF2 levels.
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only the paternal allele being expressed. Loss of imprinting in

this chromosomal location results in increased IGF2 levels by

being biallelically expressed (Mussa et al., 2016).

It is noted that both height and body mass index (BMI) corre-

late with higher cancer risk and with increased circulating IGF1

levels and/or decreased IGFBP levels (Nunney, 2018). Consistent

with these findings, patients with congenital secondary IGF1

deficiency are less likely to develop cancer (Steuerman et al.,

2011), while mice with reduced circulating Igf1 levels experience

delayed onset of mammary tumours compared to controls (Wu

et al., 2003). In accordance with other tumour types, height has

also been reported as a risk factor for testicular germ cell

tumours (TGCTs) (Rasmussen et al., 2003; Richiardi et al., 2003;

McGlynn et al., 2007), although there is no direct evidence that

circulating IGF1 levels are linked to a higher risk of developing

TGCT. However, the chromosomal disorder Klinefelter syn-

drome (47 XXY) is associated with increased height (Aksglaede

et al., 2008) and an increased risk of mediastinal germ cell

tumours (Nichols et al., 1987) but serum IGF1 and IGFBP3 levels

in the normal range (Aksglaede et al., 2008).

Mice with elevated growth hormone (GH)/Igf1 serum concen-

tration had a higher incidence and reduced latency of mammary

tumours but only in the context of a high fat diet (Gahete et al.,

2014). Modulating factors such as diet perhaps explains the lack

of concordance in the literature when trying to assess the propor-

tion of risk attributable to circulating IGF1 concentration and

these factors may explicate the lack of such a relationship in

TGCT. A large meta-analysis examining the effects of circulating

IGF1 and IGFBP3 levels on the risk of developing several common

cancers detected an association between increased IGF1 concen-

tration and prostate, colorectal and pre-menopausal breast can-

cer risk, while perhaps surprisingly, increased IGFBP3 levels were

associated with risk of pre-menopausal breast cancer. This find-

ing challenges the assumption that IGFBP3 only exerts its effects

on cancer risk by regulating bioavailability of IGF1. This study did

not detect a protective effect of lower IGFBP3 levels overall; how-

ever, when one of the lung cancer cohorts was removed (that

recruited only heavy smokers and asbestos workers), the risk of

lung cancer was significantly decreased in individuals with higher

IGFBP3 concentration (Renehan et al., 2004). Overall, serum

levels of IGF ligands have a modest effect on cancer risk and may

need very large association or meta-studies to detect them. An

alternative mechanism for IIR activity to influence cancer risk

would be altered expression of the IGF1R receptor in the target

organ. In this regard, it is interesting to note that Igf1r concentra-

tion was higher in cryptorchid than normal testes post-puberty in

an induced rat model (Antich et al., 1995). Cryptorchidism is a

well-known risk factor for TGCT (Banks et al., 2013); however,

the status of IGF1R expression is unknown in this condition in

humans. Polymorphisms within IGF-related genes have also

been associated with risk of several cancers including breast and

prostate although these are not necessarily linked to differences

in circulating IGF levels (Al-Zahrani et al., 2006; Canzian et al.,

2006; Cao et al., 2014a; Jung et al., 2017). There is, however, no

positive evidence linking polymorphisms in IGF genes to testicu-

lar cancer risk (Chia et al., 2008; Loveday et al., 2018).

ROLE OF IGF SYSTEM IN ONCOGENESIS
Increased expression of many components of the IGF family

has been invoked in tumourigenic mechanisms. IGF1R, IGF1

and IGF2 are frequently overexpressed in a large number of

tumour types (Papa et al., 1993; Bergmann et al., 1995; Sekyi-

Otu et al., 1995; Steller et al., 1996; Weber et al., 2002). Insulin-

like growth factor 2 mRNA binding proteins (IMPs) are expressed

during embryogenesis and less so in normal adult tissues; how-

ever, they are upregulated in a broad range of cancers where

their expression correlates with poor prognosis (reviewed in

Degrauwe et al., 2016). Moreover, expression of IGF1R has been

shown to be prerequisite for transformation by several different

oncogenes (Sell et al., 1993; Toretsky et al., 1997). Several mem-

bers of the IGF family are potentially dysregulated in TGCT.

IGF1 and IGFBP5 are frequently expressed in the precursor

TGCT lesion, germ cell neoplasia in situ (Drescher et al., 1997).

Large-scale de novo demethylation takes place in primordial

germ cells, relaxing imprinting at most genomic locations.

TGCTs frequently retain this loss of imprinting, expressing IGF2

biallelically (Van Gurp et al., 1994), which has been linked to

increased tumour aggressiveness in other cancer types (Dam-

aschke et al., 2017). Increased serum levels of IGF2 and IGFBP2

have been found in non-seminomatous TGCT, decreasing upon

successful therapy and increasing again in cases of recurrence

(Fottner et al., 2008). Our group has recently shown that IGF1R

is expressed in approximately half of non-seminomas and influ-

ences survival of non-seminoma cells in vitro (Selfe et al., 2018).

The IGF axis has been implicated in a wide number of onco-

genic processes. Signalling through the IGF1R receptor primarily

activates the PI3K/AKT and MAPK (Ras/Raf/MEK/ERK) path-

ways. Whereas activation of the MAPK pathway drives cellular

proliferation through promoting proteins involved in cell cycle

progression, signalling via the AKT pathway both activates anti-

apoptotic proteins and inhibits anti-apoptotic proteins to

enhance cell survival (Chitnis et al., 2008). Our study in TGCT

cell lines suggested that these cells primarily signal through the

PI3K/AKT pathway in response to IGF ligand, perhaps reflecting

the activation of the MAPK pathway via other means such as the

tyrosine kinase receptor KIT and RAS mutation or overexpres-

sion (McIntyre et al., 2004, 2005). IGF2 can rescue a teratocarci-

noma cell line from undergoing apoptosis in the absence of

serum (Engstr€om, 2010), reinforcing the anti-apoptotic proper-

ties of IIR signalling in the context of TGCT.

IGF1R signalling has also been associated with several cellular

processes that contribute to metastasis. Migration and invasion

have been linked to IGF1R activity through co-operation with

the integrin pathway leading to Rho-A-dependent motility via

FAK and RACK1 (Doerr & Jones, 1996; Brooks et al., 1997; Zhang

et al., 2005; Montagnani Marelli et al., 2006). The chemokine

receptor CXCR4 (Goddard et al., 2007; Gilbert et al., 2009) is

reported to be involved in the survival and migration of TGCTs

as well as primordial germ cells (reviewed in Gilbert et al.,

2011a). Notably, IGF1 signalling through IGF1R has been shown

to increase migration and CXCR4 expression in both mesenchy-

mal stem cells and embryonic germline stem cells (Li et al.,

2007; Kuo et al., 2018).

Matrix metalloproteinases are induced by IGF1 (Yoon & Hurta,

2001), conferring an invasive phenotype (Das et al., 2018), and

MMP-2 and MMP-9 are frequently expressed in non-seminomas

(Gilbert et al., 2011b). IGF1 can also induce VEGF ligands and

upregulate vascular vessel formation, thereby exhibiting pro-an-

giogenic properties (Kurmasheva et al., 2009; Li et al., 2011).

IGF1R signalling appears to be required for epithelial-to-

538 Andrology, 2019, 7, 536–544 © 2019 The Institute of Cancer Research. Andrology published by Wiley Periodicals Inc on behalf of The
American Society of Andrology and European Academy of Andrology.

J. Selfe and J. M. Shipley ANDROLOGY



mesenchyme transition in some cancer cells (Graham et al.,

2008; Yi et al., 2018), driving malignant progression. It is per-

haps, therefore, unsurprising that IGF axis proteins have been

linked to patient outcome (Kawamoto et al., 1998; Fu et al.,

2011; Turney et al., 2011; Unger et al., 2017). Unlike other tyro-

sine kinase growth factor receptors, tumours have not been

found to harbour activating mutations in IGF1R, not even as a

resistance mechanism in response to IGF1R-targeted therapies.

ROLE OF IGF SYSTEM IN CHEMORESISTANCE
IGF1R activation has been implicated in resistance to both

chemical and radiation based therapies. Investigations in several

different tumour types have revealed increased IGF activity in

chemoresistant tumours and shown that IGF1R inhibition acts

as a chemosensitizer (Dallas et al., 2009; Eckstein et al., 2009;

Juan et al., 2011; Ireland et al., 2016; Cao et al., 2017). Down-

stream activation of the PI3K/AKT pathway has been shown to

be instrumental to the mechanism of chemoresistance in many

of these studies.

IGF1R has also been found in the nucleus. Intriguingly,

nuclear IGFR1 was increased in metastatic colorectal tumours

compared to matched primary tumours and correlated with

poor overall survival (Codony-Servat et al., 2017). Nuclear

translocation of IGFR1 requires ligand-based activation of the

receptor and can be blocked by IGF1R inhibitors (Aleksic et al.,

2010). Following entry into the nucleus, IGF1R has been shown

to interact with transcriptionally active regions of DNA including

the proto-oncogene JUN (Aleksic et al., 2018). It is currently

unknown whether IGF1R is found or plays a role in the nuclei of

TGCT cells.

Recent studies have suggested tumour-associated cells such as

tumour-associated macrophages (TAMs) and tumour-associated

endothelial cells (TECs) may co-operate in IGF-mediated

chemoresistance. TAMs and myofibroblasts were found to be

the main sources of IGF production in pancreatic cancer (Ire-

land et al., 2016). TECs were found to keep tumourigenesis in

check by secreting IGFBP7/angiomodulin, a direct IGF1R antag-

onist (binding to IGF1R itself and not IGF ligands) in the pres-

ence of IGF1. However, the administration of chemotherapy

appears to alter this process and IGFBP7 expression is sup-

pressed while IGF1 expression is enhanced, allowing the TECs to

be converted to promoters of tumourigenicity and consequently

the emergence of chemoresistance (Cao et al., 2017). The induc-

tion of chemotherapy itself initiates the conversion of TECs,

which perhaps perceive the chemotherapeutic agent in the same

way as an injury and switch their transcriptional programme in

response.

IGF1R expression is also associated with a radioresistant phe-

notype (Turner et al., 1997; Yu et al., 2003; Chen et al., 2017),

suggesting that it may have a role in DNA damage response and/

or repair. Several different mechanisms for the involvement of

IGF1R in radioresistance have been proposed. Nuclear IGF1R is

known to physically interact with and phosphorylate proliferat-

ing cell nuclear antigen (PCNA), a key mediator of the DNA dam-

age response (Waraky et al., 2017). A role for IGF1R has been

suggested in both of the major pathways for repairing DNA dou-

ble-strand breaks, namely homologous recombination and non-

homologous end joining (Chitnis et al., 2014). One of the main

downstream effectors of IGF1R signalling, insulin receptor sub-

strate 1 (IRS-1), has been shown to interact with RAD51 which

localizes to the sites of double-strand breaks and facilitates

repair by homologous recombination (Trojanek et al., 2003).

Although a link between IGF signalling in TGCT and DNA repair

has not been established in TGCT, modulation of DNA repair

capacity is associated with cisplatin resistance in TGCT

(Kalavska et al., 2018).

TGCT cells are considered the paradigm of a chemosensitive

tumour, readily undergoing apoptosis in response to DNA-dam-

aging agents such as cisplatin via a p53-dependent pathway. The

p53 response to DNA damage is intact but leads to apoptosis in

preference to cell cycle arrest, in part due to very low levels of

p21 in TGCT cells (Spierings et al., 2004). Nevertheless, although

the majority of TGCT patients respond to treatment initially, a

minority relapse with cisplatin refractory disease. Mutations in

the TP53 gene and amplification of its regulatory protein MDM2

are over-represented in cisplatin-resistant TGCT but do not

explain all cases (Bagrodia et al., 2016). We have recently

described increased IGF1R copy number, expression and activa-

tion (with increased phospho-AKT levels) in a model of acquired

cisplatin resistance (Selfe et al., 2018) which could subsequently

be resensitized to cisplatin upon reduction of IGF1R. IGF1R

hyperactivation has been specifically linked to cisplatin refrac-

tory ovarian cancer (Eckstein et al., 2009). There is additional

evidence signifying a role for the AKT pathway in platinum-resis-

tant TGCT. Inhibition of AKT can restore sensitivity to cisplatin-

resistant TGCT cells by re-localizing p21 from the cytoplasm to

the nucleus (Koster et al., 2010), while PIK3CA and AKT1 muta-

tions are exclusively found in cisplatin-resistant tumours (Feld-

man et al., 2014). Phospho-AKT levels are significantly higher in

cisplatin-resistant disease compared to sensitive or untreated

tumours (Juliachs et al., 2014). Copy number gain and concomi-

tant overexpression of AKT1 is a frequent event in intracranial

germ cell tumours, which, although clinically and histologically

similar to gonadal germ cell tumours, are more likely to be

refractory to treatment (Wang et al., 2014). Figure 2 summarizes

the key alterations in IGF signalling that have been observed in

cisplatin-resistant TGCT.

THERAPEUTIC TARGETING OF THE IGF SYSTEM IN
CANCER
IGF1R appears to represent an ideal therapeutic target in

many cancers; it is expressed on the cell surface, possesses enzy-

matic activity and has a role in many tumourigenic processes.

Two principal classes of inhibitor were initially used in a trial

setting: monoclonal antibodies against IGF1R (mAbs) and small

molecule tyrosine kinase inhibitors of IGF1R (TKIs). These inhi-

bitors to IGF1R were very enthusiastically explored in many clin-

ical trials as single agents two decades ago. Outcomes in these

trials were extremely disappointing due to an overall infre-

quency of objective responses and a lack of any accurate predic-

tive biomarkers of response. The most promising patient

subgroup who might benefit from IGF1R-targeted therapy are

Ewing’s sarcoma patients, where a minority have sustained dur-

able responses lasting several years without major side effects

(Anderson et al., 2016). The inability to select which patients are

likely to respond has severely hampered efforts to employ

IGFR1-targeted agents in mainstream treatment.

Several explanations have been proposed to explain the lack of

efficacy of IGF1R mAbs and TKIs (reviewed in Simpson et al.,

2017). There is a large amount of crosstalk between the
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signalling pathways of IGF1R and other RTKs such as EGFR,

ERBB2 and PDGFR (Browne et al., 2011; Liu et al., 2014). Cancer

cells may therefore be able to circumvent IGF1R inhibition by

upregulating another or several RTKs. As a corollary to this, it is

also true that upregulation of IGF1R signalling can act as an

escape mechanism in response to inhibitors of other RTKs (Ma

et al., 2016; Almiron Bonnin et al., 2017; Li et al., 2017). The

IGF1R mAbs will not prevent signalling via IGF2 binding to the

INSR-A receptor, which would be another route to evade IGF1R

inhibition; indeed, increased phospho-INSR levels have been

observed in response to an EGFR inhibitor in colorectal cancer

cells (Jones et al., 2006). IGF1R TKIs block activation of both

homotetrameric and heterotetrameric INSR and IGF1R due to

the similarity of the kinase regions in both proteins, and this

raises the potential problem of dose limitation in order to pre-

vent glucose metabolism being adversely affected. A newer gen-

eration of therapeutic antibodies against IGF ligands should

avoid both of these pitfalls by allowing insulin to signal normally

and preventing IGF2 from activating the INSR-A receptor. Tar-

geting the ligands instead of the receptors should also prevent

resistance through downregulation of inhibitory IGF binding

proteins such as IGFBP2 as seen in rhabdomyosarcoma cells

(Kang et al., 2014).

A major hurdle in the use of anti-IGF1R therapies in the clinic

has been the lack of suitable predictive biomarkers. There is con-

flicting evidence as to whether expression of IGF1R itself, as

opposed to activated IGF1R (phospho-IGF1R), identifies patients

that would benefit from IGF1R-targeted agents (Cao et al., 2008;

Kurmasheva et al., 2009; Zha et al., 2009; Cao et al., 2014b).

Expression of IGF1R or even presence of activated IGF1R does

not always signify cells that are susceptible to IGF1R inhibition.

This is seen in the case of the seminoma cell line, TCAM2 (Selfe

et al., 2018), which despite comparatively high basal levels of

activated IGF1R among TGCT cell lines was among the least

responsive to an IGF1R TKI. Expression of other components of

the IGF axis such as IRS2 and IGFBP5 has been shown to be

important for determining sensitivity to an IGF1R mAb (Pavlicek

et al., 2013). Exclusive nuclear IGF1R correlated with a better

outcome in sarcoma patients treated with an IGF1R mAb

(Asmane et al., 2012), indicating that nuclear staining in the

absence of cytoplasmic IGF1R may be a useful biomarker; how-

ever, this study had small numbers of patients.

In order to exploit the anti-tumourigenic responses to INSR/

IGF1R inhibition seen in preclinical experiments, current inves-

tigations are concentrating on combinatorial studies using IGF

inhibitors. Combination with other RTK TKIs is used as a means

of reducing the emergence of resistance or in addition to either

standard chemotherapeutic agents or radiotherapy utilizing

their properties as chemo- and radiosensitizers, respectively

(McDermott et al., 2017; Schaffrath et al., 2017). Given the

importance of the PI3K/AKT pathway in TGCT, simultaneous

multiple targeting of this pathway may be effective in TGCT

patients by combining IGF1R inhibition with other inhibitors of

this pathway. IGF1R inhibition used in conjunction with stan-

dard chemotherapy regimens may be effective in some TGCT

patients with cisplatin-resistant disease. Initial clinical testing of

this hypothesis would likely involve refractory patients for whom

existing treatment options were limited or unavailable. Attempt-

ing to resensitize patients to cisplatin at an earlier stage would

however be potentially more effective than in the heavily pre-

treated cases where multiple genetic events may have had time

to occur and establish resistance by different mechanisms. Care-

ful selection of cases may also be important as if PIK3CA or

AKT1 mutations are driving resistance, inhibition of the IGF sig-

nalling pathway should take place downstream of these. The

molecular pathways that allow IGF1R inhibitors to act as chemo-

or radiosensitizers are not yet fully understood. Identifying these

mechanisms and studying their interaction with the deficiencies

in DNA repair in TGCT cells will be necessary in order to exploit

the full benefit of targeting the IGF axis. The mTOR inhibitor,

everolimus, has shown limited efficacy in two phase-II studies of

unselected TGCT patients with refractory disease (Mego et al.,

2016; Fenner et al., 2019). This may be due to the pro-oncogenic

effects of INSR/IGF1R being at least in part independent of the

PI3K/AKT pathway downstream of mTOR or that IGF-targeted

therapies must be combined with DNA damaging agents to

achieve clinical utility in TGCT.

CONCLUDING COMMENTS
Primordial germ cells, the likely precursor of TGCT, require

IGF1R signalling for correct migration to the genital ridge, and

the IGF system has many roles in establishing and maintaining

testicular function including steroidogenesis and maintaining

pluripotency in spermatogonial stem cells. The IGF axis is dys-

regulated in many tumour types and can contribute to oncogen-

esis via multiple disparate mechanisms, making it an attractive

therapeutic target. The lack of mutations found in IGF proteins

in cancer may hint that INSR/IGF1R signalling is not a key driver

in many tumours, and together with cross talk between path-

ways, this could explain the lack of efficacy seen in clinical trials

using several different types of IGF1R-targeted agent. However,

Figure 2 IGF signalling pathway alterations occurring in cisplatin-resistant

TGCT. Several alterations in the IGF signalling pathway have been docu-

mented in cisplatin-resistant TGCT. PIK3CA and AKT1 activating mutations

have been found exclusively in resistant tumours. PTEN loss is a frequent

event occurring early in TGCT evolution. Cisplatin-resistant cells demon-

strate overexpression of AKT and phospho-AKT levels in comparison with

their sensitive counterparts, which results in increased translocation of p21

to the cytoplasm where it can inhibit apoptosis. IGF1R overexpression was

seen in an acquired model of resistance. Interestingly, PDGFRb has also

been shown to contribute to cisplatin resistance via PI3K/AKT signalling

with overexpression of PDGF-b.
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there are multiple lines of evidence to suggest that cancers can

use the INSR/IGF1R pathway as a resistance mechanism to other

treatments and that IGF1R inhibition can augment responses to

standard chemo- and radiotherapy. The clinical utility of block-

ing this pathway may therefore lie in combining newly designed

IGF ligand-targeted therapies with existing or new treatments.

TGCT cells commonly exhibit aberrant IGF axis activation

through elevated IGF1R activity (Selfe et al., 2018) and/or

increased IGF2 expression through loss of imprinting (Van Gurp

et al., 1994). We have shown that cells with high levels of IGF1R

activation are vulnerable to IGF1R inhibition. Cisplatin resis-

tance, the major cause of mortality in TGCT, may be impacted

by including IGF1R inhibition.
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