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Across aging, adipose tissue (AT) changes its quantity and distribution: AT becomes

dysfunctional with an increase in production of inflammatory peptides, a decline of those

with anti-inflammatory activity and infiltration of macrophages. Adipose organ dysfunction

may lead to age-related metabolic alterations. Aging is characterized by an increase in

adiposity and a decline in brown adipose tissue (BAT) depots and activity, and UCP1

expression. There are many possible links to age-associated involution of BAT, including

the loss of mitochondrial function, impairment of the sympathetic nervous system,

age-induced alteration of brown adipogenic stem/progenitor cell function and changes in

endocrine signals. Aging is also associated with a reduction in beige adipocyte formation.

Beige adipocytes are known to differentiate from a sub-population of progenitors resident

in white adipose tissue (WAT); a defective ability of progenitor cells to proliferate and

differentiate has been hypothesized with aging. The loss of beige adipocytes with age

may be caused by changes in trophic factors in the adipose tissue microenvironment,

which regulate progenitor cell proliferation and differentiation. This review focuses on

possible mechanisms involved in the reduction of BAT and beige activity with aging,

along with possible targets for age-related metabolic disease therapy.
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INTRODUCTION

Aging is considered a common and a well-established risk factor for several chronic diseases, as well
as for decline in physical function and frailty (1–3). Moreover, aging is associated with increasing
prevalence in obesity, dyslipidaemia, type 2 diabetes, glucose intolerance and other comorbidities.

In recent years, the adipose organ has assumed considerable importance in aging and age-
related metabolic dysfunction. Important and profound changes in the adipose organ occur with
aging in terms of adipose tissue distribution and composition, and it has been suggested that
progressive dysfunction of AT may represent an important hallmark of the aging process. AT
dysfunction represents a process responsible for the metabolic alterations, the multi-organ damage
and the systemic pro-inflammatory state (“inflammaging”) typical of aging itself (4). Data in the
literature support the idea that adipose tissues are organized in a large adipose organ with discrete
anatomy, vasculature and innervation, specific cytology and high plasticity (5). AT is distributed
in several depots, localized into two main compartments: subcutaneous (SAT) and visceral (VAT)
adipose tissue with different compositions and functions. The main cells of AT are represented by
adipocytes, defined as white and brown adipocytes in relation to their different morphology, which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/326652747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00368
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00368&domain=pdf&date_stamp=2019-06-20
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elena.zoico@univr.it
https://doi.org/10.3389/fendo.2019.00368
https://www.frontiersin.org/articles/10.3389/fendo.2019.00368/full
http://loop.frontiersin.org/people/661186/overview
http://loop.frontiersin.org/people/655457/overview
http://loop.frontiersin.org/people/680499/overview


Zoico et al. Brown and Beige Adipose Tissue and Aging

reflects their different functions (5) (Table 1). Both types of cells
are present within multiple sites of adipose organ in discrete
depots and are named white and brown adipocytes.

At the morphological level, the main characteristic of white
adipocytes is their single large intracellular lipid droplet (LD),
while the brown adipocytes are characterized by the presence of
multiple small cytoplasmic LDs (Table 1). White adipocytes have
the function of storing excess lipids in the form of triglycerides
(TG) and releasing free fatty acids (FFA) in periods of body
energy demand; white adipocytes also synthesize and release
adipokines which regulate metabolic homeostasis (Table 1).
The main function of brown adipocytes is the dissipation
of energy through uncoupled respiration so as to produce
heat; this mechanism is mediated by a protein called the
uncoupling protein-1 (UCP-1), present in the inner membrane
of mitochondria (6) (Table 1).

A third type of adipocyte with an intermediate morphology
between that of white and brown adipocytes, also referred
to as beige, “brite” (brown-like-in-white) or “inducible
brown” adipocytes, was firstly described in mouse WAT
and then found in various human WAT depots (7, 8). Despite
similarities to brown adipocytes, beige adipocytes can undergo a
thermogenic or storage phenotype depending on environmental
conditions (Table 1).

Across aging, AT undergoes changes in quantity and
distribution, with an increase in total AT and VAT up to 65 years,
as well as of ectopic fat deposition, and a decrease in SAT (9–11).
Across aging, BAT declines, even if BAT activity may be identified
in some rodents models and, under certain conditions, in human
beings. However, the relevance and potential role of BAT decline
with aging has still not been fully explored and determined.

BROWN ADIPOSE TISSUE: ANATOMICAL
DECLINE WITH AGING

The main deposits of brown adipose tissue in the mouse are
located around the spinal cord in the paravertebral area and in the
mediastinum (12), especially in the para-aortic area and around
the heart, at the apex. Infradiaphragmatic deposits have also been
described, in particular in the perirenal area, which occur in
smaller quantities than the supra-diaphragmatic deposits (13).

Most of available information on BAT has been obtained from
rodents because a carcass evaluation can be performed. In mice,
white, brown, and mixed areas are present in discrete depots;
some subcutaneous and visceral depots are clearly partitioned
into WAT and BAT (14, 15). Under physiological conditions,
the exposure of mice to cold increases the amount of BAT
depots. After cold exposure, UCP-1-dependent pathways are
also activated in subcutaneous WAT (sWAT), and in brite
adipocytes through the activation of the sympathetic nervous
system (16–18).

In adult humans there are functionally active areas of BAT,
more frequently in women than in men, in particular in the
cervico-supraclavicular region; however, the study of human

Abbreviations: BAT, brown adipose tissue; WAT, white adipose tissue; SAT,

subcutaneous adipose tissue; VAT, visceral adipose tissue.

BAT is difficult (19). In humans, the 18F-fluorodeoxyglucose
(18F-FDG) positron emission tomography (PET-CT) computed
tomography is the most common method for the measurement
of metabolically active BAT, by the identification of AT regions
that have a high assimilation of 18F-FDG on the PET scan. It
is important to point out that the BAT detected using 18F-FDG
PET-CT has been demonstrated to correspond histologically to
BAT (20). [18F] FDG PET reveals glucose metabolism in tissues;
in detail, active BAT of mice and humans preferentially combusts
fatty acids derived from plasma triglycerides after lipolysis, which
is fueled by glucose. Indeed, [18F] FDG PET does not detect
directly metabolically active BAT, but it is still a reliable indicator
of activated BAT (21, 22).

In humans, BAT changes during the various stages of life
(Figure 1). BAT begins to form during gestation, and it has a
critical role in thermoregulation in the first phases of human
life because newborns do not possess the ability to shiver yet. In
infants, the large bilateral supraclavicular depot represents the
most metabolically active form of BAT, which can be rapidly
activated to heat production (Figure 1). During childhood,
adolescent BAT is found mainly in the supraclavicular region
but, although active BAT is present in every child, metabolically
active BAT is detected only in about half of adolescents after cold
exposure (23–25).

Moreover, other evidence suggests that there is an increase
in BAT activity during adolescence, especially during sexual
maturation and musculoskeletal development. Studies with
FDG-PET/TC scans indicate that there is a synchronized growth
of BAT and skeletal muscle during puberty and the development
of these tissues is related (24, 25).

BAT function and mass decline with aging. Anatomical
distribution of BAT is similar between adolescents and
adults: most of the depots are located in the cervical-
supraclavicular region and other depots are in axillary,
mediastinal, paravertebral, epicardial and abdominal regions (26,
27) (Figure 1). Peripheral depots, such as interscapular one, are
the first to lose BAT with increasing age, whereas deeper BAT
depots, in particular perivascular or perikidney ones, decline in
later stages of life (28–30) (Figure 1).

Non-stimulated BAT can be identified in people under the
age of 50 years at a rate of three times more than in individuals
older than 64 years old (26–31). Through the use of FDG-
PET/TC to visualize BAT in living subjects, it has been shown
that cold-stimulated BAT activity decreases with age (26, 27, 29).
Loss of BAT may plateau around the sixth decade of life and
then decrease in later years, and cold-stimulated BAT activity
is rarely detected in individuals over the age of sixty; this could
explain why there is a decrease in the ability of the elderly
to tolerate cold temperature and to control body temperature
(29). However, FDG PET/TC studies measure only activated
BAT, which may or may not reflect changes in mass (29). The
decline in BAT activity with age in humans is consistently
supported by findings from rodents: in fact, the interscapular
BAT depot in rats becomes infiltrated by white adipocytes
with age, with an important decline in UCP1 activity and
function (30). A significant loss of UCP1 with age is also
observed in rats subcutaneous WAT, confirming the findings
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TABLE 1 | Main morphological and functional characteristics of white, brown, and beige adipocytes.

Characteristics White adipocytes Brown adipocytes Beige adipocytes

Morphology Spherical cells with a single

cytoplasmatic lipid droplet

and peripheral “squeezed”

nucleus

Polygonal cells with several cytoplasmatic lipid

droplets and a roundish nucleus

Paucilocular/Multilocular adipocytes with

intermediate morphology

Ultrastructural morphology Low mitochondrial content Large, spherical and packed mitochondria

which laminar cristae

High mitochondrial content

Innervation Low noradrenergic fibers Numerous noradrenergic fibers are found in fat

lobules with blood vessels

-

Vascularization 5–7 times less

vascularization than BAT

High vascularization -

Markers UCP-1 negative cells

Leptin positive cells

S100B positive cells

UCP-1 positive cells Leptin negative cells UCP-1 positive cells

S100 B positive cells

Leptin positive

Localization SAT and VAT depots and

ectopic fat

Cervical-supraclavicular, perirenal and

paravertebral regions and around the major

vessels such as aorta

In various WAT human depots (inducible

transition white to beige)

Embryological origin WAT adipocyte precursors

can derive from both Myf5+

and Myf5- lineages

The same of skeletal muscle deriving from

specific cells of the dermomiotome

(from Myf5+ cells)

White-to-brown adipocyte transdifferentiation

and de novo differentiation of precursor cells

Function Storage of energy Thermogenic activity Thermogenic or storage phenotype depending

on environmental conditions

Changes with aging:

-Chronic sterile inflammation

-Progenitor cell decline

-Senescence

-Adipokines changes

↑

↑

↑

↑

↑

↔

↑

↔

↑

↔

↑

↔

↑ = increased; ↔ = unchanged.

of human autopsy studies (31). It therefore seems that many,
if not all forms of BAT, may undergo a gradual transition
toward WAT with increasing age both in human as in rodent
studies (30, 31).

In summary, aging is one of the most relevant determinants of
BAT activity and it is associated with a ubiquitous decline of BAT
activity throughout life (32, 33).

MECHANISMS OF BROWN ADIPOSE
TISSUE DECLINE WITH AGING

Several mechanisms have been shown to be related to BAT
decline with aging, including loss of mitochondrial function,
impairment in the sympathetic nervous system and age-induced
alterations in endocrine signals and inflammation (Figure 2).

Impairments in Mitochondrial Activity
During aging, there is a significant decline in UCP1 activity,
a protein uniquely expressed in the inner mitochondrial
membrane of brown adipocytes. Mitochondrial dysfunction
has been recognized to have a relevant role in the pathogenesis
of several age-related disorders, such as type 2 diabetes,
obesity, heart failure, neurodegenerative diseases and
tumorigenesis (34, 35).

In particular, mitochondrial dysfunction with aging is
characterized by an increase in mitochondrial DNA mutations
and a reduction in biogenesis and oxidative phosphorylation.

For this reason, aging may be associated with an impairment
in brown adipogenic stem/progenitor cell function and
consequently with a reduction in the regenerative potential of
BAT with storage of dysfunctional brown adipocytes (34, 36).

Decrease in the Sympathetic Nervous
Stimulation and Sensitivity in BAT With Age
The sympathetic nervous system (SNS) plays a key role in
regulation of BAT recruitment. Moreover, exposure to cold
is a potent BAT stimulator through the SNS. Cathecolamines
activate B3-adrenergic receptors located on the surface of brown
adipocytes to promote UCP1 gene expression and activity related
to thermogenesis and lipolysis (37, 38).

The sympathetic nervous system of BAT can be
visualized by I-meta-iodobenzylguanidina SPECT (39).
123I-metaiodobenzylguanidine (123IMIBG), a radiolabeled
norepinephrine analog, is commonly used for scintigraphic
assessment of neuroendocrine tumors and cardiac sympathetic
activity (39). 123I-MIBG scintigraphy, in particular, has already
been used specifically to localize BAT in rats. Interestingly, a
recent study in lean adult humans after cold exposure, measured
BAT through the combination of the two imaging methods: the
123IMIBG SPECT/CT, as a measure of sympathetic stimulation
and activation, and the 18F-FDG PET/CT, as an indicator of
BAT metabolic activity (37–39). In older lean subjects, both
sympathetic drive and BAT activity were lower compared to
younger lean and obese men (37).
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FIGURE 1 | Different location of BAT and WAT at different ages. Brown adipose tissue (BAT) in infants and young adults had been described to be localized mainly in

the cervical-supraclavicular region as well as in periaortic areas inside the thorax and the abdomen, and in particular in the perirenal fat. With aging the amount of

detectable BAT decreases progressively and it remains represented mainly in the supraclavicular and perirenal sites. Peripheral depots (interscapular) are the first to

loose BAT with increasing age, whereas deeper BAT depots, such as the perivascular or perirenal depots, decline in later stages of life. Aging is also characterized by

a redistribution of white adipose tissue (WAT) with a progressive loss of subcutaneous adipose tissue (SAT) from limbs and an accumulation in trunk and abdomen of

visceral adipose tissue (VAT) compared to adults.

Therefore, it is possible that a lower absolute SNS signal and a
possible decline in sensitivity of BAT for the SNS stimulationmay
result in a decreased ability to activate and recruit BAT in older
men and may also explain why older humans have an inability
to appropriately regulate their temperature when exposed to
cold (37, 38).

Age-Related Hormonal Changes and BAT
BAT mass and/or function may decline during adulthood, as
a consequence of changes particularly in the somatotropic and
gonadotropic axes.

Human fetal BAT shows a high expression of estrogen
receptors, suggesting that tissue-levels of estrogens may regulate
BAT activity (40, 41). Recent evidence suggests that estrogens
and androgens are positively related to BAT activity and function
while glucocorticoids have negative effects. Glucocorticoids,
such as dexamethasone, reduce the cathecholamine-induced
expression of UCP1 (42). With aging, sex hormone levels decline,
while glucocorticoid levels remain relatively stable; for this
reason, this decrement in levels of gonadotropic hormones in late
adulthood and relative increase in glucocorticoid activity may
contribute to the loss of BAT activity with aging (41, 42).

Thyroid hormones are also known regulators of
thermogenesis: UCP1 levels are related to triiodothyronine
levels. Extensive evidence shows that T3 promotes UCP1
synthesis at transcriptional levels in BAT, as well as UCP1 activity
by modulation of cAMP production. Aging is associated with
a decrease in serum T3 and a reduced conversion of active T3
caused by an age-dependent loss of DIO2, as is demonstrated in
murine WAT (43). Recent evidences demonstrated that UCP1
expression in WAT also correlates with circulating thyroxine
serum levels (43, 44), suggesting that thyroid hormones may
contribute to the browning of white adipose tissue and increasing
thermogenesis (45).

A few recent papers suggest ghrelin signaling as an important
thermogenic regulator in aging. The ablation of the ghrelin
receptor, the growth hormone secretagogue receptor (GHS-R),
decreases the risk of age-associated obesity and insulin resistance.
Ghrelin and obestatin are derived from the same preproghrelin
gene; however, in brown adipose tissue, ghrelin reduces the
expression of UCP-1 but obestatin increases it. During aging,
plasma ghrelin and GHS-R expression in BAT are increased,
but plasma obestatin is stable; this may lead to an imbalance
in thermogenic regulation, which may in turn exacerbate age-
related thermogenic impairment. Moreover, GHS-R ablation
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FIGURE 2 | Orgin of white, brown and beige adipocytes and effect of aging. The appearance of beige cells among white adipose tissue (WAT) depots is referred to as

“browning.” It has been hypothesized that these cells origin from the de novo differentiation of a distinct sub-population of WAT resident progenitors, which express

the markers CD 137 and TMEM26 on their surface. Moreover beige-type cells may generate also from white-to-brown adipocyte transdifferentiation, from MYF5

positive cells. Several mechanisms as chronic inflammation, progenitor cell decline, senescence of the different adipose cell compartments as well as changes in

adipokines productions, may together contribute to a dysfunctional adipose organ with aging.

activates thermogenic signaling, enhances insulin activation,
mitochondrial biogenesis, and improves BAT mitochondrial
function (46, 47).

In recent papers, it has been suggested that fibroblast growth
factor 21 (FGF21), secreted by the liver and adipose tissue, may
also play a role in the browning process of WAT depots. In fact,
mice with a FGF21 deficiency display an impaired ability to adapt
to chronic cold exposure, with reduced browning of WAT. In
particular, it has been demonstrated that adipose-derived FGF21
increases the expression of UCP1 and other thermogenic genes in
fat tissues in an autocrine/paracrine manner (48, 49). However,
aging is characterized by a progressive increase in FGF21 levels
from 5 to 80 years, independently of body composition (49). This
discrepancy between the increase in FGF21 levels and decrease
browning of WAT with aging could be at least in part reconciled,
hypothesizing an FGF21-resistant state with age itself. In fact,
evidences from studies conducted on rodents supported the
existence of an age-related FGF21-resistant state (50). Similarly,
in some metabolic states such as obesity and diabetes, FGF21
levels are elevated and an FGF21-resistant condition has been
suggested to also accompany these diseases (51).

Inflammaging
The production of pro-inflammatory mediators and the
infiltration of immune cells in AT, a process of chronic
inflammation typical of obesity and metabolic conditions,
also increases with age, so that has been referred to as
“inflammaging” (52–54).

Several evidences have suggested that compared to WAT,
brown and beige adipose tissue are less likely to undergo local

inflammation due to immune cells infiltration, but present an
increased production of inflammatory cytokines as TNF-alpha
and MCP-1, in presence of dysregulated metabolism linked to
obesity (53).

It has been hypothesized that inflammation with the
production of these cytokines may indirectly impair the
thermogenic activity in BAT because of altered insulin sensitivity
and reduced glucose uptake (53).

Several pro-inflammatory cytokines are suggested to be
involved in these mechanisms that globally reduce UCP-1 gene
expression and browning phenomena (52, 54). In particular,
TNF-a, one of the principal cytokines that increases during these
inflammatory processes, via Toll-like receptor (TLR) activation
induces apoptosis of brown adipocytes and inhibits the
expression of UCP1 and b3-adrenergic receptor on adipocytes,
ultimately decreasing thermogenesis in BAT (52). Other
inflammatory mediators, such as pattern recognition receptors
(PPR) and nucleotide-oligomerization domain containing
proteins (NODs), have been suggested to have a critical role in
modulating BAT activity during inflammation via activation of
NF-kB and MAPK signaling pathways (53, 54).

BEIGE ADIPOCYTES AND AGING

Beige/brite adipocytes are likely to originate from both a
white-to-brown transdifferentiation mechanism and de novo
differentiation from specific precursor cells (Figure 2).

The phenomenon by which the appearance of beige cells
among WAT depots is observed is referred to as “browning”
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(55); this mechanism is mainly based on adrenergic signals
and cold exposure. The beige-type cells in white fat depots
are genetically different from those in classic interscapular
and perirenal BAT, which are derived from myogenic factor
5 (MYF-5) positive precursors (56). Moreover, recent evidence
suggests that both BAT and WAT adipocytes derive from the
vascular endothelial cells of adipose tissue, supporting a role
for transdifferentiation (57). This induction of beige adipocytes
depends on several mechanisms, including, in addition to the
aforementioned environmental temperature, genetics factors,
diet, developmental periods and anatomic location of the adipose
tissues (58).

With regard to the de novo differentiation, adipose stem
and/or progenitor cells reside within WAT, which can proliferate
and differentiate into either white or beige/brite adipocytes.
In particular, a distinct sub-population of WAT resident
progenitors, which express the markers CD 137 and TMEM26
on their surface, show a greater ability to differentiate into beige
cells (59).

As a consequence of this, the age-related dysfunctional
regeneration and reduction of classical brown and beige tissues
could be due to a defective ability to proliferate and differentiate
from inducible WAT or due to a loss of CD137/TMEM
26+ progenitors.

Moreover, different molecular mechanisms have been
described that underlie the loss of beige adipose tissue during
aging. Interestingly, SIRT1, an important target in AT biology
(60), drives the browning of adipose tissue by promoting the
interaction between PPARgamma and PRDM16, a potent
inducer of beige adipose-specific genes (61). A recent study
demonstrated another role of SIRT1, via the regulation of the
senescence pathway p53/p21 (62). By reducing the expression
of p53, a transcription factor of p21, SIRT1, enhances beige
adipocyte differentiation capability of elderly adipose tissue-
derived mesenchymal stem cells (AT-MSCs). During aging
there is a reduction in SIRT1 levels, but how its expression
is regulated into these stem cells is still unclear. Recently, it
has been demonstrated the microRNA 34a (miRNA 34a) is
a direct regulator of SIRT1 (63). Interestingly, miRNA-34a
suppresses the process of browning under conditions of obesity,
in part via its regulation of SIRT1 and FGF-21. This evidence
supports its role of being a candidate molecule for improving the
differentiation ability of elderly AT-MSCs as a treatment of aging
obesity (63).

BROWN AND BEIGE AGING: POTENTIAL
INTERVENTION TARGETS

White and brown AT has been suggested as a target for
the prevention of type 2 diabetes, lipid disorders, as well as
for delaying aging. Counteracting the age-associated loss of
brown and beige adipose tissue could be an interesting and
innovative therapeutic approach. Different types of strategies and
molecular targets have been suggested for implementing possible
interventions to slow age-related changes in brown and beige
adipose tissue.

Physical Exercise
Well known and widely studied are the effects of physical exercise
on adipose tissue physiology, since it is well known that regular
physical activity improves glucose tolerance and reduces white
adipose tissue mass. Several studies have shown that physical
exercise is associated with changes in both subcutaneous and
visceral fat, a reduction of adipocyte size and lipid content,
enhanced expression of metabolic pathway genes, modified
secretion of adipokines and increased mitochondrial activity
(64). However, less well-known and studied are the effects of
physical exercise in AT of elderly humans, and in particular
on BAT.

Studies evaluating the effect of exercise on BAT in old
rodents and humans have been published with conflicting results.
In a recent study conducted in old rats, both strength and
aerobic training determined an increase in BAT, in mitochondrial
activity, thus reducing total body fat (65). These results were
also confirmed in other rodent models, where the physical
exercise-associated browning of subcutaneous WAT has been
demonstrated (66).

However, these findings were not confirmed in elderly subjects
as a decrease in mitochondrial activity and in glucose uptake in
BAT after training has been shown (67).

More examination is mandatory to completely understand the
impact of the complex relationships between different types of
exercise and exercise-induced adaptations in WAT and BAT, as it
is a field of study of considerable interest.

Nutritional Strategies
Since intermittent fasting was proved to optimize energy
metabolism (68), in a recent study rodents were kept on
an every-other-day fasting regimen: this approach favored the
activation of beige fat thermogenesis and improved obesity-
related metabolic diseases, probably via a microbiota-beige fat
axis (69). Interestingly, in a human model, Orava and colleagues
observed that insulin stimulated a 5-fold increase in FDG uptake
in BAT, suggesting that BAT may contribute to postprandial
energy metabolism in humans (70).

Recent researches have demonstrated that some food
ingredients may be involved in promoting energy expenditure
and fat oxidation in BAT. In fact, it has been shown that capsaicin
and its analogs in hot peppers, as well as caffeine and catechins
in green tea, could be related to an increased energy expenditure
(71, 72). In particular, capsaicin may induce a browning program
in WAT, stimulating UCP-1 and promoting SIRT1 expression
and activation through TRPV1 (transient receptor potential
channels) channels (73). Josse et al. have reported that an
ingestion of meals supplemented with capsinoids may increase
energy expenditure and lipid oxidation through an activity on
Beta3-adrenergic receptors (74, 75).

It has also been shown that PUFAs (Long-chain omega-3
polyunsaturated fatty acid) and, in particular, eicosapentaenoic
acid (EPA), known for their anti-inflammatory and cardio
protective effects, reduce high-caloric diet related obesity and
insulin resistance in mice. The mechanism underlying BAT
activation seems to depend on FGF21 expression, also without

Frontiers in Endocrinology | www.frontiersin.org 6 June 2019 | Volume 10 | Article 368

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Zoico et al. Brown and Beige Adipose Tissue and Aging

cold exposure, suggesting that EPA supplementation alone may
mimic the cold induced BAT activation (76).

All of this evidence may demonstrate future area of research
for a non-pharmacological strategy to treat obesity and age-
related metabolic disease, also in elderly individuals.

Cold Exposure
It is now widely known from studies on mice and humans that
exposure to cold increases the activity of brown adipose tissue
(27). Saito et al. found an unexpected high presence of cold-
activated BAT by performing FDG-PET/CT scans in healthy
adults under warm and cold conditions, which suggests an
important role of temperature in the regulation of BAT activity
and body fat content. More recently, gene expression profiles
and metabolic pathways activated in BAT exposed to cold have
been investigated; in an interesting study conducted in mice, it
was shown that cold exposure highly influenced BAT metabolic
activity. Exposure to cold is characterized by lower levels of
glycolysis and gluconeogenesis intermediates, higher levels of
tricarboxylic acid cycle metabolites, free fatty acids and acyl-
carnitine metabolites, suggesting that glycolysis and β-oxidation
of fatty acids in BAT are biological pathways that contribute to
increased thermogenesis by cold exposure (77, 78).

Recent studies have evidenced that mitochondrial reactive
oxygen species (ROS) play an important role in modulating
thermogenesis and UCP1 activity. In fact, cold exposure is
characterized by an increased mitochondrial superoxide and
oxidation of lipids and proteins in BAT. Furthermore, acute cold
exposure leads to enhanced oxidation and a decrease of reduced
glutathione in BAT; this process is associated by increased
protein thiol oxidation, which has been suggested as a vital
signaling mechanism required for UCP1-induced thermogenic
metabolism (79, 80).

Pharmacological Strategies
The PPARgamma agonist rosiglitazone exerts its thermogenic
effects on adipocytes by increasing PRDM16 (regulator
PR domain containing 16) protein half-life, a zinc-finger

transcriptional factor that plays a key role in the differentiation

of adipocytes (61). In fact, PRDM16 controls the bidirectional
switch between brown adipocytes and myoblasts. PRDM16
determines the brown fat-like gene expression and thermogenesis
in both BAT and WAT. Moreover, the expression of this
transcriptional regulator is strongly correlated with beige cell-
selective genes, in the so-called browning process (61). From
a therapeutical point of view, some reports have supported
extensive inhibition of adipokines production, including
resistin, 1-acidglycoprotein, and haptoglobin, by treatment of
white adipocytes with thiazolidinedione (TZD) and non-TZD
synthetic PPARgamma ligands (81).

Moreover, Finlin et al. have suggested that mirabegron, a beta
3-agonist, induces the expression of UCP1 and beige adipocyte
markers to a higher degree than 10 days of repeated cold
exposure. This phenomenon may be exploited to increase beige
adipose tissue in older, insulin-resistant, obese individuals (82).

Vitamin A metabolites or retinoids are other hormones
required for BAT activation. Retinoic acid strongly induces UCP1
expression in adipocytes, indicating that body thermogenic
capacity may also be related to the vitamin A status. Retinoic
acid may also determine adipocyte differentiation and survival,
with high doses inhibiting and low doses promoting adipogenesis
of adipose cells precursors in vitro (83). The administration of
retinoids in high-fat diet mice is associated with an increase
in adipose UCP1 expression and a reduction in body weight.
However, its role in humans is still controversial: UCP1
expression is differently affected by all-trans retinoic acid (ATRA)
in mouse and human adipocytes (84).

Bone morphogenetic proteins (BMPs) are a family of secreted
molecules that contribute to the differentiation of mesenchymal
stem cells and drive the formation and thermogenic activation
of BAT (85). BMP9 treatment has been shown to determine
the browning of subcutaneous WAT, to improve glucose
tolerance and reduce weight gain in in vivo experiments (86).
A role for BMP8B in the regulation of thermogenesis has
also been described; this protein regulates nutritional and
thermogenic factors in mature BAT, improving the response
to noradrenaline through enhanced p38MAPK/CREB signaling
and increased lipase activity. Bmp8b−/− mice show impaired
thermogenesis and decreased metabolic rate, determining
weight gain despite hypophagia. BMP8B is also expressed
in the hypothalamus, and Bmp8b−/− mice display altered
neuropeptide levels and reduced phosphorylation of AMP-
activated protein kinase (AMPK), indicating an anorexigenic
state (87).

Fibrates exert their lipid-lowering activity via PPARalpha. The
new compound, GW9578, was demonstrated to enhance insulin
sensitivity and to decrease adiposity in vivo (88). Moreover,
the PPARalpha agonist GW9578 stimulates expression of the
thermogenic gene program in beige adipocytes and rescues
the beige-to-white fat transition phenotype induced by loss of
Lsd1 (89).

However, most of the research about transcriptional factors
involved in the regulation of BAT development has been carried
out in mice and the expression of these marker genes seems less
consistent in the humans, with a lack of specific data for elderly
subjects in particular.

CONCLUSIONS

Further human studies are needed to investigate the effectiveness
of nutritional and pharmacological stimulation to maintain BAT
and beige mass and sensitivity during aging.

However, any therapeutical targeting of BAT activity and/or
mass will first require a clear understanding of the mechanisms
involved in potentiating BAT activity.
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