
GeoInformatica manuscript No.
(will be inserted by the editor)

A Framework for Evaluating 3D Topological
Relations based on a Vector Data Model

Alberto Belussi · Sara Migliorini ·
Mauro Negri

Received: date / Accepted: date

Abstract 3D topological relations are commonly used for testing or imposing
the existence of desired properties between objects of a dataset, such as a city
model. Currently available GIS systems usually provide a limited 3D support
which usually includes a set of 3D spatial data types together with few opera-
tions and predicates, while limited or no support is generally provided for 3D
topological relations. Therefore, an important problem to face is how such re-
lations can be actually implemented by using the constructs already provided
by the available systems. In this paper, we introduce a generic 3D vector model
which includes an abstract and formal description of the 3D spatial data types
and of the related basic operations and predicates that are commonly provided
by GIS systems. Based on this model, we formally demonstrate how these lim-
ited sets of operations and predicates can be combined with 2D topological
relations for implementing 3D topological relations.

Keywords 3D topological relations · topological relation implementation ·
spatial constraint validation · vector model

1 Introduction

In recent years many 3D modeling techniques have been applied for describing
urban environments in different application contexts and with different goals.
In particular, among other approaches, the OGC Standard CityGML [9] and
its UML data model have been used for the representation of buildings lo-
cated inside a common urban environment, requiring the explicit description

Alberto Belussi · Sara Migliorni
Department of Computer Science – University of Verona (Italy)
E-mail: sara.migliorini@univr.it

Mauro Negri
Department of Electronics, Information and Bioengineering – Politecnico of Milan (Italy)

2 Alberto Belussi et al.

of the spatial relations existing between each building and the environment
and between buildings themselves.

This new scenario exploits 3D technologies in a new and challenging way,
since it forces the designers of 3D solutions to deal with relationships among
solids or solids and other geometries (like, surfaces or curves), while in the re-
cent past 3D modeling techniques were applied only for the representation of
a single construction particularly valuable in terms of the cultural heritage of
a city or country, like an ancient church or palace. In the latter case the goal of
the 3D technique was mainly to produce a 3D visualization of the construction
that was as close as possible to its actual appearance in the reality. This ap-
proach places less emphasis on the overall correctness of the represented spatial
objects, in particular as regards to the spatial relations between them and their
parts or between them and the environment. However, as soon as we switch
from a single construction context to a metropolitan area of hundreds or thou-
sands of building, i.e. houses, palaces, churches, shopping centers, industries
and so on, the type of required computation becomes completely different and
more focused on queries or complex processing which exploit the topological
structure of the set of buildings. In this case, the visualization is only one of
the issues to face, and the correctness of the geometrical representation of the
objects and their spatial relations become a key point for many applications.

In this new scenario, the modeling of 3D topological relations and the im-
plementation of procedures for testing them is crucial for different reasons, for
instance: (i) for expressing spatial integrity constraints and validating them,
as in the approach proposed in [18] and extended in [3,2] that allows the defi-
nition of spatial integrity constraints inside UML data models through a set of
predefined OCL template; (ii) for extracting geometries satisfying given condi-
tions, like in the execution of a spatial query in a spatial database system; (iii)
in the processing of huge amount of 3D data in a cluster system for extract-
ing spatial correlations between 3D geometries and mining new knowledge,
as done in [15]. In particular, in this paper the work presented in [2] finds its
completion, since the testing procedures presented here allows to automati-
cally validate the topological integrity constraints specified by means of the
proposed constraint templates. For example, in a CityGML like data model,
we might need to specify the constraint exemplified in the following example.

Example 1 In a city model all buildings shall be disjoint or touch each other.
Moreover, if a building consists of only one (homogeneous) part, it shall be
represented by a unique solid element. Otherwise, if it is composed by several
individual structures, it shall be modeled as a set of solid parts, such that all
these parts touch each other to form a composite solid, see Fig. 1. With refer-
ence to CityGML, each building part must be related to exactly one building
and it must touch it.

As regards to the reference set of topological relations to be considered,
we adopt the extension to 3D geometries [5] of the well-known 9-intersection
model [6]. Despite some attempts have been made for providing an imple-
mentation for them (as reported in Sect. 2), a feasible and complete solution

A Framework for Evaluating 3D Topological Relations 3

CompositeSolid

Solid 1 Solid 2

_AbstractBuilding

BuildingPart Building

*

consistsOf

BuildingPart

*

Fig. 1 Example of a building composed of two parts that touch each other.

has not been obtained yet on the current technology, namely a solution that
covers all possible cases relatively to all the geometric types and possible con-
figurations in the embedding space. Indeed, the development of 3D operators
is actually a challenging issue and requires careful consideration about the di-
mensionality of objects (more specifically their geometric type) and their finite
representation which is usually based on collection of geometric primitives, i.e.
building blocks used for the definition of an object with complex shape.

Currently all mainstream GIS systems, such as PostGIS [17], provide a
support for the Simple Features Access (SFA) model defined by the OpenGIS
Consortium (OGC) [8]. Notice that, beside to the OGC SFA model published
in 2011 which includes a definition for 3D types and operations, there exists
also an ISO version of the same model, known as ISO Standard 19125 [11],
which has been published in 2004 and includes only the specification for 2D
types and operations. At now, a working group has been defined for including
the support of 3D coordinates also in the ISO Standard 19125. More specif-
ically, as regards to the 3D space, PostGIS [17] supports some 3D geometric
types, e.g. 3D polygons and polyhedral surfaces, but a complete support for
generic solids is still missing. Indeed, as defined in the OGC SFA model, a
solid can be represented by a closed polyhedral surface describing its external
boundary, while a multi-surface containing a set of closed polyhedral surfaces
can be used to describe a solid with holes. However, only few operators are
realized on these supported 3D data types, while the majority still works only
on the 2D projection of them. Even the CGAL extension of PostGIS, called
SFCGAL1, which allows the representation of generic solids with holes, has
no algorithm supporting them, as explicitly stated by the developers. In this
situation, the specification of testing procedures for 3D topological relations
may be challenging and highly dependent on the system considered for rep-
resenting 3D geometries. For these reasons, the contribution presented in this
paper is twofolds:

The definition of a 3D vector model (Val3d) – it is an abstract model
that defines a set of basic types (describing primitives), which, starting from
vertices, allows the representation in vector format of geometries belonging to
the ISO Standards 19136 GML [12], together with the set of operations that

1 http://www.sfcgal.org/

4 Alberto Belussi et al.

are necessary to navigate through the primitives of a complex object or to
test basic predicates on primitives. We consider the ISO Standard 19136 since
it is more known and widespread than the ISO 19107 Spatial Schema [10],
however it is the ISO 19107 that defines the complete set of spatial types that
are adopted by the family of standards denoted as ISO TC 211 Geographic
information/Geomatics.

The definition of a set of procedures for testing 3D topological
relations – given the vector model and the representation in that model of the
GML types: gml::LineString, gml::LinearRing, gml::Polygon, gml::PolyhedralSur-
face and gml::Solid by means of sets of primitives, the implementation of the
topological relations is presented and the proof of their completeness with
respect to all possible cases is shown. These cases are explicitly enumerated in
tables representing all possible interaction between primitives.

More specifically, this paper extends the work in [18] to the 3D space, in
particular as regards to surfaces and volumes. The same idea applied to only
few cases was first presented in [3] in order to investigate the applicability of
the approach. In this paper we consider all possible combinations in terms of
3D types and demonstrate how a topological relation between them can be
implemented using a small set of basic predicates and operations of the vector
model. These operations are commonly available in current GIS systems, such
as PostGIS, in addition to 2D topological relations, and this confirms that the
procedures for testing the relations can be actually implemented with current
technology. A prototypical implementation of such relations together with the
required small set of additional procedures can be found in [1].

2 Related Work

Several works can be found in literature about the implementation of spatial
3D operators and topological relations on currently available GIS systems. In
particular, many of them can be traced back to the work of Zlatanova et al,
starting from its original categorization of possible 3D topological relations
between multidimensional simple objects in 3D space [25]. This formalization
has been performed by considering the 9-intersection model and the results
presented in [5] and by identifying a set of negative conditions capturing sit-
uations that cannot be realized in reality. Topology is one of the mechanisms
used to describe relationships between spatial objects, namely it is at the ba-
sis of many spatial operations. In [26] the author give an overview of the 3D
topological models and frameworks presented in the literature, and discuss
generic issues related to 3D modeling. Among all possible frameworks, here
we consider the 9-intersection model originally proposed in [6]. In particular,
the work in [25] together with [5] is at the basis of the 3D topological relation
definitions in Tab. 1.

In order to discuss the implementation of 3D operations, such as 3D XOR,
3D union, 3D intersection, and 3D difference between solids, in [19] the authors
develop a new 3D data type, the polyhedron, and provide an implementation

A Framework for Evaluating 3D Topological Relations 5

of such operations on it using a geoDBMS. Subsequently, in [13] the authors
consider the representation of the ISO Standard GM Solid inside PostGIS and
the implementation of the intersection operation between two solids. The work
has been further extended in [24], where the authors develop the two 3D oper-
ators overlap and meet between solids, reusing existing 2D operators: starting
from 2D topological relations between the 2D projections and then using some
3D operators. The approach is similar to the one proposed in this paper, but
here we provide a more detailed and formalized approach, based on the formal
definition of a generic vector model and the implementation of all topological
relations, considering also other 3D spatial data types.

An extended study about the testing of topological relations involving
generic solids with holes can be found in [14]. The author recognizes the
gap between the formal and detailed definitions provided in the ISO Stan-
dard 19107 w.r.t. what is supported by currently available GIS systems. The
treatment focuses mainly on the lack of support for 3D operations on such
types. In particular, in order to study the relations existing between the var-
ious parts of a solid (the shells), the author makes use of the notion of Nef
polyhedron [4,7]. This work has been concretized into the realization of an
open-source software, called val3dity, to validate 3D primitives accordingly to
the ISO Standard 19107. The tool is based on the CGAL library and at now is
not integrated with existing systems: it is currently provided as a stand-alone
command line program.

In [23] the authors present a methodology to model and implement 3D geo-
constraints based on four steps: natural language, geometric/topological ab-
stractions, UML/OCL formulations and SQL implementations. As regards to
the SQL implementation, the author considers as starting point the SDO Any-
Interact operation provided by Oracle Spatial and manually implement a new
function 3D SurfaceRelate for distinguishing what happens in the non-disjoint
part. In [22] the author provides a set of domain-specific constraints for a
Climate City Campus Database described using CityGML. Examples of con-
straints are the distance between buildings and trees, or between aquatic plant
and water. Such constraints are provided in OCL and translated into ad-hoc
spatial queries for Oracle. In [20] the authors propose an ad hoc implemen-
tation of the provided constraints through a Java Tool, while the constraints
instantiated by means of the OCL templates that we propose are automati-
cally translated into SQL spatial queries. The fundamental difference between
the approach proposed in this paper and these last approaches is that instead
of producing ad-hoc procedures from scratch whenever needed, we try to pro-
vide a generic solution by exploiting the operations already implemented in
the currently available GIS systems.

3 Geometric Model

This section introduces the set of spatial data types and the formal speci-
fication of the topological relations of interest. In particular, for this set of

6 Alberto Belussi et al.

relations a possible implementation will be provided in the following section
using as building blocks a limited set of commonly available 3D operations
together with 2D topological relations.

This paper refers to the 3D geometric types of the ISO Standard 19136
GML [12], which in turn are compliant with the ISO Standard 19107 Spatial
Schema [10], while the set of possible topological relations existing between
them are defined in terms of the well-known 9-intersection model [6]. More
specifically, it considers a subset of the GML data types which are the most
commonly used during the representation of a 3D urban scene. The chosen
classes make the approach sufficiently generic without unnecessarily increas-
ing the complexity of the treatment. In particular, the paper considers: (i)
line-strings as implementation of curves (ii) polyhedral surfaces and polygons
as implementations of surfaces, and (iii) solids defined by means of closed
polyhedral surfaces.

1

*

e
xt
e
ri
o
r

* *

* 1

in
te
ri
o
r

e
xt
e
ri
o
r

gml::AbstractGeometry

GM_Object

gml::AbstractGeometryPrimitive

GM_Primitive

GM_OrientablePrimitive

GM_OrientableCurve GM_OrientableSurface

gml::Solid

GM_Solid

gml::Curve

GM_Curve

gml::Surface

GM_Surface

gml::AbstractCurveSegment

GM_CurveSegment

gml::AbstractSurfacePatch

GM_SurfacePatch

gml::PolyhedralSurface

GM_PolyhedralSurface

gml::PolygonPatch

GM_Polygon

gml::LineString

gml::LineStringSegment

GM_LineString

gml::Polygon

gml::AbstractGeometryAggregate

GM_Aggregate

...

1..*

0..1

...

0..1

1..*

0..1

1

gml::Ring

GM_Ring

gml::LinearRing

MultiPolygon

gml::MultiSurface

GM_MultiSurface

Fig. 2 Hierarchy of spatial data types, the red boxes highlight the concrete classes consid-
ered in the paper.The name with the prefix gml is the class contained in the ISO Standard
19136 GML, while the name in the small coloured box is the corresponding class in the ISO
Standard 19107.

Fig. 2 summarizes the hierarchy of considered data types, reporting both
the name used in the GML specification (with prefix gml::) and the name
of the corresponding class in the ISO Standard 19107 (small coloured inner
box). Inside the hierarchy, the set of considered concrete classes are surrounded
by an additional red border. Details about the characteristics of such spatial
data types can be found in [12,2], here we recall only some additional re-

A Framework for Evaluating 3D Topological Relations 7

striction made to simply the following definition of 3D topological relations.
More specifically, without loss of generality the following simplications are
introduced w.r.t. the standard.

Assumption 1 (LineString) Adjacent collinear segments are not admitted
in a LineString, since they can be replaced by the segment obtained by merging
them.

Assumption 2 (PolyhedralSurfaces) Adjacent coplanar patches are not
admitted in PolyhedralSurfaces, since they can be replaced by the patch ob-
tained by merging them.

Assumption 3 (Solid) A solid is characterized by only one external bound-
ary surface which is a PolyhedralSurface, and zero internal boundaries. It fol-
lows that such kind of solid object has no holes (i.e., enclaves). This simplifica-
tion is required by the model in [5] for the specification of topological relations
in 3D. As discussed in [2], it keeps simple the definition of topological relations
involving solids without reducing the generality of the model. A deep discussion
about that is given below.

Assumption 3 does not limit the generality of the model, since a solid with
holes can be: (1) replaced by a set of adjacent solids obtained by splitting it
into two or more parts without holes, as suggested in [21], or (2) described
by a set of solids, where the first one is its external envelope and the other
ones are the holes. This last representation is possible because the ISO Stan-
dard 19107 prescribes that the shells representing the internal boundary of
a solid has to satisfy the Jordan Separation Theorem, namely each shell di-
vides the space into exactly two regions, one bounded and one unbounded. As
regards to the testing of topological relations on a solid with holes, in both
cases it can be translated into a corresponding set of tests on its constituent
parts/components. For instance, let us consider case (2) where a solid with
holes sh is represented by a solid s describing its external part and a set of
other solids h1, . . . hn describing the holes. In order to check if a generic ge-
ometry g is contained in s, we can check if (i) g is contained in s and (ii)
for all holes hi, g is disjoint from hi (or g touches hi, provided that g is not
completely contained in the boundary of hi). Given such possibilities, we can
omit the case of solid with holes in order to keep the treatment simpler.

Each considered class provides a specific formal definition of the concept
of boundary, interior and exterior in terms of the point sets topology. These
concepts define a partition of the space in which an object is embedded: intu-
itively, the boundary separates the interior of an object from the outer space,
which represents its exterior. Such subdivision produces three point sets that
are used to formally specify a reference set of topological relations.

The 9-intersection model (9IM) [6] is the most common model for defining
Binary Topological Relations. It specifies the topological relation R existing be-
tween two objects A and B considering the intersection between their interior

8 Alberto Belussi et al.

(A◦, B◦), boundary (∂A, ∂B) and exterior (A−, B−).

R(A,B) =

A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩B−

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−

A− ∩B◦ A− ∩ ∂B A− ∩B−

Table 1 3D topological relations between solids (V), surfaces (S), curves (C). Possible topo-
logical relations are disjoint (DJ), touch (TC), in (IN), contains (CN), equal (EQ), overlap
(OV). The matrix patterns are specified as 1st row− 2nd row− 3rd row. Used symbols are:
T = not empty, F = empty, ∗ = any result, T = always not empty for the considered com-
bination of geometric types, T� = not empty when the geometries, for which the boundary
is considered, are not cycles (e.g., rings are cycles), empty otherwise, T∂ = not empty, but
in the case in which the boundary of the first geometry (e.g., a solid) is equal to the second
one (e.g. a surface). Finally, AT denotes the transpose of a matrix A.

Rel. Definition Geom. Matrix Pattern

DJ A ∩B = ∅

V/V F F T − F F T − T TT
V/S F FT− F F T − T T�T
V/C F FT− F FT− T T�T
S/V, C/V DJ(V/S)T , DJ(V/C)T

S/S, C/C F F T − F F T� − T T�T
S/C F FT− F F T� − T T�T
C/S DJ(S/C)T

TC
(A◦ ∩B◦ = ∅) ∧
(A ∩B 6= ∅)

V/V F F T − F T T − T TT
V/S F FT− T ∗ T∂ − ∗ ∗T ∪

F FT− F T T − T ∗T
V/C F FT− T ∗T− ∗ ∗T ∪

F FT− F TT− T ∗T
S/V, C/V TC(V/S)T , TC(V/C)T

S/S, C/C F T T − ∗ ∗ ∗ − T ∗T ∪
F F T − T ∗ ∗ − T ∗T ∪
F F T − F T ∗ −T ∗T

S/C F TT− ∗ ∗ ∗ − T ∗T ∪
F FT− T ∗ ∗ − T ∗T ∪
F FT− F T ∗ −T ∗T

C/S TC(S/C)T

IN
(A ∩B = A) ∧
(A◦ ∩B◦ 6= ∅)

V/V T F F − T ∗ F − T TT
S/S, C/C T F F − ∗ ∗ F − T T�T
S/V T ∗ F − ∗ ∗ F −TTT
C/V T ∗ F − ∗ ∗ F −TTT
C/S T ∗ F − ∗ ∗ F −TT�T

CN
(A ∩B = B) ∧
(A◦ ∩B◦ 6= ∅)

V/V IN(V/V)T

S/S, C/C IN(S/S)T , IN(C/C)T

V/S IN(S/V)T

V/C IN(C/V)T

S/C IN(C/S)T

EQ A = B V/V, S/S, C/C T F F − F T F − F FT

OV
(A◦ ∩B◦ 6= ∅) ∧
(A ∩B 6= A) ∧
(A ∩B 6= B)

V/V T T T − T T T − T TT
V/S T ∗T− T ∗ T∂ − T ∗T
V/C T ∗T− T ∗T− T ∗T
S/S, C/C T ∗ T − ∗ ∗ ∗ − T ∗T
S/C T ∗T− ∗ ∗ T∂ − T ∗T
S/V, C/V, C/S OV(V/S)T , OV(V/C)T , OV(S/C)T

A Framework for Evaluating 3D Topological Relations 9

The topological relations described above apply to primitive types and
can be extended to aggregate geometries by imposing some constraints on
their components, as formalized in [8] and done in available systems such as
PostGIS. For instance, the polygons composing a MultiPolygon (as defined
in [8]) cannot overlap. Such constraints do not reduce the expressive power of
the type, namely the kind of representable objects, since each generic aggregate
can be translated into one that satisfy the given constraints.

Tab. 1 reports the formal definition of the topological relations considered
in the sequel by means of template specifications. Such templates are obtained
by grouping several configurations of the matrix of the 9IM and they are usu-
ally implemented in current GIS systems at least for 2D geometries. For each
relation, the table shows a name, together with the specification of the pair
of geometric types to which it applies, and the corresponding configurations
of the 9-intersection matrix representing scenes where the relation exists, ta-
ble caption contains more details about the formalism used for representing
matrix configurations.

4 Vector Model

Currently available GIS systems usually provide a limited support for 3D spa-
tial data which includes the definition of the geometric types introduced in the
previous section, together with a limited set of basic operations. Conversely,
the implementation of 3D topological relations is typically not directly pro-
vided. This is for instance the situation in PostGIS 3.0 [17] that is able to
represent the main 3D types of interest, such as: LineStrings, PolyhedralSur-
faces and indirectly Solids by means of closed PolyhedralSurfaces, on which a
limited set of 3D spatial operations are defined. In order to keep the proposed
validation framework as independent as possible from a particular implemen-
tation, in this section we introduce a generic vector model characterized by
a discrete representation of the types in Sect. 3, together with a set of basic
operations, that are necessary for the evaluation of 3D topological relations.
Definition 1 The validation framework Val3d is based on a set of basic vec-
tor types defined in terms of vertices, represented as triples of finite numbers
in a reference system. The basic vector types are: vertex, segment, ring and
patch. Tab. 2 shows their formal definition and vector representation. ut

Definition 2 Given a geometry g, its 3D vector representation is defined
as in Tab. 3 in terms of the introduced basic vector types, where v denotes
a generic vertex, s a generic segment, p a generic patch and r a generic ring.
Notice that different equivalent representations (denoted as VRx(g)) can be
defined according to the primitives (x ∈ {vertex, surface, patch, ring}) used as
building blocks. ut

Given the basic vector types in Def. 1 and the vector representation of the
geometric types in Def. 2, the Val3d framework provides a set of basic opera-
tions and predicates. In particular, for each of them it specifies: one or more

10 Alberto Belussi et al.

Table 2 Basic vector types of the Val3d framework: v denotes a generic vertex, s a generic
segment, p a generic patch and r a generic ring. VRv() is the vector representation in terms
of vertices, while VRs() is the vector representation in terms of segments.

Primitive VRv() VRs()
vertex v0 v0 –

It is a tuple of finite numbers representing a 3D coordinate: v = (x, y, z).
segment s0 (v1, v2) s0

It is a pair of vertices and it represents the segment obtained by considering the
linear interpolation between them.
ring r0 (v1, . . . , vn) (s1, . . . , sn−1) where si = (vi, vi+1)

It is a list of vertices, its linear interpolation represents a ring (v1 = vn).
patch p ((v1,1, . . . , v1,n1), . . . , ((s1,1, . . . , s1,n1−1), . . . ,

(vk,1, . . . , vk,nk
)) k > 1 ∧ ni > 3 (sk,1, . . . , sk,nk−1))

It is a finite portion of a plane whose external boundary is defined by a ring
(v1,1, . . . , v1,n1) and its internal boundaries, if exist, are defined by a list of rings
((v2,1, . . . , v2,n2), . . . , (vk,1, . . . , vk,nk

)). Internal boundaries, when exists, define the
holes of the patch. Notice that the vertices of the patch are coplanar.

Table 3 3D vector representation of a geometry g. VRv() is the vector representation in
terms of vertices, VRs() is the vector representation in terms of segments and VRp() is the
vector representation in terms of patches.

Geom. Type VRv() VRs() VRp()
line-string (v1, . . . , vn) (s1, . . . , sn−1) –

with si = (vi, vi+1)
linear-ring Its representation is equal to the one proposed for line-string with the

additional constraints that it is closed and simple.
polygon ((v1,1, . . . , v1,n1), . . . , ((s1,1, . . . , s1,m1), . . . , p

(vk,1, . . . , vk,nk
)) (sk,1, . . . , sk,mk

))
with k > 1 ∧ ni > 3 with mi = ni − 1∧

si,j = (vi,j , vi,j+1)
(1 ≤ i ≤ k)

polyhedral-surface (((v1
1,1, . . . , v1

1,n1
1
), . . . , (((s1

1,1, . . . , s1
1,m1,1

), . . . , {p1, . . . , pk}
(v1

r1,1, . . . , v1
r1,n1

r1
)), . . . , (s1

r1,1, . . . , s1
r1,m1

r1
)), . . . ,

((vk
1,1, . . . , vk

1,nk
1

), . . . , ((sk
1,1, . . . , sk

1,mk,1
), . . . ,

(vk
rk,1, . . . , vk

rk,nk
rk

))) (sk
rk,1, . . . , sk

rk,nk
rk

)))

with k > 1 ∧ with mi
j = ni

j − 1 and
ri > 1 ∧ ni

j > 2 si
j,l = (vi

j,l, vi
j,l+1),

(1 ≤ i ≤ k, 1 ≤ j ≤ ri) (1 ≤ i ≤ k, 1 ≤ j ≤ ri)
multi-polygon Its representation is equal to that proposed for polyhedral-surface, without

any constraints among the patches.
solid Its representation is equal to that proposed for polyhedral-surface, with the

constraint that the overall surface is simple, i.e. it has no self-intersections,
and is a cycle, i.e. it has empty boundary, thus being topologically closed.

domains for the parameters (the set of objects where the operation/predicate
applies) and the target domain (the set of produced objects). The possible
domains are: vertex, segment, ring, patch (referenced together as primitive),
line-string, linear-ring (referenced together as curve), polygon, multi-polygon,
polyhedral-surface (referenced together as surface) and solid; the domain geom-

A Framework for Evaluating 3D Topological Relations 11

etry is the union of all previous domains (geometry = primitive ∪ curve ∪
surface ∪ solid).

Definition 3 The set of basic vector operations provided by the Val3d
framework are the following ones. The symbol ℘(S) is used to denote the
power set of a set S.

– vert : geometry→ ℘(vertex)
g.vert() = {vi | vi ∈ VRv(g)} and v.vert() = {v}
It returns the set of vertices defining the geometry g according to its vector
representation.

– seg : geometry→ ℘(segment)
g.seg() = {si | si ∈ VRs(g)}, v.seg() = ∅ and s.seg() = {s}
It returns the set of segments defining the geometry g according to its
vector representation.

– pat : geometry→ ℘(patch)
g.pat() = {pi | pi ∈ VRp(g)}
v.pat() = s.pat() = r.pat() = ∅ and p.pat() = {p}.
It returns the set of patches defining the geometry g, according to its vector
representation.

– bnd : curve→ ℘(vertex)
if VRv(cv) = (v1, . . . , vn) ∧ v1 = vn then cv.bnd() = ∅
if VRv(cv) = (v1, . . . , vn) ∧ v1 6= vn then cv.bnd() = {v1, vn}
It returns the set of vertices defining the boundary of the curve cv.

– bnd : surface→ ℘(linear-ring)
sf.bnd() = buildRings({si | si ∈ VRs(sf) ∧ ∃!p ∈ VRp(sf)(si ∈ p.seg())})
It returns the set of linear rings defining the boundary of the surface sf. The
function buildRings(), starting from a set of segments, groups the segments
to produce lists of segments composing simple rings.

– bnd : solid→ polyhedral-surface
sd.bnd() = {pi | pi ∈ VRp(sd)}
It returns the polyhedral surface defining the boundary of the solid sd.

– intSeg : surface→ ℘(segment)
sf.intSeg() = sf.seg() \ {si | si ∈ VRs(sf) ∧ ∃!p ∈ VRp(sf)(si ∈ p.bnd())}
It returns the set of segments defining the patches of the surface, but that
do not belong to its boundary.

– intVert : surface→ ℘(segment)
sf.intVert() = sf.vert() \ {vi | vi ∈ VRv(sf)∧ 6 ∃r ∈ sf.bnd()(vi ∈ r.vert())}
It returns the set of vertices belonging to the patches of the surface, but
that do not belong to its boundary.

– ray3 : vertex ∪ segment× solid→ integer
g.ray3(sd) = |{p|p ∈ sd.pat() ∧ p ∪ semi-straight-line(g) 6= ∅}|
It returns the number of patches of sd.pat() that are intersected by the semi-
straight line starting from g.start() and passing through g.end() (function
semi-straight-line(g)), when g is a vertex v the semi-straight line starting
in v = (xv, yv, zv) with equation y = yv, z = zv and x > xv is considered.
When g.start() lies on the solid boundary, i.e it belongs to the point set of

12 Alberto Belussi et al.

one of the patches of sd.pat(), the result of ray3 is fixed to zero, i.e. in this
case g.start() is considered outside the solid.

– mid : vertex× vertex→ vertex
v.mid(v0) returns the vertex vm representing the midpoint of the segment
having endpoints in v and v0

– ∩3 : segment× segment→ vertex
s.∩3(s0) returns the vertex vint representing the 3D intersection between s
and s0; when the segments do not intersect, it returns the empty geometry.

ut

Definition 4 The set of basic vector predicates provided by the Val3d
are the following ones. The symbol PS(g) is used to denote the point-set
representation of generic geometry g.

– eq3 : geometry× geometry→ boolean
g.eq3(g0) ≡ type(g) = type(g0) ∧VRv(g) = VRv(g0)
It tests the equality between two geometries, two geometries are equal only
if they have the same type and an identical vector representation.

– cnt3 : segment× vertex→ boolean
s.cnt3(v) ≡ true if v ∈ PS(s) ∧ v 6∈ s.vert()
It tests the containment between a vertex and the interior of a segment.

– cnt3 : patch× vertex→ boolean
p.cnt3(v) ≡ true if v ∈ PS(p) ∧ v 6∈ p.vert() ∧ ¬∃s ∈ p.seg()(s.cnt3(v))
It tests the containment between a vertex and the interior of a patch.

– int3 : patch× segment→ boolean
p.int3(s) ≡ true if ∃!v ∈ V (PS(v) ∈ PS(p) ∧

(v 6∈ p.vert() ∧ ¬∃si ∈ p.seg()(PS(v) ∈ PS(si)) ∧
PS(v) ∈ PS(s) ∧ v 6∈ s.vert())

It tests the intersection between the interior of a patch and the interior of a
segment: if the intersection is a single point, then it returns true, otherwise
it returns false.

– int3 : patch× patch→ boolean
p1.int3(p2) ≡ true if ∃!s ∈ S(

PS(s) ⊂ PS(p1) ∧
¬∃s1 ∈ p1.seg()(PS(s) ⊆ PS(s1) ∨ PS(s1) ⊆ PS(s))∧
PS(s) ⊂ PS(p2) ∧
¬∃s2 ∈ p2.seg()PS(s) ⊆ PS(s2) ∨ PS(s2) ⊆ PS(s))

It tests the intersection between the interior of two patches: if the intersec-
tion is a segment, then it returns true, otherwise it returns false.

– cop : patch ∪ segment× segment→ boolean
s0.cop(s) ≡ true if ∃!pl ∈ P(PS(s0) ∈ PS(pl) ∧ PS(s) ∈ PS(pl))
p.cop(s) ≡ true if ∃!pl ∈ P(PS(p) ∈ PS(pl) ∧ PS(s) ∈ PS(pl))
They test the coplanarity between the patch p (or the segment s0) and the
segment s.

– cop : patch× patch→ boolean
p0.cop(p) ≡ true if ∃!pl ∈ P(PS(p0) ∈ PS(pl) ∧ PS(p) ∈ PS(pl))
It tests the coplanarity between the patches p and p0.

A Framework for Evaluating 3D Topological Relations 13

– 〈rel〉2 : geometry× geometry→ boolean
g.〈rel〉2(g0) tests the topological relation 〈rel〉 ∈ {DJ,TC, IN,CN,OV,CR}
between the projection of the geometries g and g0 on the 2D plane where
both geometries lie. The semantics of these relations is well known and their
formal definition is reported in the second column of Table 1, notice that
only the crosses (CR) relation is not reported, but it is a specialization of
the overlaps (OV) relation that requires a 1-dimensional intersection among
geometry interiors. ut

The 8 basic vector operations in Def. 3 and the 7 basic vector predicates
of Def. 4, together with the 2D topological relation tests already available
in current GISs, are all the tools necessary for implementing the considered
3D topological relations. Before showing how such implementations can be
obtained starting from this limited set of constructs, the following section
discusses all possible scenarios that can occur between the components of the
3D vector representation of two given geometric types.

5 Relations between the components of two vector representations

In this section we discuss the possible scenarios between two geometries that
have to be considered during the evaluation of a 3D topological relation. In
particular, we will examine the possible relations that can exist between the
components of the vector representation of two geometries.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 cv1.vb− cv2.vb – – –

2 cv1.vb− cv2.vi – – –

3 cv1.vb− cv2.s – –

4 cv1.vi− cv2.vi – – –

5 cv1.vi− cv2.s – –

6 cv1.s− cv2.s

Fig. 3 All possible scenarios to be considered to evaluate the existence of a topological
relation between two curves. The following symbols are used: cv curve, cv.vi (cv.vb) an
internal (or boundary) vertex of a curve cv and cv.s a segment of a curve cv.

Proposition 1 (VR(cv) −VR(cv) relations) Let cv1, cv2 ∈ curve two ge-
ometries whose vector representation in terms of vertices is denoted as VRv(∗)

14 Alberto Belussi et al.

and in terms of segments as VRs(∗), respectively. The possible scenarios to be
considered in the evaluation of a topological relation between cv1 and cv2 are
the ones reported in Fig. 3 where cv.vi ∈ VRv(cv) denotes an internal vertex
of cv, cv.vb ∈ VRv(cv) is a boundary vertex of cv, and cv.s ∈ VRs(cv) is a
segment of cv. ut

Proof Given a curve cv, its vector representation in terms of vertices VRv(cv)
is given by a sequence of vertices (v1, . . . , vn). For the purpose of implementing
topological relations, we can distinguish between the vertices that belongs to
the curve boundary, denoted as vbk, and the internal boundaries, denoted as
vik. Similarly, its vector representation in terms of segments VRs(cv) is given
by a list of segments (s1, . . . , sn).

In order to identify all possible scenarios, it is necessary to consider all
possible relations that can exist between the components of the vector repre-
sentations of cv1 and cv2:
– ∀(v1, v2) ∈ VRv(cv1)×VRv(cv2) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}.
– ∀(v, s) ∈ VRv(cv1)×VRs(cv2) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(cv1)×VRv(cv2) =⇒ Rtopo(s, v) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(cv1)×VRs(cv2) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN/CN,TC}

These scenarios are exactly the ones reported in Tab. 3, except for DJ which
is not included for not cluttering the presentation.

Proposition 2 (VR(cv) − VR(sf) relations) Let cv ∈ curve and sf ∈
surface two geometries whose vector representation in terms of vertices is de-
noted as VRv(∗), in terms of segments as VRs(∗) and in terms of patches as
VRp(∗), respectively. The possible scenarios to be considered in the evaluation
of a topological relation between cv and sf are the ones reported in Fig. 4 where
cv.vi ∈ VRv(cv) (or sf.vi ∈ VRv(sf)) denotes an internal vertex of cv (or
sf), cv.vb ∈ VRv(cv) (or sf.vb ∈ VRv(sf)) is a boundary vertex of cv (or sf),
cv.s ∈ VRs(cv) is a segment of cv, sf.si ∈ VRs(sf) is an internal segment
of sf , sf.sb ∈ VRs(sf) is a boundary segment of sf , and sf.p ∈ VRp(sf) is a
patch of sf . ut

Proof Given a curve cv, its vector representation in terms of vertices VRv(cv)
is given by a sequence of vertices (v1, . . . , vn). For the purpose of implementing
topological relations, we can distinguish between the vertices that belongs to
the curve boundary, denoted as vbk, and the internal boundaries, denoted as
vik. Similarly, its vector representation in terms of segments VRs(cv) is given
by a list of segments (s1, . . . , sn).

Given a surface sf , its vector representation in terms of vertices VRv(sf)
is given by a list of vector tuples, while its vector representation in terms of
segments VRs(sf) is a list of segment tuples, and its vector representation in
terms of patch VRp(sf) is a list of patches, as reported in Tab. 3. As regards
to vertices and segments, we can distinguish between internal vertices (or
segments), denoted as vik,j (or sik,j), and boundary vertices (or segments),
denoted as vbk,j (or sbk,j).

A Framework for Evaluating 3D Topological Relations 15

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 cv.vi− sf.vi – – –

1bis cv.vb− sf.vi – – –

2 cv.vi− sf.vb – – –

2bis cv.vb− sf.vb – – –

3 cv.vi− sf.si – –

3bis cv.vb− sf.si – –

4 cv.vi− sf.sb – –

4bis cv.vb− sf.sb – –

5 cv.vi− sf.p – –

5bis cv.vb− sf.p – –

6 cv.s− sf.vi – –

7 cv.s− sf.vb – –

8 cv.s− sf.si

9 cv.s− sf.sb

10 cv.s− sf.p –

Fig. 4 All possible scenarios to be considered to evaluate the existence of a topological
relation between curves and surfaces. The following symbols are used: cv is a curve and sf
is a surface, vi (vb) is an internal (or boundary) vertex of a surface or curve, s is a segment,
si (sb) is an internal (or boundary) segment of surfaces, p is a patch of a surface.

16 Alberto Belussi et al.

The possible relations that can exist between the components of the vector
representations of cv and sf are:
– ∀(v1, v2) ∈ VRv(cv)×VRv(sf) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}.
– ∀(v, s) ∈ VRv(cv)×VRs(sf) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}
– ∀(v, p) ∈ VRv(cv)×VRp(sf) =⇒ Rtopo(v, p) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(cv)×VRv(sf) =⇒ Rtopo(v, p) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(cv1)×VRs(cv2) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN,CN,TC}
– ∀(s1, p) ∈ VRs(cv1)×VRp(cv2) =⇒ Rtopo(s1, p) ∈ {DJ, IN/CN,OV,TC}

These scenarios are exactly the ones reported in Tab. 4, except for DJ which
is not included for not cluttering the presentation.

Proposition 3 (VR(cv)−VR(sd) relations) Let cv ∈ curve and sd ∈ solid
two geometries whose vector representation in terms of vertices is denoted as
VRv(∗), in terms of segments as VRs(∗) and in terms of patches a VRp(∗),
respectively. The possible scenarios to be considered in the evaluation of a
topological relation between cv and sd are the ones reported in Fig. 5 where
cv.vi ∈ VRv(cv) denotes an internal vertex of cv, cv.vb ∈ VRv(cv) is a
boundary vertex of cv, sd.v ∈ VRv(sd) is a vertex of sd, cv.s ∈ VRs(cv) (or
sd.s ∈ VRs(sd)) is a segment of sd, sd.p ∈ VRp(sd) is a patch of sd, and vl
is used to refer to the solid interior. ut

Proof Given a curve cv, its vector representation in terms of vertices VRv(cv)
is given by a sequence of vertices (v1, . . . , vn). For the purpose of implementing
topological relations, we can distinguish between the vertices that belongs to
the curve boundary, denoted as vbk, and the internal boundaries, denoted as
vik. Similarly, its vector representation in terms of segments VRs(cv) is given
by a list of segments (s1, . . . , sn).

Given a solid sd, its vector representation in terms of vertices VRv(sd)
is given by a list of vector tuples, while its vector representation in terms of
segments VRs(sd) is a list of segment tuples, and its vector representation in
terms of patch VRp(sd) is a list of patches, as reported in Tab. 3. In order to
identify all possible scenarios, it is necessary to consider also the interior of a
solid, denoted as vl.

The possible relations that can exist between the components of the vector
representations of cv and sd are:
– ∀(v1, v2) ∈ VRv(cv)×VRv(sd) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}.
– ∀(v, s) ∈ VRv(cv)×VRs(sd) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}
– ∀(v, p) ∈ VRv(cv)×VRp(sd) =⇒ Rtopo(v, p) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(cv)×VRv(sd) =⇒ Rtopo(s, v) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(cv)×VRs(sd) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN,CN,TC}
– ∀(s, p) ∈ VRs(cv)×VRp(sd) =⇒ Rtopo(s1, p) ∈ {DJ, IN,OV,TC}
– ∀(v, vl) ∈ VRv(cv)× sd.vl =⇒ Rtopo(v, vl) ∈ {DJ, IN}
– ∀(s, vl) ∈ VRs(cv)× sd.vl =⇒ Rtopo(s1, s2) ∈ {DJ, IN}

These scenarios are exactly the ones reported in Tab. 5, except for DJ which
is not included for not cluttering the presentation.

A Framework for Evaluating 3D Topological Relations 17

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 cv.vb− sd.v – – –

2 cv.vb− sd.s – –

3 cv.vb− sd.p – –

4 cv.vi− sd.v – – –

5 cv.vi− sd.s – –

6 cv.vi− sd.p – –

7 cv.s− sd.v – –

8 cv.s− sd.s

9 cv.s− sd.p –

10 cv.vb− sd.vl – – –

11 cv.vi− sd.vl – – –

12 cv.s− sd.vl – –

Fig. 5 All possible scenarios to be considered to evaluate the existence of a topological
relation between a curve and a solid. The following symbols are used: sd solid, cv curve,
cv.s, cv.vi and cv.vb a segment, an internal vertex or a boundary vertex of a curve cv, sd.p,
sd.s and sd.v a patch, a segment, a vertex of a solid sd. Finally, sd.vl denotes the interior
of a solid sd and dashed lines are used to represent segments inside a solid.

Proposition 4 (VR(sf) −VR(sf) relations) Let sf1, sf2 ∈ surface two ge-
ometries whose vector representation in terms of vertices is denoted as VRv(∗),
in terms of segments as VRs(∗) and in terms of patches a VRp(∗), respec-
tively. The possible scenarios to be considered in the evaluation of a topo-
logical relation between sf1 and sf2 are the ones reported in Fig. 6-7 where

18 Alberto Belussi et al.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 sf1.vi – sf2.vi
– – –

2 sf1.vi – sf2.vb
– – –

3 sf1.vb – sf2.vi as 2 – – –

4 sf1.vb – sf2.vb
– – –

5 sf1.vi – sf2.si
– –

6 sf1.vi – sf2.sb
– –

7 sf1.vb – sf2.si
– –

8 sf1.vb – sf2.sb
– –

9 sf1.si – sf2.vi
– as 5 – as 5

10 sf1.si – sf2.vb
– as 7 – as 7

11 sf1.sb – sf2.vi
– as 6 – as 6

12 sf1.sb - sf2.vb
– as 8 – as 8

Fig. 6 All possible scenarios to be considered to evaluate the existence of a topological
relation between two surfaces. The following symbols are used: sf surface, sf.vi and sf.vb an
internal vertex or a boundary vertex of a surface sf , sf.si and sf.sb an internal vertex or a
boundary segment of a surface sf , and sf.p, a patch of a surface sf (continue in Fig. 7).

sf.vi ∈ VRv(sf) denotes an internal vertex of sf , sf.vb ∈ VRv(sf) is a bound-
ary vertex of sf , sf.si ∈ VRs(sf) is an internal segment of sf , sf.sb ∈ VRs(sf)
is a boundary segment of sf , and sf.p ∈ VRp(sf) is a patch of sf . ut

Proof Given a surface sf , its vector representation in terms of vertices VRv(sf)
is given by a list of vector tuples, while its vector representation in terms of
segments VRs(sf) is a list of segment tuples, and its vector representation
in terms of patch VRp(sf) is a list of patches, as reported in Tab. 3. For
the evaluation of topological relations, vertices and segments of a surface are

A Framework for Evaluating 3D Topological Relations 19

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

13 sf1.si – sf2.si

14 sf1.si – sf2.sb

15 sf1.sb – sf2.si as 14 as 14 as 14 as 14

16 sf1.sb – sf2.sb

17 sf1.p - sf2.vi
– –

18 sf1.p – sf2.vb
– –

19 sf1.p – sf2.si
–

20 sf1.p – sf2.sb
–

21 sf1.p – sf2.p

22 sf1.vi – sf2.p
– as 17 – as 17

23 sf1.vb – sf2.p
– as 18 – as 18

24 sf1.si - sf2.p
– as 19 as 19 as 19

25 sf1.sb - sf2.p
– as 20 as 20 as 20

Fig. 7 All possible scenarios to be considered to evaluate the existence of a topological
relation between two surfaces (continue from Fig. 6).

distinguished between internal and boundary and denoted as sf.vi (or sf.vb)
and sf.si (or sf.sb), respectively.

The possible relations that can exist between the components of the vector
representations of sf1 and sf2 are:

– ∀(v1, v2) ∈ VRv(sf1)×VRv(sf2) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}.
– ∀(v, s) ∈ VRv(sf1)×VRs(sf2) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}

20 Alberto Belussi et al.

– ∀(v, p) ∈ VRv(sf1)×VRp(sf2) =⇒ Rtopo(v, p) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(sf1)×VRv(sf2) =⇒ Rtopo(s, v) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(sf1)×VRs(sf2) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN,CN,OV,TC}
– ∀(s, p) ∈ VRs(sf1)×VRp(sf2) =⇒ Rtopo(s, p) ∈ {DJ, IN,OV,TC}
– ∀(p, v) ∈ VRp(sf1)×VRv(sf2) =⇒ Rtopo(p, v) ∈ {DJ,CN,TC}
– ∀(p, s) ∈ VRp(sf1)×VRs(sf2) =⇒ Rtopo(p, s) ∈ {DJ,CN,OV,TC}
– ∀(p1, p2) ∈ VRp(sf1)×VRp(sf2) =⇒ Rtopo(s, p) ∈ {DJ,EQ, IN,CN,OV,TC}

These scenarios are exactly the ones reported in Tab. 6-7, except for DJ which
is not included for not cluttering the presentation.

Proposition 5 (VR(sf)−VR(sd) relations) Let sf ∈ surface and sd ∈ solid
two geometries whose vector representation in terms of vertices is denoted as
VRv(∗), in terms of segments as VRs(∗) and in terms of patches a VRp(∗),
respectively. The possible scenarios to be considered in the evaluation of a
topological relation between sf and sd are the ones reported in Fig. 8-9 where
sf.vi ∈ VRv(sf) denotes an internal vertex of sf , sf.vb ∈ VRv(sf) is a
boundary vertex of sf , sd.v ∈ VRv(sd) is a vertex of sd, sf.si ∈ VRs(sf)
is an internal segment of sf , sf.sb ∈ VRs(sf) is a boundary segment of sf ,
sd.s ∈ VRs(sd) is a segment of sd, sf.p ∈ VRp(sf) (or sd.p ∈ VRp(sd)) is a
patch of sf (or sd), and sd.vl denotes the solid interior. ut

Proof Given a surface sf (or a solid sd), its vector representation in terms of
vertices VRv(sf) (or VRv(sd)) is given by a list of vector tuples, while its
vector representation in terms of segments VRs(sf) or (VRs(sd)) is a list
of segment tuples, and its vector representation in terms of patches VRp(sf)
(or VRp(sd)) is a list of patches, as reported in Tab. 3. For the evaluation
of topological relations, vertices and segments of a surface are distinguished
between internal and boundary, and denoted as sf.vi (or sf.vb) and sf.si (or
sf.sb), respectively; while the interior of a solid is denoted as vl.

The possible relations that can exist between the components of the vector
representations of sf and sd are:
– ∀(v1, v2) ∈ VRv(sf)×VRv(sd) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}.
– ∀(v, s) ∈ VRv(sf)×VRs(sd) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}
– ∀(v, p) ∈ VRv(sf)×VRp(sd) =⇒ Rtopo(v, p) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(sf)×VRv(sd) =⇒ Rtopo(s, v) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(sf)×VRs(sd) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN,CN,OV,TC}
– ∀(s, p) ∈ VRs(sf)×VRp(sd) =⇒ Rtopo(s, p) ∈ {DJ, IN,OV,TC}
– ∀(p, v) ∈ VRp(sf)×VRv(sd) =⇒ Rtopo(p, v) ∈ {DJ,CN,TC}
– ∀(p, s) ∈ VRp(sf)×VRs(sd) =⇒ Rtopo(p, s) ∈ {DJ,CN,OV,TC}
– ∀(p1, p2) ∈ VRp(sf)×VRp(sd) =⇒ Rtopo(s, p) ∈ {DJ,EQ, IN,CN,OV,TC}
– ∀(v, vl) ∈ VRv(sf)× sd.vl =⇒ Rtopo(v, vl) ∈ {DJ, IN}
– ∀(s, vl) ∈ VRs(sf)× sd.vl =⇒ Rtopo(s, vl) ∈ {DJ, IN,OV}
– ∀(p, vl) ∈ VRs(sf)× sd.vl =⇒ Rtopo(s, vl) ∈ {DJ, IN,OV}

These scenarios are exactly the ones reported in Tab. 8-9, except for DJ which
is not included for not cluttering the presentation.

A Framework for Evaluating 3D Topological Relations 21

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 sf.vb− sd.v – – –

2 sf.vb− sd.s – –

3 sf.vb− sd.p – –

4 sf.vi− sd.v – – –

5 sf.vi− sd.s – –

6 sf.vi− sd.p – –

7 sf.si− sd.v – –

8 sf.si− sd.s

9 sf.si− sd.p –

10 sf.sb− sd.v – –

11 sf.sb− sd.s

12 sf.sb− sd.p –

Fig. 8 All possible scenarios to be considered to evaluate the existence of a topological
relation between a surface and a solid. The following symbols are used: sd solid, sf surface,
sf.p, sf.si, sf.sb, sf.vi and cv.vb a patch, internal segment, boundary segment, internal vertex
or boundary vertex of a surface sf and sd.p, sd.s and sd.v a patch, a segment, a vertex of a
solid sd. Finally, sd.vl indicates the interior of a solid sd (continue. in Fig. 9)

22 Alberto Belussi et al.

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

13 sf.p− sd.v – –

14 sf.p− sd.s –

15 sf.p− sd.p

16 sf.vi− sd.vl – – –

17 sf.vb− sd.vl – – –

18 sf.si− sd.vl – –

19 sf.sb− sd.vl – –

20 sf.p− sd.vl – –

Fig. 9 All possible scenarios to be considered to evaluate the existence of a topological
relation between a surface and a solid (continue from Fig. 8).

Proposition 6 (VR(sd) − VR(sd) relations) Let sd1, sd2 ∈ solid two ge-
ometries whose vector representation in terms of vertices is denoted as VRv(∗),
in terms of segments as VRs(∗) and in terms of patches a VRp(∗), respec-
tively. The possible scenarios to be considered in the evaluation of a topo-
logical relation between sd1 and sd2 are the ones reported in Fig. 10 where
sd.v ∈ VRv(sd) is a vertex of sd, sd.s ∈ VRs(sd) is a segment of sd,
sd.p ∈ VRp(sd) is a patch of sd, and sd.vl denotes the solid interior. ut

Proof Given a solid sd, its vector representation in terms of vertices VRv(sd)
is given by a list of vector tuples, while its vector representation in terms of
segments VRs(sd) is a list of segment tuples, and its vector representation in
terms of patch or VRp(sd) is a list of patches, as reported in Tab. 3. For the
evaluation of topological relations it is necessary to consider also the interior
of a solid, denoted as vl.

The possible relations that can exist between the components of the vector
representations of sd1 and sd2 are:
– ∀(v1, v2) ∈ VRv(sd1)×VRv(sd2) =⇒ Rtopo(v1, v2) ∈ {DJ,EQ}

A Framework for Evaluating 3D Topological Relations 23

Primitives 1 EQ 2 IN/CN 3 OV 4 TC

1 sd1.v – sd2.v – – –

2 sd1.v – sd2.s – –

3 sd1.v – sd2.p – –

4 sd1.v – sd2.vl – – –

5 sd1.s – sd2.v – as 2 – as 2

6 sd1.s – sd2.s

7 sd1.s – sd2.p –

8 sd1.s – sd2.vl – –

9 sd1.p – sd2.v – as 3 – as 3
10 sd1.p – sd2.s – as 7 as 7 as 7

11 sd1.p – sd2.p

12 sd1.p – sd2.vl – –

13 sd1.vl – sd2.v – as 4 – –

14 sd1.vl – sd2.s – as 8 as 8 –

15 sd1.vl – sd2.p – as 12 as 12 –

Fig. 10 All possible scenarios to be considered to evaluate the existence of a topological
relation between two solids. The following symbols are used: sd solid, sd.p, sd.s, and sd.v a
patch, segment, or vertex of a solid sd. Finally, sd.vl indicates the interior of a solid sd.

24 Alberto Belussi et al.

– ∀(v, s) ∈ VRv(sd1)×VRs(sd2) =⇒ Rtopo(v, s) ∈ {DJ, IN,TC}
– ∀(v, p) ∈ VRv(sd1)×VRp(sd2) =⇒ Rtopo(v, p) ∈ {DJ, IN,TC}
– ∀(s, v) ∈ VRs(sd1)×VRv(sd2) =⇒ Rtopo(s, v) ∈ {DJ,CN,TC}
– ∀(s1, s2) ∈ VRs(sd1)×VRs(sd2) =⇒ Rtopo(s1, s2) ∈ {DJ,EQ, IN,CN,OV,TC}
– ∀(s, p) ∈ VRs(sd1)×VRp(sd2) =⇒ Rtopo(s, p) ∈ {DJ, IN,OV,TC}
– ∀(p, v) ∈ VRp(sd1)×VRv(sd2) =⇒ Rtopo(p, v) ∈ {DJ,CN,TC}
– ∀(p, s) ∈ VRp(sd1)×VRs(sd2) =⇒ Rtopo(s, p) ∈ {DJ,CN,OV,TC}
– ∀(p1, p2) ∈ VRp(sd1)×VRp(sd2) =⇒ Rtopo(p1, p2) ∈ {DJ,EQ, IN,CN,OV,TC}
– ∀(v, vl) ∈ VRv(sd1)× sd2.vl =⇒ Rtopo(v, vl) ∈ {DJ, IN}
– ∀(s, vl) ∈ VRs(sd1)× sd2.vl =⇒ Rtopo(s, vl) ∈ {DJ, IN,OV}
– ∀(p, vl) ∈ VRp(sd1)× sd2.vl =⇒ Rtopo(p, vl) ∈ {DJ, IN,OV}
– ∀(vl, v) ∈ sd1.vl ×VRv(sd2) =⇒ Rtopo(vl, v) ∈ {DJ,CN}
– ∀(vl, s) ∈ sd1.vl ×VRs(sd2) =⇒ Rtopo(vl, s) ∈ {DJ,CN,OV}
– ∀(vl, p) ∈ sd1.vl ×VRp(sd2) =⇒ Rtopo(vl, p) ∈ {DJ,CN,OV}

These scenarios are exactly the ones reported in Tab. 10, except for DJ which
is not included for not cluttering the presentation.

6 Topological Relation Tests for 3D Geometries

Tab. 1 in Sect. 3 contains six topological relations, each one corresponding
to a set of matrix configurations due to the different definition of boundary
and interior for each geometric type. In order to simplify the presentation,
this section starts by showing the implementation of the tests regarding the
significant matrix cells, i.e.: A◦∩B◦, A◦∩∂B, A◦∩B−, ∂A∩∂B and ∂A∩B−.
Then, the implementation of each topological relation test can be obtained
by specifying a conjunction of a subset of these tests. For not cluttering the
discussion, only the proof of Prop. 7 is given, while the proof for Prop. 8-11
can be obtained in a similar way and are reported in App. A.

Proposition 7 The Interior/Interior test (A◦ ∩B◦) has to be specialized
for each combination of the geometric types of the involved geometries A and
B. Tab. 4-5 report the tests regarding the cases: curve/curve, curve/surface,
curve/solid, surface/surface, surface/solid and solid/solid. They are expressed
by means of the operations and predicates of Def. 3 and Def. 4, respectively.

Proof The proof shows that each specialization of the intersection tests (IT ◦◦)
reported in Tab. 4-5 cover all the possible scenarios between A and B. The
complete enumeration of all scenarios is obtained by considering the geometric
primitives that compose A and B and the relations among them that imply
the truth of the considered test. These tests are denoted as follows:

IT ◦◦
type(g1),type(g2)(g1, g2)

where g1, g2 are two geometries and type(g) ∈ {cv, sf, sd} denotes curve, surface
and solid, respectively.

A Framework for Evaluating 3D Topological Relations 25

Table 4 Implementation of tests for Interior/Interior intersection IT◦◦ for the cases
curve/curve, curve/surface, curve/solid. To simplify reading, the OR logical operators con-
necting alternative conditions have been highlighted with a gray background and consecutive
lines have been numbered with the same font color.

Test #L Implementation

IT◦◦
cv,cv IT◦◦

cv,cv(cv1, cv2) ≡
1. ∃v ∈ cv1.vert()(v 6∈ cv1.bnd() ∧ v ∈ cv2.vert() ∧ v 6∈ cv2.bnd()) ∨
2. ∃v ∈ cv1.vert()(v 6∈ cv1.bnd() ∧ ∃s ∈ cv2.seg()(s.cnt3(v))) ∨
3. ∃v ∈ cv2.vert()(v 6∈ cv2.bnd() ∧ ∃s ∈ cv1.seg()(s.cnt3(v))) ∨
4. ∃s1 ∈ cv1.seg()(∃s2 ∈ cv2.seg()(s1.eq3(s2)∨
5. (s1.cop(s2) ∧ (s1.in2(s2) ∨ s2.in2(s1) ∨ s1.ov2(s2)))))

IT◦◦
cv,sf IT◦◦

cv,sf (cv, sf) ≡
1. ∃s ∈ cv.seg()(∃p ∈ sf.pat()(p.int3(s) ∨ (p.cop(s) ∧ ¬p.dj2(s) ∧ ¬p.tc2(s)))) ∨
2. ∃s ∈ cv.seg()(∃s0 ∈ sf.intSeg()(s.cop(s0) ∧ ¬s.dj2(s0) ∧ ¬s.tc2(s0))) ∨
3. ∃s ∈ cv.seg()(∃v0 ∈ sf.intVert()(

s.cnt3(v0) ∨ v0.eq3(s.start()) ∨ v0.eq3(s.end()))) ∨
4. ∃v ∈ cv.vert()(v 6∈ cv.bnd() ∧ (∃p ∈ sf.pat()(p.cnt3(v)))) ∨
5. ∃v ∈ cv.vert()(v 6∈ cv.bnd()∧

(∃s0 ∈ sf.intSeg()(s0.cnt3(v)) ∨ ∃v0 ∈ sf.intVert()(v.eq3(v0))))

IT◦◦
cv,sd IT◦◦

cv,sd(cv, sd) ≡
1. ∃v ∈ cv.vert()(mod2(v.ray3(sd)) = 1) ∨
2. ∃s ∈ cv.seg()(
3. ∃p ∈ sd.pat()(p.int3(s)) ∨
4. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.cr2(s1)∧s.cr2(s2)∧
5. mod2(mid3(s.∩3(s1), s.∩3(s2)).ray3(sd)) = 1) ∨
6. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.cr2(s1)∧s.tc2(s2)∧
7. ∃v ∈ s.bnd()(s2.cnt3(v)∧
8. mod2(mid3(s. ∩3 (s1), v).ray3(sd)) = 1)) ∨
9. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.tc2(s1)∧s.tc2(s2)∧
10. ∃v1, v2 ∈ s.bnd()(s1.cnt3(v1) ∧ s2.cnt(v2)∧
11. mod2(mid3(v1, v2).ray3(sd)) = 1)) ∨
12. ∃s1 ∈ sd.seg()(s.cop(s1) ∧ s.cr2(s1)∧
13. ∃v ∈ sd.vert()((s.cnt3(v) ∨ v ∈ s.bnd())∧
14. mod2(mid3(s. ∩3 (s1), v).ray3(sd)) = 1)) ∨
15. ∃s1 ∈ sd.seg()(s.cop(s1) ∧ s.tc2(s1) ∧ ∃v1 ∈ s.bnd()(s1.cnt3(v1)∧
16. ∃v2 ∈ sd.vert()((s.cnt3(v2) ∨ v2 ∈ s.bnd())∧
17. mod2(mid3(v1, v2).ray3(sd)) = 1)) ∨
18. ∃v1, v2 ∈ sd.vert()(¬v1.eq3(v2) ∧ (s.cnt3(v1) ∨ v1 ∈ s.bnd())∧
19. (s.cnt3(v2) ∨ v2 ∈ s.bnd()) ∧mod2(mid3(v1, v2).ray3(sd)) = 1))

where mod2(x) returns the rest of the division by 2.

– IT ◦◦
cv,cv(g1, g2) is true if at least one segment of g1 intersects the interior

of g2, excluding the intersections involving the start and end point of g1
and/or g2. Sufficient conditions for obtaining this result are produced in
the following possible scenarios of Fig. 3: cells (4, 1), (5, 2), (6, 1), (6, 2),
(6, 3) and (6, 4). In the proposed test (1st row of Tab. 4) scenarios (4, 1) is
covered by formula at line 1, (5, 2) is covered by formulas at line 2 and 3,
(6, 1), (6, 2) and (6, 3) are covered by formula at lines 4 and 5. Scenarios
(6, 4) produces a sufficient condition for an interior intersection only in the
cases that are already detected by cells (4, 1) and (5, 2), thus line 1, 2 and
3 cover also (6, 4).

26 Alberto Belussi et al.

Table 5 Implementation of tests for Interior/Interior intersection IT◦◦ for the cases sur-
face/surface, surface/solid and solid/solid. To simplify reading, the OR logical operators
connecting alternative conditions have been highlighted with a gray background and con-
secutive lines have been numbered with the same font color.

Test #L Implementation

IT◦◦
sf,sf IT◦◦

sf,sf (sf1, sf2) ≡
1. ∃p1 ∈ sf1.pat()(∃p2 ∈ sf2.pat()(p1.int3(p2)∨

(p1.cop(p2) ∧ ¬p1.dj2(p2) ∧ ¬p1.tc2(p2)))) ∨
2. ∃s1 ∈ sf1.intSeg()(∃p2 ∈ sf2.pat()(p2.cop(s1) ∧ ¬p2.dj2(s1) ∧ ¬p2.tc2(s1))) ∨
3. ∃s2 ∈ sf2.intSeg()(∃p1 ∈ sf1.pat()(p1.cop(s2) ∧ ¬p1.dj2(s2) ∧ ¬p1.tc2(s2))) ∨
4. ∃v1 ∈ sf1.intVert()(∃p2 ∈ sf2.pat()(p2.cnt3(v1))) ∨
5. ∃v2 ∈ sf2.intVert()(∃p1 ∈ sf1.pat()(p1.cnt3(v2))) ∨
6. ∃s1 ∈ sf1.intSeg()(∃s2 ∈ sf2.intSeg()(s1.eq3(s2) ∨
7. s1.int3(s2) ∨ (s1.cop(s2) ∧ ¬s1.dj2(s2) ∧ ¬s1.tc2(s2))))∨
8. ∃v1 ∈ sf1.intVert()(∃s2 ∈ sf2.intSeg()(s2.cnt3(v1))∨

∃v2 ∈ sf2.intVert()(v1.eq3(v2))) ∨
9. ∃v2 ∈ sf2.intVert()(∃s1 ∈ sf1.intSeg()(s1.cnt3(v2)))

IT◦◦
sf,sd IT◦◦

sf,sd(sf, sd) ≡
1. ∃v ∈ sf.vert()(mod2(v.ray3(sd)) = 1) ∨
2. ∃s ∈ sf.seg()(IT◦◦

cv,sd(s, sd)) ∨
3. ∃p ∈ sf.pat()(∀s ∈ p.bnd()(∃p0 ∈ sd.pat()(p0.cop(s) ∧ s.in2(p0))∨

∃s0 ∈ sd.seg()(s.eq3(s0)∨ (s.cop(s0)∧ s.in2(s0))))∧
4. ∃v1, v2 ∈ p.vert()(¬v1.eq3(v2) ∧mod2(mid3(v1, v2).ray3(sd)) = 1)) ∨
5. ∃p1 ∈ sf.pat()(∃p2 ∈ sd.pat()(p1.int3(p2)))

where mod2(x) returns the rest of the division by 2.

IT◦◦
sd,sd IT◦◦

sd,sd(sd1, sd2) ≡
1. ∃v1 ∈ sd1.vert()(mod2(v1.ray3(sd2)) = 1) ∨
2. ∃v2 ∈ sd2.vert()(mod2(v2.ray3(sd1)) = 1) ∨
3. ∃s ∈ sd1.seg()(IT◦◦

cv,sd(s, sd2)) ∨ ∃s ∈ sd2.seg()(IT◦◦
cv,sd(s, sd1)) ∨

4. ∃p ∈ sd1.pat()(IT◦◦
sf,sd(p, sd2)) ∨ ∃p ∈ sd2.pat()(IT◦◦

sf,sd(p, sd1)) ∨
5. (∀v1 ∈ sd1.vert()(∃v2 ∈ sd2.vert()(v1.eq3(v2)))∧
6. ∀v2 ∈ sd2.vert()(∃v1 ∈ sd1.vert()(v2.eq3(v1))))

– IT◦◦
cv,sf (g1, g2) is true if at least one segment of g1 intersects the interior of

g2; sufficient conditions for obtaining this result are produced in the follow-
ing possible scenarios of Fig. 4: cells (1, 1), (3, 2), (5, 2), (6, 2), (8, 1), (8, 2),
(8, 3), (10, 2) and (10, 3). Cells (3, 4), (5, 4), (6, 4) and (8, 4) are already
considered by cell (1, 1), and cell (10, 4) by cell (5, 2). In the proposed test
(2nd row of Tab. 4) scenarios (10, 2) and (10, 3) are covered by formula at
line 1, (8, 1), (8, 2) and (8, 3) by formula at line 2, (6, 2), (6, 4) by formula
at line 3, (5, 2) by formula at line 4, (3, 2) and (1, 1) by formula at line 5.

– IT◦◦
cv,sd(g1, g2) is true if at least one segment of g1 intersects the interior

of the solid g2; sufficient conditions for obtaining this result are produced
in the following possible scenarios of Fig. 5: cells (10,2), (11,2), (12,2) and
(12,3). In the proposed test (3rd row of Tab. 4) scenarios (10,2) and (11,2)
are covered by formula at line 1, scenarios described by cell (12,2) that
do not imply the containment in the solid volume of a segment vertex
(scenarios (10,2) and (11,2)) are covered by formulas at lines 9, 10 and 11,

A Framework for Evaluating 3D Topological Relations 27

by formulas at lines 15, 16 and 17 and by formulas at lines 18 and 19 for
the case in which the segment starts and ends at solid vertices. Finally,
scenarios described by cell (12,3) that do not imply the containment in the
solid volume of a segment vertex (scenarios (10,2) and (11,2)) are covered
by formulas at lines 4 and 5, by formulas at lines 6, 7 and 8 and by formulas
at lines 12, 13 and 14.

– IT◦◦
sf,sf (g1, g2) is true if exists at least one primitive covering the interior

of g1 that intersects one primitive covering the interior of g2. Sufficient
conditions for obtaining this result are produced in the following possible
scenarios of Fig. 6-7: cells (1, 1), (5, 2), (9, 2), (13, 1), (13, 2), (13, 3), (17, 2),
(19, 2), (19, 3), (21, 1), (21, 2), (21, 3), (24, 2) and (24, 3). Cells (5, 4) and
(9, 4) are already considered by cell (1, 1); cells (13, 4) and (17, 4) are al-
ready considered by cells (1, 1), (5, 2) and (9, 2); cells (19, 4) and (21, 4)
are already considered by cells (1, 1), (13, 1), (13, 2) and (13, 3). In the
proposed test (1st row of Tab. 5) scenarios (1, 1) and (5, 2) are covered by
formula at line 8, (9, 2) by formula at line 9, (13, 1) by formula at line 6,
(13, 2) and (13, 3) by formula at line 7, (17, 2) by formula at line 5, (19, 2)
and (19, 3) by formula at line 3, (21, 1), (21, 2) and (21, 3) by formula at
line 1, (22, 2) by formula at line 4, (24, 2) and (24, 3) by formula at line 2.

– IT◦◦
sf,sd(g1, g2) is true if at least one patch of g1 intersects the interior of the

solid g2; sufficient conditions for obtaining this result are produced in the
following possible scenarios of Fig. 8-9: cells (16, 2), (17, 2), (18, 2), (18, 3),
(19, 2), (19, 3), (20, 2) and (20, 3). In the proposed test (2nd row of Tab. 5)
scenarios (16, 2) and (17, 2) are covered by formula at line 1, while scenarios
(18, 2), (18, 3), (19, 2) and (19, 3) are covered by formula at line 2. Finally,
scenario (20, 2) is covered by formula at lines 3-4 and scenario (20, 3) is
covered both by formula at line 1 and formula at line 5.

– IT◦◦
sd,sd(g1, g2) is true if the interior of g1 intersects at least one primitive

defining g2 or is contained in the volume of g2, or viceversa. Sufficient
conditions for obtaining this result are produced in the following possi-
ble scenarios of Tab. 10: (4, 2), (8, 2), (8, 3), (12, 2), (12, 3), (13, 2), (14, 2),
(14, 3), (15, 2) and (15, 3). In the proposed test (3rd row of Tab. 5) sce-
narios (4, 2) and (13, 2) are directly covered by formulas at line 1 and 2,
scenarios (8, 2), (8, 3) and (14, 2), (14, 3) are covered by formula at line 3,
scenarios (12, 2), (12, 3) and (15, 2), (15, 3) are covered by formula at line 4,
finally, formulas at lines 5 and 6 covers the case of exact equality between
sd1 and sd2. ut

Proposition 8 The Interior/Boundary test (A◦ ∩ ∂B) has to be special-
ized for each combination of the geometric types of the involved geometries (A
and B). Tab. 6 the tests regarding the following cases are reported: curve/curve,
curve/surface, curve/solid, surface/surface, surface/solid and solid/solid. They
are expressed by means of the operations and predicates of Def. 3 and Def. 4,
respectively.

Proposition 9 The Interior/Exterior test (A◦ ∩ B−) has to be special-
ized for each combination of the geometric types of the involved geometries

28 Alberto Belussi et al.

Table 6 Implementation of tests for Interior/Boundary intersection IT ◦∂ .

Test #L Implementation

IT◦∂
cv,cv IT◦∂

cv,cv(cv1, cv2) ≡
1. ∃v1 ∈ cv1.vert()(¬v1 ∈ cv1.bnd() ∧ ∃v2 ∈ cv2.bnd()(v1.eq(v2))) ∨
2. ∃s1 ∈ cv1.seg()(∃v2 ∈ cv2.bnd()(s1.cnt3(v2)))

IT◦∂
cv,sf IT◦∂

cv,sf (cv, sf) ≡ IT ◦◦
cv,cv(cv, sf.bnd())

IT◦∂
cv,sd IT◦∂

cv,sd(cv, sd) ≡ IT ◦◦
cv,sd(cv, sd.bnd())

IT◦∂
sf,sf IT◦∂

sf,sf (sf1, sf2) ≡ IT ◦◦
cv,sf (sf2.bnd(), sf1)

IT◦∂
sf,sd IT◦∂

sf,sd(sf, sd) ≡ IT ◦◦
sf,sf (sf, sd.bnd())

IT◦∂
sd,sd IT◦∂

sd,sd(sd1, sd2) ≡ IT ◦◦
sf,sd(sd2.bnd(), sd1)

(A and B). In Tab. 7-8 the tests regarding the following cases are reported:
curve/curve, curve/surface, curve/solid, surface/surface, surface/solid and so-
lid/solid. They are expressed by means of the operations and predicates of
Def. 3 and Def. 4, respectively.

Proposition 10 The Boundary/Boundary test (∂A ∩ ∂B) has to be spe-
cialized for each combination of the geometric types of the involved geome-
tries (A and B). In Tab. 9 the tests regarding the following cases are re-
ported: curve/curve, curve/surface, curve/solid, surface/surface, surface/solid
and solid/solid. They are expressed by means of the operations and predicates
of Def. 3 and Def. 4, respectively.

Proposition 11 The Boundary/Exterior test (∂A ∩ B−) has to be spe-
cialized for each combination of the geometric types of the involved geome-
tries (A and B). In Tab. 10 the tests regarding the following cases are re-
ported: curve/curve, curve/surface, curve/solid, surface/surface, surface/solid
and solid/solid. They are expressed by means of the operations and predicates
of Def. 3 and Def. 4, respectively.

Given the previous propositions regarding the cells of the 9IM, the following
final proposition shows how to combine them in order to obtain the necessary
test for a given topological relation defined by a matrix pattern.

Proposition 12 Given the intersection tests shown in Prop. 7, 8, 9, 10 and
11, the implementation of the test for a specific topological relation R(A,B) can
be obtained by considering: (i) the types type(A) and type(B) of the geometries
A and B; (ii) the matrix pattern of the 9IM that corresponds to the relation
R when evaluated on geometries with types type(A) and type(B) (see Tab. 1
of Sect. 3). Once the matrix pattern [I1I2I3 − B1B2B3 − E1E2E3] has been
identified, it can be possibly simplified considering that geometries are embedded
in the 3D space, and then translated into a conjunction of intersection tests

A Framework for Evaluating 3D Topological Relations 29

Table 7 Implementation of tests for Interior/Exterior intersection IT◦− for the cases
curve/curve, curve/surface and curve/solid.

Test #L Implementation

IT◦−
cv,cv IT◦−

cv,cv(cv1, cv2) ≡
1. ∃v1 ∈ cv1.vert()(¬v1 ∈ cv1.bnd() ∧ ∀v2 ∈ cv2.vert()(¬v1.eq3(v2))∧
2. ∀s ∈ cv2.seg()(¬s.cnt3(v1))) ∨
3. ∃s1 ∈ cv1.seg()(∀s2 ∈ cv2.seg()(¬s1.eq3(s2) ∧ ¬(s1.cop3(s2) ∧ s1.in2(s2)))

IT◦−
cv,sf

IT◦−
cv,sf

(cv, sf) ≡
1. ∃v1 ∈ cv.vert()(¬v1 ∈ cv.bnd() ∧ ∀v2 ∈ sf.vert()(¬v1.eq3(v2))∧
2. ∀s ∈ sf.seg()(¬s.cnt3(v1))∧
3. ∀p ∈ sf.pat()(¬p.cnt3(v1))) ∨
4. ∃s1 ∈ cv.seg()(∀s2 ∈ sf.seg()(¬s1.eq3(s2) ∧ ¬(s1.cop3(s2) ∧ s1.in2(s2)))∧
5. ∀p ∈ sf.pat()(¬(p.cop3(s1) ∧ s1.in2(p))))

IT◦−
cv,sd

IT◦−
cv,sd

(cv, sd) ≡
1. ∃v ∈ cv.vert()(mod2(v.ray3(sd)) = 0) ∨
2. ∃s ∈ cv.seg()(
3. ∃p ∈ sd.pat()(p.int3(s)) ∨
4. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.cr2(s1)∧s.cr2(s2)∧
5. mod2(mid3(s.∩3(s1), s.∩3(s2)).ray3(sd)) = 0) ∨
6. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.cr2(s1)∧s.tc2(s2)∧
7. ∃v ∈ s.bnd()(s2.cnt3(v)∧
8. mod2(mid3(s.∩3(s1), v).ray3(sd)) = 0)) ∨
9. ∃s1, s2 ∈ sd.seg()(¬s1.eq3(s2)∧s.cop(s1)∧s.cop(s2)∧s.tc2(s1)∧s.tc2(s2)∧
10. ∃v1, v2 ∈ s.bnd()(s1.cnt3(v1) ∧ s2.cnt(v2)∧
11. mod2(mid3(v1, v2).ray3(sd)) = 0)) ∨
12. ∃s1 ∈ sd.seg()(s.cop(s1) ∧ s.cr2(s1)∧
13. ∃v ∈ sd.vert()((s.cnt3(v) ∨ v ∈ s.bnd())∧
14. mod2(mid3(s.∩3(s1), v).ray3(sd)) = 0)) ∨
15. ∃s1 ∈ sd.seg()(s.cop(s1) ∧ s.tc2(s1) ∧ ∃v1 ∈ s.bnd()(s1.cnt3(v1)∧
16. ∃v2 ∈ sd.vert()((s.cnt3(v2) ∨ v2 ∈ s.bnd())∧
17. mod2(mid3(v1, v2).ray3(sd)) = 0)) ∨
18. ∃v1, v2 ∈ sd.vert()(¬v1.eq3(v2) ∧ (s.cnt3(v1) ∨ v1 ∈ s.bnd())∧
19. (s.cnt3(v2) ∨ v2 ∈ s.bnd()) ∧mod2(mid3(v1, v2).ray3(sd)) = 0)))

(IT) according to the following rule:

TT ([I1I2I3 −B1B2B3 − E1E2E3], gt1, gt2) =
3∧

i=1
τI,i(Ii, gt1, gt2) ∧

3∧
i=2

τB,i(Bi, gt1, gt2)

where:

τI,i(b, gt1, gt2) =

true if i = ∗
(b =⇒ IT ◦◦

gt1,gt2
()) ∧ (¬b =⇒ ¬IT ◦◦

gt1,gt2
()) if i = 1

(b =⇒ IT ◦∂
gt1,gt2

()) ∧ (¬b =⇒ ¬IT ◦∂
gt1,gt2

()) if i = 2
(b =⇒ IT ◦−

gt1,gt2
()) ∧ (¬b =⇒ ¬IT ◦−

gt1,gt2
()) if i = 3

30 Alberto Belussi et al.

Table 8 Implementation of tests for Interior/Exterior intersection IT◦− for the cases sur-
face/surface, surface/solid and solid/solid.

Test #L Implementation

IT◦−
sf,sf

IT◦−
sf,sf

(sf1, sf2) ≡
1. ∃v1 ∈ sf1.vert()(∀v2 ∈ sf2.vert()(¬v1.eq3(v2))∧
2. ∀s ∈ sf2.seg()(¬s.cnt3(v1))∧
3. ∀p ∈ sf2.pat()(¬p.cnt3(v1))) ∨
4. ∃s1 ∈ sf1.seg()(∀s2 ∈ sf2.seg()(¬s1.eq3(s2) ∧ ¬(s1.cop3(s2) ∧ s1.in2(s2)))∧
5. ∀p ∈ sf2.pat()(¬(p.cop3(s1) ∧ s1.in2(p)))) ∨
6. ∃p1 ∈ sf1.pat()(∀p2 ∈ sf2.pat()(¬(p1.cop(p2) ∧ (p1.eq2(p2) ∨ p1.in2(p2)))))

IT◦−
sf,sd

IT◦−
sf,sd

(sf, sd) ≡
1. ∃v1 ∈ sf.vert()(∀v2 ∈ sd.vert()(¬v1.eq3(v2))∧
2. ∀s ∈ sd.seg()(¬s.cnt3(v1))∧
3. ∀p ∈ sd.pat()(¬p.cnt3(v1))∧
4. mod2(v1.ray3(sd)) = 0) ∨
5. ∃s ∈ sf.seg()(INT◦−

cv,sd
(s, sd)) ∨

6. ∃p ∈ sf.pat()(∀s ∈ p.bnd()(∃p0 ∈ sd.pat()(p0.cop(s) ∧ s.in2(p0))∨
∃s0 ∈ sd.seg()(s.eq3(s0) ∨ (s.cop(s0) ∧ s.in2(s0))))∧

7. ∃v1, v2 ∈ p.vert()(¬v1.eq3(v2)∧
mod2(mid3(v1, v2).ray3(sd)) = 0)) ∨

8. ∃p1 ∈ sf.pat()(∃p2 ∈ sd.pat()(p1.int3(p2)))

IT◦−
sd,sd

IT◦−
sd,sd

(sd1, sd2) ≡
1. ∃v1 ∈ sd1.vert()(mod2(v1.ray3(sd2)) = 0) ∨
2. ∃v2 ∈ sd2.vert()(mod2(v2.ray3(sd1)) = 0) ∨
3. ∃s1 ∈ sd1.seg()(IT◦−

cv,sd
(s1, sd2)) ∨ ∃s2 ∈ sd2.seg()(IT◦−

cv,sd
(s2, sd1)) ∨

4. ∃p1 ∈ sd1.pat()(IT◦−
sf,sd

(p1, sd2)) ∨ ∃p2 ∈ sd2.pat()(IT◦−
sf,sd

(p2, sd1))

Table 9 Implementation of tests for Boundary/Boundary intersection IT ∂∂ .

Test #L Implementation

IT ∂∂
cv,cv IT ∂∂

cv,cv(cv1, cv2) ≡
1. ∃v1 ∈ cv1.bnd()(∃v2 ∈ cv2.bnd()(v1.eq3(v2)))

IT ∂∂
cv,sf IT ∂∂

cv,sf (cv, sf) ≡
1. ∃v ∈ cv.bnd()(∃r ∈ sf.bnd()(∃s ∈ r.seg()(s.cnt3(v) ∨
2. ∃vs ∈ s.bnd()(vs.eq3(v)))))

IT∂∂
cv,sd IT∂∂

cv,sd(cv, sd) ≡
1. ∃v ∈ cv.bnd()(∃p ∈ sd.pat()(p.cnt3(v) ∨
2. ∃s ∈ p.seg()(s.cnt3(v)) ∨
3. ∃vp ∈ p.vert()(vp.eq3(v))))

IT∂∂
sf,sf IT∂∂

sf,sf (sf1, sf2) ≡ IT ◦◦
cv,cv(sf1.bnd(), sf2.bnd())

IT∂∂
sf,sd IT∂∂

sf,sd(sf, sd) ≡ IT ◦◦
cv,sd(sf.bnd(), sd.bnd())

IT∂∂
sd,sd IT∂∂

sd,sd(sd1, sd2) ≡ IT ◦◦
sf,sf (sd1.bnd(), sd2.bnd())

A Framework for Evaluating 3D Topological Relations 31

Table 10 Implementation of tests for Boundary/Exterior intersection IT ∂−.

Test #L Implementation

IT ∂−
cv,cv IT ∂−

cv,cv(cv1, cv2) ≡
1. ∃v1 ∈ cv1.bnd()(∀v2 ∈ cv2.vert()(¬v1.eq3(v2))∧
2. ∀s2 ∈ cv2.seg()(¬s2.cnt3(v1)))

IT ∂−
cv,sf

IT ∂−
cv,sf

(cv, sf) ≡
1. ∃v ∈ cv.bnd()(∀vs ∈ sf.vert()(¬v.eq3(vs))∧
2. ∀s ∈ sf.seg()(¬s.cnt3(v))∧
3. ∀p ∈ sf.pat()(¬p.cnt3(v)))

IT∂−
cv,sd

IT∂−
cv,sd

(cv, sd) ≡
1. ∃v ∈ cv.bnd()(∀vs ∈ sd.vert()(¬vs.eq3(v))∧
2. ∀s ∈ sd.seg()(¬s.cnt3(v))∧
3. ∀p ∈ sd.pat()(¬p.cnt3(v))∧
4. mod2(v.ray3(sd)) = 0)

IT∂−
sf,sf

IT∂−
sf,sf

(sf1, sf2) ≡ IT ◦−
cv,sf

(sf1.bnd(), sf2)

IT∂−
sf,sd

IT∂−
sf,sd

(sf, sd) ≡ IT ◦−
cv,sd

(sf.bnd(), sd)

IT∂−
sd,sd

IT∂−
sd,sd

(sd1, sd2) ≡ IT ◦−
sf,sd

(sd1.bnd(), sd2)

τB,i(b, gt1, gt2) =

true if b = ∗
(b =⇒ IT ∂◦

gt1,gt2
()) ∧ (¬b =⇒ ¬IT ∂◦

gt1,gt2
()) if i = 1

(b =⇒ IT ∂∂
gt1,gt2

()) ∧ (¬b =⇒ ¬IT ∂∂
gt1,gt2

()) if i = 2
(b =⇒ IT ∂−

gt1,gt2
()) ∧ (¬b =⇒ ¬IT ∂−

gt1,gt2
()) if i = 3

Proof The correctness of the test obtained by applying the proposed rule de-
rives straightforward from the correctness of the intersection tests (Prop. 7, 8,
9, 10 and 11) and from the following observation. The translation functions τI,i

and τB,i when applied to the corresponding cell of the matrix pattern return:
(i) true, when the cell is equal to ∗; (ii) the intersection test that corresponds
to the position of the cell in the matrix (for example IT ◦◦

gt1,gt2
()), when the

cell is equal to T (true); (ii) the negation of the same intersection test (for
example IT ◦◦

gt1,gt2
()), when the cell is equal to F (false). Then the conjunction

of these tests are considered, thus, it correctly tests the considered topological
relation according to the definition of Sec. 3. ut

7 Conclusion

The evaluation of 3D topological relations between geometries of different
types is still a challenging task in current GIS systems. Systems like PostGIS
usually supports the definition of 3D data types, such as line-strings, poly-
hedral surfaces and solids as closed polyhedral surfaces, but they currently
provide a very limited set of operations on them. In particular, the checking

32 Alberto Belussi et al.

of 3D topological relations traditionally requires the definition of ad-hoc im-
plementations. This paper proposes a different approach for overcoming such
problem, in particular instead of producing ad-hoc procedure from scratch
whenever needed, it tries to provide a generic solution by exploiting the oper-
ation already implemented in the currently available GIS system.

More specifically, the contribution provided by this paper is twofold: (1)
the definition of an abstract 3D vector model on which geometric types and
topological relations are defined, (2) the definition of a set of procedures for
testing 3D topological relations based on the abstract 3D vector model.

As regards to the first point, starting from the geometric model proposed
in the ISO Standard 19136 GML, this paper introduces a vector model that
provides a general environment representing an abstraction of the current tech-
nology. This model is composed of a set of basic 3D vector types together with
predicates and operations, that are necessary in order to implement the topo-
logical relation tests. Such 3D topological relations have been defined by adopt-
ing the well-known 9-intersection model (9IM) [5]. Subsequently, as regards to
the second point, for each 3D topological relation and each combination of
geometric types, the necessary test is given by means of a logic formula that
represents the condition to be satisfied by the geometric primitives in order to
satisfy the relation.

More specifically, a regards to the second point: we start by identifying all
the possible relations that can exists between the components of two vector
representations. This is done by a set of propositions that given the vector
representation of two geometric types, identify all possible scenarios to be
considered to evaluate the existence of a topological relation between them.
Given the identification of such situations, we are able to provide a set of tests
for checking topological relations. In particular, we start by considering the
structure of the 9IM, then we show how each significant cell of the matrix can
be tested, by considering the possible situations previously identified. The test
implementation of each matrix cell can be considered a basic test, since it is
a building block of our procedure, and is defined as a logical formula. Given
such basic tests, the test of particular topological relation can be obtained by
specifying a conjunction of such basic tests. Proofs of both basic and com-
plete tests have been provided. A prototypical implementation of such test in
PostGIS is available at [1].

The main benefit of the proposed approach is that it provides a general
solution easily achievable in exiting GIS systems, because it relies on functions
and 2D topological relations commonly available. Moreover, it is particularly
suitable for integration with approaches like the one in [2], since the proposed
tests can be used for automatically validate topological integrity constraints
specified by means of templates.

Future work will regard: (i) the implementation of validator tools for datasets
describing urban contexts, which are stored in spatial DBMS; (ii) the testing
of the proposed approach on huge datasets using a map-reduce approach, as
done in [16] for 2D spatial constraint templates.

A Framework for Evaluating 3D Topological Relations 33

References

1. Belussi, A., Migliorini, S., Negri, M.: (2019). https://github.com/smigliorini/
spatialdbgroup Last accessed Dec. 2019

2. Belussi, A., Migliorini, S., Negri, M., Pelagatti, G.: A template-based approach for the
specification of 3D topological constraints. GeoInformatica under review

3. Belussi, A., Migliorini, S., Negri, M., Pelagatti, G.: Validation of Spatial Integrity Con-
straints in City Models. In: Proc. of the 4th ACM SIGSPATIAL Int. Workshop on
Mobile Geographic Information Systems, MobiGIS ’15, pp. 70–79 (2015)

4. Bieri, H.: Nef polyhedra: A brief introduction. Computing Supplementum 10, 43–60
(1995)

5. Egenhofer, M.J.: Topological relations in 3D. Tech. rep., University of Maine, USA
(1995)

6. Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. International
Journal of Geographic Information Systems 2(5), 161–174 (1991)

7. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3D selective Nef
complexes: Data structure, algorithms, optimized implementation and experiments.
Computational Geometry 38(1–2), 64–99 (2007)

8. Open Geospatial Consortium Inc.: OpenGIS Implementation Standard for Geographic
Information - Simple feature access - Part 1: Common architecture (2011). Version 1.2.1
http://www.opengeospatial.org/standards/sfa

9. Open Geospatial Consortium Inc.: OGC City Geography Markup Language (CityGML)
Encoding Standard (2012). Version 2.0 http://www.opengeospatial.org/standards/
citygml

10. ISO: ISO 19107 Geographic Information – Spatial Schema (2003). http://www.iso.
org/iso/catalogue_detail.htm?csnumber=26012

11. ISO: ISO 19125 Geographic Information – Simple Feature Access – Part 1: Common
architecture (2004). https://www.iso.org/standard/40114.html

12. ISO: Geographic information – Geography Markup Language (GML) (ISO 19136:2007
(2007). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=32554

13. Khuan, C., Abdul-Rahman, A., Zlatanova, S.: 3D Solids and Their Management in
DBMS. In: Advances in 3D Geoinformation Systems, pp. 279–311. Springer Berlin
Heidelberg (2008)

14. Ledoux, H.: On the validation of solids represented with the international standards for
geographic information. Computer-Aided Civil and Infrastructure Engineering 28(9),
693–706 (2013)

15. Migliorini, S.: Enhancing cidoc-crm models for geosparql processing with mapreduce.
In: Proceedings of 2nd Workshop On Computing Techniques For Spatio-Temporal Data
in Archaeology And Cultural Heritage, pp. 45–59 (2018). URL http://coarch18.di.
univr.it/wp-content/uploads/2018/02/paper_03.pdf

16. Migliorini, S., Belussi, A., Negri, M., Pelagatti, G.: Towards Massive Spatial Data Vali-
dation with SpatialHadoop. In: Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data, BigSpatial’16, pp. 18–27 (2016)

17. OSGeo: PostGIS 3.0 Manual. Open Source Geospatial Foundation (2019). https:
//postgis.net/stuff/postgis-3.0.pdf

18. Pelagatti, G., Negri, M., Belussi, A., Migliorini, S.: From the Conceptual Design of Spa-
tial Constraints to Their Implementation in Real Systems. In: 17th ACM SIGSPATIAL
Int. Conf. on Advances in Geographic Information Systems, pp. 448–451 (2009)

19. Tet-Khuan, C., Abdul-Rahman, A., Zlatanova, S.: 3D Spatial Operations in Geo DBMS
Environment for 3D GIS. In: O. Gervasi, M.L. Gavrilova (eds.) Computational Science
and Its Applications – ICCSA 2007, pp. 151–163 (2007)

20. Wagner, D., Wewetzer, M., Bogdahn, J., Alam, N., Pries, M., Coors, V.: Geometric-
Semantical Consistency Validation of CityGML Models. In: Progress and New Trends
in 3D Geoinformation Sciences, pp. 171–192 (2013)

21. Woo, T.C., Thomasma, T.: An algorithm for generating solid elements in objects with
holes. Computers & Structures 18(2), 333–342 (1984)

34 Alberto Belussi et al.

22. Xu, D.: Design and Implementation of Constraints for 3D Spatial Database: Using
Climate City Campus Database as an Example. Master’s thesis, OTB Research Institute
for the Built Environment (2011)

23. Xu, D., van Oosterom, P., Zlatanova, S.: A methodology for modelling of 3D spatial
constraints. In: Advances in 3D Geoinformation, pp. 95–117 (2016)

24. Xu, D., Zlatanova, S.: An approach to develop 3D geo-DBMS topological operators by
re-using existing 2D operators. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences II-2/W1, 291–298 (2013)

25. Zlatanova, S.: On 3D topological relationships. In: Database and Expert Systems Ap-
plications, 2000. Proceedings. 11th International Workshop on, pp. 913–919 (2000)

26. Zlatanova, S., Abdul-Rahman, A., Shi, W.: Topological models and frameworks for 3D
spatial objects. Computers & Geosciences 30(4), 419–428 (2004)

A Framework for Evaluating 3D Topological Relations 35

A Proofs of the Test Implementations

This section reports the detailed proofs for Prop. 8-11 in Sect. 6.

Proof for Proposition 8 (IT◦∂)

The proof shows that each specialization of the intersection test (IT◦∂) re-
ported in Tab. 6 covers all the possible scenarios between A and B. The com-
plete enumeration of all scenarios is obtained as in Prop. 7 in Sect. 6.
– IT ◦∂

cv,cv(g1, g2) is true if at least one vertex of the boundary of g2 intersects
g1; sufficient conditions for obtaining this result are produced in the fol-
lowing scenarios of Tab. 3: cells (1, 1), (2, 1) and (3, 2). Scenario (3, 4) is
already considered by cell (1, 1). In the proposed test (1st row of Tab. 6)
scenarios (1, 1) and (2, 1) are covered by formula at line 1, while scenario
(3, 2) is covered by formula at line 2.

– all other tests can be converted in a test IT ◦◦
∗,∗ () as shown in Tab. 6. This

can also be done because the boundary of a surface or a solid is always a
cycle, i.e. it has an empty boundary. ut

Proof for Proposition 9 (IT◦−)

The proof shows that each specialization of the intersection test IT◦− covers
all the possible scenarios between A and B. The complete enumeration of all
scenarios is obtained as explained in Prop. 7 in Sect. 6.
– IT ◦−

cv,cv(g1, g2) is true if at least one internal vertex or segment of g1 inter-
sects the exterior of g2; sufficient conditions for obtaining this result are
produced in the following cases of Tab. 3: (i) when it exists at least one
internal vertex of g1 for which the scenarios of cells (4, 1) and (5, 2) do not
occur; (ii) when it exists at least a segment of g1 such that for all segments
of g2 scenarios of cells (6, 1) and (6, 2)(IN) do not occur.
In the proposed test (1st row of Tab. 7) the first case involving scenarios
(4, 1) and (5, 2) is covered by formula at lines 1-2, while the second one
involving scenarios (6, 1) and (6, 2) is covered by formula at line 3.

– IT ◦−
cv,sf (g1, g2) is true if at least one internal vertex or segment of g1 inter-

sects the exterior of g2; sufficient conditions for obtaining this result are
produced in the following cases of Tab. 4: (i) when it exists at least one
internal vertex of g1 for which all the scenarios of cells (1, 1), (2, 1), (3, 2),
(3, 4), (4, 2), (4, 4), (5, 2) and (5, 4) do not occur; (ii) when it exists at least
a segment of g1 such that for all segments and patches of g2 scenarios of
cells (8, 1), (8, 2), (9, 1), (9, 2) and (10, 2) do not occur.
In the proposed test (2nd row of Tab. 7) the first case regarding cells (1, 1),
(2, 1), (3, 4), (4, 4) and (5, 4), is covered by the formula at line 1, regarding
cells (3, 2) and (4, 2), by the formula at line 2 and regarding cell (5, 2) by
formula at line 3; the second case regarding cells (8, 1), (8, 2), (9, 1) and
(9, 2), is covered by the formula at line 4 and, regarding cell (10, 2) by
formula at line 5.

36 Alberto Belussi et al.

– IT ◦−
cv,sd(g1, g2) is true if at least one vertex or segment of g1 intersects the

exterior of g2; sufficient conditions for obtaining this result are produced
in the following cases of Tab. 5: (i) when it exists a vertex of g1 such that
no one of the scenario of cells (1, 1), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (5, 2),
(5, 4), (6, 2), (6, 4), (10, 2) and (11, 2) occurs; (ii) when it exists a segment of
g1 such that the scenario of cell (9, 3) occurs provided that the intersection
between the segment and the patch is a point; (iii) when it exists a segment
of g1 such that no one of the scenarios of cells (8, 1), (8, 2)(IN), (9, 2), (12, 2)
and (9, 3) together with (12, 3) (the segment is contained in the union of a
patch and the interior of the solid) occurs.
In the proposed test (third row of Tab. 7) the first case, regarding all cells, is
covered by the formula at line 1, the second case is covered by the formula
at line 2 combined with line 3, finally the third case is covered by the
formula at line 2 combined with lines 4-19.

– IT ◦−
sf,sf (g1, g2) is true if at least one vertex, segment or patch of g1 intersects

the exterior of g2; sufficient conditions for obtaining this result are produced
in the following cases of Tab. 6-7: (i) when it exists a vertex of g1 such that
no one of the scenario of rows 1− 8, 22 and 23 occurs; (ii) when it exists a
segment of g1 such that no one of the scenarios of cells (13, 1), (13, 2)(IN),
(14, 1), (14, 2)(IN),(15, 1), (15, 2)(IN), (16, 1), (16, 2)(IN), (24, 2) and (25, 2)
occurs; (iii) when it exists a patch of g1 such that no one of the scenarios
of cells (21, 1) and (21, 2)(IN) occurs.
In the proposed test (1st row of Tab. 8) the first case, regarding cells of rows
1 − 4, is covered by the formula at line 1, regarding cells of rows 5 − 8, is
covered by the formula at line 2, regarding cells of rows 22 and 23, is covered
by the formula at line 3; the second case, regarding cells (13, 1), (13, 2)(IN),
(14, 1), (14, 2)(IN),(15, 1), (15, 2)(IN), (16, 1), (16, 2)(IN), is covered by the
formula at line 4, regarding cells (24, 2) and (25, 2), is covered by formula
at line 5; finally the third case is covered by formula at line 6.

– IT ◦−
sf,sd(g1, g2) is true if at least one vertex or segment of g1 intersects the

exterior of g2; sufficient conditions for obtaining this result are produced
in the following cases of Tab. 8-9: (i) when it exists a vertex of g1 such
that no one of the scenario of rows 1 − 6, 16 and 17 occurs; (ii) when
it exists a segment of g1 such that no one of the scenarios of cells (8, 1),
(8, 2)(IN), (9, 2), (11, 1), (11, 2)(IN),(12, 2), (18, 2) and (19, 2) occurs; (iii)
when it exists a patch of g1 such that no one of the scenarios of cells (15, 1),
(15, 2)(IN) and (20, 2) occurs.
In the proposed test (2nd row of Tab. 8) the first case, regarding cells (1, 1),
(2, 4) and (4, 1) (5, 4), is covered by the formula at line 1, regarding cells
(2, 2), (3, 4) and (5, 2), (6, 4), is covered by the formula at line 2, regarding
cells (3, 2) and (6, 2), is covered by the formula at line 3, regarding cells
(16, 2) and (17, 2), is covered by the formula at line 4; the second case is
covered by formula at line 5; finally, the third case, regarding cell (15, 1), is
covered by formula at line 8 (and partially by formula at line 5), regarding
cell (15, 2), is covered by formula at line 8 and, regarding cell (20, 2), is
covered by formula at line 7 and 8.

A Framework for Evaluating 3D Topological Relations 37

– IT ◦−
sd,sd(g1, g2) is true if at least one vertex or segment or patch of g1 inter-

sects the exterior of g2; sufficient conditions for obtaining this result are
produced in the following cases of Tab. 10: (i) when it exists a vertex of g1
such that no one of the scenario of rows 1− 4 occurs; (ii) when it exists a
segment of g1 such that no one of the scenarios of cells (6, 1), (6, 2)(IN),
(7, 2) and (8, 2) occurs; (iii) when it exists a patch of g1 such that no one of
the scenarios of cells (11, 1), (11, 2)(IN) and (12, 2) occurs. Since sd2 cannot
have holes then, there are no other cases to consider, indeed, in order for
s1 to intersect the exterior of s2, it is necessary that at least a patch of s1
intersects the exterior of s2.
In the proposed test (3rd row of Tab. 8) the first case is covered by formula
at line 1 and 2; the second case is covered by formula at line 3 and the
third on by formula at line 4.

Proof for Proposition 9 (IT∂∂)

In the proof we show that each specialization of the intersection test (IT∂∂)
covers all the possible scenarios between A and B. The complete enumeration
of all scenarios is obtained as explained in Prop. 7 in Sect. 6.
– IT ∂∂

cv,cv(g1, g2) is true if at least one vertex of the boundary of g1 is equal to
a vertex of the boundary of g2; sufficient conditions for obtaining this result
are produced in the following case of Tab. 3: cell (1, 1). In the proposed test
(1st row of Tab. 9) this case is covered by the formula at line 1.

– IT ∂∂
cv,sf (g1, g2) is true if at least one vertex of the boundary of g1 intersects

the curve representing the boundary of g2; sufficient conditions for obtain-
ing this result are produced in the following cases of Tab. 4: cells (2bis, 1),
(4bis, 2) and (4bis, 4). In the proposed test (2nd row of Tab. 9) scenario
(4bis, 2) is covered by the formula at line 1, while scenarios (2bis, 1) and
(4bis, 4) are covered by the formula at line 2.

– IT ∂∂
cv,sd(g1, g2) is true if at least one vertex of the boundary of g1 inter-

sects the surface representing the boundary of g2; sufficient conditions for
obtaining this result are produced in the following cases of Tab. 5: cells
(1, 1), (2, 2), (2, 4), (3, 2) and (3, 4). In the proposed test (third row of
Tab. 9) scenarios (1, 1), (2, 4) and (3, 4)(intersection on the patch vertices)
are covered by the formula at line 3; scenarios (2, 2) and (3, 4)(intersection
on the patch segments) are covered by formula at line 2; finally scenario
(3, 2) is covered by formula at line 1.

– All other tests can be converted in a test IT ◦◦
∗,∗ () as shown in Tab. 9. This

can be done also because the boundary of a surface or a solid is always a
cycle, i.e. it has an empty boundary.

Proof for Proposition 9 (IT∂−)

In the proof we show that each specialization of the intersection test (IT∂−)
covers all the possible scenarios between A and B. The complete enumeration
of all scenarios is obtained as explained in Prop. 7 in Sect. 6.

38 Alberto Belussi et al.

– IT ∂−
cv,cv(g1, g2) is true if at least one vertex of the boundary of g1 inter-

sects the exterior of g2; the sufficient condition for obtaining this result is
produced when there exists at least one vertex of the boundary of g1 for
which the scenarios of cells (1, 1), (2, 1), (3, 2) and (3, 4) of Tab. 3 do not
occur. In the proposed test (1st row of Tab. 10) scenarios (1, 1), (2, 1) and
(3, 4) are covered by the formula at line 1, while scenario (3, 2) is covered
by formula at line 2.

– IT ∂−
cv,sf(g1, g2) is true if at least one vertex of the boundary of g1 inter-

sects the exterior of g2; the sufficient condition for obtaining this result is
produced when there exists at least one vertex of the boundary of g1 for
which the scenarios of cells: (1bis, 1), (2bis, 1), (3bis, 2), (3bis, 4), (4bis, 2),
(4bis, 4), (5bis, 2) and (5bis, 4) of Tab. 4 do not occur. In the proposed test
(2nd row of Tab. 10) scenarios (1bis, 1), (2bis, 1), (3bis, 4), (4bis, 4) and
(5bis, 4) (intersection on the patch vertices) are covered by the formula at
line 1; scenario (3bis, 2) and (5bis, 4) (intersection on the patch segments) is
covered by formula at line 2; finally scenario (5bis, 2) is covered by formula
at line 3.

– IT ∂−
cv,sd(g1, g2) is true if at least one vertex of the boundary of g1 intersects

the exterior of g2; sthe sufficient condition for obtaining this result is pro-
duced when there exists at least one vertex of the boundary of g1 for which
the scenarios of cells: (1, 1), (2, 2), (2, 4), (3, 2), (3, 4) and (10, 2) of Tab. 5
do not occur. In the proposed test (3rd row of Tab. 10) scenarios (1, 1),
(2, 4), (3, 4)(intersection on the patch vertices) are covered by the formula
at line 1; scenarios (2, 2) and (3, 4)(intersection on the patch segments) are
covered by formula at line 2; scenario (3, 2) is covered by formula at line
3; finally, scenario (10, 2) is covered by formula at line 4.

– All other tests can be converted in a test IT ◦−
∗,∗ () as shown in Tab. 10. This

can be done also because the boundary of a surface or a solid is always a
cycle, i.e. it has an empty boundary.

