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Abstract

A Conditional Simple Temporal Network (CSTN) is a struc-
ture for representing and reasoning about time in domains
where temporal constraints may be conditioned on outcomes
of observations made in real time. A CSTN is dynami-
cally consistent (DC) if there is a strategy for executing its
time-points such that all relevant constraints will necessar-
ily be satisfied no matter which outcomes happen to be ob-
served. The literature on CSTNs contains only one sound-
and-complete DC-checking algorithm that has been imple-
mented and empirically evaluated. It is a graph-based algo-
rithm that propagates labeled constraints/edges. A second al-
gorithm has been proposed, but not evaluated. It aims to speed
up DC checking by more efficiently dealing with so-called
negative q-loops.
This paper presents a new two-phase approach to DC-
checking for CSTNs. The first phase focuses on identifying
negative q-loops and labeling key time-points within them.
The second phase focuses on computing (labeled) distances
from each time-point to a single sink node. The new algo-
rithm, which is also sound and complete for DC-checking,
is then empirically evaluated against both pre-existing algo-
rithms and shown to be much faster across not only previ-
ously published benchmark problems, but also a new set of
benchmark problems. The results show that, on DC instances,
the new algorithm tends to be an order of magnitude faster
than both existing algorithms. On all other benchmark cases,
the new algorithm performs better than or equivalently to the
existing algorithms.

Introduction
A Conditional Simple Temporal Network (CSTN) is a data
structure for reasoning about time in domains where some
constraints may apply only in certain scenarios. For exam-
ple, a patient who tests positive for a certain disease may
need to receive care more urgently than someone who tests
negative. Conditions in a CSTN are represented by propo-
sitional letters whose truth values are not controlled, but in-
stead observed in real time. Just as doing a blood test gener-
ates a positive or negative result that is only learned in real
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time, the execution of an observation time-point in a CSTN
generates a truth value for its corresponding propositional
letter. An execution strategy for a CSTN specifies when its
time-points will be executed. A strategy can be dynamic in
that its decisions can react to information from past observa-
tions. A CSTN is said to be dynamically consistent (DC) if
it admits a dynamic strategy that guarantees the satisfaction
of all relevant constraints no matter which outcomes are ob-
served during execution. Cairo and Rizzi (2016) showed that
the DC-checking problem for CSTNs is PSPACE-complete.

Different varieties of the DC property have been defined
that differ in how reactive a strategy can be. Tsamardinos
et al. (2003) stipulated that a strategy can react to an obser-
vation after any arbitrarily small, positive delay. Comin et
al. (2015) defined ε-DC, which assumes that a strategy’s re-
action times are bounded below by a fixed ε > 0. Finally,
Cairo et al. (2016; 2017a) defined π-DC, which allows a dy-
namic strategy to react instantaneously (i.e., after zero de-
lay).

This paper focuses exclusively on the π-DC property.
Cairo et al. (2016) presented the first sound-and-complete
π-DC-checking algorithm. However, that algorithm, which
is (pseudo) singly-exponential in the number of observa-
tion time-points, has never been implemented or empirically
evaluated. Hunsberger and Posenato (2018) presented an al-
ternative algorithm (which we shall call HP18), based on the
propagation of labeled constraints. They empirically evalu-
ated the algorithm, demonstrating its practicality. Later, not-
ing that the HP18 algorithm can get bogged down, repeat-
edly cycling through graphical structures called negative q-
loops, Hunsberger and Posenato (2019) presented (what we
shall call) the HP19 algorithm, which included a rule that
can generate edges labeled by expressions such as 〈−∞, α〉,
and generalized existing rules to accommodate such edges.
They did not empirically evaluate the HP19 algorithm, but
conjectured that it would deal more effectively with nega-
tive q-loops.

This paper presents a new approach to π-DC-checking for
CSTNs that involves two phases. The first phase focuses on
identifying negative q-loops and properly labeling key time-
points—not edges—within such loops. The second phase
focuses on computing (labeled) distances from each time-
point to a single sink node. The new algorithm, which is also
sound and complete for DC-checking, is then empirically
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Figure 1: Two sample CSTN graphs

evaluated against both pre-existing algorithms and shown to
be much faster across not only previously published bench-
mark problems, but also a new set of benchmark problems.
The results show that, on DC instances, the new algorithm
tends to be an order of magnitude faster than both exist-
ing algorithms. On all other benchmark cases, the new al-
gorithm performs better than or equivalently to the existing
algorithms.

Preliminaries

Dechter et al. (1991) introduced Simple Temporal Networks
(STNs) to facilitate reasoning about time. An STN has real-
valued variables, called time-points, and binary difference
constraints on those variables. Most STNs have a time-point
Z whose value is fixed at zero. A consistent STN is one that
has a solution as a constraint satisfaction problem.

Tsamardinos et al. (2003) presented CSTNs, which aug-
ment STNs to include observation time-points and their as-
sociated propositional letters. In a CSTN, the execution of
an observation time-point P? generates a truth value for its
associated letter p. In addition, each time-point can be la-
beled by a conjunction of literals specifying the scenarios in
which that time-point must be executed. Finally, they noted
that for any reasonable CSTN, the propositional labels on its
time-points must satisfy certain properties.

Hunsberger et al. (2012) generalized CSTNs to include
labels on constraints, and formalized the properties held by
well-defined CSTNs. Then Cairo et al. (2017b) showed that
for well-defined CSTNs, no loss of generality results from
removing the labels from its time-points. Therefore, this pa-
per restricts attention to CSTNs whose time-points have no
labels—the so-called streamlined CSTNs—and henceforth
uses the term CSTN to refer to streamlined CSTNs.

Fig. 1 shows two sample CSTNs in their graphical forms,
where nodes represent time-points, and labeled, directed
edges represent conditional binary difference constraints.
For example, in the top figure, Z = 0; and P?, Q? and
W? are observation time-points whose execution generates
truth values for p, q and w, respectively. The edge from Y
to Q? being labeled by 〈2, pw〉 indicates that the constraint,
Q? − Y ≤ 2 applies only in scenarios where p and w are
both true.

The Dynamic Consistency of CSTNs

Since the execution of an observation time-point P? gener-
ates a truth value for its associated letter p, a dynamic execu-
tion strategy can react to observations, in real time, possibly
making different execution decisions in different scenarios.
A dynamically consistent CSTN is one that has an execution

strategy that guarantees that all relevant constraints will be
satisfied no matter which values are observed in real time.
This paper focuses on π-dynamic strategies, which can re-
act instantaneously to observations (Cairo, Comin, and Rizzi
2016). The full set of definitions is given in the Appendix.

Existing π-DC-Checking Algorithms

This paper restricts attention to the π-DC-checking prob-
lem for CSTNs (i.e., execution strategies can react instan-
taneously to observations). For convenience, we use the
term DC to mean π-DC. The π-DC-checking algorithms
discussed in this paper are all based on the propagation of
labeled constraints. In graphical terms, each algorithm em-
ploys a set of rules for generating new edges from existing
edges in the CSTN graph. Whereas the characteristic feature
of an inconsistent STN is the existence of a negative-length
loop, the characteristic feature of a non-DC CSTN is the ex-
istence of a negative-length loop whose edges have mutu-
ally consistent propositional labels. For example, a CSTN

with the loop shown below
X Y

〈10, pq〉
〈−15, qr〉 must be

non-DC since in any scenario consistent with pqr, both con-
straints along the negative loop must be satisfied, which
is impossible. (In other networks, such a loop might only
be revealed after extensive constraint propagation.) How-
ever, a DC CSTN may contain negative-length loops whose
edges have mutually inconsistent propositional labels; they
are called negative q-loops. For example, the CSTN at the
top of Fig. 1 is DC, despite having two negative q-loops:
one from X to P? to X , and one from Y to Q? to Y . (Note,
for example, that the label pw on the edge from Y to Q? is
inconsistent with the label ¬p¬w on the edge from Q? to
Y .) In this network, propagations involving the negative q-
loops cannot lead to a negative loop with a consistent label;
hence, the network is non-DC. However, negative q-loops
are not always benign. For example, propagating the nega-
tive q-loops in the CSTN at the bottom of Fig. 1 will eventu-
ally generate a negative loop with a consistent label, imply-
ing that that network is not DC. For these reasons, negative
q-loops pose difficult challenges for any π-DC-checking al-
gorithm.

Each algorithm in this paper generates new edges in the
CSTN graph until: (1) a negative-length self-loop (i.e., a
negative-length edge from a node to itself) with a consistent
label is generated, or (2) no new edges can be generated. In
case (1), the network is not DC; in case (2), it is DC.

The HP18 Algorithm

The only sound-and-complete π-DC-checking algorithm
that has been implemented and empirically evaluated in the
literature is the π-DC-Check algorithm of Hunsberger and
Posenato (2018), hereinafter called HP18. To deal with con-
straints having inconsistent labels, the algorithm sometimes
generates a new kind of propositional label, called a q-label.

Definition 1 (Q-literals, q-labels). A q-literal has the form
?p, where p is a propositional letter. A q-literal represents
that a proposition’s value is unknown. A q-label is a con-
junction of literals and/or q-literals. Q∗ denotes the set of all
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Rule Edge Generation Conditions

Ra
1 X W Z

〈u, α〉 〈v, β〉
〈u+ v, αβ〉 u+v < 0 and αβ ∈ P∗

Rb
1 P? Z

〈w,αp̃〉
〈w,α〉 w < 0, ±̃p �∈ α ∈ Q∗

Rc
1 P? Z Y

〈w,α〉 〈v, βp̃〉
〈max{v, w}, α � β〉 w < 0, ±̃p �∈ α � β ∈

Q∗

W,X, Y ∈ T ; Z = 0; P? ∈ OT ; and u, v, w ∈ R.

Table 1: Edge-generation rules used by the HP18 algorithm

q-labels.
For example, p(?q)¬r and (?p)(?q)(?r) are both q-labels.

The � operator extends conjunction to accommodate
q-labels. Intuitively, if the constraint C1 is labeled by p, and
C2 is labeled by ¬p, then both C1 and C2 must hold as long
as the value of p is unknown, represented by p � ¬p = ?p.
Definition 2 (�). The operator, � : Q∗ × Q∗ → Q�, is
defined thusly. First, for any p ∈ P , p � p = p and
¬p � ¬p = ¬p. For all other combinations of p1, p2 ∈
{p,¬p, ?p}, p1 � p2 =?p. Finally, for any q-labels �1, �2 ∈
Q∗, �1 � �2 ∈ Q∗ denotes the conjunction obtained by ap-
plying � in pairwise fashion to matching literals from �1 and
�2, and conjoining any unmatched literals.
For example: (p¬q(?r)t) � (qr¬s) = p(?q)(?r)¬st.

The HP18 algorithm uses the constraint-propagation/edge-
generation rules shown in Table 1.1 Note that each rule only
generates edges terminating at the zero time-point Z. For the
Rb

1 and Rc
1 rules, p̃ ∈ {p,¬p, ?p}, and ±̃p �∈ α represents

that none of p, ¬p and ?p appear in α.
The Ra

1 rule extends ordinary constraint-propagation in
STNs to accommodate propositional labels. The label on
the generated edge (shaded) is the conjunction of the la-
bels on the pre-existing edges. The Rb

1 rule applies when an
observation time-point P? has a lower bound that is condi-
tioned by some propositional label. This rule stipulates that
the condition on that lower bound cannot depend on the as-
yet-unobserved value of the corresponding letter p. Thus, the
Rb

1 rule removes any occurrence of p from the propositional
label. The Rc

1 rule similarly removes occurrences of p, but
from a propositional label on a different edge. This rule can
generate q-labeled edges: for example, if α = q and β = ¬q,
then α � β = ?q.

Although the HP18 algorithm is sound and complete for π-
DC checking, it can get bogged down cycling through nega-
tive q-loops. For example, recall the CSTN from the bottom

1In Hunsberger and Posenato (2018), the Ra
1 , Rb

1 and Rc
1 rules

were called LPZ , qR0 and qR∗
3, respectively. We use the Ra

i ,
Rb

i , Rc
i notation throughout the paper to highlight the similarities

among groups of rules, while keeping the notation manageable. For
Tables 1-3, the subscript specifies the number of the table in which
the rule first appears; the superscript specifies the general class to
which the rule belongs: a for generalized constraint propagation, b
for basic label modification, and c for complex label modification.

Rule Edge Generation Conditions

Ra
2 X〈−∞, α � β〉 W

〈u, α〉
〈v, β〉

u < 0, u + v < 0, and
α � β ∈ Q∗\P∗

Ra
2 X W Y

〈u, α〉 〈v, β〉
〈u+ v, α � β〉

u+v < 0 and [(α�β =
αβ ∈ P∗) or (u < 0)]

Rb
2 P? X

〈w,αp̃〉
〈w,α〉

w < 0, ±̃p �∈ α ∈ Q∗

Rc
2 P? X Y

〈w,α〉 〈v, βp̃〉
〈max{v, w}, α � β〉

w < 0,±̃p �∈ α � β ∈
Q∗

W,X, Y ∈ T ; u, v ∈ R; u, v, w ∈ [−∞,∞); and P? ∈
OT .

Table 2: Edge-generation rules used by the HP19 algorithm

of Fig. 1, a portion of which is shown in Fig. 2. It shows
ten applications of the Ra

1 , Rb
1 and Rc

1 rules, generating
the dashed edges in the order indicated by the parenthesized
numbers, the end result of which is that the weights on the
edges from P? to Z, and Q? to Z have changed from −13
to −15. After cycling through these interacting negative q-
loops several hundred more times, the resulting edges will
combine with the upper-bound edges from Z to P? and Z
to Q? (not shown in Fig. 2) to generate negative loops with
consistent labels, at which point the algorithm will correctly
conclude that the network is not DC. However, although the
CSTN at the top of Fig. 1 has a similar structure, the pres-
ence of W? and constraints labeled by w and ¬w combine
to ensure that it is DC, which the HP18 algorithm will dis-
cover after cycling through the negative q-loops hundreds of
times.

The HP19 Algorithm

Aiming to speed up π-DC checking by dealing more ef-
fectively with negative q-loops, Hunsberger and Posen-
ato (2019) introduced a new set of sound-and-complete
edge-generation rules which, in this paper, we call the HP19

algorithm.2 It begins with the Ra
2 rule shown in Table 2,

that covers a special case of labeled propagation in which
the two edges (from X to W to X) form a negative q-loop.
(If α � β = αβ ∈ P∗, then the CSTN can be immediately
rejected as not DC.) They showed that instead of setting the
weight on the generated loop to u + v < 0, it is sound to
set it to −∞. Intuitively, such a loop can be understood as
saying thatX cannot be executed as long as the label α�β is
(or might yet be) true. For example, a loop from X to X la-
beled by 〈−∞, (?p)q〉 represents that X cannot be executed
as long as p is unknown and q is (or might yet be) true. They
showed that the Ra

2 rule can greatly speed up π-DC check-

2In Hunsberger and Posenato (2019), the Ra
2 , Ra

2 , Rb
2 and Rc

2

rules were called qInf, qLP+
1 , qR+

0 and qR∗+
3 , respectively. Here,

the circled superscript is used for rules involving loops labeled by
−∞. Because its edge-generation rules are more general than those
used by the (complete) HP18 algorithm, the HP19 algorithm is nec-
essarily complete. Hunsberger and Posenato (2019) proved that the
Ra

2 and Ra
2 rules are sound, but left the soundness proofs of the

Rb
2 and Rc

2 rules as exercises for the reader.
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ZP?XP? Q? Y Q?−13 −13 〈2, p〉 〈−5,¬p〉〈1, q〉〈−3,¬q〉

(1) Ra
1 : 〈−11, p〉, (2) Rc

1: −11(4) Ra
1 : 〈−12, q〉, (5) Rc

1: −12

(3) Ra
1 : 〈−16,¬p〉, (7) Rc

1: 〈−15,¬q〉, (8) Rb
1: −15(6) Ra

1 : 〈−15,¬q〉, (9) Rc
1: 〈−15,¬p〉, (10) Rb

1: −15

Figure 2: The HP18 algorithm cycling through a pair of interacting negative q-loops

ZP?XP? Q? Y Q?−13 −13 〈2, p〉 〈−5,¬p〉〈1, q〉〈−3,¬q〉

(1) Ra
2 : 〈−∞, ?p〉(3) Ra

2 : 〈−∞, ?q〉
(2) Ra

2 : 〈−∞, ?p〉, (5) Rc
2: 〈−∞, ?q〉, (7) Rb

2: −∞(4) Ra
2 : 〈−∞, ?q〉, (6) Rc

2: 〈−∞, ?p〉, (8) Rb
2: −∞

Figure 3: The HP19 algorithm more effectively handling the interacting negative q-loops from Fig. 2

ing because instead of repeatedly cycling through negative
q-loops many times, the HP19 algorithm may cycle through
them only once, using the rest of the rules from Table 2,
which are straightforward extensions of the corresponding
rules from Table 1 to accommodate −∞, and to generate
edges pointing at any node—not just Z. In addition, the Ra

2

rule can generate q-labeled edges, and the Ra
2 rule can be in-

corporated into the Ra
2 rule as a post-process. Note, too, that

a −∞ value generated by the Ra
2 rule can be propagated by

Ra
2 , since X or Y may be identical to W .
Fig. 3 shows that the rules from Table 2 only pass through

the negative q-loops from Fig. 2 once to generate uncondi-
tional lower bounds of ∞ for Q? and P?, at Steps (7) and
(8), respectively. Since P? andQ? have upper bounds of 500
(cf. the bottom of Fig. 1), the network must be non-DC. The
network from the top of Fig. 1 can be similarly analyzed, ex-
cept that the infinite lower bounds generated for Q? and P?
end up being conditioned on ?w. The Rc

2 rule, using the edge
from W? to Z, then generates unconditional lower bounds
of 300 for Q? and P?, enabling the network to be DC.

Although expected to outperform the HP18 algorithm on
networks with negative q-loops, Hunsberger and Posen-
ato (2019) did not empirically evaluate the HP19 algorithm.
(Their only intent was to show its usefulness in a context
where weights on edges could be piecewise-linear func-
tions.)

HP20: A Faster π-DC-Checking Algorithm

This section introduces a new π-DC-checking algorithm for
CSTNs, called HP20, that builds on the algorithms seen
above. The primary insight is that the semantics of satisfying
an edge labeled by 〈−∞, α〉, for some α ∈ Q∗\P∗ does not
depend on the target node of the edge, but only on its source
node. As a result, much of the propagation of such labeled
values by the HP19 algorithm is redundant. The HP20 algo-
rithm avoids this problem by associating such labeled values
only with nodes, not edges.3 The HP20 algorithm also sepa-
rates the job of finding negative q-loops, which it does in a
pre-processing phase, from the main algorithm.

3Whereas the propositional labels, α ∈ P∗, that Tsamardinos
et al. (2003) applied to nodes in (unstreamlined) CSTNs specified
the scenarios in which nodes must be executed, our application of
〈−∞, α〉, with α ∈ Q∗\P∗, to a node specifies a dynamic con-
straint on when that node can be executed. Completely different.

The Semantics of Constraints on Nodes

Hunsberger and Posenato (2018) defined the semantics of

satisfying a (lower-bound) q-labeled constraint X 〈δ, α〉
Z

for any δ < 0 and α ∈ Q∗. Applying this definition to cases
where δ = −∞, and letting the target node be any Y ∈ T ,
yields the following (Hunsberger and Posenato 2019).

Definition 3. The execution strategy σ satisfies the q-

labeled constraint X 〈−∞, α〉
Y if for each scenario s:

(1) [σ(s)]X ≥ [σ(s)]Y +∞; or
(2) some ã ∈ {a,¬a, ?a} appears in α such that σ(s) ob-

serves a π-before Y and s �|= ã.4

Since clause (1) cannot be satisfed, it follows that σ can only
satisfy such a constraint if σ(s) does not execute X until it
first executes some observation time-pointA? that generates
a value for a that ensures that s �|= α. The critical point is that
such a constraint only applies to the source node X; it does
not involve Y at all. For this reason, it makes sense to asso-
ciate such a constraint to the node X (e.g., as in X〈−∞,α〉),
not to the edge fromX to Y . Furthermore, it would be point-
less to forward-propagate such constraints, because the re-
sulting edge would have the same source node, and hence
would be redundant.

Finding Negative Q-Loops

The NQLFinder algorithm, shown in Algorithm 1, is a pre-
process that uses the rules listed in Table 3 to find all nega-
tive q-loops having at most n = |T | time-points.5 The Ra

3
rule propagates forward from each source node X , generat-
ing negative-length edges, but note that v (i.e., the length of
the second edge in the rule) may be non-negative. The Ra

3

rule is similar to the Ra
2 rule from Table 2, except that it

generates a labeled value associated with the node X , not
the edge from X to X . The Rb

3 and R b
3 rules are used as

post-processes for Ra
3 and Ra

3 , respectively, to remove in-
stances of any p̃ ∈ {p,¬p, ?p} when X is the corresponding
observation time-point P?. In the implementation, the four

4The π-before relation (in this case) stipulates that in scenario
s, σ executes A? before Y , or simultaneous with Y , but ordered
before Y . (See the definitions in the Appendix.) For convenience,
this definition assumes the convention that s �|=?p for any p ∈ P∗.

5A negative q-loop with more than n time-points must have a
sub-loop that is a negative q-loop with at most n time-points.
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Algorithm 1: NQLFinder (G)
Input: CSTN G = (T , E).
Output: G modified by NQLF rule.
Q := E, newQ := {}, n := |T | − 1
while Q �= ∅ and n > 0 do

while Q �= ∅ do
(X,Y ) := extract an edge from Q
foreach (Y,W ) ∈ E do

if (X,W ) ∈ E and n �= |T | − 1 then continue
// Update (X,W ) only once

eXWfilled := NQLF ((X,Y ), (Y,W ))
if eXWfilled is new or modified then

newQ = newQ ∪ {eXWfilled}

n := n− 1
Q = newQ

Rule Edge Generation Conditions

Ra
3 X W Y

〈u, α〉 〈v, β〉
〈u+ v, α � β〉

(u < 0 and u + v < 0)
or (α � β ∈ P∗)

Ra
3 X W

〈u, α〉
〈v, β〉 adds X〈−∞,α�β〉 u < 0, u + v < 0, and

α � β ∈ Q∗

Rb
3 P? X

〈w,αp̃〉
〈w,α〉 w < 0, ±̃p �∈ α ∈ Q∗

R b
3 P?〈−∞,p̃α〉 adds P?〈−∞,α〉 ±̃p �∈ α ∈ Q∗

W,X, Y ∈ T ; P? ∈ OT ; u, v, w ∈ R; In 1, if α�β ∈
P∗, then the network must be non-DC.

Table 3: Edge-generation rules for NQLFinder

rules from Table 3 are folded into a single composite rule,
called NQLF.

The overall aim of the NQLFinder algorithm is to find
all nodes that can be labeled by 〈−∞, α〉 for some α. (A
single node may have a set of such labels, each with a dif-
ferent α.) Often, not every node in a negative q-loop can be
so labeled (e.g., source nodes of non-negative-length edges).
When done, any edges discovered by the NQLFinder algo-
rithm are discarded; only the node-constraints are kept.

When NQLFinder is run on the CSTN at the bottom of
Fig. 1, single applications of the Ra

3 rule generate labels
of 〈−∞, ?p〉 for Q?, and 〈−∞, ?q〉 for P?. Afterward, the
main algorithm, discussed below, can use rules R c

6 and R b
3

from Table 4 to generate the unconditional lower bounds of
∞ on P? and Q? which, given their finite upper bounds,
implies that the network must be non-DC.

Propagating Constraints

The main part of the HP20 algorithm uses the rules shown in
Table 4.6 Like the HP18 rules from Table 1, all edges gener-
ated by the HP20 rules have Z as their target, and have finite

6Since these rules are more general than their counterparts in
the (complete) HP18 algorithm, the HP20 algorithm is necessarily
complete. The soundness of the new rules in Tables 3 and 4 can be
proven by straightforward generalizations of the soundness proofs
for the corresponding rules from Tables 1 and 2.

Rule Edge Generation Conditions

Ra
4 X W Z

〈u, α〉 〈v, β〉
〈u+ v, α � β〉

(α�β = αβ ∈ P∗) or
(u < 0 and u+v < 0)

Ra
4 X W〈-∞,β〉

〈u, α〉
adds X〈-∞,α�β〉 u < 0, α � β ∈ Q∗ \

P∗

Rb
1 P? Z

〈w,αp̃〉
〈w,α〉 w < 0, ±̃p �∈ α ∈ Q∗

R b
3 P?〈-∞,p̃α〉 adds P?〈-∞,α〉 ±̃p �∈ α

Rc
1 P? Z Y

〈w,α〉 〈v, βp̃〉
〈max{v, w}, α � β〉

w < 0, ±̃p �∈ α�β ∈
Q∗

R c
4 P? Z Y〈-∞,p̃β〉

〈u, α〉
〈u, α � β〉 u < 0

R c
5

P?〈-∞,α〉 Z Y
〈u, p̃β〉

〈u, α � β〉 u < 0

R c
6
P?〈-∞,α〉 Y〈-∞,p̃β〉 adds Y〈-∞,α�β〉

W,X, Y ∈ T ; Z = 0; P? ∈ OT ; u, v, w ∈ R. In Ra
4 ,

if α � β ∈ P∗, then network must be non-DC.

Table 4: Edge-generation rules for the HP20 algorithm

numerical weights. Like the HP19 rules from Table 2, the
HP20 rules generate labels such as 〈−∞, α〉; however, such
labels are applied to nodes, not edges. The Ra

4 rule is iden-
tical to the Ra

1 rule used by the HP18 algorithm, except that
the Ra

4 rule accommodates q-labels. Each instance of the
Ra

4 rule propagates a 〈−∞, β〉 label on a node backward
across an edge to generate a new node label. The R b

3 rule is
the same as the one used by NQLFinder (cf. Table 3). The
R c

4 , R c
5 and R c

6 rules extend the Rc
1 rule to accommodate

〈−∞, α〉 labels on nodes in different positions.
Since all edges manipulated by the HP20 algorithm have

Z as their target, and the only other labeled values are as-
sociated with nodes, our implementation of the HP20 algo-
rithm, shown as Algorithm 2, makes the following unifying
simplification. If an edge from X to Z has a labeled value
〈δ, α〉,then the implementation treats that labeled value as a
labeled potential that it stores with the node X . Because la-
beled values on edges from X to Z only have finite weights,
such labeled potentials are easily distinguished from the la-
beled values 〈−∞, α〉 that the NQLFinder algorithm as-
signs to nodes. Our implementation also treats these labeled
values as labeled potentials associated with nodes. As a re-
sult, our implementation only generates labeled potentials of
nodes; it does not generate edge constraints at all. Thus, the
Ra

4 and Ra
4 rules can be combined into one rule, to which

the Rb
1 and R b

3 rules can be appended as post-processes,
resulting in a single composite rule called potab in Algo-
rithm 2. Similarly, the Rc

1, R c
4 , R c

5 , and R c
6 rules can be

combined into a single composite rule called potc in Algo-
rithm 2.

In summary, unlike all previous algorithms, Algorithm 2
does not add any edges to the network and checks the dy-
namic consistency by determining the minimal distance to Z
for each node in relevant scenarios. This approach avoids a
large amount of redundant propagation of labeled values on
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Algorithm 2: HP20 (G)
Input: CSTN G = (T , E)
Output: Consistency status: YES/NO
Z.d := {〈0,�〉} // Z = first node; v.d is v’s potential
NQLFinder (G) // Generate 〈−∞, α〉 values
Q := {Z}
while Q �= ∅ do

QObs := {}
while Q �= ∅ do // Update node distances

X := extract a node from Q
foreach eY X := (Y,X) ∈ E do

foreach 〈u, α〉 ∈ X.d do
foreach 〈v, β〉 ∈ eY X do

potab (〈u, α〉, 〈v, β〉)

if Y.d potential was updated then
Insert Y in Q
if Y is an observation time point then

Insert Y in QObs

// Apply potc among obs. time-points ONLY
QObs1 = QObs
while QObs1 �= ∅ do

A? := extract a node from QObs1
foreach observation time-point X? ∈ V do

// Apply potc to X? w.r.t A?
foreach 〈u, ãγ〉 ∈ X.d do

if γ∈P ∗andu=−∞ then return NO
X.d(γ) := u

if X.d potential was updated then
Insert X in Q, QObs and in QObs1

// Apply potc to other time-points
foreach observation time point A? ∈ QObs do

foreach X ∈ V do
if X is an obs. time-point then continue
// Apply potc to X w.r.t A?
foreach 〈u, ãγ〉 ∈ X.d do

if γ∈P ∗andu=−∞ then return NO
X.d(γ) := u

if X.d potential was updated then
Insert X in Q

return YES

edges that is done by earlier algorithms.

Experimental Evaluation

This section compares the performance of our new HP20 al-
gorithm against the pre-existing HP18 and HP19 algorithms.
HP20 refers the implementation of Algorithm 2; HP18 is the
freely available implementation of the π-DC-checking algo-
rithm (Hunsberger and Posenato 2018); HP19 is our imple-
mentation of the alternative π-DC-checking algorithm pro-
posed by Hunsberger and Posenato (2019). All algorithms
and procedures were implemented in Java and executed on a
JVM 8 in a Linux box with two AMD Opteron 4334 CPUs
and 64GB of RAM. The implementation of all algorithms
and procedures is freely available as Java Package (Posen-

ato 2019).
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Figure 4: Execution times vs number of nodes

All implementations were tested on instances of the four
benchmarks from Hunsberger and Posenato (2016). Each
benchmark has at least 250 DC and 250 non-DC CSTNs,
obtained from random workflow schemata generated by the
ATAPIS toolset. The numbers of activities (N ) of random
workflows and choice connectors (corresponding to CSTN
observations (|P|)) were varied, as shown in Fig. 4.

We fixed a time-out of 10 minutes (m) for the execution
of each algorithm on each instance. For the DC instances,
HP19 timed out on 32 of the 250 instances, while HP18 timed
out on only 3. Most of time-outs occurred in benchmark 4.
For the non-DC instances, HP19 timed out on 2 of the 250
instances, while HP18 timed out on 18. The HP20 algorithm
never timed out.

Fig. 4 displays the average execution times of the three
algorithms across all eight benchmarks (4 for DC instances,
4 for non-DC instances), each point representing the aver-
age execution time for instances of the given size. The size
of the benchmarks allows the determination of 95% confi-
dence intervals for the results. The results demonstrate that
the HP18 and HP19 algorithms perform differently for dif-
ferent kinds of networks: HP18 is better than HP19 when in-
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Figure 5: Results of 100n7pQL6nQL1pQL benchmark

stances are DC, while HP19 is better when instances are not
DC. The reason is that HP18 generates labeled values only
on edges pointing at Z, while HP19 can generate labeled val-
ues for any edge. Therefore, when instances are DC (i.e., no
negative cycle with a consistent label), the propagations are
exhausted earlier by the HP18 algorithm. In contrast, when
an instance is non-DC, HP19 tends to detect the negative
loop with a consistent label much more quickly, due to its
more efficient processing of negative q-loops. (The HP18 al-
gorithm can cycle repeatedly through negative q-loops until
some upper bound is violated, which can take a long time if
the upper bound is relatively large.)

The HP20 algorithm can be viewed as combining the
strengths of the HP18 and HP19 algorithms. First, it identi-
fies negative q-loops more efficiently as a pre-process. Sec-
ond it uniformly treats all constraints as labeled potentials
on nodes, avoiding the redundant propagations of 〈−∞, α〉
values on edges by HP19. Since it updates only the potentials
of nodes, when an instance is DC, it updates such potentials
similarly to how the HP18 algorithm updates edges pointing
at Z, without any other useless computations. When an in-
stance is non-DC, the NQLFinder pre-process can detect
negative q-loops efficiently, and the main HP20 algorithm
can manage the node potentials more efficiently than HP19.
Therefore, its performance is better than both of the other al-
gorithms when instances are positive, while it is more or less
equivalent to the HP19 algorithm when instances are nega-
tive.

To study the behavior of the three algorithms with respect
to the structure of possible CSTN instances, we set up a new
random generator of CSTN instances by which it is possi-

ble to generate random instances having a variety of specific
features. Some features can be given as input to the random
generator: number of nodes, number of propositions, proba-
bility of an edge for each pair of nodes, minimal number of
negative q-loops, number of propositions appearing in neg-
ative q-loops, number of edges in negative q-loops, the cir-
cuit weight of negative q-loops, minimal and maximal edge
weights, number of observation time-points in q-loops, min-
imal distance from observation time-points to Z, etc.

Then, we built two new benchmarks. The first,
100n7pQL6nQL1pQL, contains 300 random instances
(150 DC, 150 non-DC) each having 100 nodes, 7 proposi-
tions, and some negative q-loops with 6 edges, cycle weight
-1, and each containing just 1 proposition. The benchmark is
divided into 3 sub-benchmarks of 50 instances each: the first
contains instances in which at least 2 negative q-loops are
present, the second contains instances having at least 4 nega-
tive q-loops, and the third contains instances having at least 6
negative q-loops. In each instance, the weight of an edge is a
random value in [−150, 150]. Figure 5 depicts the execution
times of the three algorithms on the 100n7pQL6nQL1pQL
benchmark. The time-out was fixed to 15 m.

For DC instances, HP19 timed out on approx. 43% of the
instances, while HP18 and HP20 never timed out. For non-
DC instances, HP19 timed out on approx. 6% of the 150 in-
stances, HP18 for approx. 51%, and HP20 for approx. 1%.
These results confirm that instances having negative q-loops
are harder to solve than those without negative q-loops.
Overall, the HP20 algorithm performs best across both DC
and non-DC instances. The results also suggest that the dif-
ference among having 2, 4, and 6 negative q-loops does not
significantly affect the execution times for any of the algo-
rithms.

The second benchmark, 100n7pQL6nQL1pQLFar
Obs, contains the same instances as the first benchmark, but
with the distances of observation time-points from Z mod-
ified. Each observation time-point has an edge to Z with a
random value (distance) in the range [-450, -300]. In this
way, we wanted to study how the algorithms work for solv-
ing negative q-loops. Figure 6 depicts the execution times of
the three algorithms on the 100n7pQL6nQL1pQLFarObs
benchmark. The time-out was fixed to 15 m. For the DC
instances, HP19 timed out for approx. 36% of the 150 in-
stances, while HP18 and HP20 never timed out. For the non-
DC instances, HP19 timed out for approx. 8% of the 150
instances, while HP18 for approx. 59%, and HP20 for ap-
prox. 4%. Although we had expected the HP18 algorithm to
perform much worse on the non-DC instances in this bench-
mark, the results did not confirm this. We will explore differ-
ent benchmarks to further understand the different behaviors
of the three algorithms.

The main takeaway from our evaluation is that the HP20

algorithm performs significantly better than the existing al-
gorithms across many types of benchmarks, and always per-
forms at least as well as those algorithms on all benchmarks.

Conclusions
This paper presented a new approach to DC checking for
CSTNs that results in a sound-and-complete algorithm,
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Figure 6: Results of 100n7pQL6nQL1pQLFarObs benchmark where all observation nodes have a big distance from Z.

called HP20, that is empirically demonstrated to be sig-
nificantly faster than pre-existing DC-checking algorithms
across not only existing benchmarks, but also across a new
set of benchmarks. The HP20 algorithm more efficiently
identifies important graphical structures called negative q-
loops and more efficiently manages the propagation of la-
beled values of the form 〈−∞, α〉. In addition, unlike pre-
vious algorithms, the main phase of the new algorithm
only updates labeled values—whether finite or infinite—on
nodes, not edges.

Looking forward, we plan to evaluate the HP20 algorithm
across a wider variety of benchmark problems to determine
which graphical features most significantly impact its per-
formance.

Appendix: Definition of π-DC for CSTNs

The definitions give below are expressed in the form used by
Hunsberger and Posenato (2018).

Definition 4 (Labels). Let P be a set of propositional letters.
A label is a conjunction of (positive or negative) literals from
P . The empty label is notated �; and P∗ denotes the set of
all satisfiable labels with literals from P .

Definition 5 (CSTN). A Conditional Simple Temporal Net-
work (CSTN) is a tuple, 〈T ,P, C,OT ,O〉, where:

• T is a finite set of real-valued time-points (i.e., variables);
• P is a finite set of propositional letters (or propositions);
• C is a set of labeled constraints, each having the form,
(Y −X ≤ δ, �), where X,Y ∈ T , δ ∈ R, and � ∈ P∗;

• OT ⊆ T is a set of observation time-points (OTPs); and
• O : P → OT is a bijection that associates a unique ob-

servation time-point to each propositional letter.

In a CSTN graph, the observation time-point for p (i.e.,
O(p)) is usually denoted by P?; and each labeled constraint,
(Y −X ≤ δ, �), is represented by an arrow from X to Y ,

annotated by the labeled value 〈δ, �〉: X 〈δ, �〉
Y . (If � is

empty, then the arrow is labeled by δ, as in an STN graph.)
Since X and Y may participate in multiple constraints of
the form, (Y −X ≤ δi, �i), the edge from X to Y may have
multiple labeled values of the form, 〈δi, �i〉.

Definition 6 (Schedule). A schedule for a set of time-points
T is a mapping, ψ : T → R. The set of all schedules for any
subset of T is denoted by Ψ.
Definition 7 (Scenario). A function, s : P → {�,⊥}, that
assigns a truth value to each p ∈ P is called a scenario. For
any label � ∈ P∗, the truth value of � determined by s is
denoted by s(�). I denotes the set of all scenarios over P .
The projection of a CSTN onto a scenario, s, is the STN
obtained by including only the constraints whose labels are
true under s (i.e., that must be satisfied in that scenario).
Definition 8 (Projection). Let S = 〈T ,P, C,OT ,O〉 be
any CSTN, and s any scenario over P . The projection of S
onto s—notated S(s)—is the STN, (T , C+

s ), where:
C+
s ={(Y −X≤δ) | ∃�, (Y −X≤δ, �) ∈ C ∧ s(�)=�}

The truth values of propositions in a CSTN are not known
in advance, but a π-dynamic execution strategy can react in-
stantaneously to observations. To make instantaneous reac-
tivity plausible, a π-execution strategy must specify an order
of dependence among simultaneous observations.
Definition 9 (Order of dependence). For any scenario s, and
ordering (P1?, . . . , Pk?) of observation time-points, where
k = |OT |, an order of dependence is a permutation π over
(1, 2, . . . , k); and for each P? ∈ OT , π(P?) ∈ {1, 2, ..., k}
denotes the integer position of P? in that order. For any non-
observation time-point X , we set π(X) = ∞ . Finally, Πk

denotes the set of all permutations over (1, 2, . . . , k).
Definition 10 (π-Execution Strategy). Given any CSTN
S = 〈T ,P, C,OT ,O〉, let k = |OT |. A π-execution strat-
egy for S is a mapping, σ : I → (Ψ×Πk), such that for
each scenario s, σ(s) is a pair (ψ, π) where ψ : T → R is
a schedule and π ∈ Πk is an order of dependence. For
any X ∈ T , [σ(s)]X denotes the execution time of X (i.e.,
ψ(X)); and for any P? ∈ OT , [σ(s)]πP? denotes the posi-
tion of P? in the order of dependence (i.e., π(P?)). Finally,
a π-dynamic strategy must be coherent: for any scenario
s, and any P?, Q? ∈ OT , [σ(s)]P? < [σ(s)]Q? implies
[σ(s)]πP? < [σ(s)]πQ? (i.e., if σ(s) schedules P? before Q?,
then it orders P? before Q?).
Definition 11 (Viability). The π-execution strategy σ is
called viable for the CSTN S if for each scenario s, the
schedule ψ is a solution to the projection S(s), where
σ(s) = (ψ, π).
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Definition 12 (π-History). Let σ be any π-execution strat-
egy for some CSTN S = 〈T ,P, C,OT ,O〉, s any scenario,
t any real number, and d ∈ {1, 2, . . . , |OT |} ∪ {∞} any
integer position (or infinity). The π-history of (t, d) for the
scenario s and strategy σ—denoted by πHist(t, d, s, σ)—is
the set

{(p, s(p)) | P? ∈ OT , [σ(s)]P? ≤ t, π(P?) < d}.

The π-history of (t, d) specifies the truth value of each p ∈
P that is observed before t, or at t if the corresponding P?
is ordered before position d by the permutation π.

Definition 13 (π-Dynamic Strategy). A π-execution strat-
egy, σ, for a CSTN is called π-dynamic if for every pair of
scenarios, s1 and s2, and every time-point X ∈ T :

let: t = [σ(s1)]X , and d = [σ(s1)]
π
X .

if: πHist(t, d, s1, σ) = πHist(t, d, s2, σ)

then: [σ(s2)]X = t and [σ(s2)]
π
X = d.

Thus, if σ executesX at time t and position d in scenario s1,
and the histories, πHist(t, d, s1, σ) and πHist(t, d, s2, σ),
are the same, then σ must also execute X at time t and in
position d in s2. (X may be an observation time-point.)

Definition 14 (π-Dynamic Consistency). A CSTN, S , is π-
dynamically consistent (π-DC) if there exists a π-execution
strategy for S that is both viable and π-dynamic.
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