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ABSTRACT 

Background. Brain surgery in motor areas requires a balance between radical 

surgical resection and risk of postoperative motor deficits. Intraoperative 

neurophysiological monitoring, especially with motor evoked potentials (MEPs), 

provides a valuable help in such conditions; however, the correlation between MEP 

amplitude changes and clinical outcome is not always clear. A stronger 

neurophysiological predictor of outcome is therefore desirable. 

Objectives. The aims of this Thesis are: a. to analyze the limits of MEP 

monitoring during brain surgery in motor areas with a special attention to the 

confounding factors that may alter the interpretation of MEP changes during surgery; 

b. to verify and confirm the role of a strong neurophysiological predictor of outcome 

- the D-wave monitoring - during surgery for intramedullary spinal cord tumor; c. to 

apply the D-wave monitoring during brain surgery in motor areas. The Thesis is 

divided in three sections according to the aforementioned objectives. 

Materials and Methods. In the first section, a consecutive cohort of 157 patients 

submitted to surgical removal of a tumour adjacent to the motor areas and CST with 

simultaneous subcortical motor mapping and DCS MEP monitoring were analysed. 

Motor function was assessed the day after surgery, at discharge, and at further follow-

up postoperatively. A post-hoc analysis was conducted in order to analyse possible 

pre- and postoperative confounding factors during MEP changes interpretation. In the 

second section, a consecutive cohort of 219 patients submitted to surgery for 

intramedullary spinal cord tumors (ISCTs) with simultaneous muscle MEP and D-

wave monitoring were analysed. Motor function was assessed the day after surgery, at 

discharge, and at further follow-up postoperatively. A post-hoc analysis was performed 

in order to verify the reliability of D-wave monitoring as a strong outcome predictor. 

In the third section, we report the experience of 3 consecutive cases operated on for 

brain tumors in motor areas with the aid of D-wave monitoring. 

Results. Section I: the location of the tumour in the prefrontal cortex and along 

the CST are related with a higher rate of postoperative motor deficits (p=0.04 and 

p=0.008, respectively); for tumours located in the prefrontal cortex, 53% of patients 

showed new motor deficit with changes of MEP in 16% of them. Different muscles 

showed different capability to predict new motor deficits; furthermore, the higher is 

the number of muscles with MEP amplitude below the threshold, the higher is the 
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probability of a new stable motor deficit. Section II: D-wave monitoring is a valuable 

help during surgery for ISCTs and show a sensitivity of 33.3%, a specificity of 99.2%; 

positive predictive value is 50% and negative predictive value is 98.4%. The accuracy 

calculated is 97.6%. Section III: we were able to record TES D-wave in patients 2 and 

3; in patient 1 we obtained the D-wave only with TES of the hemisphere contralateral 

to the tumour. It was not possible to obtain a clear D-wave from DCS in all three 

patients. In patients 2 and 3 it was possible to obtain the D-wave through subcortical 

bipolar stimulation along CST. 

Conclusions. Intraoperative neurophysiology is a valuable help during surgery in 

motor areas. MEP monitoring provide useful and reliable information during surgery, 

but it is not always easy to analyse the relationship between intraoperative changes and 

clinical outcome. D-wave monitoring is a well-known technique and our results 

confirmed its role of strong outcome predictor. The application of this technique for 

brain surgery can help to overcome the limits of MEP monitoring alone. 
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Introduction 

Surgical removal of tumors located in or nearby the motor areas is classically 

complicated by a dichotomy: the need for a maximal resection in order to achieve a 

good overall survival1,40,52 and the need for absent or at least minimal new postoperative 

motor deficits. It is particularly difficult to balance between these two factors: in fact, 

on one side a maximal resection of the tumor can affect the prognosis of the 

patients51,61, but at the same time it can damage the quality of life after surgery with the 

onset of new postoperative deficits. 

Despite recent technological advances like diffusion tensor imaging (DTI) 

fiber tracking14,62 and neuronavigation45, intraoperative neurophysiological monitoring 

(IOM) remains the gold standard technique which helps the surgeon to localize the 

eloquent areas and at the same time it produces real time data regarding the functional 

status of the cortex and the subcortical fibers36-38,46,49. Intraoperative monitoring of 

somatosensory evoked potentials (SSEPs) during surgery was the first application of 

IOM in critically eloquent areas; however, the theoretical assumption that a damage of 

somatosensory pathways could predict a motor pathways damage due to their 

anatomical proximity produced a high rate of false negative results after surgery, 

meaning significant postoperative motor deficit without SSEPs changes39,48,49. 

However, from a neurophysiological standpoint, we should not consider these as false 

negative results because we should not expect SSEPs to predict motor injury. In order 

to overcome this misleading limit, the introduction of motor evoked potentials (MEPs) 

monitoring gained increasing attention as a reliable tool able to identify critical surgical 

steps during surgery in the motor areas and nearby the corticospinal tract (CST).  

Surgery nearby M1 can cause multiple types of MEPs changes but an unambiguous 

relationship between intraoperative MEPs changes and clinical outcome can be drawn 

in only one condition, that is the irreversible loss of evoked potentials. In this 

condition, a stable new neurological deficit is expected. Irreversible deterioration is an 

intermediate change of the evoked potential and its interpretation is not always 

straightforward. Many authors evaluated the deterioration of MEPs during surgery 

29,30,36,41,56 in order to understand how relevant should be the reduction of the amplitude 

to create a stable motor deficit. According to this, two deterioration thresholds have 

been proposed: amplitude reduction below 50% and below 80% of the initial value. 

However, the evaluation of these two thresholds might be further complicated by 
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other factors like the number of muscles with a relevant deterioration of amplitude 

and the different types of muscles that might express significant changes in MEPS 

amplitude.  

The aforementioned MEPs and SSEPs monitoring techniques have been 

extensively adopted also during intramedullary spinal cord tumors (ISCTs). Recording 

of an evoked potential after stimulation of M1 transcranially can be done at two levels: 

proximal (along the spinal cord) and distal (muscle MEPs). The former, namely the D-

wave, represents the “direct” expression of the pyramidal cell stimulation and it is 

characterized by a very short interval between central stimulus and EP recordings 

along the spinal cord (depending on the level of recordings along the spinal cord). The 

D-wave is known as a strong predictor of clinical outcome during surgery for ISCTs: 

the preservation of the D-wave amplitude above 50% of the baseline value during 

surgery is related with a very low risk for new and stable neurological deficits6,28,50.  

 Due to the relevant clinical value of D-wave monitoring during ISCTs, a few 

Japanese clinical reports evaluated the role of D-wave during brain surgery nearby 

M111,12,60, in order to overcome the uncertain clinical value of intermediate MEPs 

changes. However, the application of D-wave monitoring for brain surgeries requires 

the percutaneous positioning of an epidural electrode at a high cervical level (C2-C3). 

Being this point the main limitation of the procedure, D-wave monitoring is not 

scheduled in the routine IOM setting for surgery around M1 in most countries. It 

should be mentioned, after all, that routine procedures of neuromodulation surgeries 

require percutaneous positioning of epidural electrode possibly reducing the rate of 

surgical risk related to the electrode positioning. 

 

This thesis is aimed to address the following hypotheses: 1. Different 

modalities of IOM setting during surgery in motor areas might influence the final 

reliability of IOM; 2. D-wave monitoring during intramedullary spinal cord tumors 

(ISCTs) surgery is a strong predictor of long term postoperative motor deficit; 3. The 

application of D-wave monitoring during surgery in motor areas might help to 

overcome the limits of conventional muscle MEPs monitoring especially in the 

aforementioned conditions in which intermediate changes of MEPs amplitude cannot 

permit a clear relationship between intraoperative neurophysiology and clinical 

outcome.  
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The analysis of these hypotheses will be separately addressed in the different 

section of the thesis: starting from the limits of conventional IONM techniques during 

surgery in motor areas, we will attempt to define which kind confounding factor can 

alter the final reliability of MEPs monitoring and how they can produce misleading 

results in order to underline the need for stronger and straightforward outcome 

predictors (Section 1). D-wave monitoring is known to be a strong predictor of 

outcome but its current application is limited to spinal cord surgery; we will analyze 

the efficiency of D-wave monitoring during ISCTs surgery in order to confirm its role 

of strong outcome predictor (Section 2). In the conclusive section of the thesis we will 

apply D-wave monitoring to brain surgery in motor areas in order to overcome the 

uncertainties of muscle MEPs monitoring (Section 3). 
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SECTION 1: MUSCLE MEPs MONITORING DURING BRAIN SURGERY 

IN MOTOR AREAS: LIMITS AND PERSPECTIVES. 

 

Background 

Brain surgery around M1 has been strongly related to IOM due to the 

possibility to tailor the surgical strategy in order to maximize the resection and reduce 

the risk of neurological sequelae. The standard neurophysiological approach to such 

tumors is bimodal and based on afferent pathways (SSEPs) and efferent pathways 

(MEPs) monitoring. As previously mentioned the role of SSEPs has been overcome 

by MEPs due to their capability to investigate directly the motor pathways instead of 

the indirect data provided by SSEPs. 

The interpretation of MEPs changes during surgery is not always clear. A stable 

EP reassure the surgeon about the neurological integrity of the patient and encourages 

him to pursue a more extensive tumor resection; on the other hand, an EP loss stops 

the surgeon and defines a high risk for new motor deficit. These two conditions have 

a clear relationship with the outcome56. However, intermediate changes of the EPs can 

complicate the intraoperative management of patients due to uncertainties of their 

clinical value. Furthermore, the application and settings of IOM can be influenced by 

multiple technical factors such as the number and the type of muscles available for 

recordings. 

In this section, we reviewed our experience in IOM assisted surgery in motor 

areas in order to analyze the influence of different muscles sensitivity and specificity 

on final positive predictive value (PPV) of IONM. We hypothesized that the difference 

in the number of muscles with MEPs deterioration has a significant influence on the 

final interpretation of IOM; moreover, different muscles have different weight on the 

final positive predictive value (PPV) of IOM.  

 

Methods 

Patients population  

From January 2012 to December 2016 at the Neurosurgical Institute of 

Verona, 157 patients (91 males) with a mean age of 51 years (range 11–80) were 

submitted to surgery for brain lesions involving or adjacent to the cortical and/or 

subcortical motor areas and pathways with the aid of direct cortical stimulation (DCS) 
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muscle MEPs monitoring. All patients of the study had at least 3 months of follow-

up. There were 3 pediatric patients (age < 18 years). 

 

Neurological and radiological assessment 

Preoperatively, every patient underwent a physical examination according to 

the Medical Research Council (MRC) scale4(table 1.1): six different skeletal movements 

(arm flexion, hand extension, thumb abduction, leg flexion, dorsiflexion of the foot 

and of the big toe) were evaluated and graded (grade 0 to 5 of the MRC scale).  

 

Table 1.1. Muscle strength assessment according to the MRC scale 

MRC grade Muscle strength 

0 Absent muscle contraction 

1 Contraction, no active movement 

2 Active movement that cannot overcome gravity 

3 Active movement that can overcome gravity 

4 Active movement against gravity and resistance 

5 Normal muscle strenght 

MRC=Medical research council 

 

Their preoperative motor deficits were none (94), mild (35), moderate (25), or 

severe (3). The mean interval between the clinical onset of symptoms and the diagnosis 

was 8.4 months. Their main clinical presentations were seizure (80), paresis (32), 

asymptomatic MRI tumor progression (20), dysphasia (8), altered mental status (6), 

headache (5), visual disturbances (3), paresthesia (2), or gait disturbances (1). Over half 

(86) were on maintenance anticonvulsant therapy. 

All patients underwent MRI for diagnosis and localization of the tumor; DTI 

fiber tracking of the CST was collected whenever possible; the data collected were used 

for intraoperative neuro-navigation (Stealthstation Surgical Navigation System, 

Medtronic, USA). Tumor locations were anterior to the primary motor gyrus - M1 - 

(34), deep frontotemporal extending to the insula (32), M1 (26), primary 

somatosensory gyrus - S1 - (22), subcortical near the CST (19), deep temporoparietal 

(13), or M1 and S1 (11). Left–right hemispheric distribution was approximately equal. 
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All patients underwent postoperative CT scan and/or MRI in order to evaluate 

the presence of surgical complications (secondary hemorrhage, increasing edema and 

ischemia) and the grade of surgical resection.  The degree of resection was classified 

as radical, near radical and partial according to CT or MRI contrast-enhanced images 

obtained within 48h after surgical procedures. All the cerebral lesions were classified 

on the basis of histopathological findings according to WHO 2007 classification31.

 A radical removal was obtained in 72.6% of cases. The lesions were 

glioblastoma (68), anaplastic astrocytoma (37), low-grade glioma (18), metastatic (11), 

meningioma (7), cavernoma (10), or other tumors (6). 

The motor status was routinely assessed immediately after surgery, 24 hours 

after surgery, at discharge (on average 8 days after surgery, with a range between 3 and 

20 days), and at follow-up. Any new surgery-related motor deficit was differentiated in 

temporary and permanent. A temporary deficit was defined as a new or aggravated 

postoperative motor deficit that disappeared during the follow-up period. A new 

permanent deficit was defined as a new or aggravated motor deficit related to surgery, 

which did not resolve to the preoperative status during the follow-up period. The 

motor function - as an average of the scores of all muscles -  was considered preserved 

or mildly compromised when the mean value of strength was ≥ 4 MRC grade; 

moderately compromised when it was between 2 and 4 MRC grades; severely 

compromised when it was < 2 MRC grade. Furthermore, the difference between 

postoperative and preoperative evaluations was classified as follows: no new paresis; 

new mild paresis (if mean MRC value decreased less than 1 grade compared to the 

preoperative value); new moderate paresis (if mean MRC value decreased between 1 

and 2 grades); new severe paresis (if mean MRC value decreased more than 2 grades) 

(table 1.2).  
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Table 1.2. Classification of clinical outcome according to the variation of preoperative MRC scale. 

MRC=Medical research council 

 

Anesthesia protocol 

 The anesthesia protocol applied was a total intravenous anesthesia (TIVA) 

obtained by a continued infusion of Propofol (100-150 µg/kg/min) and Fentanyl 

(1µg/kg/min), avoiding bolus. Short acting relaxants were administered for intubation 

purpose only and then avoided. Halogenated anesthetic agents and nitrous oxide were 

avoided. 

 

Intraoperative monitoring and warning criteria 

Muscle evoked potentials were initially elicited by transcranial electrical 

stimulation (TES) via corkscrew needle electrodes from the scalp. Short trains of 5 to 

7 square-wave stimuli of 0.5 ms duration and interstimulus interval of 4 ms were 

applied at a repetition rate up to 2 Hz through electrodes placed at C1 and C2 scalp 

sites, according to the 10/10 EEG system with maximum intensities of 200mA. 

Muscle responses were recorded via needle electrodes inserted in contralateral upper 

and lower extremity muscles (abductor pollicis brevis, extensor digitorum longus, and 

biceps brachialis for the arm and tibialis anterior and abductor hallucis for the leg) and 

if the facial nerve integrity was at risk, we recorded the potentials via needles inserted 

in contralateral orbicularis oculi and orbicularis ori muscles. The Axon Sentinel-4 

evoked potential system with modified software (AXON System, Inc., Hauppage, NY) 

and more recently the Inomed ISIS INM System (Inomed, Medizintechnik GmbH, 

Emmendingen, Germany) were used for stimulation and recording. Once the dura 

Clinical definition Clinical characteristics 

no paresis no changes between post-op and pre-op 

transient paresis only temp. change of mean MRC g. value 

persistent mild paresis 
mean MRC g. follow up - mean MRC g. pre-

op between 0 and -1 

persistent moderate paresis 
mean MRC g. follow up - mean MRC g. pre-op 

between -1 and -2 

persistent severe paresis 
mean MRC g. follow up - mean MRC g. pre-

op inferior to -2 
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mater was opened, if M1 was accessible, the central sulcus was identified using the 

median nerve somatosensory evoked potentials (SSEPs) phase-reversal technique, 

recording from a strip electrode3. Then, the same cortical electrodes were used as an 

anode for DCS of the motor cortex, while cathode was at Fz. The electrode with the 

lower threshold to elicit contralateral MEPs was then used for monitoring MEPs using 

the same parameters as for TES, except for much lower intensity (up to 35mA). TES 

was used before opening the dura mater, whereas DCS was used whenever possible. 

Before the beginning of surgery, the baseline MEPs values were recorded with TES 

technique once the patient was positioned then it was verified during the dural 

opening. Once the surface electrode was positioned and before starting the tumor 

dissection, the lower threshold to elicit contralateral MEPs was set as baseline value 

for DCS MEPs. 

MEPs were sequentially recorded and observed by a technologist trained in 

IOM techniques. An experienced neurophysiologist provided supervision and 

interpretation of IOM data, that were analyzed in real time and monitored for 

amplitude and latency. Depending on the status of the resection, intervals were 

shortened to guarantee maximum safety. MEPs amplitude was evaluated by measuring 

peak to peak differences, whereas latency was defined as the span between the start of 

the stimulation in a given sequence and the first assessable amplitude. The surgical 

removal of the tumor was obtained with the aid of an ultrasound aspirator and 

neuronavigation. In case of MEPs amplitude reductions during surgery, technical 

issues were ruled out at first, then systemic blood pressure, anesthesia and body 

temperature were checked. If the reduction was still present, two alert levels were used: 

the first one was a persistent decrease in MEPs amplitude or an increase of the 

threshold to elicit MEPs and the second one was a loss of MEPs. According to the 

aforementioned levels of alarm, a significant deterioration of the amplitude was always 

reported to the surgeon; the second level was always followed by a modification of the 

surgical strategy that included temporary halt of resection, readjustment of retractors, 

warm irrigation, irrigation with Papaverine to avoid vasospasm and increasing of 

systemic arterial blood pressure. Depending on the recovering of MEPs and the 

preoperative planning, surgery was resumed or aborted.  

Muscle MEPs changes comprehended reversible (reduction and loss) and 

irreversible changes (reduction and loss). Irreversible reduction of amplitude defined 
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a persistent reduction of the muscle MEPs amplitude (but still present at the end of 

the procedure) that did not recover despite all the aforementioned anesthesiological 

and surgical rescue steps. Irreversible loss defined the complete and persistent 

disappearance of the muscle MEPs despite all the rescue manoeuvres. Due to the 

retrospective nature of the present study it was not possible to evaluate separately the 

reversible variation of the muscle MEPs, thus the comparison between clinical 

outcome and muscle MEPs changes were plotted in 2 x 2 tables. 

  

Statistical analysis 

Different coefficients were used to estimate the correlation between MEPs and 

postoperative clinical outcome (MRC scale). Muscle MEPs changes were evaluated in 

a post hoc fashion and the results were plotted categorizing the clinical outcome and 

muscle MEPs changes in two groups each: stable vs neurologically worsened patients 

and unchanged vs changed muscles MEPs at the end of the surgical procedure. In 

order to stratify the variations of muscle MEPs during surgery, two post hoc thresholds 

were adopted in order to verify the accuracy of the different kind and number of 

muscles used for MEP monitoring to predict a neurological worsening: reduction 

below 50% and 80% of the baseline value29,30. 

Receiver operating characteristic (ROC) curves were built to determine the 

best cutoff of different muscles used for MEPs monitoring and the areas under the 

curve (AUC) were calculated to estimate accuracy. Ratios, sensitivity, and specificity of 

all muscles were determined by using different cutoff amplitude. 

 

Results 

Clinical outcome 

After surgery, a total of 78 patients (50%) showed absent or mild motor 

deficits. More specifically, out of 78 patients, 58 patients (74%) remained 

neurologically intact after surgery whereas 20 patients (26%) showed mild new motor 

deficits (mean worsening of <1 MRC grade). A total of 54 patients (34%) showed 

moderate motor deficit after surgery (mean MRC between 2 and 4); out of them, 9 

patients (26%) showed stability of the preoperative neurological status, 10 patients 

(28%) showed mild worsening of the preoperative status (mean worsening of <1 MRC 

grade), 25 patients (46%) showed moderate worsening of the preoperative status 
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(mean worsening between 1 and 2 MRC grades) and 10 patients (28%) presented a 

severe worsening of the preoperative status (mean worsening of >2 MRC grades). A 

total of 25 patients (16%) showed severe motor deficit after surgery (mean MRC < 2); 

out of them, 3 patients (12%) showed mild worsening of the preoperative status (mean 

worsening of <1 MRC grade), 2 patients (8%) showed moderated worsening (mean 

worsening between 1 and 2 MRC grades); the remaining 20 patients (80%) showed 

severe worsening of the preoperative status (mean worsening of >2 MRC grades). A 

postoperative CT scan revealed hematoma of the surgical field in 18 cases with need 

for surgical evacuation in 4 cases; of these 4 patients, 3 showed a mean MRC grade 

deterioration of -2.5 after surgery and then after the evacuation of the hematoma 

recovered to -1.3 grades, the last patient did not recover (mean MRC <2 at discharge). 

A subdural hematoma was revealed in 9 cases with need for evacuation in 1 case with 

final complete recovery of the preoperative MRC grade at discharge; marked 

postoperative edema was present at the postoperative CT scan in 31 cases and required 

prolonged medical therapy in 3 cases. 

 At discharge the motor status varied as follows: 108 patients (69%) showed 

absent or mild motor deficits; 69 patients (64%) did not show any deterioration of the 

preoperative status, 23 patients (21%) showed a mild worsening of the preoperative 

status (an average deterioration of 0.5 MRC grades) and 16 patients (15%) showed an 

amelioration of the preoperative status. A moderate motor deficit was present in 42 

cases (27%): 3 patients (7%) remained stable, 5 patients (12%) showed an amelioration 

of symptoms (average MRC grade improvement + 0.9), 15 patients (36%) showed 

mild deterioration (mean worsening of <1 MRC grade), 13 patients (31%) showed a 

moderate deterioration (mean worsening between 1 and 2 MRC grades) and 6 patients 

(14%) showed a severe deterioration (mean worsening of >2 MRC grades). A severe 

motor deficit was present in 7 patients (4%): 1 patient (14%) remained stable, 1 patient 

(14%) showed a moderate motor worsening and 5 patients (72%) showed a severe 

motor deficit, as compared to preoperatively. 

 The average follow-up range was 3.4 months (range 3 - 9.9 months). The final 

clinical outcome varied as follows. A total of 123 patients did not show any new motor 

deficit at follow-up after surgery and more specifically 100 patients (81%) remained 

neurologically stable (no deterioration from the preoperative status) whereas 23 

patients (19%) ameliorated as compared to the preoperative status with an average of 
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+0.8 MRC grades. Out of these 123 patients, 37 cases (30%) presented after surgery a 

new motor deficit which completely recovered at the time of follow-up (temporary 

deficits): in this group, the mean variation of MRC grade after surgery was -1.2 (clinical 

deterioration after surgery) followed by a mean variation MRC grade of +0.7 (clinical 

improvement) at discharge and +1.7 at follow-up. A total of 21 patients (14%) showed 

a mild persistent motor deficit (MRC between 4 and 5) at follow-up with a final average 

variation of the preoperative MRC grade of -0.6; 9 patients (6%) showed a persistent 

moderate persistent motor deficit (MRC between 2 and 4) with a final average MRC 

grade variation of -1.8; 4 patients (2%) showed a persistent severe motor deficit (MRC 

< 2) with a final average MRC grade deterioration of -3.0.  

  

Intraoperative neurophysiology 

Preoperative factors influencing motor outcome. The average number of muscles used 

for MEPs monitoring was 3. The upper extremities MEPs were recorded from the 

abductor pollicis (AP) brevis in 144 cases, from the extensor digitorum longus (EC) in 

128 cases and from the brachial biceps (BB) in 28 cases; the lower extremities MEPs 

were recorded from the tibialis anterior (TA) in 71 cases whereas from the abductor 

hallucis (AA) in 68 cases.  

 A multivariate analysis of preoperative determining factors on MEPs 

monitoring reliability showed that the location of the tumor in the prefrontal cortex - 

posterior segment of II frontal gyrus and SMA - (p=0.04) and along the CST (p=0.008) 

are related with a higher rate of postoperative permanent deficit (clinical condition 

established at follow-up). Patients operated for tumor in the prefrontal area (34 cases) 

showed a clinical deterioration after surgery in 18 cases with 9 of them with MRC 

grade < 2; a significant deterioration of MEPs were reported in 3 cases (16.6%). An 

increase of the amplitude at the end of surgery was reported in 14 cases and 5 (27.7%) 

of them presented a clinical deterioration after surgery. Out of 18 cases, 8 recovered 

completely by the time of discharge, whereas 10 patients showed an ameliorated but 

persistent deficit at follow-up.  

The pre-existent use of antiepileptic drugs did not influence the reliability of 

MEPs monitoring on final outcome (p=0.1). The probability of a long-term deficit in 

case of a tumor located in the prefrontal cortex or along the CST together with a pre-

existing deficit and antiepileptic therapy before surgery was 71% (p<0.001). On the 
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opposite, a case of a tumor located in sites different from the prefrontal cortex and 

along the CST, no preoperative deficits and antiepileptic therapy were related to a risk 

of postoperative long-term deficit of 8% (p=0.04). The rate of intraoperative seizures 

was 9% and we found no influence on the final clinical outcome. 

 Muscle MEP and motor outcome. Different muscles adopted for MEPs monitoring 

were evaluated in their capability to predict a postoperative motor deficit by a post-

hoc analysis on 50% and 80% thresholds. If the MEPs recorded from the abductor 

pollicis brevis was below the 50% threshold at the end of surgery the probability of a 

new deficit was 25% (p=0.05) and it raised to 51% if the threshold was set to 80% 

(p=0.009); if the MEPs recorded from the extensor digitorum longus was over the 

50% threshold the probability of a new deficit was 19% (p<0.001) and 20% with a 

80% threshold (p<0.001) whereas if the amplitude fell below the 50% threshold the 

probability raised to 59.8% (p<0.001) and to 80% with a 80% threshold (p<0.001). 

Recording from the legs, if the MEPs recorded from the tibialis anterior was below 

the 50% threshold, the probability of new deficit was 30% (p=0.02) and it raised to 

69% with an 80% threshold (p<0.001); if the MEPs recorded from the abductor 

hallucis fell under the 50% threshold, the probability of new deficit was 47% (p<0.001) 

and it raised to 65% if the threshold was set at 80% (p<0.001).  

A logistic regression was used to evaluate the weight of different number of 

muscles with recorded MEPs below the 50% threshold: if no recorded MEPs was 

below the threshold at the end of surgery, the probability of a new permanent deficit 

was 14% (p<0.001); if the MEPs amplitude was below the threshold in one muscle at 

the end of surgery the probability raised to 37% (p<0.001) and to 63% (p<0.001) if 

the MEPs amplitude was below the threshold in 2 muscles. No further probability 

related to incremental number of muscles was tested due to the small sample size of 

patients with MEPs amplitude reduction in more than 2 muscles. With a threshold set 

at 80%, the probability of a new stable deficit with no MEPs below the threshold was 

15% (p<0.001) whereas it raised to 61% if the MEPs recorded from one muscle was 

below the threshold at the end of surgery (p<0.001). No further tests were plotted due 

to the small sample size of patients with multiple MEPs decrease, as previously 

mentioned. We found no differences in terms of overall capability to predict a new 

deficit of a single muscle over the others. 



 
  Section 1: Muscle MEP monitoring during brain surgery in motor areas: limits and perspectives. 

18 

In order to evaluate the sensitivity and specificity of different thresholds in the 

prediction of post-operative neurological worsening, a receiver operating characteristic 

(ROC) curves were calculated as follows: 1. An overall evaluation was calculated 

considering only the muscle with the higher variation of amplitude 2. An evaluation of 

each single muscle was plotted to evaluate the reliability of each muscle from whom 

MEPs are recorded; the calculated area under the curves defines the reliability of the 

MEPs recorded from every muscle tested (Fig 1.1, 1.2 and 1.3.). Data regarding the 

overall sensitivity and specificity for different threshold is reported in table 1.3. and 

for each muscle in tables 1.4 to 1.8. 

 

Table 1.3. Overall sensitivity and specificity values according to different threshold, calculated with ROC curves 

(see fig. 1.1). 

ROC= receiver operating characteristic 

 

Table 1.4. Sensitivity and specificity values of brachial biceps MEP according to different threshold, calculated 

with ROC curves (see fig. 1.2a). The reported threshold are fewer than in tab. 1.3 due to small sample size. 

Thresholds Sensitivity Specificity 

10% 80% 82% 

30% 60% 94% 

80% 20% 94% 

90% 20% 100% 

MEP=motor evoked potential, ROC= receiver operating characteristic 

Thresholds Sensitivity Specificity 

10% 79% 44% 

20% 76% 56% 

30% 70% 63% 

40% 64% 79% 

50% 58% 82% 

60% 55% 89% 

80% 44% 95% 

90% 44% 98% 
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Table 1.5. Sensitivity and specificity values of abductor pollicis brevis MEP according to different threshold, 

calculated with ROC curves (see fig. 1.2b). 

 

 

 

 

Table 1.6. Sensitivity and specificity values of extensor digitorum longus MEP according to different threshold, 

calculated with ROC curves (see fig. 1.2c). 

Thresholds Sensitivity Specificity 

10% 54% 68% 

20% 50% 75% 

30% 41% 80% 

40% 29% 85% 

50% 29% 95% 

60% 29% 96% 

80% 29% 98% 

90% 16% 100% 

MEP=motor evoked potential, ROC= receiver operating characteristic 

 

 

 

Thresholds Sensitivity Specificity 

10% 60% 72% 

20% 60% 79% 

30% 53% 81% 

40% 43% 87% 

50% 43% 90% 

60% 40% 92% 

80% 36% 94% 

90% 33% 98% 

MEP=motor evoked potential, ROC= receiver operating characteristic 
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Table 1.7. Sensitivity and specificity values of tibialis anterior MEP according to different threshold, calculated 

with ROC curves (see fig. 1.3a). 

Thresholds Sensitivity Specificity 

10% 52% 63% 

20% 47% 71% 

30% 41% 78% 

40% 41% 80% 

50% 35% 82% 

60% 35% 84% 

80% 29% 93% 

90% 17% 97% 

MEP=motor evoked potential, ROC= receiver operating characteristic 

 

 

 

 

 

Table 1.8. Sensitivity and specificity values of abductor hallucis MEP according to different threshold, calculated 

with ROC curves (see fig. 1.2a). 

Thresholds Sensitivity Specificity 

10% 43% 63% 

20% 43% 73% 

30% 43% 81% 

40% 37% 86% 

50% 37% 89% 

60% 37% 92% 

80% 37% 94% 

90% 25% 94% 

MEP=motor evoked potential, ROC= receiver operating characteristic 
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Figure 1.1. Different threshold of sensitivity and specificity defined with ROC curves (table 1.3). 

ROC= receiver operating characteristic 

Figure 2.2. Sensitivity and specificity of arm’s muscles used during IONM assisted surgery defined with ROC 

curves: a. brachial biceps, b. abductor pollicis brevis and c. extensor digitorum longus. 

a
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b

 

 

 

c

 

IONM= intraoperative neurophysiological monitoring; ROC= receiver operating characteristic 
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Figure 1.3. Sensitivity and specificity of leg’s muscles used during IONM assisted surgery defined with ROC 

curves: a. tibialis anterior, b. abductor hallucis. 

a

 

 

b

 

IONM= intraoperative neurophysiological monitoring; ROC= receiver operating characteristic 
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 In 36 cases (23%), it was possible to have contemporary MEPs recordings 

from 4 different muscles (AP, EC, TA and AA) during all the surgical procedure. A 

ROC curve was plotted in order to obtain in such a circumstance the relationship 

between the muscle with higher variation of amplitude during surgery and the rate of 

postoperative stable motor deficit. The ROC curve of the TA (fig. 1.9) resulted with 

the higher area under the curve (0.707). 

 

Figure 1.9. Sensitivity and specificity of four different muscles in a condition of continuously MEPs monitoring 

from all four muscles (abductor pollicis brevis - AP, extensor digitorum longus - EC, tibialis anterior - TA 

and abductor hallucis - AA) defined with ROC curves. 

 

MEPs= motor evoked potentials; ROC= receiver operating characteristic 

 

ROC curves were used to define the sensitivity and specificity of different 

MEPs amplitude threshold for the prediction of postoperative neurological worsening 

according to different tumor locations. We limited this analysis for tumors located in 

the prefrontal cortex, insula and pre-post central gyrus due to the relatively small 

sample size of the other tumor locations. Data regarding sensitivity and specificity of 

MEPs monitoring according to the aforementioned regions are reported in table 1.9 
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to 1.12 and in figure 1.10 to 1.13. Sensitivity and specificity for different threshold are 

calculated for each tumor location according to the sample size. 

 

Table 1.9. Sensitivity and specificity values for different threshold related to tumors located in the prefrontal 

cortex, calculated with ROC curves (see fig. 1.10). 

Thresholds Sensitivity Specificity 

10% 50% 40% 

20% 50% 50% 

30% 40% 63% 

40% 30% 77% 

50% 30% 90% 

80% 30% 95% 

90% 20% 100% 

ROC= receiver operating characteristic 

 

 

Table 1.10. Sensitivity and specificity values for different threshold related to tumors located in the insula, 

calculated with ROC curves (see fig. 1.11). 

Thresholds Sensitivity Specificity 

10% 100% 52% 

20% 100% 60% 

40% 100% 65% 

50% 100% 73% 

60% 87% 78% 

80% 87% 91% 

90% 75% 95% 

ROC= receiver operating characteristic 
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Table 1.11. Sensitivity and specificity values for different threshold related to tumors located in M1, calculated 

with ROC curves (see fig. 1.12). 

Thresholds Sensitivity Specificity 

10% 100% 57% 

20% 75% 66% 

30% 75% 76% 

40% 75% 85% 

80% 75% 90% 

90% 50% 100% 

ROC= receiver operating characteristic 

 

 

 

Table 1.12. Sensitivity and specificity values for different threshold related to tumors located in the S1 gyrus, 

calculated with ROC curves (see fig. 1.13). 

Thresholds Sensitivity Specificity 

10% 100% 45% 

30% 100% 65% 

40% 100% 80% 

50% 100% 85% 

60% 100% 90% 

80% 50% 90% 

90% 50% 100% 

ROC= receiver operating characteristic 

 



 

 

Figure 1.10. Sensitivity and specificity of MEP monitoring for tumors located in the prefrontal cortex defined 

with ROC curves. 

 

MEP= motor evoked potential; ROC= receiver operating characteristic 

 

Figure 1.11. Sensitivity and specificity of MEP monitoring for tumors located in the insula defined with ROC 

curves. 

 

MEP= motor evoked potential; ROC= receiver operating characteristic 
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Figure 1.12. Sensitivity and specificity of MEP monitoring for tumors located in M1 defined with ROC curves. 

 

MEP= motor evoked potential; ROC= receiver operating characteristic 

 

Figure 1.13. Sensitivity and specificity of MEP monitoring for tumors located in the S1 defined with 

ROC curves. 

 

MEP= motor evoked potential; ROC= receiver operating characteristic 
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Discussion 

 Muscle MEPs monitoring are confirmed as undeniable IOM tool during 

surgery for brain tumors in motor areas. Our data confirmed the overall reliability of 

the method, final predictive value of IOM can be influenced by various preoperative 

and intraoperative variables. The preoperative condition of the patients, the location 

of the tumor in the prefrontal cortex and/or along the corticospinal tracts reduce the 

reliability of MEPs monitoring. On the other hand, the differences in the modality of 

MEPs application between different patients (different muscles, different number of 

muscle contemporary available for MEPs monitoring) may introduce a bias during the 

“on line” interpretation of MEPs changes during surgery. Our study highlighted the 

different probability of final long-term paresis related to the different muscle from 

whom the MEPs deterioration is recorded and the final value of MEPs changes among 

different muscles. 

 It should be note that the present study was designed as retrospective and 

based on post hoc analysis of muscle MEPs changes at the end of surgery, making a 

comparison between pre- and postoperative neurological status of the patients in a 2 

x 2 fashion. From a methodological standpoint, this construction caused an 

incomplete evaluation on how reversible changes of muscle MEPs can cause 

intraoperative surgical maneuvers that could eventually had affected the clinical 

outcome of patients. As highlighted by Skinner55, reversible EP changes represent a 

particular problem because a surgical intervention in response to muscle MEP decline 

occurs before execution of the reference standard, that is intraoperative or 

postoperative wake up. Hill described nine guidelines of evidence for causation when 

an association is observed between two variables21 and these guidelines has been 

adopted by Skinner to deploy a Bayesian adjustment of posttest probability55 in order 

to introduce a balance between reversible changes considered irrelevant (or true 

negative) and reversible changes considered always as true positive. The value of this 

approach is clearly exampled in vascular neurosurgery: during the exclusion of an 

aneurysm, the inadvertent occlusion of a perforator hidden by the aneurysm produces 

a decrease in muscle MEPs amplitude which is reported to the surgeon; the clip is 

removed and the muscle MEPs restored. At the end of surgery, if compared to the 

baseline values, there is no change of the EPs, however the reversible changes during 

surgery prevented an almost sure new post-operative deficit. In our scenario, we were 
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not able to provide a post hoc evaluation of the reversible changes and their impact 

on clinical outcome due to the retrospective design of the study. However, we believed 

that the large number of patients evaluated provide a sufficient data to verify our 

hypotheses. 

Muscle MEPs monitoring is a well-established IONM technique, based on 

transcranial (TES) and direct (DCS) electrical stimulation. The application of DCS was 

described by Taniguchi et al in 199358, earlier than the application of TES. The 

application of DCS MEP monitoring gained attention in the subsequent years, with 

larger application of the technique during surgery in motor areas26,49. Seidel et al54 

described their experience during surgery for peri-central brain tumors in 100 

consecutive patients. The authors stated that unchanged or reversible DCS MEP 

findings gave a 100% negative predictive value for postoperative deficit at 3 months. 

On the other hand, given the fact that “irreversible change” is a post hoc definition, 

irreversible DCS MEP change is a suboptimal indicator during surgery. According to 

Seidel et al54, direct surgical damage occurred at a statistically significant lower rate 

when the subcortical stimulation intensity is > 4 mA and since the incidence of 

decreased neurologic deficit at 3 months was relatively low for thresholds of 1 to 3 

mA, the safe subcortical stimulation threshold for resection could be pushed as low as 

2 mA. It should be kept in mind that in brain surgery with critical vicinity to the motor 

cortex or to the corticospinal tract, new motor impairment despite preserved 

intraoperative MEP might occur through a number of different mechanisms. An 

excessive intensity of stimulation for TES MEP monitoring may lead to elicitation of 

CST action potentials caudal to the target territory, and true damage to the CST may 

remain unnoticed. Thus, keeping the stimulation current intensity at a slightly supra-

threshold level for stable MEP responses it is of paramount importance57. In our series, 

subcortical location of the tumour along the CST was related to a significant risk for 

postoperative deficits and patients submitted to subcortical mapping (53% of patients 

with a tumour along the CST) showed a slightly worse clinical outcome than patients 

“not mapped”; however, one should keep in mind that subcortical mapping is applied 

for patients at a very high risk of new postoperative motor deficit due to the location 

of the tumour and furthermore it should be noted that for this specific location 

patients submitted to subcortical mapping harboured a glioblastoma in 70% of cases 

and the mean MRC grade at admission was slightly worse than patients not submitted 
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to subcortical mapping (4.3 for mapped vs 4.6 for not mapped). We believe that the 

reason for the apparent failure of subcortical mapping was mainly due to the intrinsic 

characteristics of the tumour together with a surgical pursue of radical resection42. The 

analysis of our data pointed out that also the prefrontal cortex bears a significant risk 

for long term deficit (p=0.04) but with a high rate of false negative results of MEP: 

after surgery, 9 patients out of 34 cases presented a severe motor deterioration (MRC 

grade <2) and a total of 10 cases out of 34 (29%) showed persistent motor deficit at 

follow-up. MEP changes were recorded only in 3 cases out of 34 patients monitored. 

A possible explanation for this high rate of false negative results is related to the 

inability of IONM to evaluate different cortical motor networks apart from M1 and 

CST. Penfield and Welsh44 reported that, although the most frequent effect of direct 

electrical stimulation of the SMA was inhibition of voluntary motor and speech 

activity, the unilateral excision of the SMA did not produce a permanent motor deficit. 

However, in the first few days after surgery, when the SMA syndrome is complete, 

hypokinesia can be so severe as to resemble the clinical picture of hemiplegia. 

Experimental studies on connections between M1 and the nearby cortex in monkeys, 

highlighted a marked difference in connection organization between the anterior 

motor areas and the posterior motor areas: The posterior motor areas receive their 

main cortical input form the parietal lobe (“parieto-dependent” motor areas). In 

contrast, the anterior motor areas receive their main cortical connections from the 

prefrontal cortex (”prefronto-dependent” motor areas)33. The prefronto-dependent 

areas do not send projections to M1, but have diffuse connections with the other 

motor areas32; furthermore, they do not project directly to the spinal cord20. In this 

view the parieto-dependent areas receive rich sensory information originating from the 

parietal lobe and use it for action; on the other hand, prefrontal-dependent areas 

receive higher order cognitive information, related to long-term motor plans and 

motivation47. In this setting, the deterioration of patients treated for tumours in the 

prefrontal cortex is related to a damage to the prefrontal network which cannot be 

investigated by MEP monitoring. However, making a comparison between the two 

previously reported regions, one should keep in mind that the direct damage of M1 or 

CST is related with more severe and persistent motor deficits than premotor, 

prefrontal or SMA damage and this is the reason why the goal of surgery is to preserve 

them. The ability of DCS MEPs monitoring is to guide surgery around M1 and along 
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CST but a damage produced in other regions connected in network with these regions 

do not necessarily produce a DCS MEPs changes. On the other hand, it should be 

emphasised that especially with large bundles of fibers, it is impossible to provide a 

perfect information on their functional status34. 

Different application of amplitude threshold has been adopted in order to 

overcome false negative results related to “intermediate” changes of MEP. The 50% 

and 80% threshold have been described by many authors25,29,30,37. Our data showed that 

the capability of muscle MEP deterioration to predict a neurological deficit had an 

overall sensitivity of 58% and specificity of 82% for a threshold set at 50% of the 

baseline values and a sensitivity of 44% and specificity of 95% for a threshold set at 

80%. Evaluating the sensitivity and specificity of each muscle with the same purpose 

as reported above, we found the higher values from abductor pollicis brevis recordings: 

43% sensitivity and 90% specificity for the 50% threshold and 36% sensitivity and 

94% specificity for the 80% threshold. On the other hand, the ROC curves of 

sensitivity and specificity in case of 4 muscles monitored together during all the 

procedure (36 cases) revealed a higher ROC area for the tibialis muscle. Due to wider 

cortical area related to the movement of the hand and the usual exposure of this region 

during surgery in motor areas, one should expect the easier and stronger stability for 

MEP monitoring obtained through stimulation of the hand/superior limb areas. Our 

data findings confirmed this relationship, showing higher sensitivity and specificity for 

superior limb muscle. However, plotting together the simultaneous MEP monitoring 

from 4 different muscles for all the procedure, the higher reliability was found from 

inferior limb muscle. Keeping in mind that these latter data are obtained from only 36 

cases (23%), one can argue that the clinical evaluation of the strength deficit arising 

from tibialis anterior dysfunction can be easier to evaluate and graduate according to 

the MRC scale in comparison with the movement of the hand; furthermore, motor 

units related with the activation of the tibialis anterior muscle are less than the motor 

units for the activation of hand muscle thus if the MEP from tibialis anterior is changed 

during surgery, the probability for direct damage is reasonable higher. 

  According to the threshold applied in the post-hoc analysis, we found 

different probabilities for final motor deficit according to the different muscles from 

whom the MEP was recorded; the higher probabilities of motor deficit were related to 

a decrease below the threshold of the MEP from arms. Furthermore, as predictable, 
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more than 1 muscle with MEP below the threshold is related with a higher probability 

of final motor deterioration.  

Weaknesses of the present study are the retrospective design as previously 

stated and the fact that the overall number of patients with intraoperative significant 

MEP changes are quite low (MEP loss happened in only 6 cases) thus this could 

influence the final analysis of IONM data and its relationship with the clinical outcome. 

The difficulties that are found in the attempt to organize and classify all the 

intraoperative deterioration of MEP highlight the intrinsic limits of the method: DCS 

MEP monitoring is a valuable technique to prevent or at least to limit the onset of new 

motor deficit, however it can be influenced in its efficacy by multiple factors. The real 

limit of the technique is the inability to provide a reliable prediction on the clinical 

outcome following the aforementioned intraoperative scenarios of intermediate MEP 

changes. Furthermore, the amplitude variability expressed by muscle MEPs makes 

baseline selection and amplitude reduction criteria problematic and this is due to their 

polysynaptic origin. In this view, a stronger predictor for long term outcome is 

desirable, especially when a tailored approach is needed. Patients with glioblastoma in 

the peri-motor cortex, given their short life expectancy, should undergo a resection 

that must be as safe as possible in order to guarantee the QOL of patients after surgery. 

On the other hand, a radical resection should be pursued in patients with LGGs to 

warrant a prolonged survival. Therefore, for patients with LGGs, even if the risk of 

transient postoperative deficit is higher when attempting a radical resection, this may 

be acceptable as long as the motor deficit is reversible. However, such tailored 

approach is not completely feasible due to the incomplete relationship of 

intraoperative neurophysiological data and postoperative clinical data.  

 

Conclusions 

 According to our data, the prefrontal cortex and along the CST are related with 

a higher rate of postoperative motor deficits (p=0.04 and p=0.008, respectively); for 

tumours located in the prefrontal cortex, 53% of patients showed new motor deficit 

with deterioration of MEP in 16.6% of them and increase of MEP amplitude in 27.7% 

of cases. Different muscles showed different capability to predict new motor deficits; 

according to our data, the higher is the number of muscles with MEP amplitude below 

the threshold, the higher is the probability of a new stable motor deficit. 
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SECTION 2: INTRAOPERATIVE NEUROPHYSIOLOGY DURING 

SURGERY FOR INTRAMEDULLARY SPINAL CORD 

TUMORS: THE ROLE OF D-WAVE MONITORING. 

 

Background 

The surgical removal of an intramedullary spinal cord tumor (ISCTs) bears a 

high risk of new postoperative motor deficits. Furthermore, the tiny diameter of the 

spinal cord and the high number of packed descending and ascending bundles of fibers 

reduce the tolerance of surgical manipulation and dissection maneuvers.  

Surgery for ISCTs had required an extraordinary development of technology 

in order to obtain a standard IOM setting which was able to predict and possible to 

prevent the risk of postoperative motor deficit6,28. The introduction of somatosensory 

evoked potentials (SSEPs) in 1980 represented the first step into the field of IOM for 

ISCTs. However, the fact that SSEPs could not detect injury to the motor pathways, 

created a high number of “falsely-negative” labeled results (namely, no SSEPs 

deterioration during surgery and new postoperative motor deficit after surgery). This 

was, though, a misleading terminology because we should not expect SSEPs to detect 

motor injury. The application of transcranial electrical stimulation (TES) to elicit motor 

evoked potentials (MEP) started in 1990s and then acquired a higher and higher 

relevance in the management of ISCTs. Moreover, the use of D-wave monitoring 

during surgery with precise alarm criteria and uniform management of critical situation 

has helped to standardize the surgical management of ISCTs28. Furthermore, the 

strong reliability of D-wave monitoring as predictor for long-term motor deficit 

underlined that its application must be standardized during surgery for ISCTs. Yet, 

very few studies specifically addressed D-wave monitoring and data on its reliability in 

large clinical series are still lacking10,13,28,50. 

Therefore, taking advantage from the fact that approximately 300 ISCTs have 

been operated with IONM at our institution over the past 17 years, we reviewed our 

experience to confirm the hypothesis that maintaining the amplitude of the D-wave 

above 50% of the baseline value is the best predictor of good long-term motor 

outcome. 
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Methods 

Patients population  

A retrospective chart review was conducted on 219 patients (117 males) with 

mean age 41.8 years (range 8 - 84 years), who were submitted to IONM assisted surgery 

for ISCTs at the Neurosurgical Institute of Verona between January 2000 to December 

2017; all patients of the study had at least 6 months of follow-up; there were 24 

pediatrics patients (< 18 years-old). 

 

Neurological and radiological assessment 

The main clinical presentation was pain (105), sensory disturbances (63), motor 

symptoms (39) and vertigo (5). In 7 cases the diagnosis was incidental: during 

scheduled radiological exams for trauma (2), in the follow-up after brain tumor 

resection (2) and ISCT (1), during the follow-up for neurofibromatosis 1 and Von 

Hippel-Lindau disease (2). In 34 patients (15.5% of cases) urinary sphincter 

impairment was present at the diagnosis. Patients with presenting with motor deficit 

showed a trend towards a shorter duration of symptoms (average 18.2 months) as 

compared to those who presented with sensory symptoms (average 24.0 months) and 

pain (average 26.7 months).  

According to the McCormick scale (table 2.1), 103 patients were in grade I 

(47%), 85 patients in grade II (38.8%), 24 patients in grade III (11%) and 7 in grade 

IV (3.2%). Globally, 188 patients (86%) were able to walk independently at the time 

of the admission (McCormick grade I and II).  

 

Table 2.1: McCormick scale for functional classification of intramedullary spinal cord tumors 

(ISCTs). 

Grade Characteristics 

I Neurologically normal, mild focal deficits, normal gait 

II 
Sensorimotor deficits affecting function, severe pain, gait difficulties, can 

still walk 

III 
Moderate motor deficit, needs cane for ambulation, ± arms affected, ± 

independent 

IV As above ± arms affected, usually not independent 
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The tumor locations were the cervical (114), the cervico-thoracic (32) and the 

thoraco-lumbar spinal cord (73). The average extension of the tumor was 2.9 levels 

(range 1 - 9 levels). In 82 cases the tumor was cystic. Syringomyelia close to the tumor 

was present in 57 cases: the location of the syrinx was cranial (7), caudal (12) and both 

cranial and caudal to the tumor (38).  

 All the patients were operated on in prone position except for 18 patients with 

a bulbo-cervical tumor (8,2%) who were operated on with the semi-sitting position. 

The extent of resection was considered radical in 174 cases (79%), near-radical 17 cases 

(7.8%) and partial in 18 cases (8%); 10 patients were submitted to biopsy of the tumor 

(5%).  

 The lesions were ependymomas (120), astrocytomas (52), cavernomas (20), 

hemangioblastomas (14) and melanocytic tumors (3). Overall, in 10 patients (4.6%) the 

tumor was metastatic (7 cases of hemangioblastomas and 3 cases of melanocytic 

tumors). All the patients with ependymoma were in WHO grade II except one patient 

who was WHO grade III; in one case, it was not possible to define the grade between 

grade I and II. The astrocytomas were WHO grade I (29), grade II (3), grade III (14) 

and grade IV (6).  

 

Intraoperative monitoring settings and alarm criteria 

Somatosensory evoked potentials (SSEPs) 

Cortical and subcortical SEPs were obtained through stimulation of the 

median nerve at the wrist and the posterior tibial nerve at the ankle (intensity, 40 mA; 

duration, 0.2 ms; repetition rate, 4.3 Hz). Recordings were performed via corkscrew 

needle electrodes inserted in the scalp (CS electrode; Nicolet Biomedical, Madison WI) 

at CZ=-FZ (legs) and C3=/C4=-FZ (arms), according to the international 10–20 

system of electrode placement. 

Motor evoked potentials (MEP) 

In order to obtain MEP recordings from limb muscles, short trains of five to 

seven square-wave stimuli of 0.5 ms duration and interstimulus interval of 4 ms were 

delivered at a repetition rate up to 2 Hz through CS electrodes placed at C1 and C2 

scalp sites, according to the 10–20 system of electrode placement. A C1–C2 montage 

preferentially elicited right extremity MEP, whereas a C2–C1 montage favoured left 

extremity MEP. In order to reduce muscle twitching, sometimes a Cz-Fz montage was 
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preferred, during MEP monitoring from leg muscles. The stimulation intensity did not 

exceed 240 mA. MEP recordings were obtained via needle electrodes 3 cm apart 

inserted into upper and lower extremity muscles. We usually monitored muscle MEP 

from the abductor pollicis brevis and the extensor digitorum longus for the arm and 

the tibialis anterior and the abductor hallucis for the leg.  

Transcranial Electrical Stimulation and Epidural (D-Wave) Recordings 

As soon as the dural surface is exposed, an extradural electrode is placed 

caudally to the tumour. A single transcranial electrical stimulus was applied, using the 

same montages for muscle MEP, to elicit a D-wave that was recorded by the 

aforementioned electrode. Signals were amplified 10,000 times and the bandwidth was 

amplified 1.5 to 1700 Hz. Baseline D-waves were recorded after exposing the spinal 

cord.  

The instrumentation adopted for stimulation and recordings were the same as 

in Section 1 (see Section 1 - Methods). 

Alarm criteria 

According to our previous experiences and the literature, the following IONM 

criteria were applied in order to define and eventually modify the surgical strategy. 1. 

SSEPs: a 50% decrease in amplitude and/or a 10% prolongation in latency were 

considered significant. During the myelotomy, the surgeon was notified and the 

procedure temporarily stopped or was moved to a different location along the tumour 

but if MEP were stable, surgery was continued in all cases. 2. Muscle MEP: 

“presence/absence” criteria were adopted due to the marked trial-to-trial deterioration 

of muscle MEP amplitudes and because of reports that only mMEP loss consistently 

correlates to postoperative motor deficits. Muscle MEP were considered absent when 

no response was recordable using a scale as low as 30 V per division with maximum 

stimulus intensity. As a minor warning sign, however, the surgeon was notified anytime 

the MEP amplitude consistently decreased and/or the stimulation intensity to elicit a 

response progressively increased. 3. D-wave: a decrease of more than 50% of the 

baseline amplitude was considered significant. Decrements of the D-wave amplitude 

between 30 to 50% of the baseline were considered minor warning signs and were 

reported to the surgeon but were not critical to the point of stopping surgery. 

Prolongation of latency was considered not significant because possibly related to 

deterioration of nonspecific factors such as temperature. 
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Clinical and surgical management of alarm criteria 

Minor modifications of D-wave and/or muscle MEP suggested to move the 

surgical dissection to a different area, irrigating the surgical field with warm saline, 

and/or correcting systolic hypotension. On the basis of minor changes, the surgical 

procedure was never abandoned. The disappearance of MEP with preservation of the 

D-wave amplitude at more than 50% of the initial value was considered a major change 

likely to reflect a transient postoperative motor deficit in the affected limb. In this 

condition, surgery was stopped for a few minutes to allow recovery of the 

neurophysiological signals, and additional measures, such us irrigation with saline 

solution, local instillation of papaverine, or induced hypertension, were used 

selectively. According to the expected relationship between this kind of EPs 

modification and clinical outcome (long-term outcome not affected), surgery was 

stopped only in selected cases, mostly due to tumour histological findings, the patient’s 

preoperative motor status, and the failure of evoked potentials recovery after all 

corrective measures had been taken. Surgery was invariably and immediately stopped 

when mMEPs were lost and the D-wave decreased by more than 50%; if no recovery 

of the neurophysiological signals occurred after all corrective measures had been taken, 

surgery was abandoned. In case of “unmonitorable” D-wave from the beginning of 

the procedure, the disappearance of MEPs, not reversed by corrective measures, was 

the criterion to abandon surgery, because this pattern cannot differentiate and predict 

between transient and permanent motor deficit. 

  

Anesthesia protocol 

Total intravenous anesthesia protocol adopted was the same as in section 1 

(see Section 1, Methods). 

 

Postoperative evaluation and follow-up 

 All the patients were evaluated according to the McCormick grade immediately 

after surgery, at discharge and at follow-up. Deterioration of the MEP and D-wave 

amplitude were evaluated and related to the clinical outcome at discharge and at 

follow-up. MEP deterioration was classified in mild (<50% deterioration), moderate 

(>50% and <80% deterioration) and severe (>80% deterioration) and different 
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deterioration of amplitude were compared to the clinical outcome of patients at 

discharge and at follow-up.  

 

Statistical analysis 

 Parametric and nonparametric tests (T-Test and Wilcoxon test) were adopted 

to compare continuous variables. The Chi-square test and the Fischer exact test were 

adopted for discrete variables. Univariate and multivariate analyses were applied to 

multiple factors in order to define their weight on D-wave monitorability. The crude 

odds ratio (95% confidence interval and relative P value) was calculated using a 

univariate logistic regression model and then a multivariate logistic regression model 

simultaneously to estimate the effect of the same factors on D-wave monitorability.  

 

Results 

Clinical outcome 

After surgery, the average deterioration of the preoperative McCormick grade 

was of 0.9 grades. A total of 137 patients (62.5%) showed a worsening of about 1 

McCormick grade, 81 patients (37%) remained neurologically stable after surgery and 

1 patient (0.5%) improved after surgery (table 2.2). 

 

Table 2.2: Differences between preoperative and postoperative McCormick grade after surgery for 

intramedullary spinal cord tumors (ISCTs). 

 

At discharge, the mean deterioration of the McCormick grade was reduced to 

0.6 grades; overall, 100 patients (45.7%) showed a persistent deterioration of the 

McCormick grade as compared to the preoperative grade, 110 (50.2%) showed a stable 

 
Postoperative McCormick Grade 

-1 0 +1 +2 +3 

Preoperative 
McCormick 
Grade 

I 0 33 32 30 8 

II 1 28 39 17 - 

III 0 13 11 - - 

IV 0 7 - - - 

Total 1 81 137 
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McCormick grade and 9 patients (4.1 %) showed an improvement of the preoperative 

grade (table 2.3). 

 

Table 2.3: Differences between preoperative and discharge McCormick grade for intramedullary spinal 

cord tumors (ISCTs). 

 

The mean follow-up was 33 months (range 1-202 months). At follow-up, the 

mean McCormick grade appeared improved (0.5 grades) if compared to the discharge 

value. Moreover, if compared to the preoperative mean value, the worsening of the 

motor performance is 0.08 grades. More specifically, a total of 46 patients showed a 

persistent deterioration of the McCormick grade: 3 patients showed a deterioration of 

2 grades whereas 43 patients a deterioration of 1 grade; 123 patients remained stable 

and 31 patients presented an amelioration of the preoperative McCormick grade (table 

2.4). 

Table 2.4: Differences between preoperative and follow-up McCormick grade (mean follow-up= 33 

months) for intramedullary spinal cord tumors (ISCTs). 

 

 
McCormick Grade at discharge 

-1 0 +1 +2 +3 

Preoperative 
McCormick 
Grade 

I 0 50 19 30 4 

II 5 40 34 6 - 

III 3 14 7 - - 

IV 1 6 - - - 

Total 9 110 100 

 
McCormick Grade at follow-up 

-2 -1 0 +1 +2 

Preoperative 

McCormick 

Grade 

I 0 0 79 26 2 

II 0 26 41 19 1 

III 2 9 9 1 - 

IV 0 0 4 - - 

Total 37 133 49 
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Intraoperative neurophysiology 

MEP monitoring 

 MEP were obtained in all cases however in 3 cases the EPs obtained where 

not considered stable enough for continuous monitoring. MEPs loss was experienced 

in 8 patients (3.7%). According to the previously defined categories, 56 patients did 

not show deterioration of MEP during surgery, 57 patients showed a minor 

deterioration (<50% of the baseline amplitude), 66 patients a moderate deterioration 

(>50% and <80%) and 29 patients a severe deterioration (>80%) (table 2.5). 

 

Table 2.5: Muscle motor evoked potentials (MEPs) changes during surgeries for 216 intramedullary 

spinal cord tumors (ISCTs). 

MEP amplitude changes  Number of cases 

Stable (no changes from baseline) 56 

<50% of baseline value 57 

Between 50 and 80% of baseline value 66 

>80% of baseline value 29 

Complete Loss 8 

Total 216 

 

Patients with a severe or moderate MEP deterioration during surgery showed 

a worse motor outcome at discharge (McCormick III and IV) as compared with 

patients who showed a stable MEP during surgery. More specifically, 69% of patients 

with a severe decrease of MEP amplitude during surgery showed a motor deterioration 

after surgery (McCormick III or IV), whereas patients with a moderate reduction of 

MEP during surgery deteriorated in 51% of cases. At follow-up, patients with an 

intraoperative moderate/severe deterioration of MEP showed worse outcome than 

patients with stable intraoperative MEP (p=0.01); overall, 38% of patients with a 

severe deterioration of MEP showed persistent motor deficit at follow-up whereas 

patients with a moderate deterioration of MEP showed a stable motor worsening at 

follow-up in 22% of cases.   
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D-wave monitoring 

 D-wave monitorability. After the placement of the extradural electrode, the D-

wave was obtained in 185 patients (84.5%). In 129 cases (69,7%) the D-wave showed 

stability and reproducibility during the procedure and thus the deterioration of its 

amplitude was adopted as leading IOM parameter throughout the surgical procedure; 

in 56 cases (30.3%) the D-wave obtained was unstable and not reproducible and thus 

it was considered not suitable for monitoring (“not monitorable”). In 34 patients 

(15.5%) it was not inserted as monitoring parameter due to either technical problems 

or to the fact that tumor location was caudal to T10-T11 (“not monitored”).  

 The univariate analysis showed that the rate of monitorability was influenced 

by worse preoperative motor status (p<0.001), the presence of syrinx rostral or caudal 

to the tumor (p=0.01) and the thoraco-lumbar level (p=0.006). The adjusted analysis 

confirmed the preoperative status as determining factor for D-wave monitorability; 

more specifically, the risk for unsuccessful D-wave monitoring (“not monitorable”) in 

patients with preoperative McCormick grade of III and IV is respectively of 6 and 23 

times higher than patients with McCormick grade I. The presence of syrinx and the 

thoraco-lumbar level are confirmed as risk factors for not “monitorable” D-wave as 

well (p=0.02 and p=0.03 respectively). 

 D-wave and motor outcome. During surgery, in 127 patients (98.5%) the D-wave 

amplitude remained above the cutoff of 50% of the baseline amplitude value; on the 

other hand, in 2 patients (1.5%) the D-wave amplitude at the end of surgery was lower 

than 50% of the baseline value. Due to the paucity of the second group (D-wave loss 

or amplitude reduction below the 50% of baseline value) it was not possible to evaluate 

the relationship between the clinical and neurophysiological data in the opposite group. 

The comparison of patients with and without a “monitorable” D-wave revealed that 

at discharge, patients with a preoperative McCormick grade I - II (preoperative grade 

III and IV are excluded due to the influence on monitorability) and “monitorable” D-

wave during surgery showed similar clinical outcome as patients without a 

“monitorable” D-wave; at follow up, the same group of patients with a “monitorable” 

D-wave showed a rate of disability (McCormick III-IV) of 6.3% whereas patients 

without a “monitorable” D-wave presented a rate of disability of 25% (p=0.002). A 

comparison between the whole group of patients with a “monitorable” D-wave and 

patients with a D-wave not monitored during surgery showed a similar clinical 
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outcome at discharge; at follow-up patients with a monitorable D-wave showed a rate 

of disability (McCormick III-IV) of 7.5% whereas patients submitted to surgery 

without D-wave monitoring presented a rate of 26% (p=0.009). 

 As previously mentioned, the decrease of the D-wave amplitude below 50% 

of the baseline value was reported in 2 cases. In the first case, the reported McCormick 

grade at discharge was III (McCormick grade upon admission was II) which remained 

stable at further follow up (115 months). The D-wave amplitude decrease until 47% 

of the baseline value and the surgical procedure was initially stopped and finally 

suspended due to the persistent decrease of the amplitude. The removal of the tumor 

(pilocitic astrocytoma) was subtotal. In the other case, the D-wave amplitude at the 

end of surgery was 49% of the baseline values; the patient showed a motor 

deterioration after surgery (preoperative grade I to postoperative grade III) which 

ameliorate to grade II at further follow-up (22 months). Both of these cases can be 

classified as true positive results. 

 On the other hand, in 2 cases the D-wave remained above the 50% threshold 

but the patients presented a motor worsening which was stable at follow-up. Both 

patients were in McCormick grade II upon admission and both presented a 

McCormick grade III at mean follow-up (90 months). Both these cases can be 

classified as false negative results (table 2.6). 

 

Table 2.6: Muscle motor evoked potentials (MEPs) changes during surgeries for 125 intramedullary 

spinal cord tumors (ISCTs) with D-wave amplitude maintained above 50% of the baseline value. 

MEP amplitude changes  Number of cases 

Stable (no changes from baseline) 56 

<50% of baseline value 24 

Between 50 and 80% of baseline value 23 

>80% of baseline value 22 

Complete Loss 2 

Total 125 
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According to our data, the D-wave presented a sensitivity of 33.3%, a 

specificity of 99.2%, a positive predictive value (PPV) of 50%, a negative predictive 

value (NPV) of 98.4% and an accuracy of 97.6%.  

 

Discussion 

 This D-Wave study confirmed its leading role in IOM during surgery for 

ISCTs. Our results confirmed that at follow-up the whole group of patients with a 

monitored D-wave presented a better clinical outcome than patients submitted to 

surgery without a monitorable D-wave. This data confirmed the results obtained earlier 

by the same surgical team, as described by Sala et al50 in 2006 in the first study which 

compared monitored and not monitored ISCTs patients; the authors demonstrated 

the benefits of IOM during surgery for ISCTs with a significant better outcome at 3 

months for IONM patients. 

 As previously reported, TES MEP are the most appropriate test to monitor 

the functional integrity of the motor pathways in the short term. Our results confirmed 

the conclusions of the previous series published by Sala et al50; a sudden disappearance 

of both the D-wave and muscle MEP is very rare and in the present series there was 

no case of D-wave disappearance. Loss of muscle MEP with stable D-wave should 

not stop surgery; a step wise check list must be started in order to quickly rule out 

technical and anesthesiological issues and once other possible sources of muscle MEP 

deterioration are excluded, then surgery is temporary stopped in order to wait for the 

MEP amplitude to recover. According to our data, a muscle MEP deterioration > 80% 

is followed by a new motor deficit with a probability of 75% at the moment of 

discharge; on the other hand, if the MEP deterioration is between 50% and 80% of 

the baseline value, the probability of new deficit is 56%. However, at the follow-up 

evaluation, if the D-wave was maintained above 50% of the baseline value during 

surgery, it overcomes the reliability of muscle MEP deterioration.  

 In our series, the D-wave was obtained in 84.5% of cases however it was 

considered monitorable in 69.7% of cases. Interestingly, we had only two cases of D-

wave amplitude reduction below the 50% threshold. We argue that the application of 

IONM during surgery for ISCTs has indirectly refined the surgical technique. In a 30% 

of cases the D-wave was considered not monitorable. This condition is often 

associated to previous surgery35, radiotherapy5, preoperative paraplegia2, large tumor 
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sizes and very young pediatric age, and might also be related to a desynchronization of 

the D-wave. This theory suggests that, due to either large tumor sizes, syringomyelia, 

radiotherapy or immaturity of the corticospinal tracts, different axons along the CST 

conduct the potential volley with different velocities thus resulting in a not 

synchronous registration at the level of the epidural electrode; as a result, the 

summation of the potentials is insufficient for obtain a clear and stable D-wave27. 

 In our series, the sensitivity reported is 33.3% with a PPV of 50%; however, it 

should be mentioned that the 2 cases with a motor worsening after surgery with a D-

wave maintained above 50% of the baseline value were not neurologically intact upon 

admission (McCormick grade II) and the deterioration was one grade of the 

McCormick scale (grade III at follow-up); furthermore, in our series only two patients 

showed a deterioration of the D-wave below 50% of the baseline value. On the other 

hand, the specificity reported is very high (99.2%) with a NPV of 98.4%; one should 

keep in mind that the application of IONM during surgery had taught the surgeons 

how to take advantage from it and thus how to ameliorate the surgical technique in 

order to avoid motor sequelae50,53. These possibly explains why the number of cases 

with a D-wave below 50% of the baseline value is very low (2 cases) in this series. 

 We strongly believe that the application of IONM during surgery for ISCTs is 

undeniable. Recently, Hadley et al18 proposed a “guidelines for the use of 

electrophysiological monitoring for surgery of the human spinal column and spinal 

cord”. In these guidelines, the authors assert that IOM during surgery for ISCTs can 

be defined as a diagnostic tool instead of a therapeutic adjunct. According to our vision 

of IOM application in both brain and spinal cord surgery, this conclusion represents a 

theoretical inaccuracy. The main advantage of IOM during surgery is the capability to 

alert the surgeon in order to stop surgery before the irreparable damage is done; the 

ability to predict the permanent motor deficit is clearly useful, but from a surgical point 

of view is an intraoperative demonstration of a technical failure. Surgeon who support 

the use of IOM in their daily practice believe in its efficacy to prevent motor injury 

thus it is difficult to design a Class I randomized trial in order to compare IOM patients 

vs no IONM patients in their clinical outcome after surgery. The historical control 

study of Sala et al50 was designed in order to overcome the ethical concern related to a 

randomized trial; the authors reported a case matched comparison of patients treated 

for ISCTs with and without IONM; the final risk ratios (RRs) for IONM cases vs no 
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IONM cases was 0.27 at 3 months follow-up (p<0.001). According to the recently 

introduced grading of recommendation assessment, development and evaluation 

(GRADE) spread by Guyatt et al, a flexible rather than rigid hierarchical evidence can 

be adopted17. Furthermore, “... when methodologically strong observational studies 

yield large or very large and consistent estimates of the magnitude of a treatment effect, 

we may be more confident about the results.”16 This means that the role of 

confounding variables falls away with larger effects. Guyatt sets large and very large 

effect risk ratios (RRs) at <0.5 and <0.2. In this setting, the definition of the evidence 

class of a clinical study should be reevaluated, especially in conditions in which 

randomized trial are not ethically feasible. 

 

Conclusion  

D-wave monitoring represents a strong predictor of clinical outcome and the 

clear threshold adopted during surgery helps in the standardization of IONM 

protocols for ISCTs. According to our data its monitorability is 69.7%; the specificity 

is 99.2%, the NPV is 98.4% and the accuracy is 97.6%. 
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SECTION 3: NEW INSIGHT DURING SURGERY FOR BRAIN TUMORS 

IN MOTOR AREAS: THE APPLICATION OF D-WAVE 

MONITORING. EARLY RESULTS. 

 

Background 

 According to the limitations of muscle MEPs in predicting motor outcome 

after brain surgery, the introduction of a more reliable IOM marker for motor 

prediction is desirable. Therefore, in the light of the confirmed high reliability of D-

wave monitoring in ISCT surgery, we decided to apply the D-wave monitoring during 

surgery for tumors located in motor areas. The fewer experience reported in the 

literature11,12,60 are related mainly to the necessity to insert the epidural electrode along 

the cervical spine with a percutaneous technique, thus adding an additional risk to the 

surgical procedure itself. However, the technical procedure for inserting the electrode 

is a standard practice during neurosurgical procedure for neuromodulation7-9. 

Yamamoto et al60 were the first who evaluated the application of D-wave monitoring 

for brain surgery in motor areas. The authors divided the 37 patients in 4 groups 

according to the tumor location (premotor area, supplementary motor area, M1 and 

somatosensory area) and they described a higher rate of D-wave decrease below 30% 

of the baseline amplitude for tumor located in M1; furthermore, the amplitude 

decrease below the 30% threshold was related to a permanent postoperative in all 

cases. Fujiki et al11 compared the MEP recorded from muscles with the cortico spinal 

evoked potentials (D and I waves); in this study, patients are classified according to 

different deterioration of the evoked potentials during surgery. The authors reported 

a correlation between the variation of muscle MEP and the I waves. Furthermore, the 

authors underlined that a decrease of muscle MEP with a stable D-wave during surgery 

is not followed by permanent deficit after surgery; on the other hand, a decrease of the 

D-wave below 30% of the original value (together with a muscle MEP and I-wave 

decrease) is always related with permanent postoperative deficits. Fukaya et al12 

evaluated the characteristics of the D-wave obtained through subcortical stimulation 

and they described a “subcortical D-wave” with similar characteristics as the D-wave 

obtained through cortical stimulation, but with a shorter latency. 

 In this section, we describe our preliminary results with the application of D-

wave monitoring during surgery for brain tumors in motor area.  
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Methods 

Between 2016 and 2017 we had the opportunity to attempt D-wave monitoring 

during intracranial surgery in three patients with brain lesions. 

 

Clinical evaluation and preoperative assessment 

 Patients are evaluated according to the MRC scale at admission, after surgery, 

at discharge and at follow-up (see Section 1, Methods - Patients’ population and preoperative 

assessment for further details about clinical evaluation and classification of neurological 

deterioration).  

 All of the patients underwent MRI for diagnosis and localization of the tumor 

together with DTI fiber tracking of the CST; the data collected were used for 

intraoperative neuro-navigation (see Section 1 - Methods). 

 

Anesthesia protocol  

Total intravenous anesthesia protocol adopted was the same as in section 1 (see 

Section 1, Methods). 

 

Intraoperative monitoring and warning criteria - D-wave monitoring 

 The setting adopted for 

muscle MEP monitoring is 

reported in detail in the first 

section - Methods. TES for D-

wave recording was performed as 

described previously for ISCT 

surgery. 

The epidural electrode 

required for D-wave recordings 

was inserted in the epidural 

cervical space with a 

percutaneous technique before 

the beginning of the surgical 

procedure. The patient was placed 

Figure 3.1. Cervical latero-lateral fluoroscopic visualization 

(arrows) of the epidural electrode location with the distal tip at 

C2-C3 level.  
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in prone position under general anesthesia; with the aid of fluoroscopic guidance a 

Tuohy needle (18 gauge) was inserted in the midline epidural space at the cervical-

thoracic junction. The correct placement of the needle in the epidural space was 

confirmed from the change of resistance observed after injection of saline solution 

through the needle. The electrode was then inserted through the needle and then 

advanced upwards along the epidural cervical space, up to the C3 level; once the 

electrode position was verified with fluoroscopy in lateral projection (Figure 3.1), the 

Tuohy needle is removed and the electrode is fixed with adhesive tape and sutures on 

the skin in order to avoid displacement during the final positioning of the patient. The 

stimuli were applied as monophasic square-wave pulse of 0.2-0.5 msec duration 

delivered at 2 Hz. As for MEP monitoring, D-wave was initially elicitated by TES via 

corkscrew needle electrodes on the scalp then, once the surgical field was exposed, it 

was elicited by direct cortical or subcortical stimulation. The signal recorded was 

filtered with with a bandpass range of 5 Hz to 5k Hz using the same instrumentation 

adopted in Section 1 and 2 (see Section 1 - Methods). 
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Patient 1 

 A 52 y/o man with a previous history of non-small cells lung cancer (NSCLC) 

was referred to our Institute due to the regrowth of a previously treated frontal 

precentral metastasis (surgical removal followed by radiotherapy and chemotherapy 

one year before). One month before admission, a total-body CT scan revealed a slight 

reduction of the primary lung tumor’s volume together with a reduction of the loco-

regional lymphadenopathy. Preoperative MRI showed a left precentral tumor with 

diffuse and irregular contrast enhancement (fig. 3.2); DTI fiber tracking with CST 

reconstruction was also performed. The physical examination upon admission 

revealed a severe right hemiparesis (mean MRC =2) especially at the leg and mild 

cognitive impairment. The patient was scheduled for surgical removal of the tumor 

with the aid of IOM and D-wave monitoring. Informed consents were collected for 

the surgical procedure and for the placement of the cervical epidural electrode. 

 

The day of surgery after the insertion of the epidural electrode, the patient was 

positioned supine with the head in neutral position and flexed 30° ventrally; thorax 

and abdomen were gently flexed together with the legs that were positioned slightly 

flexed with cushions placed under the knees. After patient positioning, baseline TES 

MEP were recoded together with the D-wave. Interestingly, we were able to record 

the D-wave only when the right hemisphere was stimulated, whereas no D-wave was 

recorded when the left hemisphere was stimulated (fig. 3.3). The TES D-wave 

recording from the right hemisphere was not repeated during the procedure. We did 

not obtain the D-wave from DCS. 

Figure 3.2. Preoperative axial, sagittal and coronal T1 weighted contrast enhanced MRI scan showing a left 

mesial precentral tumor. 
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During surgery, muscle MEP monitoring did not show any significant 

modification. At the end of the surgical procedure, a lateral fluoroscopy of the cervical 

spine was done in order to rule out any possible 

change of the original position of the epidural 

electrode. Interestingly, the electrode was localized 

outside of the spinal canal, at the level of the lamina 

and spinose of C5 (figure 3.4). There were no 

complications related to the epidural electrode. 

 After surgery, the patient a stable right 

hemiparesis (arm mean MRC 2/5 and leg mean 

MRC 1/5). At discharge, the patient presented no 

motor-cognitive slowing and showed an 

Figure 3.3. Schematic representation of the TES method applied for the stimulation of the left (left panels) and 
right hemispheres (right panels); after the TES stimuli on the same side of the tumor (left panels) no clear D-
wave was recorded (left red rectangle, lower left panel); TES stimuli on the opposite side produce a visible D-
wave (right red rectangle, lower right panel).   

Figure 3.4. Misplacement of the electrode 
at the end of surgery (yellow circle). 
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amelioration of the arm paresis (mean MRC 3/5). Postoperative MRI showed 

complete removal of the tumor (see figure 3.5). At 3 months follow-up, the patient 

presented a further amelioration of the hemiparesis (mean MRC 4/5 for the upper left 

limb, 3/5 for the lower left limb). Pathology confirmed the lung origin of the 

metastatic tumor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Postoperative T1 weighted contrast enhanced axial, sagittal and coronal MRI images showing a 
complete removal of the tumor. 
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Patient 2 

A 62 y/o man, left-handed, was referred to the emergency room and then to 

our Institute due to the gradual onset of dysphasia and left arm numbness during the 

last week before admission. The physical examination upon admission showed severe 

paresis of the left arm, especially at distal segments (mean MRC 2). An MRI scan 

revealed a 5cm max diameter intra-axial cystic tumor located in the frontal precentral 

lobule; the tumor showed a marginal contrast enhancement. During the same study, 

DTI fiber tracking was applied for the reconstruction of the CST and arcuate fasciculus 

(see figure 3.6). The patient was scheduled for surgical removal of the tumor with the 

aid of IOM and D-wave monitoring. Informed consents were collected for the surgical 

procedure and for the placement of cervical epidural electrode. 

The day of surgery 

after the insertion of the 

epidural electrode, the patient 

positioning was the same as 

for Case 1. After patient 

positioning, TES MEP were 

recoded together with the D-

wave. A frontal craniotomy 

was then performed with the 

exposure of the frontal - M1 

area; the tumor was not visible 

at the surface. The phase-

reversal was attempted for the 

Figure 3.6. Preoperative MRI scan: axial, sagittal and coronal T1-weighted contrast enhanced images revealed 

a precentral tumor, partially cystic with a posterior-superior nodule close to M1. DTI fiber tracking defined the 

CST (blue) and the arcuate fasciculus (red). 

Figure 3.7. Cortical mapping of the peri-tumoral motor cortex with 

response from the left abductor pollicis brevis muscle (blue) at 10mA. 

The deflection of the red traces in the upper part of the panel is a stimulus 

related artifact due to the proximity of the stimulating probe to the 

recording electrode (orbicularis ori).   
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identification of the central sulcus, but the results were not successful thus a cortical 

mapping with monopolar 

probe at different threshold 

was started (see figure 3.7). 

Data provided by cortical 

stimulation revealed that the 

tumor was located anteriorly 

to M1 which was displaced 

posteriorly. Muscle MEP 

recordings and monitoring 

was obtained through DCS, 

however it was not possible 

to obtain a clear D-wave with 

the same stimulation method. 

During the surgical 

resection, subcortical 

mapping was performed 

along the CST with a 

monopolar probe (range of 

stimulation 2mA to 20mA) 

with clear response from the 

upper and legs; a clear 

response from the left arm 

was obtained at 2mA (see 

figure 3.8).  The surgical field 

along the CST was mapped 

also with a bipolar probe in 

order to obtain the D-wave: a 

clear response (subcortical D-wave) was obtained in different areas with a range of 

stimulation between 5mA and 20mA (see figure 3.9). At the end of surgery, muscle 

MEP were stable. There were no complications related to the epidural electrode. The 

position of the electrode was not checked at the end of surgery. 

Figure 3.8. Subcortical mapping along the CST with wide response 

from the left abductor pollicis brevis muscle (blue) at 2mA. The 

deflection of the red traces in the upper part of the panel is a stimulus 

related artifact due to the proximity of the stimulating probe to the 

recording electrode (orbicularis ori).   

 

Figure 3.9. Subcortical mapping along the CST with bipolar probe 

obtaining a clear D-wave from the cervical epidural electrode at 5mA 

(blue rectangle). 
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After surgery, the patient was recovered in the ICU for a gradual weakening 

from the general anesthesia; postoperative MRI showed complete removal of the 

tumor (see figure 3.10). The patient showed a slight amelioration of the left arm paresis 

which remained stable at discharge. Three months after surgery the patient showed a 

clear amelioration of the left arm paresis (mean MRC 4). The analysis of the specimens 

revealed a glioblastoma multiforme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Postoperative MRI: axial, sagittal and coronal T1 weighted contrast-enhanced images showing 

complete removal of the tumor. 
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Patient 3 

A 48 y/o man with a recent history of right hemicolectomy for 

adenocarcinoma was referred to our Institute due the gradual onset of a right 

hemiparesis related to the presence of a left precentral subcortical tumor. An MRI 

confirmed the presence of a single left precentral metastasis, adherent to the CST 

which was reconstructed with the aid of DTI fiber tracking (see figure 3.11). The 

physical examination upon admission revealed a mild right hemiparesis (mean MRC 

4). The patient was scheduled for surgical removal of the tumor with the aid of IONM 

and D-wave monitoring. Informed consents were collected for the surgical procedure 

and for the placement of cervical epidural electrode. 

 

 

The day of surgery after the insertion of the epidural electrode, the patient was 

positioned in the same way as cases 1 and 2. After patient positioning, TES MEP were 

recoded together with the D-wave. It was not possible to obtain the D-wave from 

DCS. Cortical mapping with monopolar technique generated response from the left 

brachial biceps, the extensor digitorum longus and the abductor pollicis brevis (range 

of stimulation 2mA-7mA). An attempt to record the D-wave from cortical stimulation 

was unsuccessful. The resection of the tumor proceeded without significant 

deterioration of the muscle MEP. Subcortical mapping along the CST was possible at 

3 mA with response recorded from the abductor pollicis brevis. 

Figure 3.11. Preoperative MRI scan: axial, sagittal and coronal T1-weighted contrast enhanced images revealed 

a left subcortical precentral tumor; DTI fiber tracking was applied for the reconstruction of the CST (yellow) 

and of the arcuate fasciculus (red). 
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Bipolar subcortical stimulation along the CST at 15mA produced a clear D-wave (see 

figure 3.12).   

After surgery, the 

patient did not show any 

significant clinical 

deterioration of the physical 

examination. There were no 

complications related to the 

epidural electrode. The 

position of the electrode 

was not checked at the end 

of surgery. 

A postoperative 

contrast-enhanced CT scan 

revealed a complete removal 

of the tumor. Upon discharge, the lower left limb paresis was disappeared; the arm 

paresis was still present (mean MRC 4). One month after surgery the deficit was 

completely resolved. Pathology confirmed the colon origin of the metastatic tumor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Bipolar subcortical stimulation along the CST produced 
a clear D-wave (blue rectangle).  
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Discussion 

 Surgical removal of tumors located in motor areas remains a challenge in terms 

of both surgical technique and direct interpretation of MEP changes during the 

removal of the tumor. As highlighted in the first section, intraoperative changes of 

muscle MEP are multifactorial and not always clearly related with the surgical 

outcome36. Furthermore, different influencing factors can alter the correct 

interpretation of the data making fast decision even more difficult. In order to 

overcome the limitations of muscle MEP variability, the introduction of a strong 

outcome predictor as D-wave, is therefore advisable. 

 The first step that one has to face for the application of D-wave monitoring 

during brain surgery is the placement of the epidural cervical electrode. Even if the 

percutaneous technique is somewhat standardized during neuromodulation 

procedures7-9, it is undeniable that its application rises the risk of the whole surgical 

procedure itself. Possible complications due to the placement of the electrode are 

wound infection, cerebrospinal fluid leaks, dural puncture headaches, epidural 

hematoma and spinal cord trauma. Infection is the most common procedural 

complication with a reported incidence of 1.4% to 11%15, however in the literature this 

range of incidence is related to the placement of permanent spinal cord stimulation 

device. The group of Yamamoto et al60 reported in different publications over 200 

cases of cervical epidural electrode placement without significant clinical 

complications22-24,59. In our cases, we did not experience any complication related to 

the placement of the extradural cervical electrode. Interestingly, in our first case, we 

were able to obtain the D-wave with TES with a suboptimal placement of the electrode 

(figure 3.4). In this case, we verified the position of the electrode only during the 

placement in prone position and at the end of surgery (in supine position). We argued 

that the misplacement of the electrode occurred during the positioning of the patient 

from prone to supine position; accordingly, in the other two cases, we verified the 

electrode position before and at the end of surgery. The scenario opened with this 

observation needs further investigations in order to prove the efficacy of D-wave 

monitoring with a different placement of the electrode. As a matter of fact, one could 

argue that the migration of the electrode can lead to a misinterpretation of the D-wave 

changes. In this setting, a comparison between the D-waves recorded during surgery 

for ISCTs with different placement of the electrode might be useful. If the value of D-
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wave recorded from outside the spinal canal will be confirmed, then the risk of invasive 

placement of the electrode can be eliminated. 

 The usefulness of D-wave monitoring during surgery in motor areas become 

critical if an intermediate MEP amplitude deterioration occurred: as reported by Fujiki 

et al11, patients who experienced an MEP amplitude deterioration without D-wave 

changes (group C) experienced a transient motor deficit after surgery; on the other 

hand, MEP loss was always related with a D-wave significant reduction (mean decrease 

39.5%) and with stable motor deficits (group D). The difference between these two 

groups was related to the extent of damage at the level of the surgical field: MEP loss 

represent an irreversible damage of the motor system and as stated by Fujiki et al11 this 

can be attributed to a damage of the subcortical pyramidal fibers. On the other hand, 

a MEP deterioration is the expression of a cortical gray matter damage, mostly related 

to interneuron dysfunction. In such a condition, the D-wave is maintained unchanged: 

as demonstrated in experimental settings, the D-wave survives after the removal of the 

cortical gray matter and therefore it is thought to originate from the stimulation of the 

corticospinal axons in the subcortical white matter43. In the case 2 and 3 it was possible 

to obtain a D-wave after subcortical stimulation of the CST with a bipolar probe. 

Differently from Fukaya et al12, we did not found any technical problem in the 

subcortical D-wave elicitation with the bipolar probe. As previously reported, the 

bipolar probe evokes only immediately activation of the cortex without spreading of 

current19. However, as demonstrated by the subcortical mapping in which we were 

able to map the CST at 2mA in both cases 2 and 3, due to the fact that we worked very 

close to the CST it is likely that this can explain the reason why we had no difficulties 

with bipolar probe D-wave elicitation. It should be mentioned that, during subcortical 

mapping, we trusted only the standard monopolar technique for the definition of the 

CST proximity. The elicitation of the D-wave with bipolar subcortical stimulation was 

done at the end of the surgical resection in  

patient 2 and 3; therefore, we cannot draw conclusions on its ability to help in the 

localization of the CST and, above all, its proximity to the surgical field.   

In all the three cases, it was not possible to obtain a D-wave from DCS. In the 

first patient, it was possible to obtain the D-wave from contralateral hemisphere TES 

technique, but not from the ipsilateral; conversely, in cases 2 and 3 we obtained an 

ipsilateral D-wave with TES technique. The reason for this difference can be related 
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to the preoperative clinical and radiological features of the three patients: in case 1, the 

tumor was cortical-subcortical located whereas in cases 2 and 3 both tumors were only 

subcortical; the patient 1 was submitted to surgery with a severe hemiparesis, whereas 

the other two patients presented in a better preoperative clinical condition. In patient 

1, it was possible to record muscle MEP from only one muscle at 20 mA with an 

amplitude of 70µV. In patients 2 and 3, we obtained muscle MEPs and D-wave from 

TES and only muscle MEPs from DCS. This may be due to a desynchronization of 

the D-wave secondary to the derangements of the CST at the cortical/subcortical 

border, due to the presence of the tumor. More specifically, patients 2 and 3 presented 

a subcortical tumor (figg. 3.6 and 3.11) located along the CST; the deeper stimulation 

produced by TES could have bypassed the tumor producing a deeper stimulation of 

the axons allowing the recording of the D-wave. One could also argue that the position 

of the DCS electrode was not over M1, however all these surgeries were done with the 

aid of neuronavigation: the position of the surface electrode was verified immediately 

after its placement over the brain surface. More specifically, patients 2 and 3 showed 

an intact brain surface allowing us to precisely verified M1 at the beginning of surgery 

with the aid of neuronavigation; then, the surface electrode was positioned and M1 

location was further verified with the phase-reversal technique in both case followed 

by direct cortical mapping.  

 

Summary conclusion 

 IOM is a valuable help in the daily practice of neurosurgery. Its application 

during brain and spinal cord surgery is getting wider and wider over the years. Brain 

surgery in motor areas remains a classical indication for IOM, however as outlined 

before, clearer thresholds and stronger outcome predictors are required in order to 

gain the capability of IOM to prevent rather than to predict the new onset of motor 

deficits. 

 As outlined in the first section of this thesis, muscle MEP monitoring during 

surgery in motor areas is influenced by multiple pre- and intra-operative factors that 

complicate the intraoperative “on line” interpretation of the data; a stronger outcome 

predictor is therefore advisable. In the second section our results confirmed the 

reliability of D-wave monitoring during surgery for ISCTs; if the D-wave amplitude is 
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maintained above 50% of the baseline value throughout the surgical procedure the risk 

of postoperative long-term deficit is negligible.  

 The application of D-wave monitoring during surgery in motor areas is a 

promising technique, especially due to the strong value of the D-wave in the prediction 

of long term clinical outcome. Due to the small sample size of our cases with 

monitored D-wave during brain surgery it is impossible to generalize. However, it is 

worthy to further investigate the role of the position of the epidural electrode in the 

quality of D-wave monitoring and it is useful to highlight that we did not experienced 

any complication related to the percutaneous insertion of the cervical electrode. We 

need to proceed in the enrollment of patient for D-wave monitoring during brain 

surgery in order to better evaluate the relationship between clinical outcome and D-

wave changes during surgery together with the deterioration of muscle MEP 

amplitude. 
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