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Abstract
Purpose Biomechanical simulation of anatomical deformations caused by ultrasound probe
pressure is of outstanding importance for several applications, from the testing of robotic
acquisition systems to multi-modal image fusion and development of ultrasound training
platforms. Different approaches can be exploited for modelling the probe-tissue interaction,
each achieving different trade-offs among accuracy, computation time and stability.

Methods We assess the performances of different strategies based on the finite element
method for modelling the interaction between the rigid probe and soft tissues. Probe-tissue
contact is modelled using (i) penalty forces, (ii) constraint forces, and (iii) by prescribing the
displacement of the mesh surface nodes. These methods are tested in the challenging con-
text of ultrasound scanning of the breast, an organ undergoing large non-linear deformations
during the procedure.

Results The obtained results are evaluated against those of a non-physically based method.
While all methods achieve similar accuracy, performances in terms of stability and speed
show high variability, especially for those methods modelling the contacts explicitly. Over-
all, prescribing surface displacements is the approach with best performances, but it requires
prior knowledge of the contact area and probe trajectory.

Conclusions In this work, we present different strategies for modelling probe-tissue inte-
raction, each able to achieve different compromises among accuracy, speed and stability.
The choice of the preferred approach highly depends on the requirements of the specific
clinical application. Since the presented methodologies can be applied to describe general
tool-tissue interactions, this work can be seen as a reference for researchers seeking the
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most appropriate strategy to model anatomical deformation induced by the interaction with
medical tools.

Keywords Biomechanical simulation · Probe-tissue interaction · Ultrasound scanning ·
Breast ultrasound

1 Introduction

Ultrasound (US) imaging is extensively used in several routine procedures, mainly due to
its cost-effectiveness, non-invasiveness and real-time capabilities. Its main limitation is the
low image quality, which highly depends on proper acoustic coupling between the probe
and the tissues. The identification of the optimal transducer positioning that allows to ob-
tain acceptable image quality heavily relies on the radiologist’ expertise and requires the
sonographer to apply a certain level of compression to the anatomy, which can reach sev-
eral centimeters depending on the imaged tissue [1, 2]. In recent years, robotic ultrasound
systems (RUSs) either assisting or automating the entire procedure have been proposed to
improve the performance of manual acquisition systems, due to the high precision, dexterity
and repeatability that robotic manipulators can bring [3, 4]. The growing popularity of RUSs
has raised interest towards robot simulation environments, which can support the test and
validation of new systems, allowing to identify possible problems and predict potentially
dangerous situations [5]. Simulation plays a crucial role in RUSs, where understanding the
stresses and deformations arising from the interaction between the probe and the tissues
is of paramount importance to guarantee patient’s safety. Modelling and simulation of US
probe-induced deformations is useful in many other applications. For example, image fusion
techniques for the alignment of high-resolution pre-operative images (MRI/CT) and intra-
operative US during image-guided procedures have to account for the compressional effects
induced to the tissues by the US probe [1]. A biomechanical model of probe-tissue interac-
tion can also be exploited to correct for deformations in the 3D US reconstruction process
[2, 6]. Eventually, the development of computer-based ultrasound training systems that allow
radiologists to practice the scanning technique have to realistically simulate probe-induced
deformations in real-time [7, 8].

The preferred approach to model tissue deformations relies on the finite element (FE)
method, which allows to account for soft tissues mechanical behavior exploiting the laws of
continuum mechanics. However, this method usually comes at the expenses of high com-
putational complexity, especially when interactions with other objects have to be modelled.
Realistic modelling of the contacting bodies is very complex when dealing with living sys-
tems, which are usually characterized by highly irregular geometries, non-linear constitu-
tive models and nearly incompressible materials. These factors can lead to ill-conditioned
problems and introduce significant numerical issues, often causing instabilities in the sim-
ulations. This represents a major weakness especially within a robotic framework, where
simulation stability is recognised as the most important feature [9]. Some alternative mo-
delling strategies which are not based on physical descriptions of deformations also exist
and have the potential to be both fast and stable for soft tissues modelling [7, 8, 10]. How-
ever, they do not rely on real tissue mechanical properties, posing some challenges in the
identification of model parameters.

In this paper, we analyse the main FE-based approaches which can be exploited for mo-
delling the interaction between the US probe and a deformable organ. Our aim is to evaluate
their performances in terms of accuracy, computation time and stability, and to compare the
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results with those obtained by a non-physically based method. We refer to the three most
popular modelling strategies which can be employed to model probe-tissue interaction: (i)
imposing penalty forces [8], (ii) describing the contact as a constraint [11] or (iii) directly
displacing the surface nodes [1, 6]. Input of our simulations is always represented by US
probe displacement, to ensure the widest applicability and generalisation capability of the
methods. We do not consider scenarios where deformations are driven by forces, which
would require force sensing apparatus, difficult to incorporate within the common clinical
devices [2]. The rationale of this work comes from the fact that, to the best of the authors’
knowledge, a comparison of different strategies available for modelling probe-tissue inte-
raction cannot be found in the literature, but it would be extremely helpful to support the
choice of the most appropriate model [12]. Furthermore, we make our simulations publicly
available1 to encourage the adoption of the methods.

Patient-specific simulations obtained with the detailed methods are compared with ex-
perimental data from the ultrasound scanning of the breast, a challenging structure to model
due to the huge non-linear deformations it undergoes during the scanning process. A pecu-
liarity of this work is that, in order to accurately describe breast behavior, we have to rely
on hyperelastic constitutive laws, which are not usually exploited in contact problems due
to the additional complexity they introduce. Linear elastic or corotated formulations usu-
ally represent the preferred choices [1, 8, 13]. Modelling the probe-tissue interaction for this
anatomical structure is particularly relevant for two main reasons. First of all, many attempts
have been made lately towards the development of autonomous RUSs for the breast, a very
active and promising field [14]. Secondly, US-guided biopsy is the preferred technique for
breast cancer diagnosis, where US images are mainly used to track the needle. However,
due to the fact that distinguishing target lesions on US can be really challenging, an accurate
and fast model of the probe-induced deformations can support in the online prediction of
the displacement of MRI/CT-detected lesions [15].

The paper is organized as follows: First, the different strategies to simulate probe-tissue
interaction are described in Section 2. In Section 3, the different method are assessed on US
scanning of the breast, and we discuss the obtained results in Section 4. Finally, Section 5
presents our conclusions.

2 Methods

2.1 The Finite Element Method

The finite element method is an approach that converts the systems of partial differential
equations describing the dynamic equilibrium motion equation (Newton’s second law) into
systems of algebraic equations which can be solved numerically. In the solution process,
such equations are discretized both in space and time, leading to a problem which can be
synthetically formulated as:

Ma = f(t,x,v) (1)

where a,x,v, f are, respectively, the acceleration, position, velocity and force (both internal
and external) vectors and M stands for the mass matrix. A time integration scheme is used
to numerically solve the problem in time, allowing to formulate (1) as a linear system. We
perform numerical integration using a backward Euler scheme, which offers a good trade-off

1 https://gitlab.com/altairLab/probe-tissue-simulation.git
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between robustness, convergence and stability. Velocities and positions are updated based
on accelerations at the end of each time step h:

vt+h = vt +ha xt+h = xt +hvt+h (2)

Ma =f(xt+h,vt+h) (3)

We consider the first order approximation of f (one per time step):

f(xt+h,vt+h)≈ f(xt ,vt)+K(xt+h−xt)+B(vt+h−vt) (4)

where K is the stiffness matrix and B the damping matrix. Substituting (2) and (4) into (3)
provides the final linearized system:(

M−hB−h2K
)︸ ︷︷ ︸

A

dv = hf(xt ,vt)+h2Kvt︸ ︷︷ ︸
b

(5)

where dv = ha = vt+h−vt .
The obtained set of linear equations is solved for dv using either direct or iterative

solvers. Direct solvers compute the solution exactly, either calculating the actual inverse
or a factorization of the system matrix A. Although these methods are often too costly, some
optimized libraries exist that allow to parallelize these operations on CPU [16]. On the other
hand, iterative solvers such as the conjugate gradient (CG) produce a sequence of appro-
ximate solutions approaching the exact one. These methods can be very fast especially if
they are tuned to stop when acceptable accuracy is reached, even if it is before convergence.
However, they can converge slowly for ill-conditioned problems.

2.1.1 Penalty method

In the penalty method, contacts are solved by applying a spring-like force fpen proportional
to the amount of penetration δ at each contact point, in the direction n normal to the surface:

fpen = ksδn (6)

This force is treated as an external force and contributes to the right hand side of (1). The
higher the value of the proportionality coefficient ks, called contact stiffness, the better the
constraint is satisfied. However, large values of ks make the condition number of the system
matrix A worse, often causing problems in convergence and instabilities in the simulations.
The selection of ks is also problem-dependent, and heavily depends on the ratio of the ma-
terial stiffness between the contacting objects, making this method limited for our applica-
tions. Despite these stability issues, the penalty method is the easiest to implement and can
be very fast.

2.1.2 Lagrange multipliers method

Differently from the penalty approach, methods based on Lagrange multipliers (LM) al-
low to solve the contact condition exactly by treating contacts as constraints. The equation
system (1) is extended to include constraints contribution HT λ :

Ma = f(t,x,v)+HT
λ (7)
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which, after integration, leads to:

Adv = b+HT
λ (8)

In this case, the contact force is represented by the unknown vector λ of LM, which imposes
the impenetrability condition defined by Signorini’s law [17]. The equation system to solve
becomes more complex since, at the beginning of each time step, both the multiplier values
and the new positions are unknown. The solving process involves three main phases:

1) Free motion: A free configuration dvfree
i is obtained for each interacting object (in the

following, i denotes the index of simulated body) by solving the corresponding equations
(8) independently, and setting λ = 0.

2) Collision detection: The free motion results in new configurations of bodies, making
it necessary to detect possible collisions. The output of this phase is represented by the
constraint matrices Hi and actual violations of the constraints δ

free due to the free motion.
3) Collision response: After linearization of the constraint laws [17], we obtain:

δ =δ
free +h∑

i
Hidvcorr

i (9)

With dvcorr
i being the unknown corrective motion (dv = dvfree + dvcorr) when solving (8)

with bi = 0. By gathering (8) and (9), we get:

δ =δ
free +h

[
∑

i
HiA−1

i HT
i

]
︸ ︷︷ ︸

W

λ . (10)

We obtain the value of λ using a projected Gauss-Seidel algorithm that iteratively checks
and projects the various constraint laws (see [18]). Finally, the corrective motion is computed
as follows:

xt+h
i = xfree

i +hdvcorr
i with dvcorr

i = A−1
i HT

i λ (11)

The LM approach is the method of choice to obtain a stable and robust handling of contacts,
but to the detriment of computational performances. Another advantage of this method is
that interaction forces are accurately estimated, which can be very helpful within robot con-
trol loops, provided that the real mechanical properties of the organ of interest are known.

2.1.3 Prescribed displacements method

The last method considered models probe-tissue interaction as a Dirichlet boundary condi-
tion on the organ surface. Due to the fact that the US probe is represented as a rigid body,
we can assume that when the anatomy is deformed during the scanning process, points on
the organ surface below the US probe are displaced of the same exact amount as the probe
itself. This modelling strategy is less general than the previous two approaches, since it re-
lies on two major assumptions: (i) probe motion is completely known a-priori, which allows
us to pre-compute contact points, and (ii) the contacting surface does not change during
the scanning, i.e. no relative motion exists between the contact surfaces. From a formula-
tion point of view, this approach is very similar to the penalty method described in 2.1.1,
except that it does not require the collision detection phase. Despite this fact limiting its
general applicability, it makes the model promising to achieve high computational perfor-
mances. Furthermore, it represents a displacement-zero traction problem and as such it has
the advantage that it does not require patient-specific mechanical properties [19].
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2.2 Experimental Setup

The performances of the presented approaches are evaluated on ultrasound scanning of a
realistic multi-modality breast phantom (Model 073; CIRS, Norfolk, USA) with some in-
ternal stiff masses (diameter of 5-10 mm), whose 3D models are obtained by segmenting
the phantom CT image. In our experimental protocol, we select one lesion at a time and
we reposition the US probe on the breast surface such that the considered lesion is visible
on the US image. Lesions position at rest (i.e., without applying any deformation, when
the probe is only slightly touching the surface) are manually extracted from the correspon-
ding US images and considered as landmarks to track, both in the real and in the simulated
environments. They are selected as points of the lesion contour lying closest to the probe,
exploiting in this way the better visibility of interfaces on US images and avoiding possi-
ble inaccuracies introduced by centroid computation. We then impose four probe-induced
deformations of increasing extent in the direction normal to the surface in correspondence
to 10 segmented masses. Image acquisition is performed with a Freehand Ultrasound Sy-
stem (FUS) based on a Telemed MicrUs US device (Telemed, Vilnius, Lithuania) equipped
with a linear probe (model L12-5N40). An optical tracking system MicronTracker Hx40
(ClaronNav, Toronto, Canada) is exploited to know in real-time the position and orientation
of the FUS, thus of the US image plane (Figure 1a). The overall probe spatial calibration
error is below 1 mm (±0.7147), and below 0.5 mm (±0.334) for the pointer used for fiducial
points localization required for the initial rigid registration. This setup allows us to extract
the three-dimensional position of any pixel belonging to the image, and as a consequence to
obtain 3D lesion positions relative to each applied deformation, which represent our ground
truths.

2.3 Simulated Scenario

We evaluate the described approaches in terms of accuracy, computation time and simula-
tion stability. The proposed methods are compared to a non-physically based method which
relies on the position-based dynamics (PBD) formulation, which has already demonstrated
capable of describing the same scenario [10]. Within the range of existing heuristic methods,
PBD is particularly promising for our target scenario, because of the unconditional stability
and high speed that characterize this approach.

All the simulations are run on a laptop equipped with an Intel i7-8750H processor, 16GB
RAM and a NVIDIA GeForce GTX 1050 GPU, and share the same assumptions and approx-
imations. In both FE and PBD simulations, the breast is modelled as a homogeneous object
using deformation parameters estimated specifically for the same breast phantom used in
our experiments, which makes the considered models patient-specific [20, 10]. Probe-breast
interaction is treated as a rigid-soft frictionless contact problem, where the US probe moves
at fixed velocity of 0.01 m/s. Gravity load is not explicitly considered, since the geometry
model is already acquired within the gravitational field (being extracted from a CT im-
age). As boundary condition, all the points belonging to the lowest phantom surface are
constrained in all directions. The same fixed time step of [10] is used for all the simulations
(h= 0.02s). Since a robust comparison of the performances of different modelling strategies
requires the reliance on a common framework, we choose to perform all FE-based simula-
tions within SOFA, the state-of-the-art engine for interactive FE-based medical applications
(Figure 1b) [21, 22]. Simulations for each method are repeated considering increasing levels
of spatial discretization (i.e., volume mesh resolution). Due to the fact that mesh resolution
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is one of the variables most influencing the performances of FE-based simulations, the intro-
duction of this additional variable in the evaluation allows us to estimate the relative impact
that the choice of the method and the discretization level have on the performances. In all
cases, collision detection is performed using the default pipeline provided by SOFA [22] on
a surface mesh composed of 1,004 triangles, which proves able to maintain a good accuracy
while keeping the number of active constraints to a minimum. The conjugate gradient algo-
rithm is used to solve the system of equations of the penalty (Penalty) and the prescribed
displacements (PrescrDispl) methods. The maximum number of allowed CG iterations is set
to 25, a value which proved able to speed up the solving process while keeping the simula-
tion accuracy aligned with that of the other methods. Simulations relying on the LM method
require the use of a direct solver, for the computation of the matrix W. To this purpose, we
exploit the state-of-the-art solver Pardiso, whose multithreading implementation allows to
achieve enhanced performance [16].

(a) (b)

Fig. 1 (a) The experimental setup is composed of a FUS and an optical tracking system. (b) The simulated
environment in SOFA framework.

3 Results

We compare the presented methodologies considering three main performance criteria: ac-
curacy, speed and stability, at different discretization levels. For each lesion, at each defor-
mation level, accuracy is evaluated by comparing model-predicted lesion positions Xmodel
with the real lesion coordinates extracted from US images XUS, tracked as described in
Section 2.2. Localization error at deformation l relative to tumor n is computed as:

ε(l,n) = ||Xmodel(l,n)−XUS(l,n)|| (12)

where ||.|| represents the Euclidean distance. Figure 2 reports the distribution of the errors
produced by each method on all the tumors and all deformations, at increasing mesh resolu-
tions. Boxplots are obtained including only errors relative to ”valid” deformations, i.e. those
which have been successfully simulated without any instabilities by all the three methods.
In this way, we prevent the occurrence of any possible bias in the distributions which could
arise if a method has been more stable than the others (and as such, it would have had more
error values). From a more detailed analysis of the results it has emerged that largest errors
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are obtained at high input deformations and in correspondence of deeper lesions. The PBD
method described in [10] achieves on the same data a median error (interquartile range) of
4.69(3.32-6.12)mm.
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Fig. 2 Localization errors [mm] on all the tumors and all deformations, for the different methods, at increas-
ing volume mesh resolution. Red horizontal line is in correspondence of the median accuracy value obtained
with the PBD method.

The performances of the presented methods are also evaluated in terms of speed. Box-
plots in Figure 3 show how the computation time tcomp required by each method to simulate
a time step h changes at different discretization levels. When dealing with dynamic simu-
lations, one usually evaluates the capability of a method to meet the real-time requirement
(i.e. tcomp ≤ h) and/or to guarantee interactivity, which translates into ensuring that simula-
tion runs at least at 25 frames per second (i.e. tcomp ≤ 0.04s), when only visual feedback is
required. The highly optimized PBD implementation provided by NVIDIA FleX is able to
keep the simulated and computation times always equal (tcomp = h).

As a final metric, we assess stability of the methods by evaluating their capability to
complete the experiments from the beginning to the end. For this analysis, we use the word
”experiment” to refer to the process involving the application of the four increasing input
deformations. This means that we perform one experiment per tumor, for a total of 10 (i.e.,
number of lesions) experiments. For each method, at each discretization level, we evaluate
the percentage of experiment which is successfully accomplished for each tumor, before
the occurrence of any instabilities (Figure 1). If a method was able to complete all the 10
experiments, the associated average percentage would be 100%. The main advantage of the
PBD method is its unconditional stability, which guarantees simulations to always remain
stable (mean and median stability of 100%, in the range 100-100).
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Fig. 3 Computation time (in log-scale) required by the different methods to simulate a time step (h = 0.02s)
at increasing volume mesh resolution. Horizontal lines are in correspondence of the time step (blue) and of
the constraint of 25 fps (black).

Table 1 Mean, median and range of the stability metric for each method, at increasing volume mesh resolu-
tion. Stability metric is computed as percentage of experiment successfully accomplished.

Mesh elements LM Penalty PrescrDispl
Mean Median Range Mean Median Range Mean Median Range

623 100 100 93-100 100 100 100-100 100 100 100-100
1,363 100 100 88-100 100 100 90-100 100 100 100-100
2,539 97 100 64-100 100 100 100-100 100 100 100-100
4,126 99 100 84-100 100 100 100-100 100 100 100-100
7,369 99 100 75-100 100 100 92-100 100 100 100-100
12,861 98 100 72-100 93 100 59-100 100 100 100-100
26,220 96 100 60-100 72 71 42-100 100 100 100-100

105,004 88 92 56-100 87 100 52-100 100 100 94-100
176,506 69 70 49-88 53 48 25-100 98 100 80-100

4 Discussion

In this work, we compared different strategies to model the interaction between the US
probe and soft tissues in terms of accuracy, computation time and stability. From an accu-
racy point of view, all the methods achieve similar performances. It is interesting to notice
that increasing volume mesh resolution leads to a slight reduction in the error dispersion
but not to a significant improvement in the overall accuracy, which is comparable with av-
erage lesion dimensions and thus acceptable for biopsy targeting purposes. This suggests
that probe-tissue interactions can be accurately reproduced even with coarse meshes, be-
cause of the smoothness of the induced deformations. The reached accuracy level is thus
not limited by a poor spatial discretization, but might have a upper bound due to registra-
tion and calibration errors and possibly the chosen temporal discretization. If we analyse the
computational performances, the fastest FE methods are those which rely on the simplest
equation systems, i.e. PrescrDispl and Penalty. Modelling contacts through constraints is



10 Eleonora Tagliabue et al.

the most time consuming approach, despite the use of an optimized solver. Figure 3 shows
that using fine meshes has a strong impact on the computation time, which increases for all
the methods with the number of elements. A drop of computational performances at high
mesh resolutions is particularly important for LM method, even though the number of active
constraints remain constant in all simulations. It is interesting to notice that, despite rely-
ing solely on CPU, the FE approaches tested in this work can meet the real-time constraint
for several different discretizations (especially PrescrDispl and Penalty). We expect that en-
hanced FE implementations taking advantage of the parallel capabilities of GPU would be
able to further improve such computational performances, and we plan to assess this in fu-
ture works. Although some GPU-based FE approaches have been already proposed, they
have not been included in this study since they are either incompatible with hyperelastic
simulations [13] or not available within the SOFA framework [23, 24]. The choice of re-
lying on a common open-source simulation platform has allowed us not only to compare
the different approaches but also to publicly share the simulation scenes. Furthermore, by
providing general implementations of the various methods, SOFA allows to simulate any
medical scenarios involving deformable structures, making it possible to exploit the ap-
proaches tested in this work to model any kind of tool-tissue interaction. PrescrDispl is the
FE approach reaching the best performances in terms of stability. In general, simulations
are more likely to become unstable at high deformations, when the effect of non-linearities
becomes significant. An interesting result which emerges from Table 1 is that using high res-
olution meshes leads to higher simulation instability, which may be due to the introduction
of further numerical errors preventing simulations from being completed.

Within the considered context, a non-physically based method (PBD) has proved able to
reach an optimal compromise among the different performance criteria: it achieves an accu-
racy which is comparable to FE simulations, meeting the real-time constraint and maintain-
ing enhanced stability, which make it particularly suitable for employment within a robotic
simulation framework. The main drawback of PBD is that model parameters need to be ca-
librated for each scenario, which represents a great challenge in the medical field. Another
limitation is that PBD cannot provide an estimation of the interaction forces, which may be
useful in a robotic context. On the other hand, all FE-based methods benefit from the pos-
sibility of using the real elastic parameters and estimating the stress distribution within the
organs. Table 2 summarizes the main advantages and disadvantages of the considered meth-
ods. The best trade-off among the performance criteria is achieved when the interaction is
modelled by prescribing the displacement of surface nodes. The simpler mathematical de-
scription of the physical problem, without the involvement of any external forces, allows
to achieve high speed while guaranteeing high simulation stability. The limitation of this
method lies in the assumption that the breast-probe contact area is a-priori known and does
not vary during the procedure. This represents a major constraint when the simulation is
required to run online during the scanning itself, such as in freehand acquisitions. How-
ever, this constraint is not a strong limitation in a robotic scenario, where the robot motion
is commonly planned in advance, thus enabling the a-priori estimation of the contact sur-
face. The most general ways to describe probe-tissue interaction with FE involve collision
handling. The penalty method can reach close to real-time performances, but its stability
highly depends on the contact stiffness value, which has to be tuned for each specific prob-
lem. This modelling strategy is likely to represent the most appropriate choice in scenarios
which are less complex than the one described in this work (for example, with smaller in-
put deformations and/or elastic materials)[8]. Describing the problem as a constraint (LM)
is the most general and widely applicable approach. In addition to their independence on
a specific parametrization, LM-based methods are able to provide a direct measure of the
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interaction forces through Lagrange multipliers values. The main limitation of this approach
is the computation time, which becomes prohibitive if fine spatial discretization is needed.
The high computation burden of LM may be due to the fact that the system matrix A is
factorized at each simulation step by the direct solver. Being matrix factorization one of the
most demanding steps, we performed some tests using an alternative approach where A−1 is
updated less frequently (every 5 time steps, as in [13]). However, only a slight improvement
in computational performances was achieved, at the expenses of stability. It means that the
assumption that the system matrix A does not change significantly between consecutive time
steps does not always hold for hyperelastic objects, causing divergence in the simulation if
an approximation of the real matrix is used. Overall, our results allow us to conclude that
LM can be exploited to model probe-tissue interaction in a stable way and at interactive rates
using coarse meshes, without introducing a significant loss of accuracy.

Table 2 Summary of the main advantages and disadvantages of the different modelling methods.

Pros Cons

LM 3 Generic contact problem 7 High computation time
3 Interaction forces retrievable

Penalty 3 Low computation time 7 Require stiffness tuning

PrescrDispl
3 Low computation time

7 A priori-knowledge of contact area needed
3 High stability
3 Independent on real mechanical properties

PBD 3 Generic contact problem 7 Patient-specific properties needed
3 Low computation time
3 High stability

In this work, we compared several strategies that can be employed for the modelling of
the interaction between the US probe and soft tissues, considering different spatial resolu-
tions. Currently, our acquisitions are limited to compression experiments, being this kind
of input the most relevant case, causing the greatest anatomical deformations. However, we
plan to extend the experimental protocol in order to include also the sliding interactions.
Furthermore, although the use of a hyperelastic formulation makes our problem challeng-
ing, we are modelling the breast as homogeneous and with very simple boundary condi-
tions. These modelling assumptions might not hold when we deal with clinical cases, and
will require us to extend our model with more complex formulations. Future works will
also include the integration of SOFA within a robot simulation framework and test its per-
formances in supporting the development of an autonomous RUS. Although data in this
work are acquired with a freehand system, we expect it would be straightforward to repeat
the same experiments with the probe held by a robotic manipulator. Furthermore, we will
also investigate new emerging methods, which model the tool-tissue interaction combining
FEM with machine learning. This approach has the potential of having the same accuracy
of FEM, but also improving the stability and computational performance at the same level
of non-physical based methods [25].

5 Conclusion

In this work, we evaluated the capability of different strategies to model the interaction
between the ultrasound probe and soft tissues, relying on the finite element method. The ap-
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proach achieving the best trade-off between accuracy, speed and stability imposes anatomy
deformation by prescribing the displacement of surface mesh nodes. The most general for-
mulations describe the interaction by explicitly modelling the contacts, but they usually
introduce a lack of either computational performances or stability. The presented method-
ologies can be applied to describe the interaction between rigid tools and soft tissues in
general. Therefore, this work can be seen a reference for researchers looking for the most
appropriate strategy to model tool-induced anatomical deformations, which meets the re-
quirements of the target clinical application.
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