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Abstract: In recent years, dynamic languages, such as JavaScript or Python, have been increasingly
used in a wide range of fields and applications. Their tricky and misunderstood behaviors pose
a great challenge for static analysis of these languages. A key aspect of any dynamic language
program is the multiple usage of strings, since they can be implicitly converted to another type value,
transformed by string-to-code primitives or used to access an object-property. Unfortunately, string
analyses for dynamic languages still lack precision and do not take into account some important
string features. In this scenario, more precise string analyses become a necessity. The goal of this
paper is to place a first step for precisely handling dynamic language string features. In particular,
we propose a new abstract domain approximating strings as finite state automata and an abstract
interpretation-based static analysis for the most common string manipulating operations provided
by the ECMAScript specification. The proposed analysis comes with a prototype static analyzer
implementation for an imperative string manipulating language, allowing us to show and evaluate
the improved precision of the proposed analysis.

Keywords: string static analysis; abstract interpretation; abstract semantics

1. Introduction

Dynamic languages, for instance JavaScript or Python, have seen an important growth in a
very wide range of fields and applications. Common features in these languages are dynamic
typing (typing occurs during program execution, at run-time) and implicit type conversion [1],
which lighten the development phase and allow programs not to block execution in the presence
of unexpected or unpredictable situations. Moreover, one important aspect of dynamic languages
is the way strings may be used. In JavaScript, for example, strings can be either used to access
property objects or transformed into executable code by using the global function eval. In this
way, dynamic languages provide multiple string features that simplify the writing of programs,
allowing, at the same time, statically unpredictable executions which might make them harder to
understand [1]. For this reason, string obfuscation (e.g., string splitting) is becoming one of the most
common obfuscation techniques in JavaScript malwares [2], making it hard to statically analyze code.
Consider, for example, the JavaScript program fragment in Figure 1 where strings are manipulated,
de-obfuscated, combined together into the variable d and finally transformed into executable code,
the statement ws = new ActiveXObject(WScript.Shell). This command, in Internet Explorer, opens
a shell which may execute malicious commands. The command is not hard-coded in the fragment but
it is built at run-time and the initial values of i,j and k are unknown, as is the number of iterations of
the loops.
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vd , ac , la = "";
v = "wZsZ"; m = "AYcYtYiYvYeYXY ";
tt = "AObyaSZjectB ";
l = "WYSYcYrYiYpYtY.YSYhYeYlYlY ";

while (i+=2 < v.length)
vd = vd + v.charAt(i);

while (j+=2 < m.length)
ac = ac + m.charAt(j);

ac += tt.substring(tt.indexOf ("O"), 3);
ac += tt.substring(tt.indexOf ("j"), 11);

while (k+=2 < l.length)
la = la + l.charAt(k);

d = vd + "=new " + ac + "(" + la + ")";
eval(d);

Figure 1. A potentially malicious obfuscated JavaScript program.

All these observations suggest that, in order to statically understand statements which are
dynamically generated and executed, it may be extremely useful to statically analyze the string value
of d. Unfortunately existing static analyzers for dynamic languages [3–6], might fail to precisely analyze
strings in dynamic contexts. For instance, in the example above, TAJS [3], JSAI [4] and SAFE [5], lose
precision on the eval input value and any information gathered so far about it. Namely, the issue
of analyzing dynamic languages, even if tackled by sophisticated tools as the cited ones, still lacks
formal approaches for handling the dynamic features of string manipulation, such as dynamic typing,
implicit type conversion and dynamic code generation. Instead, in [7], a new approach for dynamic
language analysis is proposed based on finite state automata for abstracting strings, coming with both
a precise string abstraction able to infer string properties in general and a sound abstract interpreter
for dynamically-generated code.

Contributions

In this paper (This is an extended and revised version of [8] integrated with a more complete
range of string operations, detailed proofs of the results presented (proofs are reported in Appendix A)
and an improved implementation that will be discussed in Section 6.), we focus on the characterization
of an abstract interpretation-based [9] formal framework, capable of handling dynamic typing and
implicit type conversion, by defining an abstract semantics able to (precisely, when possible) capture
the previously mentioned dynamic features. Even if we do not tackle the problem of analyzing
dynamically generated code (meaning that we do not analyze its behavior), as highlighted in [7],
such semantics is a necessary step towards a sufficiently precise analysis for it, since it is able to
reason about a class of string manipulation programs (as far as string values are concerned) that
state-of-art static analyzers would fail to precisely analyze. Indeed the domain we propose allows
us to collect (and potentially approximate) the set of all possible string values that a variable may
receive during computation (at each program point). It should be clear that, in order to analyze what
an eval statement might execute, we surely need to (over-)approximate the set of precise string values
of its input. Hence we propose an approach defining a collecting semantics for strings. With this task
in mind, we will first discuss how to combine abstract domains of primitive types (strings, integers
and booleans) in order to capture dynamic typing. Once we have such an abstract domain, we will
define on it an abstract semantics for a µJS language, augmented with implicit type conversion,
dynamic typing and several interesting string operations taken from the official ECMAScript language
specification [10], namely the JavaScript language specification, whose concrete semantics is inspired
by the JavaScript one. In particular, for each one of these operations we will provide the algorithm
computing its abstract semantics and we will discuss their soundness and completeness.
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Paper structure

In Section 2 we recall relevant notions on finite state automata and the core language adopted
for this paper is established in Section 3. In Section 4.1 we define the finite state automata domain,
highlighting some important operations and theoretical results. In Section 4 we discuss and present
two ways of combining abstract domains (for primitive types) suitable for dynamic languages. Then,
In Section 5, we present the new abstract semantics for string manipulating operations. In Section 6
we examine and evaluate the precision of the string static analyzer based on the above semantics.
Finally, in Section 7, we discuss and compare this paper to the most related works and we draw
our conclusions.

2. Background

In this section, we recall some basic notations and notions that will be used in the rest of the paper.

2.1. String Notation

We denote by Σ a finite non-empty alphabet of symbols, its Kleene-closure by Σ∗ and a string
element by σ ∈ Σ∗. If σ = σ0σ1 · · · σn, the length of σ is |σ| = n + 1 and the element in the i-th
position is σi. Given two strings σ, σ′ ∈ Σ∗, σ · σ′ is their concatenation. A language is a set of strings,
i.e., L ∈ ℘(Σ∗). We use the following notations: Σi def

= { σ ∈ Σ∗ | |σ| = i } and Σ<i def
=

⋃
j<i Σj. Given

σ ∈ Σ∗, i, j ∈ N (i ≤ j ≤ |σ|) the substring between i and j of σ is the string σi · · · σj−1. We denote
by ΣZ

def
= {+,−, ε} · {0, 1, . . . , 9}+ the set of numeric strings, i.e., strings corresponding to integers.

I : ΣZ → Z maps numeric strings to the corresponding integers. Dually, we define the function
S : Z→ ΣZ that maps each integer to its numeric string representation (e.g., 1 is mapped to the string
"1", and not "+1"). Given σ ∈ Σ∗ and n ∈ N, we denote with σn the n-times concatenation of σ. Given
a symbol c ∈ Σ we denote with toLowerCase(c) its corresponding lower-case symbol, if it is a capital
letter, otherwise c is returned. We abuse notation denoting by toLowerCase(σ) the string σ where at
each position any upper-case symbol is replaced with the corresponding lower-case symbol.

2.2. Regular Languages and Finite State Automata

We follow [11] for automata notation. A finite state automaton (FA) is a tuple A = (Q, Σ, δ, q0, F)
where Q is a finite non-empty set of states, q0 ∈ Q is the initial state, Σ is a finite alphabet,
δ ⊆ Q× Σ×Q is the transition relation and F ⊆ Q is the set of final states. In particular,
if δ : Q× Σ→ Q is a function then A is called deterministic FA (DFA). We consider DFA also those
FA which are not complete, namely such that a transition for each pair (q, a) (q ∈ Q, a ∈ Σ) does
not exists. They can be easily transformed in a DFA by adding a sink state receiving all the missing
transitions. The class of languages recognized by FA is the class of regular languages. We denote the
set of all DFA as DFA. Given an automaton A, we denote the language accepted by A as L (A).
A language L is regular iff there exists a FA A such that L = L (A). From the Myhill-Nerode
theorem [12], for each regular language uniquely exists a minimum automaton, i.e., with the minimum
number of states, recognizing the language. Given a regular language L, we denote by Min(L) the
minimum DFA A s.t. L = L (A). Given an automaton A, we denote by Kleene(A) the automaton that
recognizes the language corresponding to the Kleene-closure of L (A), namely the automaton A′ s.t.
L (A′) = L (Kleene(A))) = { σn | σ ∈ L (A), n ∈ N }. Moreover, given an automaton A, we rely on the
predicate hasCycle(A) that checks whether A is cyclic.

2.3. Abstract Interpretation

Abstract interpretation establishes a correspondence between a concrete semantics and an
approximated one called abstract semantics [9,13]. In a Galois Connection framework, if C and A are
complete lattices, a pair of monotone functions α : C → A and γ : A→ C forms a Galois Connection
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(GC for short) between C and A if for every x ∈ C and y ∈ A we have α(x) ≤A y⇔ x ≤C γ(y). α and
γ are called abstraction function and concretization function, respectively.

Let L be a complete lattice. X ⊆ L is a Moore family of L if X =M(X)

/

= { ∧
S | S ⊆ X } and

> (top element) ∈ M(X). If any concrete object in C has a best abstraction in the abstract domain A
implies that A is a Moore family of C and so there exists a Galois connection between C and A.

Weaker forms of correspondence are possible, e.g., when A is not a complete lattice or when only
γ exists [14]. In all cases, relative precision in A is given by comparing the meaning of abstract objects
in C, i.e., x1 ≤A x2 if γ(x1) ≤C γ(x2). If f : C → C is a continuous function and A is an abstraction
of C by means of the GC 〈α, γ〉, then f always has a best correct approximation in A, f A : A → A,
defined as f A

/

= α ◦ f ◦ γ. Any approximation f ] : A→ A of f in A is sound if f A v f ].
In abstract interpretation, there exist two notions of completeness: backward completeness and

forward completeness. The former is the best known form of completeness and focuses on complete
abstractions of the inputs, while the latter is forward completeness [15–17] and it focuses on complete
abstractions of the outputs, both w.r.t. an operation of interest. When we do not have a GC, namely
when only the concretization γ exists, we need to focus only on forward completeness, as we will do
in this paper. Given a GC 〈α, γ〉, a concrete function f : C → C and an abstract function f ] : A→ A, f ]

is forward complete w.r.t. f if ∀a ∈ A. f (γ(a)) = γ( f ](a)).
A satisfies the ascending chain condition (ACC) if all ascending chains are finite. When A is not

ACC convergence to the limit of the fix-point iterations can be ensured through widening operators.
A widening operator ∇ : A× A → A approximates the least upper bounds, i.e., ∀x, y ∈ A . x, y ≤A
(x∇y) and it is such that for any increasing chain x1 ≤ x2 ≤ · · · ≤ xn ≤ . . . the increasing chain
w0 = ⊥ and wi+1 = wi∇xi is finite.

3. The Core Language

In this paper, we consider a JavaScript core language, reported in Figure 2, that we call µJS,
containing several representative string operations taken from the set of methods offered by the
JavaScript built-in class String, detailed in the ECMAScript language specification [10]. Even though
we have decided to focus on a core of the operations, note that the missing methods (e.g., indexOf
or endsWith) can be easily modeled as composition of our chosen string methods or as particular
cases of them. Nevertheless, as we will discuss in Section 6, these operations have been implemented
and tested.

Exp ::= v ∈ V | Id ∈ ID | Exp + Exp | Exp - Exp | Exp * Exp | Exp / Exp
| Exp && Exp | Exp || Exp | ! Exp | length(Exp)
| startsWith(Exp,Exp) | substr(Exp,Exp,Exp) | charAt(Exp,Exp)
| concat(Exp,Exp) | includes(Exp,Exp, Exp)
| trim(Exp) | repeat(Exp,Exp)

Block ::= { } | { Stmt }

Stmt ::= Id = Exp; | if (Exp) Block else Block
| while (Exp) Block | Block | Stmt Stmt | ;

Figure 2. µJS syntax.

µJS Semantics

In µJS the primitive values are V = S ∪ Z ∪ B ∪ {NaN} with S def
= Σ∗ (strings on the alphabet Σ),

B def
= {true, false} and NaN a special value denoting not-a-number.

Program states are partial maps from identifiers to primitive values, i.e., STATES : ID → V.
The concrete big-step semantics J·K : STMT× STATES → STATES is standard and follows [18], and it
includes dynamic typing and implicit type conversion. In addition, the expression semantics, (| · |) :
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EXP× STATES → V, is standard and follows [18]; we only provide the formal and precise semantics
of the µJS string operations. Let σ, σ′ ∈ S and i, j ∈ Z (values which are not strings or numbers
respectively, are converted by the implicit type conversion primitives, moreover, negative values are
treated as zero).

substring: It extracts the substring between two indexes from a string. The semantics is defined by
the function SS: S×Z×Z→ S as:

SS(σ, i, j) def
=


SS(σ, j, i) j < i

σi . . . σj j < |σ| ∧ i ≤ j

σi . . . σn j ≥ n = |σ| ∧ i ≤ j

charAt: It returns the character, i.e., the string of unitary length, at a specified index in a string σ.
The semantics is the function CA: S×Z→ S defined as follows:

CA(σ, i) def
=

{
σi 0 ≤ i < |σ|
ε otherwise

length: It returns the length of a string σ ∈ S. Its semantics is the function LE: S → Z defined as
LE(σ)

def
= |σ|.

concat: It returns the concatenation between two strings and its concrete semantics CC : S× S→ S
relies on the concatenation operator reported in Section 2.

CC(σ, σ′) = σ · σ′

startsWith: It determines whether a specified string σ starts with σ′. The semantics is the function
SW : S× S→ B defined as:

SW(σ, σ′)
def
=

{
true ∃σ′′ ∈ Σ∗. σ = σ′ · σ′′

false otherwise

repeat: It returns the given string repeated n times. The semantics is the function RT : S× Z → S
defined as RT(σ, n) def

= σn.
includes: It determines whether a string σ′ is a substring of σ. The semantics is the function IN:

S× S→ B defined as:

IN(σ, σ′)
def
=

{
true ∃φ, ψ ∈ Σ∗.σ = φ · σ′ · ψ
false otherwise

toLowerCase: It returns the given string in all lowercase letters. The semantics is the function LC

: S→ S defined as LC(σ)
def
= toLowerCase(σ).

trimLeft: It removes all the white-spaces at the beginning of a string. The semantics is the function
TL : S→ S defined as:

TL(σ)
def
= σ′ where ψ = max{ ψ′ ∈ ( )∗ | σ = ψ′ · σ′ } ∧ σ = ψ · σ′

trimRight: It removes all the white-spaces at the end of a string. The semantics is the function TR

: S→ S defined as:

TR(σ)
def
= σ′ where ψ = max{ ψ′ ∈ ( )∗ | σ = σ′ · ψ′ } ∧ σ = σ′ · ψ

trim: It removes all the white-spaces at the end and beginning of a string. The semantics is the
function TM : S→ S defined as: TM(σ)

def
= TR(TL(σ)).
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Implicit Type Conversion

In order to properly capture the semantics of the language µJS, inspired by the JavaScript
semantics, we need to deal with implicit type conversion [18]. For each primitive value, we define an
auxiliary function converting it to other primitive values (Figure 3). Note that all the functions behave
like identity when applied to values not needing conversion, e.g., toInt on integers. Then, toString :
V→ S maps any input value to its string representation; toInt : V→ Z∪ {NaN} returns the integer
corresponding to a value, when it is possible: for true and false it returns respectively 1 and 0,
for strings in ΣZ it returns the corresponding integer, while all the other values are converted to NaN.
For instance, toInt(“42”) = 42, toInt(“42hello”) = NaN. Finally, toBool : V→ B returns false when
the input is 0, and true for all the other non boolean primitive values. It is worth noting that the
auxiliary functions defined in Figure 3 do not correspond to explicit casting but they model the implicit
type conversion implemented by JavaScript. In particular, these functions cannot be directly called by
a programmer since they are exclusively used internally (indeed implicitly) by the semantics when a
type value of an expression operand is required.

toString(v) =



v v ∈ S
“NaN” v = NaN
“true” v = true
“false” v = false
S(v) v ∈ Z

toInt(v) =



v v ∈ Z
1 v = true
0 v = false ∨ v = NaN
I(v) v ∈ S∧ v ∈ ΣZ
NaN v ∈ S∧ v 6∈ ΣZ

toBool(v) =


v v ∈ B
true v ∈ Zr {0} ∨ v ∈ Sr {ε}
false v = 0∨ v = ε ∨ v = NaN

Figure 3. µJS implicit type conversion functions.

4. An Abstract Domain for String Manipulation

4.1. The Finite State Automata Abstract Domain for Strings

In this section, we describe the finite state automata abstract domain for strings [19–21],
namely the domain of regular languages over ℘(Σ∗). In particular our goal is to exploit automata,
and therefore regular languages, for approximating string values collected during analysis. The idea is
to approximate strings as regular languages represented by the minimum DFA [12] recognizing them.
In general, we have more DFA than regular languages, hence the domain of automata is indeed the
quotient DFA/≡ w.r.t. the equivalence relation induced by language equality: ∀A1, A2 ∈ DFA/≡. A1 ≡
A2 ⇔ L (A1) = L (A2). Therefore any equivalence class is composed by automata that recognize the
same regular language. We abuse notation by representing these classes in the domain DFA/≡ w.r.t. ≡
using one of its automata (usually the minimum), i.e., when we write A ∈ DFA/≡ we mean [A]≡.

The partial order vDFA is induced by language inclusion, i.e., ∀A1, A2 ∈ DFA/≡ . A1 vDFA A2 ⇔
L (A1) ⊆ L (A2), which is well defined since automata in the same ≡-equivalence class recognize the
same language.

The corresponding least upper bound, tDFA : DFA/≡ ×DFA/≡ → DFA/≡ on the domain DFA/≡,
is the standard union between automata: ∀A1, A2 ∈ DFA/≡. A1 tDFA A2

def
= Min(L (A1) ∪L (A2)). It is

the minimum automaton recognizing the union of the languages L (A1) and L (A2). This is a
well-defined notion since regular languages are closed under union. As example consider Figure 4,
where the automaton in Figure 4c is the least upper bound of A1 and A2 given in Figure 4a,b, respectively.
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q0 q1 q2 q3
a b c

(a) A1

q0 q1 q2 q3
x y z

(b) A2

q0 q1 q2 q3

q4 q5

a b c

x y z

(c) Min(A1 ∪ A2)

Figure 4. Least upper bound of DFA/≡.

The (finite) greatest lower bound uDFA : DFA/≡ × DFA/≡ → DFA/≡ corresponds to automata
intersection (since regular languages are closed under finite intersection): ∀A1, A2 ∈ DFA/≡. A1 uDFA

A2
def
= Min(L (A1) ∩L (A2)).

Theorem 1. 〈DFA/≡,vDFA,tDFA,uDFA,Min(∅),Min(Σ∗)〉 is a sub-lattice but not a complete
meet-sub-semilattice of ℘(Σ∗).

In other words, it cannot exists a Galois connection between DFA/≡ and ℘(Σ∗), i.e., there may be
no minimal automaton abstracting a language. Note that some works [22–24] have studied automatic
procedures to compute, given an input language L, the regular cover of L [23] (i.e., an automaton
containing the language L). Some of them [22,23] studied regular covers guaranteeing that the
automaton obtained is the best w.r.t. a minimal relation (but not minimum). However this is not a
concern since the relation between concrete semantics and abstract semantics can be weakened still
ensuring soundness [14]. A well known example is the convex polyhedra domain [25].

Widening

The domain DFA/≡ is an infinite domain, and it is not ACC, i.e., it contains infinite ascending
chains. For instance, consider the set of languages Li = { ajbj | 0 ≤ j ≤ i } ⊆ ℘(Σ∗), indexed by a
constant natural i ∈ N, forming an infinite ascending chain of finite regular languages. The set of the
corresponding minimal automata trivially forms an ascending chain on DFA/≡. This clearly implies
that any computation on DFA/≡ may lose convergence [14] (Most of the proposed abstract domains
for strings [3–5,26] trivially satisfy ACC being finite, but they may lose precision during the abstract
computation [27].).

As far as automata are concerned, existing widenings are defined in terms of a state equivalence
relation merging states that recognize the same language, up to a fixed length n (set as parameter
for tuning the widening precision) [28,29]. We denote this parametric widening with ∇n : DFA/≡ ×
DFA/≡ → DFA/≡, with n ∈ N [28] and it is defined in the following.

Let A = (Q, Σ, δ, q0, F) and A′ = (Q′, Σ, δ′, q′0, F′) be two finite state automata such that L (A) ⊆
L (A′): the widening between A and A′ is formalized in terms of a relation R ⊆ Q×Q′ between the sets
of states of the two automata. The relation R is used to define an equivalence relation ≡R⊆ Q′ ×Q′

over the states of A′, such that ≡R= R ◦ R−1. The widening between A and A′ is then given by the
quotient automaton of A′ w.r.t. the partition induced by ≡R: A′∇RA′ = A′≡R

(Given A ∈ DFA/≡ and
a partition π over its states, we denote as Aπ = (Q′, δ′, q′0, F′, Σ) the quotient automaton [12].). Thus,
the widening operator merges the states of A′ that are equivalent by the relation ≡R. By changing
the relation R, we obtain different widening operators [28]. It has been proved that convergence is
guaranteed when the relation Rn ⊆ Q× Q′ is such that (q, q′) ∈ Rn iff q and q′ recognize the same
language of strings of length at most n [28]. The parameter n therefore tunes the length of strings
determining the equivalence of states used for merging them in the widening. It is worth noting that
the smaller is n, the more information will be lost by widening.
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In the following, given A, A′ ∈ DFA/≡ (without any constraints on the languages they recognize),
we define the widening operator on DFA/≡ parametric on n ∈ N as follows.

A∇nA′
def
= A∇Rn(AtDFA A′)

In order to show how the defined widening operator works, let us discuss the following example.

Example 1. Consider the following µJS fragment

str =""; while (x < 100) { str=str+"a"; x=x+1; }
The value of the variable x is unknown and so is the number of iterations of the while-loop. In these cases,

in order to guarantee soundness and termination, we apply the widening operator.
In Figure 5a we report the abstract value of the variable str at the beginning of the second iteration of the

loop, while in Figure 5b the abstract value of the variable str at the end of the second iteration. Before starting a
new iteration, in the example, we apply∇1 between the two automata, specifically we merge all the states having
the same outgoing character. The minimization of the so obtained automaton is reported in Figure 5c. The next
iteration will reach the fix-point, guaranteeing termination.

q0 q2
a

(a) A1 s.t. L (A1) = {ε, a}

q0 q1 q2
a a

(b) A2 s.t. L (A2) = {a, aa}

q0

a

(c) A1∇1A2

Figure 5. Widening of DFA/≡.

4.2. An Abstract Domain for µJS

By definition, string operations in our language also involve other primitive values, such as
booleans or integers, hence we need an abstract domain able to observe any possible concrete value.
This is additionally necessary for dealing with implicit type conversion as we will later observe.

We therefore have to design an abstract domain for string manipulation dealing with other
primitive types, namely being able to combine different abstractions of various types. In particular,
an abstract domain for string analysis equipped with dynamic typing must include all the possible
primitive values, i.e., the whole V = Z ∪ B ∪ S ∪ {NaN}. The idea is to consider an abstract domain
for each type of primitive value and to combine them in a unique abstract domain for V. Consider,
for each value D, an abstract domain D] (we denote D]

6⊥ the domain D] without bottom), equipped

with an abstraction αD : D→ D] and a concretization γD : D] → D forming a Galois insertion [9].

4.2.1. Coalesced Sum

One way to merge domains is the coalesced sum [30]. The resulting domain contains all the
non-bottom elements of the input domains, with a new top and a new bottom.

Definition 1 (Coalesced sum domain [31]). Let 〈A,≤A,tA,uA,⊥A,>A〉 and 〈B,≤B,tB,uB,⊥B,>B〉
be two lattices abstracting the posets 〈C,≤C〉 and 〈D,≤D〉 with abstraction functions αA : A → C and
αB : B→ D, respectively. The coalesced sum domain A⊕ B is defined as:

A⊕ B
def
= {⊥A⊕B} ∪ { a | a ∈ A 6⊥ } ∪ { b | b ∈ B6⊥ } ∪ {>A⊕B}
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such that the partial order is defined as x ≤A⊕B y ⇔ x ≤A y (x, y ∈ A) ∨ x ≤B y (x, y ∈ B) and
∀x ∈ A⊕ B.⊥A⊕B ≤A⊕B x ≤A⊕B >A⊕B, its least upper bound is defined as:

x tA⊕B y
def
=



x tA y if x, y ∈ A 6⊥
x tB y if x, y ∈ B6⊥
x if y = ⊥A⊕B

y if x = ⊥A⊕B

>A⊕B otherwise

and its greatest lower bound uA⊕B can be dually defined. The abstraction functions αA⊕B : C ∪ D → A⊕ B is
defined as:

αA⊕B(x)
def
=


αA(x) if x ∈ C

αB(x) if x ∈ D

>A⊕B otherwise

In our case, if we consider the abstract domains Z], S] and B], the coalesced sum is the abstraction
of ℘(V) depicted in Figure 6.

>
S]6⊥B]

6⊥ {NaN}Z]
6⊥

⊥

Figure 6. Coalesced sum abstract domain for µJS.

This is the simplest choice but unfortunately this is not suitable for dynamic languages,
in particular for dealing with dynamic typing and implicit type conversion. The problem is that the type
of variables is inferred at run-time and may change during execution. For example, consider the µJS

fragment if (y < 5) {x = “42”; } else {x = true; }. The value of the variable y is statically unknown
hence, in order to guarantee soundness, we must take into account both the branches, meaning that
x may be both a string and a boolean value, after the if statement. On the coalesced sum domain,
the analysis would lose any precision w.r.t. collecting semantics by returning αS(“42”)t αB(true) = >.

4.2.2. Cartesian Product

In order to catch union types, without losing too much precision, we need to complete [15,16,32]
the above domain in order to observe collections of values of different types. In order to define this
combination, we rely on the Cartesian product, following [33]. The complete abstract domain w.r.t.
dynamic typing and implicit type conversion is: Z] ×B] × S] × ℘({NaN}), abstraction of ℘(V). In this
combined abstract domain, the value of x after the if-execution is precisely (⊥, αB(true), αS(“42”),⊥),
now an element of the domain, inferring that the value of x can be αB(true) or αS(“42”) but surely
not an abstract integer of NaN.

In the following, we consider the abstract domain V] for string analysis obtained as Cartesian
product of the following abstractions: B] = ℘({true, false}), Z] = Const

def
= {⊥Const,>Const} ∪

{ {z} | z ∈ Z } (the abstract domain of constant integers) and S] = DFA/≡, .

5. Abstract Semantics of ECMAScript String Operations

In this section, we define the abstract semantics of the language µJS over the abstract domain
V]. In particular, we have to define the expressions abstract semantics J·K] : EXP × STATES → V],
abstracting the collecting semantics (The string collecting semantics (fully reported in Appendix A)
is defined lifting to ℘(V) the concrete one reported in Section 3. For example, the collecting
semantics of substring is, abusing notation, SS : ℘(Σ∗) × ℘(Z) × ℘(Z) → ℘(Σ∗) defined as
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SS(L, I, J) = { SS(σ, i, j) | σ,∈ L, i ∈ I, j ∈ J }.), which is standard except for the string operations that
will be explicitly provided by describing the algorithms for computing them. Let us first recall some
important notions on regular languages, useful for the algorithms we will provide.

Definition 2 (Suffixes and prefixes [12]). Let L ∈ ℘(Σ∗) be a regular language. The suffixes of L are
SU(L)

def
= { y ∈ Σ∗ | ∃x ∈ Σ∗. x · y ∈ L }, and the prefixes of L are PR(L)

def
= { x ∈ Σ∗ | ∃y ∈ Σ∗. xy ∈ L }.

We can define the suffixes from a position, namely given i ∈ N, the set of suffixes from i is
SU(L, i) def

= { y ∈ Σ∗ | ∃x ∈ Σ∗. x · y ∈ L, |x| = i }. For instance, let L = {abc, hello}, then SU(L, 2) =
{c, llo}.

Definition 3 (Right quotient [12]). Let L1, L2 ∈ Σ∗ be regular languages. The right quotient of L1 w.r.t L2 is
RQ(L1, L2)

def
= { x ∈ Σ∗ | ∃y ∈ L2. x · y ∈ L1 }.

For example, let L3 = {xab, yab} and L4 = {b, ab}. The right quotient of L3 w.r.t L4 is RQ(L3, L4) =

{xa, ya, x, y}.

Definition 4 (Substrings/Factors [34]). Let L ∈ ℘(Σ∗) be a regular language. The set of its substrings/factors
is FA(L)

def
= { y ∈ Σ∗ | ∃x, z ∈ Σ∗. x · y · z ∈ L }.

These operations are all defined as transformations of regular languages. In [12], the
corresponding algorithms on FA are provided. In particular, let A, A1 ∈ DFA/≡ and i ∈ N, then SU(A),
PR(A), SU(A, i), FA(A) and RQ(A, A1) are the algorithms corresponding to the transformations SU(L(A)),
PR(L(A)), SU(L (A), i), FA(L (A)) and RQ(L (A), L (A1)), respectively. Namely, ∀A, A1 ∈ DFA/≡, i ∈ N,
the following facts holds:

SU(L (A)) = L (SU(A)) PR(L (A)) = L (PR(A)) FA(L (A)) = L (FA(A))
RQ(L (A), L (A1)) = L (RQ(A, A1)) SU(L (A), i) = L (SU(A, i))

5.1. Abstract Semantics of Substring

In this section we define the abstract semantics of substring. In particular, we define the operator
SS] : DFA/≡ × Const× Const → DFA/≡, that takes as input an automaton and two constant integer
indexes i, j ∈ Const, and computes the automaton recognizing the set of all substrings of the input
automata language between the two provided integer indexes. Since the abstract semantics has to take
into account the swaps when the initial index is greater than the final one, several cases arise when
one of the two integer parameters is unknown, namely when it is equal to >Const. Indeed, the abstract
semantics SS] is divided in four cases that are reported in Table 1. Consider A ∈ DFA/≡, i, j ∈ Const

(for the sake of readability we denote by t the automata lub tDFA, and by u the glb uDFA). As in the
concrete semantics of substring, negative integer values are treated as zero.

1. If i, j ∈ Z (second row, second column of Table 1) we have to compute the language of all the
substrings between the initial index i and a final index in j, i.e., SS(L (A), i, j). For example, let
L = {a}∗ ∪ {hello, bc}, the set of its substrings from 1 to 3 is SS(L, 1, 3) = {ε, a, aa, el, c}. When
i < j, as in the example, the automaton accepting this language is computed by the operator

SS(A, i, j) def
= (RQ(SU(A, i),SU(A, j)) uMin(Σj−i)) t (SU(A, i) uMin(Σ<j−i))

If j > i, the integer arguments are simply swapped, as in the Table 1.
2. When both integer parameters correspond to >Const, the result is the automaton of all possible

factors of A (third row, third column), i.e., FA(A).
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3. When i is defined and j = >Const (second row, third column), we have to compute the automaton
recognizing all the substrings of L (A) from 0 to i and any substring starting from i. For example,
let us consider SS](Min({helloworld}), 5,>Const). Due to the semantics of substring reported
in Section 3, we need to compute the substring from a ∈ [0, 5] to 5 and then any substring with
initial index equal to 5. The automata recognizing any substring starting at a specific index l is
defined as SS↔(A, l) def

= FA(SU(A, l)). The abstract semantics returns the least upper bound of all
the automata of substrings from a in [0, i] to the automata recognizing any substring with initial
index equals to i.

4. Similarly to the previous case, when j is defined and i = >Const (third row, second column),
we have to compute the automaton recognizing all the substring of L (A) from 0 to j and any
substring starting from j. Let us consider SS](Min({helloworld}),>Const, 5). Similarly to the
previous case, we compute the substrings from a ∈ [0, 5] to 5 and then any substring with
initial index equal to 5. The abstract semantics therefore returns the least upper bound of all
the automata of substrings from a in [0, j] to the automata recognizing any substring with initial
index equal to j.

In Figure 7 we report an example obtained applying the rules in the table.

Table 1. Definition of SS].

SS](A, i, j) j ∈ Z (j 6= >Const) j = >Const

i ∈ Z (i 6= >Const) SS(A,min(i, j),max(i, j))

⊔
a∈[0,i] SS(A, a, i)

t
SS↔(A, i)

i = >Const

⊔
a∈[0,j] SS(A, a, j)

t
SS↔(A, j)

FA(A)

Theorem 2. SS] is sound and complete. Formally,

∀A ∈ DFA/≡, i, j ∈ Const. SS(L (A), γ(i), γ(j)) = L (SS](A, i, j))

From here on, when we say completeness we mean forward completeness. As highlighted in
Section 2, this is the only form of completeness we can ensure in absence of a Galois connection.
In particular, when an abstract operation (e.g., SS]) is forward complete for a concrete operation (e.g.,
SS) means that the computation on the abstract domain (e.g., DFA/≡) does not lose information due to
the necessary computation only on abstract elements.
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e l l
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q0

q1 q2 q3

q4 q6

q5

n g
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e, a l

a
l

o

(b)
Figure 7. (a) A, L (A) = {lang, hello} (b) A′ = SS](A, 2,>Const).

5.2. Abstract Semantics of charAt

The abstract semantics of charAt should return an automaton accepting the language of the
characters at position i in the strings accepted by the given automaton. Since charAt is a particular
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case of substring, its abstract semantics, determined by CA] : DFA/≡ × Const→ DFA/≡, relies on the
abstract semantic of substring previously defined. In particular,

CA](A, i) def
=

{
SS](A, i, i + 1) i 6= >Const

Min(chars(A)) tMin({ε}) otherwise

We call SS] (defined before) when the index i corresponds to a determinate integer value otherwise we
use the function chars : DFA/≡ → ℘(Σ), returning the set of characters read in any transition of an
automaton, together with Min({ε}).

Theorem 3. CA] is sound and complete. Formally,

∀A ∈ DFA/≡, i ∈ Const. CA(L (A), γ(i)) = L (CA](A, i))

5.3. Abstract Semantics of length

The abstract semantics of length should return a value, of the integer domain Const, that, in a
sound way, approximates the length of all the possible strings of an automaton. The abstract semantics
of length is defined by the function LE] : DFA/≡ → Const, computed by Algorithm 1, where Paths :
DFA/≡ → ℘(℘(Q)) returns the set of the paths from the initial state to any final state of A [35]. Given a
path p ∈ Paths(A), we denote by |p| the length of p.

Algorithm 1: LE] : DFA/≡ → Const algorithm

Input: A = (Q, Σ, δ, q0, F)
Output: LE](A)

1 if hasCycle(A) then
2 return >Const;
3 else
4 lenghts← −1;
5 foreach p ∈ Paths(A) do
6 if |p| == lenghts∨ lenghts == −1 then
7 lenghts← |p|;
8 else
9 return >Const;

10 end
11 end
12 return lenghts;
13 end

If the input automaton has cycles, LE] returns >Const otherwise it checks that any path of the
automaton A has the same length (lines 5–8). Whenever the algorithm finds that there exists two paths
in the automaton that have different lengths, >Const is returned (lines 8–10). Due to the constant
integers domain, the abstract semantics of length can give a precise answer only when any string of
the automaton has precisely the same length. More accurate results can be obtained by using more
precise integer abstract domains, e.g., intervals, as we will discuss in Section 6. For example, consider
the automata A and A′ in Figure 8a,b, respectively. LE](A) precisely returns 5, since all the strings
recognized by A have the same length, while LE](A′) returns >Const.
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Figure 8. (a) A, L (A) = {paper, hello}. (b) A′, L (A′) = {abc, hello}.

Theorem 4. LE] is sound and complete. Formally,

∀A ∈ DFA/≡. LE(L (A)) = γ(LE](A))

5.4. Abstract Semantics of Concat

The abstract semantics of string concatenation is CC] : DFA/≡×DFA/≡ → DFA/≡ and returns the
concatenation between the input automata. Since regular languages are closed under the concatenation
operation, so are finite state automata. Hence, CC] exactly implements the standard concatenation
operation between automata. Given the closure property on automata, the following result holds.

Theorem 5. The function CC] is sound and complete. Formally, ∀A, A′ ∈ DFA/≡ .

CC(L (A), L (A′)) = L (CC](A, A′))

As we have already mentioned before, completeness holds thanks to the closure properties of
regular languages (and in turn of finite state automata).

5.5. Abstract Semantics of StartsWith

The abstract semantics of startsWith takes as input two automata and checks whether a string of
the language of the first automaton starts with a string of the language of the second one. The abstract
semantics of startsWith is captured by the function SW] : DFA/≡ × DFA/≡ → B], computed by
Algorithm 2, where maxString : DFA/≡ → DFA/≡ returns the (minimal) automaton recognizing
the longest string of the automaton given as input and isSinglePath : DFA/≡ → {true, false}
checks whether the input automata A = (Q, Σ, δ, q0, F) respect the following condition: δ =⋃

i∈[0,|Q|](qi, qi+1, c). Informally, a single-path automaton is an automaton where, if we sort the strings
of its language from the shortest to the longest, each string is a prefix of the next one. An example
of a single-path automaton is reported in Figure 9b where it is graphically clear that each state,
excluding the initial and last one, have one incoming and one outgoing transition. Since the longest
string in a single-path automaton has, as prefix, all the others of the language, it is sufficient to
check, for an automaton A, if it starts with only the former. For example, let L (A) = {so f ter} and
L (A′) = {s, so, so f t}. The string s is prefix of so, which is in turn prefix of so f t so A′ is a single-path
automaton. Therefore, in this case, it is sufficient to check if so f ter starts with only so f t (the longest
string of L (A′)) since, being A′ single-path, the other strings (s and so) are consequently prefix of so f ter.
Instead, consider L (A′) = {s, no}. It would be impossible for a string to start with both of them since
there is no prefix relation between them.

Algorithm 2 takes as input two automata denoted by A and A′. Lines 1-9 handle some corner cases.
If L (A′) = {ε}, {true} is returned, since any string starts with ε (lines 1-3). If none of the prefixes of A
is recognized by A′, meaning that none of the strings recognized by A start with a string of A′, we can
safely return {false} (lines 4-6). Finally, if at least one of the input automata have cycles, we return
{true, false} (lines 7-9). Lines 10-17 determine if any string of A′ is the beginning of any string of A,
otherwise >Bool is returned.
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Algorithm 2: SW] : DFA/≡ ×DFA/≡ → B] algorithm

Input : A = (Q, Σ, δ, q0, F), A′ = (Q′, Σ, δ′, q′0, F′)
Output :SW](A, A′)

1 if A′ == Min({ε}) then
2 return {true};
3 end
4 if PR(A) uDFA A′ == Min(∅) then
5 return {false};
6 end
7 if hasCycle(A) ∨ hasCycle(A′) then
8 return >Bool;
9 end

10 if isSinglePath(A′) then
11 B← maxString(A′);
12 C← SS](A, 0, LE](B));
13 if B == C then
14 return {true};
15 end
16 end
17 return >Bool;
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o a l

a

(a)

q0 q1 q2 q3
p a n

(b)
Figure 9. (a) A, L (A) = {panda, koala}. (b) A′, L (A′) = {pan, p}.

In order to explain our approach in lines 10-17, consider the automata A and A′ reported in Figure 9.
To be sure that any string recognized by A′ is the beginning of any string recognized by A we need
to check two conditions: (1) any string recognized by A′ is prefix of its longest recognized string σ

and (2) each string in A starts with σ (all strings must have a common prefix). Only if both conditions
occur we can safely return {true} otherwise we return >Bool. In particular, (1) is checked by the
function isSinglePath at line 10 and (2) is checked at lines 11-15. It is worth noting that if an automaton
is single-path, then the longest string is unique (line 11).

In our example, both the strings p and pan in L (A′) are prefixes of pan, which is the longest
string recognized by A′, so we build B, which is the (minimal) automaton that recognizes pan and
C, L (C) = {pan, koa}, and compare them (line 13). We return {true} if B and C recognize the same
language otherwise we return>Bool. In the other cases, as already mentioned, we return {true, false}.
For example, in Figure 9, {true, false} is returned because, although A′ is a single-path automaton,
only the string panda ∈ L (A) begins with pan, namely the longest string of L (A′).

Example 2. Consider for example A s.t. L (A) = {panda, panem}, and A′ s.t. L (A′) = {p, pan}. SW](A, A′)
returns {true} since A′ is a single-path automaton and both strings of A start with the longest string in A′,
the string pan. Consider instead the automata A, L (A) = {panda, koala}, and A, L (A) = {p, k}. In this case,
SW](A, A′) returns {true, false} since A′ is not a single-path automaton. Indeed, we can easily check that
even if the string panda ∈ L (A) starts with p ∈ L (A′), the string koala ∈ L (A) does not.

Theorem 6. SW] is sound but not complete. Formally,

∀A, A′ ∈ DFA/≡. SW(L (A), L (A′)) ( SW](A, A′)
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As a counterexample to completeness, consider the automata A s.t. L (A) = A = { an | n > 1 }
and A′ s.t. L (A′) = {a}. The completeness condition is not met, indeed,

SW](A, A′) = {true, false} 6⊂ SW(L (A), L (A′)) = {true}

5.6. Abstract Semantics of ToLowerCase

The abstract semantics of toLowerCase is defined by the function LC] : DFA/≡ → DFA/≡ which
returns as result an automaton that recognizes the same strings of the input automaton, where
any upper-case symbol is replaced with the corresponding lower-case symbol. LC] is computed by
Algorithm 3.

Algorithm 3: LC] : DFA/≡ → DFA/≡ algorithm

Input : A = (Q, Σ, δ, q0, F)
Output :LC](A)

1 δ′ ← ∅;
2 foreach (q, c, q′) ∈ δ do
3 δ′ ← δ′ ∪ (q, toLowerCase(c), q′)
4 end
5 A′ ← (Q, Σ, δ′, q0, F);
6 return A′

Starting from an input automaton A, the idea is to return as result the automaton A′, that is
a copy of A with the exception that any upper-case symbol read by a transition is replaced by its
corresponding lower-case symbol. Transitions that already read lower-case or special symbols are
unaltered. An example is reported in Figure 10.

Theorem 7. LC] is both sound and complete. Formally,

∀A ∈ DFA/≡. LC(L (A)) = L (LC](A))
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Figure 10. (a) A, L (A) = {!Ab, CdE}, (b) LC](A).

5.7. Abstract Semantics of Includes

The abstract semantics of includes is defined by the function IN] : DFA/≡ × DFA/≡ → B].
It takes as input two automata A and A′ and checks whether a string recognized by A′ is a substring
of a string recognized by A. The function IN] is computed by Algorithm 4, where, given a path p

of an automaton A, we abuse notation denoting by Min(p) the automaton that recognizes the string
encoded by the path p (lines 11–12). The algorithm first checks some corner cases: if A′ only recognizes
the empty string, {true} is returned, since the empty string is always a substring of a non-empty
automaton (lines 2–4), if none of the substring of A is contained in A′, {false} is returned (lines 5–7)
and if one of the input automata is cyclic, it returns >Bool (lines 8–10). When these corner cases are
excluded, we check each string recognized by A. If the algorithm finds at least one string σ′ in L (A′)
that is not a substring of a string σ of A, >Bool is returned otherwise {true}. This is done in lines 10–14
where, for each path p of A we create Min(p) and check if its factorization with A′ equals A′, i.e., we
check if it contains any string of A′.
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Algorithm 4: IN] : DFA/≡ ×DFA/≡ → B] algorithm

Input : A = (Q, Σ, δ, q0, F), A′ = (Q′, Σ, δ′, q′0, F′)
Output : IN](A, A′)

1 if A′ == Min({ε}) then
2 return {true};
3 end
4 if FA(A) uDFA A′ == Min(∅) then
5 return {false};
6 end
7 if hasCycle(A) ∨ hasCycle(A′) then
8 return >Bool;
9 end

10 foreach p ∈ Paths(A) do
11 if A′ uDFA FA(Min(p)) 6= A′ then
12 return >Bool;
13 end
14 end
15 return {true};

For example, consider the automata A and A′ reported in Figure 11. The algorithm returns >Bool

since the string f g ∈ L (A′) is not a substring of abc ∈ A. Another example is reported in Figure 12.
The result of IN](A, A′) returns {true} since ∀σ ∈ L (A), ∀σ′ ∈ L (A′). σ′ is a substring of σ.
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Figure 11. (a) A, L (A) = {abc, abd, e f g} (b) A′, L (A′) = {ab, f g}.
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Figure 12. (a) A, L (A) = {panda, candy, andy} (b) A′, L (A′) = {an, nd}.

Theorem 8. IN] is sound but not complete. Formally,

∀A, A′ ∈ DFA/≡. IN(L (A), L (A′)) ( IN](A, A′).

As a counterexample to completeness, consider the automaton A s.t. L (A) = { an | n > 1 } and
the automaton A′ s.t. L (A′) = {a}. The completeness condition is not met, indeed

IN(L (A), L (A′)) = {true} 6= IN](A, A′) = {true, false}

since when one of the input automata is cyclic, Algorithm 4 returns >Bool.
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5.8. Abstract Semantics of Repeat

The abstract semantics of repeat is defined by the function RT] : DFA/≡ × Const→ DFA/≡ that,
given as input an automaton A and a constant integer value i, returns an automaton that recognizes
any string of L (A) repeated i times. RT] is computed by Algorithm 5 and we suppose that the abstract
integer value i is positive or zero. Any non-positive value is treated as zero. The algorithm first checks
some corner cases. If i = 0 or the input automaton only recognizes the empty string, then Min(ε) is
returned (lines 1–3). If the automaton has a cycle or i = >Const, it returns the Kleene-closure of the
input automaton (lines 4–6). If none of these corner cases is detected then, for each string in L (A), we
concatenate it with itself (i− 1)-times using the already defined CC]. The result is the union of all the
concatenated automata.

Algorithm 5: RT] : DFA/≡ × Const→ DFA/≡ algorithm

Input :A = (Q, Σ, δ, q0, F), i ∈ Const

Output :RT](A, i)
1 if i == 0∨ A == Min({ε}) then
2 return Min({ε});
3 end
4 if hasCycle(A) ∨ i == >Const then
5 return Kleene(A);
6 end
7 R← ∅;
8 foreach p ∈ Paths(A) do
9 A′ ← Min(p);

10 B← A′;
11 foreach k ∈ [1, i− 1] do
12 A′ ← CC](A′, B);
13 end
14 R← R∪ A′;
15 end
16 return R;

Let us consider the automaton A reported in Figure 13a and suppose to call RT](A, 2). The resulting
automaton, applying Algorithm 5, is reported in Figure 13b. Let us suppose to call RT](A,>Const).
In this case, since the input integer value is not determinate, Algorithm 5 returns the Kleene-star
automaton of A and the result is reported in Figure 13c.

Theorem 9. RT] is sound but not complete. Formally,

∀A ∈ DFA/≡, ∀i ∈ Const. RT(L (A), γ(i)) ( L (RT](A, i))
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Figure 13. (a) A, L (A) = {do, mi} (b) RT](A, 2) (c) RT](A,>Const).
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As a counterexample to completeness, consider the automaton A s.t. L (A) = { abn | n ∈ N }.
The completeness condition is not met, indeed

RT(L (A), 2) = { abnabn | n ∈ N } 6= RP](A, 2) = { (abn)m | n, m ∈ N }

since when the input automaton is cyclic, Algorithm 5 returns the Kleene closure of the
input automaton.

5.9. Abstract Semantics of TrimLeft, TrimRight and Trim

In this section, we will show the abstract semantics of trimLeft, trimRight and trim operations.
The abstract semantics of trimLeft is defined by the function TL] : DFA/≡ → DFA/≡. In particular,
it takes as input an automaton A and returns an automaton accepting the same strings of A removing,
at the beginning of each string, consecutive white spaces, if present. In the following, we denote a
white-space as . The function is computed by Algorithm 6. The idea of algorithm is to iteratively
replace white-space transitions from the initial state with ε-transition (lines 5–7), while leaving the other
transitions unaltered (lines 7–9). At each iteration, the resulting automaton is minimized, and hence
determinized (line 11). This operation is repeated until the initial state has no white-space transitions,
checking the condition that white-space is not a prefix of the automaton (line 3). In Figure 14 is depicted
an example of application of our algorithm.

Algorithm 6: TL] : DFA/≡ → DFA/≡ algorithm

Input :A = (Q, Σ, δ, q0, F)
Output :TL](A)

1 δ′ ← δ;
2 R← A;
3 while PR(R) uDFA Min({ }) do
4 foreach (q0, c, q) ∈ δ do
5 if c == then
6 δ′ ← δ ∪ (q0, ε, q)
7 else
8 δ′ ← δ ∪ (q0, c, q)
9 end

10 R← (Q, Σ, δ′, q0, F);
11 Min(R);
12 end
13 end
14 return R;

q0 q1 q2

q3

a b

d

(a)

q0 q1 q2
a b

d

(b)

Figure 14. (a) A, L (A) = {( )∗ab, d}, (b) TL](A).

Theorem 10. TL] is sound and complete. Formally, ∀A ∈ DFA/≡,

TL(L (A)) = L (TL](A))
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The abstract semantics of trimRight can be defined in function of the already defined function
TL]. Indeed, the abstract semantics TR] : DFA/≡ → DFA/≡ reserves the input automaton, applies TL]

and finally reverses again the so obtained automaton. Formally,

TR] def
= reverse(TL](reverse(A))

Similarly, the abstract semantics of trim applies both the abstract semantics of trimLeft and trimRight.
Thus, the abstract semantics of trim is captured by the function TM] : DFA/≡ → DFA/≡ and it is
defined as

TM](A) def
= TR](TL](A))

Theorem 11. TR] and TM] are sound and complete. Formally, ∀A ∈ DFA/≡

TR(L (A)) = L (TR](A)) TM(L (A)) = L (TM](A))

Proof. The proof of TR] follows from the completeness of TL] and reverse operations, while the proof
of TM] follows from the completeness of TL] and TR].

5.10. Concerning Abstract Implicit Type Conversion

In this section, we discuss the abstraction of implicit type conversion functions. Here we will
focus only on the conversion of automata into other values, since conversions concerning booleans,
not-a-number and integers are standard. Let toBool] : V] → B] be applied to A ∈ DFA/≡: If
AuMin({ε}) = Min(∅), it returns {true}, when A = Min({ε}) the function returns {false}, otherwise
the function return >Bool. Implicit type conversion to DFA/≡ is handled by the function toStr] :
V] → DFA/≡. As far as non numeric strings are concerned, toStr] returns Min({NaN}). If the
input is the boolean value true [false] it returns Min({true}) [Min({false})], otherwise it returns
Min({true}) tMin({false}). Regarding abstract integers, if i ∈ Z, then the automaton recognizing
the string S(i) is returned (We recall that the function S(i) maps an integer i to its numeric string
representation.), otherwise, hence when i = >Const, the automaton recognizing any possible integer
is returned and reported in Figure 15. Finally, toInt] : V] → Const ∪ {NaN} handles conversion
to constant integers. Given an automaton A, if A uMin(ΣZ) = Min(∅), the automaton is precisely
converted to NaN, since A does not recognize any numerical string. Otherwise, if A vDFA Min(ΣZ) it
means that L (A) contains only numeric strings. In particular, if A recognizes only one numerical string,
the corresponding integer is returned, otherwise >Const is returned.

+,− [0− 9]

[0− 9]

[0− 9]

Figure 15. toStr](>Const).

6. µFASA Implementation

In this section we present µJS Finite-state Automata String Analyzer (µFASA), the string static
analyzer integrating the finite state automata abstract domain, and the corresponding abstract
semantics, presented in the previous sections.

6.1. Theoretical Concerns

It is worth noting that, as reported in Theorem 1, ℘(Σ∗) (string concrete domain) and DFA/≡
(abstract string domain) do not form a Galois connection, however this is not a concern. We have
shown, for the core language we adopted, that the abstract semantics we have defined for string
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operations guarantee soundness hence, if the abstract interpreter starts from regular initial conditions
(i.e., constraints expressible as finite state automata) it will always compute regular invariants.

When implementing, an important issue is computational complexity. The abstract semantics
reported in this paper often relies on minimization of finite state automata in order to keep the
automata, which arise during abstract computations, determinized and minimized. In the worst
case, minimization has exponential complexity but this is not a problem. Even if our library relies on
the Brzozowski’s algorithm, which theoretically has exponential complexity in worst-case scenario,
in practice it is extremely fast on average and consistently outperforms other minimization algorithms
(e.g., Hopcroft’s algorithm, having average-case complexity O(n log n), where n is the number of
states), as reported in [36]. Moreover, the minimization is only applied when the input automaton
is not-deterministic.

6.2. Implementation

µFASA is a string static analyzer for extended µJS inter-procedural programs and it is built upon
the finite state automata abstract domain described above. (Available at www.github.com/SPY-Lab/
mufasa) It analyzes string variables and is also able to express associative arrays. The finite state
automata abstract domain has been implemented as an external library (Available at www.github.com/
SPY-Lab/java-fsm-library), offering a suitable and easy way to plug the domain into existing static
analyzers, such as [3–5,37]. The library includes the implementation of all the algorithms concerning
the finite state automata domain and provides well-known operations on automata such as suffix,
right quotient, abstract domain-related operations, such as tDFA, uDFA, and the parametric widening for
tuning precision and forcing convergence.

In addition to the string operations (and the corresponding automata-based abstract semantics)
introduced in this paper, µFASA also analyzes functions that can be defined as composition of the
ones presented here (e.g., endsWith w.r.t. startsWith, slice w.r.t. substring). The full list of
implemented string operations is reported in Table 2, also summarizing for which operations holds
soundness and completeness and the average complexity of their algorithms (w.r.t. the constant integer
abstract domain).

Table 2. µJS Finite-state Automata String Analyzer (µFASA) string operations.

String Operation Soundness Completeness Average Complexity

substring 3 3 O(n log n)

charAt 3 3 O(n log n)

length 3 3 O(n + m)

concat 3 3 O(n log n + n + m)

startsWith
endsWith 3 7 O(n log n + n + m)

toLowerCase
toUpperCase 3 3 O(m)

includes 3 7 O(nlogn + n + m)

repeat 3 7 O(n log n + n + m)

replace 3 7 O((n + m)nlogn)

indexOf 3 7 O(n(n log n)(n2m))

slice 3 7 O((n + m)(n log n))

www.github.com/SPY-Lab/mufasa
www.github.com/SPY-Lab/mufasa
www.github.com/SPY-Lab/java-fsm-library
www.github.com/SPY-Lab/java-fsm-library
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6.3. Extension to Interval Abstract Domain

For the presentation of this paper, in Section 4.1, we have chosen to abstract integer values to the
constant integer abstract domain. Of course this affects the abstract semantics of those string operations
that involve them, namely substring, charAt, repeat and length, while the other methods only use
strings or booleans. Nevertheless, µFASA abstracts integer values to the more precise interval abstract
domain [9], i.e., to the set Intervals.

Intervals
def
= { [a, b] | a, b ∈ Z∪ {−∞,+∞}, a ≤ b } ∪ {⊥}

The choice of presenting the automata-based abstract semantics with constant integers, rather than
intervals, was driven by the will to not burden the definition of the abstract semantics of the string
operations involving integers. Let us consider the interval-based substring abstract semantics. Since
intervals can be unbounded (e.g., [5,+∞]), more than 20 different cases have been identified in its
abstract semantics [8]. Given substr(A, [a, b], [c, d]), for some A ∈ DFA/≡, many of these cases include
b = +∞ and d definite value, b definite and d = +∞, b, d = +∞ and a, c definite values and a ≤ c,
only to cite few. Moreover, the interval-based abstract semantics does not add any further important
technical detail to our contribution since the cases cited above, met with an interval-based analysis,
were handled in an ad hoc manner and would have made this paper harder to follow. In particular,
being the constant integer abstract domain strictly contained into the intervals one, restricting the
presentation to constant integers permitted us to report only the meaningful cases (from a technical
point of view), avoiding the others (related to intervals) handled in specific ways (and relevant for the
implementation).

Nevertheless, µFASA implements intervals (which include constant integers) and, accordingly,
the abstract semantics based on them of substring, charAt, length and repeat, as reported in [8].
The abstract semantics of the other string operations remain unaffected by the change. Just as an
example, in the following we report the abstract semantics of length on intervals.

length Abstract Semantics with Intervals

The constant integer domain leads to a big loss in precision in the abstract semantics of length,
reported in Section 5.3. The idea behind the algorithm capturing its abstract semantics is to check if
any string recognized by the input automata have the same length l ∈ N. If so, l is returned as result,
otherwise >Const is returned. Clearly, this is a forced choice given by the fact that the constant integer
abstract domain is only able to track a single integer value. In this sense, the abstract semantics of
length can be improved, from a precision point of view, when we deal with intervals rather than
constant integers. Algorithm 7 reports the abstract semantics of length using the former abstract
domain. We compute the minimum and the maximum path reaching each final state in the automaton
and then we abstract the set of lengths obtained so far into intervals. Problems arise when the
automaton contains cycles. In that case, we return the undefined interval starting from the minimum
path, to a final state, to +∞.

Clearly, using the interval abstract domain produces more precise results for certain operations,
but it complicates the abstract semantics of others.

6.4. Qualitative Evaluation of µFASA

In this section, we evaluate the precision of µFASA and, in turn, of the finite state automata
abstract domain. In particular, we comment and discuss two string manipulation programs. The first
is the one already introduced in Section 1, namely an obfuscated malware manipulating strings and
transforming them into code by using eval, while the second is a benevolent function taken from a
real-world string manipulation program. In both cases, we will show that important string information
can be obtained by µFASA.
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Algorithm 7: LE] : DFA/≡ → Intervals Algorithm

Input: A = (Q, Σ, δ, q0, F)
Output: LE](A) ∈ Intervals

1 P_len← 0; p_len← ∞
2 if hasCycle(A) then
3 foreach q f ∈ F do
4 p← minPath(A, q0, q f );
5 if len(p) < p_len then p_len← len(p) ;
6 end
7 return [p_len,+∞];
8 else
9 foreach q f ∈ F do

10 p← minPath(A, q0, q f );
11 P← maxPath(A, q0, q f );
12 if len(p) < p_len then p_len← len(p) ;
13 if len(P) > P_len then P_len← len(P) ;
14 end
15 return [p_len,P_len];
16 end

6.4.1. Obfuscated Malware

Consider the fragment reported in Figure 1 in the introduction. By analyzing it with µFASA, we
obtain that the abstract value of d, at the eval call, is the automaton Ad in Figure 16. The cycles are
caused by the widening application in while computations.

=
s, Z, w =

s, Z, w

n e w b j e c tO

A, c, t, i, v, e, X, Y

(

W, S, c, r, i, p, t, h, e, l, Y

)

Figure 16. Ad abstract value of d before eval call of the program in Figure 1.

From this automaton we are able to retrieve some important and non-trivial information.
For example, we are able to answer the following question: May Ad contain a string corresponding
to an assignment to an ActiveXObject? We can answer by checking the predicate Ad uMin(Id ·
{new ActiveXObject(} · Σ∗ · {)}) 6= ∅, controlling whether Ad recognizes strings that are
concatenations of any identifier with the string new ActiveXObject, followed by any possible string.
In the example, the predicate returns true. Another interesting information could be: May Ad contain
eval string? We can also answer that by checking if Ad uMin({eval}) 6= Min(∅). In this case it returns
false and enforces the idea that any explicit call to eval cannot occur.

This analysis may lose precision during fix-point computations, causing the cycles in the
automaton in Figure 16, due to the widening application. Nevertheless, it is worth noting that
this result is obtained without any precision improvement on fix-point computations, such as loop
unrolling, narrowing or widening with thresholds, that can surely be implemented in the future
development of µFASA.

6.4.2. String Manipulation Program

In order to evaluate the precision of µFASA, we decided to create a benchmark of tests taken
from real-world programs. We therefore selected string manipulating functions from popular modern
frameworks (such as Mozilla useful methods, RXJava, Mockito) whose code can be easily found
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on GitHub. (The selected string manipulation functions are available at www.github.com/SPY-
Lab/mufasa/src/test/resources and it is possible here to go back to where they were selected.)
Among this set of methods, we will focus our attention to the precision of the function fixStations
reported in Figure 17, taken from [38]. The function takes as input an object stations containing
information about train stations (each item contains the three-letter station code, followed by some
machine-readable data, followed by a semicolon, followed by the human-readable station name)
and extracts the station code (in capital letters) and the station name. For instance, given the input
stations ={st1:"MANay781;Manchester", st2:"gNfbx420;Greenfield"} , the function returns the
object{st1: "MAN: Manchester", st2: "GNF: Greenfield"} .

Thus, given an object containing strings following the station information pattern previously
described, the function fixStations returns another object containing strings following the pattern of
three capital letters concatenated with a colon concatenated with a string. The goal of our analyzer
is to exactly preserve this information on the variable result. Let us consider a statically unknown
value of stations, namely where stations = {st1:σ1, . . . , stn:σn}, n ∈ N and σi follows the station
information pattern, for each i ∈ [1, n]. While other static analyzers, such as TAJS, which has a
finite height string abstract domain, lose any information about the returned string, µFASA is able to
infer, for the variable result, the object {st1:p1, . . . , stn:pn}, where each pi is a string abstract value,
namely a finite state automaton, following the desired pattern

σ1 · σ2 · σ3 · : · σ where σi is capital, i ∈ [1, 3], σ ∈ Σ∗.

We are therefore able to preserve the string pattern that the function returns. As we have already
highlighted, the result is obtained without implementing ad-hoc improvements regarding loop
computations and we believe that even more precise results can be obtained integrating such
techniques. We believe the integration of these analyses will drastically decrease false positives
of the proposed string analysis (will address this topic in future works section).

function fixStations(stations) {
result = {};
for (st in stations) {
input = stations[st];
code = input.substring (0,3).toUpperCase ();
semiC = input.indexOf (";");
name = input.substring(semiC + 1, input.length);
result[st] = code + ": " + name;

}

return result;
}

Figure 17. Useful string manipulation method taken from [38].

7. Discussion and Related Work

In this paper we have proposed an abstract semantics for a toy imperative language µJS,
augmented with string manipulation operations, expressive enough to handle dynamic typing and
implicit type conversion. In our abstract semantics we have combined the DFA domain with abstract
domains for the other primitive types, necessary to deal with static analysis of programs with dynamic
typing. The proposed formal framework allows us to formally prove soundness and to study the
precision of the abstract semantics of each string operation: depending on the property of interest, one
can tune the degree of precision, namely the completeness of any string operation.

www.github.com/SPY-Lab/mufasa/src/test/resources
www.github.com/SPY-Lab/mufasa/src/test/resources
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7.1. Analysis vs. Verification

Even if several solutions, also involving finite state machines, have been proposed for string
solving and verification [21,39,40], it should be noted that our approach is placed instead in the context
of string static analysis. Over the years, there has always been the intuition that program analysis
was harder than verification: given a program, the aim of the former is to derive invariants for each
program point, the one of the latter is instead to check whether a certain property holds for the given
input program. Recently, this concept has been formalized from a computability point of view [41],
confirming this belief. Therefore, our approach, placed in the context of static analysis of string
manipulation programs, has goals that are hardly comparable with the solutions proposed in the
context of verification, such as those cited above.

7.2. Main Related Works

The issue of analyzing strings is a widely studied problem and it has been tackled in literature
from different points of view. Before discussing the most related works, we can observe what makes our
approach original w.r.t. existing literature: (1) We provide a modular parametric abstract domain on the
abstractions of the different primitive types, this allows us to obtain both a tunable semantics precision
and to handle dynamic typing for operations having both integer and string parameters, such as
substring; (2) our focus is on the characterization of a formal abstract interpretation-based framework
where it is possible to prove soundness and to analyze the completeness of string operations, in order
to understand where it is possible to tune precision versus efficiency. The main feature we have in
common with existing works is the use of DFA (regular expressions) for abstracting strings. In [21],
the authors propose symbolic string verifier for PHP based on finite state automata represented by a
particular form of binary decision diagrams, the MBDD. Even if it could be interesting to understand
whether this representation of DFAs may be used also for improving our algorithms, their work only
considers operations exclusively involving strings (not also integers such as substring) and therefore
it provides a solution for different string manipulations. In [20], the authors propose an abstract
interpretation-based string analyzer approximating strings into a subset of regular languages, called
regular strings and define the abstract semantics of four string operations of interest equipped with a
widening. This is the most related work, but our approach is strictly more general, since we do not
introduce any restriction to regular languages. In [19], the authors propose a scalable static analysis
for jQuery that relies on a novel abstract domain of regular expressions. The abstract domain in [19]
contains the finite state automata one but pursues a different task and does not provide semantics
for string operations. Surely it may be interesting to integrate our library for string manipulation
operators into SAFE. Finally, [42] proposes a lattice-based generalization of regular expression, formally
illustrating a parametric abstract domain of regular expressions starting from a complete lattice of
reference. However, this work does not tackle the problem of analyzing string manipulations, since it
instantiates the parametric abstract domain in the network communication environment, analyzing
the exchanged messages as regular expressions.

Finite state machines (transducer and automata) have also found a critical application in model
checking both for enforcing string constraints and for modeling infinite transition systems [43].
For example, the authors of [44] define a sound decision procedure for a regular language-based
logic for verification of string properties. The authors of [45] propose an automata abstraction in the
context of regular model checking to tackle the well-known problem of state space explosion. Moreover
other formal systems, similar to DFA, have been proposed in the context of string analysis [46–48].
As future work, it can be interesting to study the relation between standard DFA and the other existing
formal models, such as logics or other forms of FA.

In the context of JavaScript several static analyzers have been proposed, pushed by the wide
range of applications and security issues related to the language [3–5,37]. TAJS [3] is a static analyzer
based on abstract interpretation for JavaScript. The authors focus on allocation site abstraction,
plugging in the static analyzer the recency abstraction [49], decreasing the number of false positives
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when objects are accessed. Upon TAJS, a sound way to statically analyze a large range of non-trivial
eval patterns has been defined in [50]. In [37], it is defined the Loop-Sensitive Analysis (LSA) that
distinguishes loop iterations using loop strings in the same way call strings distinguish function calls
from different call sites in k-CFA [51]. The authors have implemented LSA into SAFE [5], a JavaScript
web applications static analyzer. As future work, it may be intriguing to combine LSA with our abstract
semantics for decreasing the occurrences of false positives introduced by the widening operator during
fix-point computations.

7.3. Future Ideas

In this paper we have proposed static string program analysis for a set of relevant JavaScript string
manipulation operations, whose semantics is inspired by the official ECMAScript specification [10].
The first goal is to involve our abstract semantics into a static analyzer for JavaScript that uses finite
state automata to approximate strings. In order to decrease the number of false positives in our string
approximation in presence of loops, several techniques can be involved, such as loop unrolling and
LSA [37]. The domain described in this paper has been equipped only with a widening, to enforce
termination in fix-point computations, which may lead to a big loss in precision. A narrowing will be
studied and integrated in our static analyzer in order to retrieve some of the precision lost when the
widening is applied.

We conclude by observing, as already highlighted in [7], the important application of finite
state automata for string-to-code primitives analysis. Consider, for instance, in JavaScript programs,
the eval function, transforming strings into code. Our semantics is sound and precise enough to
answer some non-trivial properties of interest. Indeed, in [7], the finite state automata domain and the
corresponding abstract semantics for strings turned out to be the basis for a sound and precise enough
analysis of eval.
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Appendix A. Selected Proofs

In this appendix we report all the long proofs of results presented in the paper. The proofs are
listed in order of appearance.

Proof of Theorem 2. The collecting semantics of substring is defined lifting the concrete semantics
defined in Section 3 as follows, where S ∈ ℘(Σ∗) and I, J ∈ ℘(Z).

SS(S, I, J) = { SS(σ, i, j) | σ ∈ S, i ∈ I, j ∈ J }

In order to prove soundness and completeness of SS], we need to prove that ∀A ∈ DFA/≡, ∀i, j ∈ Const

SS(L (A), γ(i), γ(j)) = L (SS](A, i, j))

We split the proof in the following cases. Since in substring semantics any negative value is treated
as zero, in the proof, we suppose w.l.o.g. that when a negative value arises it is treated as zero.
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• γ(i) = {l}, γ(j) = {k}, l and k ∈ Z: let us suppose, w.l.o.g., that l < k (otherwise the indexes
are swapped).

SS(L (A), {l}, {k}) =
= { σl . . . σk | σ ∈ L (A), k < |σ| } ∪ { σi . . . σn | σ ∈ L (A), k ≥ n = |σ| }
= { y | ∃z ∈ Σ∗. yz ∈ SU(L (A), l), z ∈ SU(L (A), k), |y| = k− l, k < |σ| }
∪ { y | y ∈ SU(L (A), l), y ∈ Σ≤k−l }
= (RQ(SU(L (A), l), SU(L (A), k)) ∩ Σk−l) ∪ SU(L (A), l) ∩ Σ≤k−l

= L ((RQ(SU(A, i),SU(A, j)) uMin(Σj−i)) t (SU(A, i) uMin(Σ<j−i)))

= L (SS(A, i, j))

• γ(i) = Z, γ(j) = {k}, with k ∈ Z

SS(L (A),Z, {k}) = { SS(σ, l, k) | σ ∈ L (A), l ∈ Z }
= { SS(σ, l, k) | σ ∈ L (A), 0 ≤ l < k } ∪ { SS(σ, k, l) | σ ∈ L (A), l ≥ k ∧ l < |σ| }
=

⋃
a∈[0,k]

SS(L (A), a, k) ∪ FA(SU(L (A), l))

= L (
⊔

a∈[0,k]

SS](A, a, k) tDFA FA(SU(A, l)))

= L (
⊔

a∈[0,k]

SS(A, a, k) tDFA SS
↔(A, l))

= L (SS](A, i, j))

• γ(i) = l ∈ Z, γ(j) = Z :

SS(L (A), l,Z) = { SS(σ, l, k) | σ ∈ L (A), k ∈ Z }
= { SS(σ, l, k) | σ ∈ L (A), k ≥ l ∧ k ≤ |σ| } ∪ { SS(σ, k, l) | σ ∈ L (A), 0 ≤ k < l }
=

⋃
a∈[0,l]

SS(L (A), a, l) ∪ FA(SU(L (A), l))

= L (
⊔

a∈[0,l]

SS](A, a, l) tDFA FA(SU(A, l)))

= L (
⊔

a∈[0,l]

SS(A, a, k) tDFA SS
↔(A, l))

= L (SS](A, i, j))

• γ(i) = γ(j) = Z :

SS(L (A),Z,Z) = { SS(σ, l, k) | σ ∈ L (A), l, k ∈ Z }
= { SS(σ, l, k) | σ ∈ L (A), l, k ≥ 0, l, k < |σ| }
= FA(L (A)) = FA(A)

= L (SS](A, i, j))

Proof of Theorem 3. The collecting semantics of charAt is defined lifting the concrete semantics
defined in Section 3 as follows, where S ∈ ℘(Σ∗) and I,∈ ℘(Z).

CA(S, I) = { CA(σ, i) | σ ∈ S, i ∈ I }
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In order to prove soundness and completeness of CC], we need to prove that ∀A ∈ DFA/≡, ∀i ∈ Const

CA(L (A), γ(i)) = L (CA](A, i))

We split the proof in the following two cases.

• Let us suppose that i 6= >Const, hence γ(i) = {n}, where n ∈ Z.

CA(L (A), {n}) = { CA(σ, n) | σ ∈ L (A) }
= { σn | σ ∈ L (A), 0 ≤ n < |σ| }
∪ { ε | ∃σ ∈ L (A). n ≥ |σ| ∨ n < 0 }
= { SS(σ, n, n + 1) | σ ∈ L (A), 0 ≤ n < |σ| }
∪ { SS(σ, n, n + 1) | ∃σ ∈ L (A). n ≥ |σ| ∨ n < 0 }
= { SS(σ, {n}, {n + 1}) | σ ∈ L (A) } = SS(L (A), n, n + 1)

= L (SS](A, i, i + 1))

= L (CA](A, i))

• Let us suppose that i = >Const, hence γ(i) = Z. It is worth noting that the function chars we
used in the abstract semantics of charAt is complete. Let CHARS : ℘(Σ∗)→ ℘(Σ) be the function
that given a set of strings returns the set of characters inside any string of the input string set.
It holds that CHARS(L (A)) = chars(A).

CA(L (A), γ(i)) = { CA(σ, n) | σ ∈ L (A), n ∈ [0, |σ| − 1] } ∪ {ε} =
= { σn | σ ∈ L (A), n ∈ [0, |σ| − 1] } ∪ {ε} =
= CHARS(L (A)) ∪ {ε}
= L (Min(chars(A)) tMin({ε}))
= L (CA](A, i))

Proof Of Theorem 4. The collecting semantics of length is defined lifting the concrete semantics
defined in Section 3 as follows, where S ∈ ℘(Σ∗).

LE(S) = { |σ| | σ ∈ S }

In order to prove soundness of LE], we need to prove that ∀A ∈ DFA/≡

LE(L (A)) ⊆ γ(LE](A))

We split the proof in the following cases.

• LE(L (A))) = I ∈ ℘(Z), s.t. |I| = 1:

|LE(L (A))| = 1⇔ LE(L (A)) = {n} for some n ∈ N
⇔ ∀σ ∈ L (A). |σ| = n

⇔ ∀p ∈ Paths(A), |p| = n

This condition checks whether the size of any path of A is n. This check is performed by
Algorithm 1 at lines 5–8.
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• LE(L (A)) = I ∈ ℘(Z), s.t. |I| > 1: this means that

|LE(L (A))| > 1⇔ ∃σ, σ′ ∈ L (A). |σ| 6= |σ′|

If A is cyclic, then the condition at line 1 is successful and >Const is returned. Let us suppose that
A is not cyclic.

|LE(L (A))| > 1⇔ ∃σ, σ′ ∈ L (A). |σ| 6= |σ′|
⇔ ∃p, p′ ∈ Paths(A). |p| 6= |p′|

This condition is checked by lines 5–8 of Algorithm 1.

Proof of Theorem 6. The collecting semantics of startsWith is defined lifting the concrete semantics
defined in Section 3 as follows, where S, S′ ∈ ℘(Σ∗).

SW(S, S′) = { SW(σ, σ′) | σ, σ′ ∈ S }

In order to prove soundness of SW], we need to prove that ∀A, A′ ∈ DFA/≡

SW(L (A), L (A′)) ⊆ SW](A, A′)

We split the proof in the following cases.

• Let us suppose that SW(L (A), L (A′)) = {false}.

SW(L (A), L (A′)) = {false} ⇔ ∀σ ∈ L (A).∀σ′ ∈ L (A′).@φ ∈ Σ∗.σ′ · φ = σ

⇔ PR(L (A)) ∩L (A′) = ∅
⇔ PR(A) uDFA A′ = Min(∅) (lines 4-6 of Algorithm 2)

• Let us suppose that SW(L (A), L (A′)) = {true}. We split the proof in the following cases:

– if A′ = Min({ε}): Algorithm 2 verifies the condition (A′ == Min({ε})) at lines 1–3 and
returns {true}.

– if A or A′ are cyclic: Algorithm 2 verifies the condition (hasCycle(A) ∨ hasCycle(A′)) at lines
7–9 and returns {true, false}.

– if A′ is not a single-path automaton: in this case, we check if A′ is not a single path automaton
at line 10 of Algorithm 2 and, if so, {true, false} is returned at line 17.

– if A′ is a single path automaton: let us denote by MAXSTRING(L (A′)) the longest string
recognized by L (A′). As we already highlighted, if A′ is single path, the longest string
is unique. Clearly, we have that MAXSTRING(L (A′)) = maxString(A′). Let us denote
MAXSTRING(L (A′)) by σm.

SW(L (A), L (A′)) = {true}
⇔ ∀σ ∈ L (A), ∀σ′ ∈ L (A′).∃φ ∈ Σ∗. σ′ · φ = σ

⇒ ∀σ ∈ L (A) ∃φ ∈ Σ∗. σ = σm · φ
⇒ SS(L (A), 0, |σm|) == σm

⇔ SS](A, 0, LE](maxString(A′))) == maxString(A′)

(lines 10-15 of Algorithm 2)

• Let us suppose that SW(L (A), L (A′)) = {true, false}. We split the proof in the following cases:
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– A or A′ are cyclic: Algorithm 2 verifies the condition (hasCycle(A) ∨ hasCycle(A′)) at lines 7–9
and returns {true, false}.

– if A′ is not single path automaton: the check at line 10 of Algorithm 2 fails and {true, false}
is returned at line 17.

– A′ is single-path automaton: as before, if A′ is single path, the longest string is unique. Let us
denote MAXSTRING(L (A′)) by σm.

SW(L (A), L (A′)) = {true false}
⇒ ∃σ ∈ L (A), ∃σ′ ∈ L (A′)∀φ ∈ Σ∗. σ′ · φ 6= σ

⇒ ∀σ ∈ L (A)∃φ ∈ Σ∗. σm · φ 6= σ

⇒ SS(L (A), 0, |σm|) 6= σm

⇔ SS](A, 0, LE](maxString(A′))) 6= maxString(A′)

(lines 10-15 of Algorithm 2)

The condition is verified at lines 13 of Algorithm 2, it fails, hence {true, false} at line 17 is
returned.

Proof of Theorem 7. The soundness and completeness of LC] follows from the fact that any upper-case
transition found in A is replaced with the same transition that reads the corresponding lower-case
symbol, without changing neither the orientation of the transitions or the automaton states.

Proof of Theorem 8. The collecting semantics of includes is defined lifting the concrete semantics
defined in Section 3 as follows, where S, S′ ∈ ℘(Σ∗).

IN(S, S′) = { IN(σ, σ′) | σ, σ′ ∈ S }

In order to prove soundness of IN], we need to prove that ∀A, A′ ∈ DFA/≡

IN(L (A), L (A′)) ⊆ IN](A, A′)

We split the proof of the following cases.

• Let us suppose that IN(L (A), L (A′)) = {false}.

IN(L (A), L (A′)) = {false} ⇔ ∀σ ∈ L (A′). σ /∈ FA(A)

⇔ L (A′) ∩ FA(L (A)) = ∅
⇔ A′ uDFA FA(A) = Min(∅)

(lines 4–6 of Algorithm 4)

• Let us suppose that IN(L (A), L (A′)) = {true}. Thus, consider the following cases:

– A′ = Min({ε}): Algorithm 4 verifies the condition (A′ == Min({ε})) at lines 1–3 and returns
{true}.

– A or A′ are cyclic: Algorithm 2 verifies the condition (hasCycle(A) ∨ hasCycle(A′)) at lines 7–9
and returns {true, false}.

– A′ 6= Min({ε}) and A, A′ are not cyclic:
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IN(L (A), L (A′)) = {true} ⇔ ∀σ′ ∈ L (A′).∀σ ∈ L (A)

∃φ, ψ ∈ Σ∗. φ · σ′ · ψ = σ

⇒ ∀σ ∈ L (A). FA({σ}) ∩L (A′) = L (A′)

⇒ ∀p ∈ Paths(A). FA(Min(p)) uDFA A′ = A′

This condition is verified in lines 11–15 of Algorithm 4 and in this case the algorithm
returns {true}.

• Let us suppose that IN(L (A), L (A′)) = {true, false}. Thus, consider the following cases:

– A or A′ are cyclic: Algorithm 4 verifies the condition (hasCycle(A) ∨ hasCycle(A′)) at lines 7–9
and returns {true, false}.

– A′ 6= Min({ε}) and A, A′ are not cyclic:

IN(L (A), L (A′)) = {true, false} ⇒ ∃σ′ ∈ L (A′)

∃σ ∈ L (A).@φ, ψ ∈ Σ∗. φ · σ′ · ψ = σ

⇒ ∃σ ∈ L (A). FA({σ}) ∩L (A′) 6= L (A′)

⇒ ∃p ∈ Paths(A). FA(Min(p)) uDFA A′ 6= A′

This condition is verified in lines 11–15 of Algorithm 4 and in this case the algorithm returns
{true, false}.

Proof of Theorem 9. The collecting semantics of repeat is defined lifting the concrete semantics
defined in Section 3 as follows, where S ∈ ℘(Sigma∗) and I ∈ ℘(Z).

RT(S, I) = { σn | σ ∈ S, n ∈ I }

In order to prove soundness of RT], we need to prove that ∀A ∈ DFA/≡, ∀i ∈ Const

RT(L (A), γ(i)) ⊆ L (RT](A, i))

We split the proof in the following two cases.

• Let us suppose that i 6= >Const, hence γ(i) = n, where n ∈ Z. We split the proof in the
following cases:

– i = 0: RT(L (A), 0) = {ε} and Algorithm 5 checks this condition and returns Min({ε}) at
lines 1–3.

– i 6= 0:

* if A is s.t. L (A) = {ε}: since RT({ε}, i) = {ε}, Algorithm 5 checks this condition and
returns Min({ε}) at lines 1–3.

* if A is cyclic: RT(L (A), i) ⊆ L (Kleene(A)) and Algorithm5 checks this condition and
returns Kleene(A) at lines 4–6.



Appl. Sci. 2020, 10, 3525 31 of 34

* A is not cyclic:

RT(L (A), i) = { σi | σ ∈ L (A) }

= {
i−times︷ ︸︸ ︷

σ · σ · · · · · σ | σ ∈ L (A) }

= L ({
i−times︷ ︸︸ ︷

Min(p) ·Min(p) · · · · ·Min(p) | p ∈ Paths(A) })

In this case, Algorithm5 returns the above automaton at lines 8–15.

• Let us suppose that i = >Const, hence we have that γ(i) = Z.

RT(L (A), γ(i)) = RT(L (A),Z) = { σn | σ ∈ L (A), n > 0 } ⊆ L (Kleene(A))

In this case, Algorithm 5 returns Kleene(A), guaranteeing the soundness of RT].

Proof of Theorem 10. At each iteration of Algorithm 6, we remove white-space transitions from the
initial state q0. The invariant of Algorithm 6 after line 9 is that the initial state has no white-space
transitions. Before checking the while-loop condition (line 3), the automaton is minimized and
determinized (lines 3) with the new set of transitions δ′. Hence, if the initial state q0 had only
white-state transitions, after the minimization at line 11, q0 is not the initial state of R anymore, and a
new initial state will be computed at line 11. Hence, when the loop is repeated, the algorithm will
search the other white-space transition from the new initial state. In this way, Algorithm 6 is able to
remove consecutive white-space transitions from the original initial state q0.
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