

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"EVALUACIÓN DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE – ZAPATERO – 2016"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTOR:

HEREDIA GUEVARA, CRISTHIAN ALONSO

ASESOR:

MG. ING. ANDRES PINEDO DELGADO

LINEA DE INVESTIGACION:

DISEÑO DE INFRAESTRUCTURA VIAL

CACATACHI – PERU 2017

Página del Jurado

ING. DANIEL DIAZ PEREZ
PRESIDENTE

ING. BENJAMIN LOPEZ CAHUAZA SECRETARIO

MG. ING. ANDRES PINEDO DELGADO VOCAL

Dedicatoria

A mis padres Jorge y Marina, por todo el apoyo y confianza depositada durante toda esta etapa de preparación; motivo de superación y los principales autores en mi formación académica, profesional y personal.

Agradecimiento

Queda grabado por siempre en estas líneas, mi más sincero agradecimiento a Dios y a la Escuela de Ingeniería Civil de la Universidad Cesar Vallejo. Además mi eterno agradecimiento a mis padres por el apoyo incondicional en el cumplimiento de mis metas, y por último agradecerles a mis hermanos, a mis amigos Emilio, Arturo y Juan Carlos, también a Wendy una persona importante que me acompaño gran parte de mi vida universitaria y que siempre han estado a mi lado y a sus familias por el apoyo durante toda la etapa de la universitaria; mil gracias.

Declaratoria de autenticidad

Yo, Cristhian Alonso Heredia Guevara, estudiante de la Escuela Académico Profesional de Ingeniería Civil de la Universidad César Vallejo, identificado con DNI N° 77044487 y código de estudiante N° 4000024184, con la tesis titulada "EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE – ZAPATERO – 2016"

Declaro bajo juramento que:

- 1) La tesis es de mi autoría.
- 2) Se ha aplicado las normas internacionales de citas y referencias para la información consultada.
- 3) Los datos incorporados en los resultados de esta tesis son reales.

De encontrarse plagio o falsificación en los resultados, acato las sanciones que mi acción ameriten, acogiéndome a la normatividad vigente de la Universidad César Vallejo.

Tarapoto, Julio de 2017

HEREDIA GUEVARA CRISTHIAN ALONSO

DNI N° 77044487

Presentación

Señores miembros del Jurado evaluador, presento ante ustedes la Tesis que tiene como título "Evaluación De La Serviciabilidad De Las Obras De Drenaje Pluvial Del Tramo De La Carretera Cuñumbuque – Zapatero – 2016" que tiene como finalidad de obtener el Título Profesional de Ingeniero Civil en cumplimiento con el Reglamento de Grados y Títulos de la Universidad César Vallejo. La tesis se encuentra estructurada en siete capítulos el cual presento a continuación:

En el primer capítulo se sustenta la problemática del ámbito de intervención del proyecto, trabajos previos, teorías relacionas, la formulación del problema así como su justificación y los objetivos planteados para poder solucionar el problema presentado en este proyecto.

En el segundo capítulo consta de información para determinar los métodos, formatos y técnicas a seguir en la evaluación de la propuesta desarrollada en la presente tesis.

En el tercer capítulo se establecen los resultados obtenidos en campo y laboratorio, sirviendo esta información para constatar la realidad problemática.

En el cuarto capítulo es la discusión de la información obtenida como antecedes y los resultados obtenidos por nuestra investigación.

En el quinto capítulo es de las conclusiones del proyecto de investigación obtenidos de los objetivos específicos.

En el sexto capítulo son las recomendaciones que el tesista da después proyecto.

En el séptimo capítulo son las referencias de donde nos hemos guiado mediante su información de la cuales se consultaron y recopilaron datos para el proceso de la tesis.

Esperando cumplir con las expectativas y los requisitos de aprobación.

Índice

Página Del Jurado	II
Dedicatoria	lii
Agradecimiento	lv
Declaratoria de autenticidad	V
Presentación	Vi
Indice	Vii
Resumen	lx
Abstract	X
I. INTRODUCCIÓN	11
1.1.Realidad Problemática	11
1.2.Trabajos previos	12
1.3.Teorías Relacionadas Al Tema	13
1.4.Formulación Del Problema	22
1.5.Justificación Del Estudio	22
1.6.Hipótesis	22
1.7.Objetivos:	22
II. MÉTODO	24
2.1.Diseño de investigación	24
2.2. Variables y Operacionalización	24
2.2.1.Variables	24
2.2.2.Operacional de Variables	25
2.3.Población y Muestra	26
2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad	32 b
2.4.1.Técnicas e instrumentos de recolección de datos	26
2.4.2. Validación y confiabilidad de los instrumentos	27
2.5.Método de análisis de datos	27
2.6.Aspectos éticos	27
III. RESULTADOS	288
IV. DISCUSIÓN	38
V. CONCLUSIÓN	428
VI. RECOMENDACIONES	44
VII. REFERENCIAS	45

A	NEXO	. 47
	ANEXO N° 01 Datos Estadisticos	. 47
	ANEXO N° 02 Informe de Estudio de Mecanica de Suelos	. 58
	ANEXO N° 03 Panel fotografico	134
	ANEXO N° 04 Presupuesto Total	137
	ANEXO N° 05 Analisis de Costos Unitarios	140
	ANEXO N° 06 Metrados	146
	ANEXO N° 07 Formula Polinomica	148
	ANEXO N° 08 Cronograma del Proyecto	150
	ANEXO N° 09 Planos	152
	ANEXO N° 10 Validación de Instrumento	160
	ANEXO N° 11 Matriz de Consistencia	163
	ANEXO N° 12 Formato para Inspeccion Visual de Cunetas	166
	ANEXO N° 13 Formato Para Inspeccion Visual de Alcantarillas	172
IN	NDICE DE CUADROS	
	CUADRO N° 01 Operacionalizacion de Variables	. 25
	CUADRO N° 02 Coordenadas	
	CUADRO N° 03 Tecnicas e Instrumentos	. 27
	CUADRO N° 04 Nivel de Severidad de Cunetas Lado Derecho	. 28
	CUADRO N° 05 Nivel de Severidad de Cunetas Lado Izquierdo	. 30
	CUADRO Nº 06 Metrado de Daño de Cuneta Lado Derecho	. 32
	CUADRO N° 07 Metrado de Daño de Cuneta Lado Izquierdo	. 32
	CUADRO N° 08 Nivel de Severidad de Alcantarilla	. 33
	CUADRO Nº 09 Metrado de Daño de Alcantarilla Estructura de Entrada	
	CUADRO N° 10 Metrado de Daño de Alcantarilla Estructura de Salida	
	CUADRO N° 11 Metrado de Daño de Alcantarilla Tuberia	
	CUADRO N° 12 Resumen de Presupuesto de Obra	
	CUADRO N° 13 Resumen Propiedades Fisico, Mecanica y Clasificacion d	
	Suelos	
	CUADRO N° 14 Participacion de Tipo de Suelo	. 37

RESUMEN

En el presente trabajo de investigación se presenta los resultados obtenidos durante la etapa de desarrollo del proyecto de tesis "Evaluación De La Serviciabilidad De Las Obras De Drenaje Pluvial Del Tramo De La Carretera Cuñumbuque – Zapatero – 2016".

Esta investigación tiene como objetivo primordial evaluar la serviciabilidad de las obras de drenaje pluvial con las fichas de observaciones y registros del manual para la inspección visual de estructuras de drenaje, en la cual nos brinda el estado en que se encuentra las obras de drenaje, contando con una población y muestra de 8.00 km, de la evaluación del tramo se encontró una serviciabilidad de 41.39% utilizando el promedio aritmético, de lo que se desprende un 67.63% en el drenaje Longitudinal y un 15.15% en el drenaje Transversal.

Se obtuvo como información complementaria para poder realizar un expediente técnico de Mantenimiento Rutinario, los metrados, el análisis de costos unitarios, el presupuesto para la ejecución de la obra que asciende **S/. 129,808.68 Soles**, los gastos generales y la programación de obra contando con un plazo de 30 Dias Calendarios Para la Ejecución de la Obra.

ABSTRACT

The present work presents the results obtained during the development stage of the thesis project "Evaluation of the Serviceability of the Pluvial Drainage Works of the Cuñumbu - Zapatero - 2016" section.

The main objective of this research is to evaluate the serviceability of rainwater drainage works with the observation and record sheets of the manual for the visual inspection of drainage structures, which provides us with the state in which the drainage works are located, With a population and sample of 8.00 km, of the evaluation of the section was found a serviceability of 41.39% using the arithmetic average, which shows a 67.63% in the Longitudinal drainage and 15.15% in the Transversal drainage.

It was obtained as complementary information to be able to make a technical file of Routine Maintenance, the metrados, the analysis of unit costs, the budget for the execution of the work that ascends S /. 129,808.68 Suns, overheads and scheduling of work with a term of 30 Days Calendars For the Execution of the Work.

I. INTRODUCCION

1.1 REALIDAD PROBLEMÁTICA

La importancia que se le da al mantenimiento de las obras de arte de drenaje pluvial de una carretera en el Perú, muchas veces no es considerada en su real dimensión. El proceso de deterioro no se hace visible hasta que las alcantarillas o cunetas ya se encuentran en mal estado que la intervención a través de un mantenimiento periódico o rutinario ya no es suficiente.

Es bien sabida la importancia que tienen las obras de artes de drenaje pluvial en las carreteras y el papel fundamental que cumplen en la actualidad, siendo necesario proveer una vía adecuada, cómoda, segura y que facilite el movimiento de personas y de bienes con total comodidad. En la mayoría de nuestras carreteras en la región de San Martin, encontramos que las obras de artes no están en un estado óptimo de funcionamiento, esto es debido a la falta de mantenimiento que las entidades encargadas no le dan la importancia debida.

En la CARRETERA EMP. PE – 5N (CUÑUMBUQUE) – ZAPATERO contando con una longitud de 8.00 km, encontramos que existen obras de artes de drenaje pluvial que están en un mal estado, encontrando fisuras, agrietamientos, rotura de los paños, todo esto debido a la expansión del suelo por la falta de juntas asfálticas, también se aprecia que la área hidráulica no está funcionando debido que los taludes genera deslizamientos y la colmatación de las obras, que a simple vista se aprecia que existe mucha presencia de limos y arcillas

1.2 TRABAJOS PREVIOS

Grupo técnico. "Manual Para La Inspección Visual De Estructuras
 De Drenaje". Universidad de Nacional de Colombia – 2006.

¹En una carretera, el sistema de drenaje es el conjunto de obras que permite un manejo adecuado de los fluidos, para lo cual es indispensable considerar los procesos de captación, conducción, y evacuación del mismo.

El exceso de agua u otros fluidos en los suelos o en la estructura de una carretera, afecta sus propiedades geomecánicas, los mecanismos de transferencia de carga, presiones de poros, subpresiones de flujo, presiones hidrostáticas, e incrementa la susceptibilidad a los cambios volumétricos. Por tal motivo, y aun cuando el agua es un elemento fundamental para la vida, es también una de las causas más relevantes del deterioro prematuro de la infraestructura vial.

El objetivo de este tipo de obras es el de conducir las aguas de escorrentía o de flujo superficial, rápida y controladamente hasta su disposición final. De esta manera, se convierten en un soporte importante para el control de la erosión en taludes y la protección de la estructura del pavimento, permitiendo la rápida evacuación del agua que, además de afectar la estructura, afecta la seguridad de los usuarios.

Las obras de drenaje pueden clasificarse en obras para el control de aguas superficiales y obras para el manejo de flujos subterráneos o subsuperficales. Vale la pena mencionar que para el diseño de este tipo de obras y su correcto funcionamiento es de vital importancia reconocer la red de drenaje natural.

¹ Grupo tecnico. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia–2006 [citado 22 Septiembre 2016]. Capitulo I. Generalidades pag. 4

1.3 TEORIA RELACIONADA AL TEMA

CAUSAS DE LOS DESLIZAMIENTOS²

El material que compone un talud tiene una tendencia natural a deslizarse bajo la influencia de las fuerzas gravitacionales y otras (como las debidas a las tensiones tectónicas, la actividad sísmica, etc.), que son resistidas por el esfuerzo cortante del material. La inestabilidad ocurre cuando la resistencia al corte no es suficiente para contrarrestar las fuerzas que tienden a provocar el movimiento a lo largo de cualquier superficie en un talud. Taludes naturales que se han mantenido estables durante muchos años de repente puede fallar debido a una o más de las siguientes causas principales:

- Movimiento externo por actividad sísmica (terremotos).
- Infiltración por precipitación de aguas lluvias que conduce a la disminución de la resistencia del esfuerzo cortante de dos maneras, dependiendo si la masa de suelo está o no saturada.
- Aumento de la presión de poros en los materiales que conforman el suelo saturado (por ejemplo, aumento en el nivel freático).
- Eliminación de la succión o presión negativa de poros en un talud de suelo no saturado.
- La cantidad de precipitación que se infiltra en el suelo puede ser muy diferente en zonas vírgenes con cubierta vegetal en comparación con las áreas deforestadas y alteradas. Por lo tanto la disminución de la existencia al corte debido a la infiltración de lluvia está muy influenciada por los cambios significativos en las áreas circundantes, como la deforestación, relleno de los valles, alteración de las características naturales de drenaje, urbanización y construcción de reservorios.
- El aumento de las precipitaciones, mayor infiltración y por lo tanto, mayor será el efecto en la resistencia de los suelos y la estabilidad de taludes.
 En consecuencia las lluvias excepcionales a menudo conducen a deslizamientos generalizados, especialmente en regiones deforestadas y alteradas.

²MORALES MUÑOZ, Byron Omar. METODOLOGIA DE ESTABILIZACION DE TALUDES DE CARRETERAS. Pontificia Universidad Catolica del Ecuador– 2012 [citado 22 Septiembre 2016]. Capitulo II. Concepto Sobre Estabilidad de Taludes pag. 9

La causa fundamental de la inestabilidad de los taludes, se debe a que la resistencia al corte de los suelos es menor que la resistencia al corte requerido para el equilibrio.

ESTABILIDAD DE LOS ESTRATOS DE SUELOS EN LOS TALUDES³.

La seguridad de una masa de tierra contra falla o movimiento es lo que se llama estabilidad, y debe considerarse no sólo en el proyecto de estructuras de tierra sino también en la reparación y corrección de las que han fracasado. Los proyectos de los taludes de los cortes abiertos y la sección transversal de los terraplenes, diques y presas de tierra, están basados principalmente en los estudios de estabilidad, a menos que el proyecto sea tan pequeño que se puedan tolerar las fallas ocasionales. Cuando ocurren los fracasos, ya sean deslizamientos o corrimientos, o hundimientos, es necesario hacer estudios de estabilidad para determinar la causa de la falla y poder indicar su corrección y el mejor método para prevenir dificultades futuras.

En todos aquellos lugares donde el terreno no está nivelado existen fuerzas actuando, las cuales tratan de ocasionar un movimiento del suelo, de los puntos altos a los puntos bajos. La más importante de estas fuerzas es la componente de la gravedad la que actúa en la dirección del movimiento probable.

Cerca de la superficie de la tierra la resistencia al cortante del suelo variará grandemente durante las diferentes estaciones del año. Algunas superficies del suelo se expanden durante la temporada de lluvias, y durante dicha temporada tendrán mucha menor resistencia que durante la temporada del nivel más bajo o caudal mínimo de un río u otra corriente en época de sequía; las cuales presentarían algunos tipos de grietas en los taludes.

DRENAJE LONGITUDINAL

Canaliza las aguas de escorrentías superficiales caídas sobre la plataforma y taludes de una carretera, de forma paralela al eje de la calzada. El más

³ GUILLEN MARTINEZ, Carlos Eduardo. Estabilidad de taludes en los Departamentos de Guatemala y Alta Verapaz, Casos Reales. Universidad de Nacional de Guatemala – 2004 [citado 22 Septiembre 2016]. Capitulo I. Marco Teorico pag. 1

usado es la cuneta. Canal que atrapa el caudal de discurre por la vía y lo canaliza.

CUNETAS

Son zanjas o canales abiertos que son construidos a los lados de una carretera, recibe las aguas pluviales y las conduce hacia un lugar que no provoquen daños o inundaciones⁴.

Su función principal que debe cumplir esta obra de arte es:

 Recoger y canalizar las aguas de escorrentía procedentes de la plataforma y de los taludes de cortes y ser conducidas hasta un punto de drenaje. Ayuda a controlar el nivel freático del terreno.

La sección que pueda tener esta obra es variable, va a depender totalmente del diseño. Se puede diseñar de varias formas como trapezoidal, cuadrada, pero la más común es la triangular, porque facilita su limpieza por medios mecánicos.

DAÑOS TÍPICOS Y FORMA DE MEDICIÓN SEGÚN MANUAL PARA INSPECCION VISUAL⁵.

Se dará a conocer los daños más comunes que se presentan en una cuneta y la forma de cómo debe registrarse.

 Desgaste. Consiste en el deterioro superficial de los paños de una cuneta, que es generada por las altas velocidades del flujo, la mala calidad de los materiales. Este daño se hace notorio en la pérdida del material que sirve como recubrimiento y presencia de agregados con una cara plana en la superficie.

Severidades

Baja: Perdida de recubrimiento del agregado, pero no de manera significativa.

⁴ MINISTERIO DE TRANSPORTE Y COMUNICACIONES. "Glosario de términos de uso frecuente en proyectos de infraestructura vial". Lima – Peru – 2008: [citado 01 Octubre 2016]

⁵ Grupo tecnico. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia— 2006 [citado 01 Octubre 2016]. Capitulo II. Control de Aguas Superficiales pag.7

Media: La superficie es moderadamente rugosa y hay pérdida leve de

partículas, no se observa socavación significativa.

Alta: La superficie está muy rugosa y presenta pérdida de partículas,

puede presentarse socavación que genera un canal más pequeño por

donde pasa el flujo.

Deberá registrarse junto con la severidad, el área afectada en metros

cuadrados.

Desportillamiento. Se da en la separación del borde de una junta, ya

seda longitudinal o transversal o por la presencia de una grieta.

Severidades: Tener en cuenta la distancia entre la junta y el borde

externo, se clasifica de la siguiente forma:

Baja: d < 5.0 cm.

Media: 5.0 < d < 15.0 cm.

Alta: d > 15,0 cm.

Deberá registrarse junto con la severidad, el área afectada en metros

cuadrados.

Fracturamiento de la estructura. Son daños que presenta la cuneta

con agrietamientos en bloques mayores de 0,30 m. x 0,30 m. Se

considera cuando hay más de dos bloques en un paño, de lo contrario

reportarse como grietas.

Severidades

Baja: existen más de dos bloques en el paño de la cuneta.

Media: los paños presentan una separación entre 3 mm y 10 mm con

algún desplazamiento, sin hundimientos.

Alta: Los bloques presentan separaciones mayores de 10 mm,

adicionalmente hay desplazamientos y hundimientos que permiten

infiltración de agua a las capas inferiores.

Deberá registrarse junto con la severidad, el área afectada en metros

cuadrados. Indicarse si hay pérdida del concreto, indicando el área

faltante.

Separación de la cuneta. Este daño indica la separación de la junta

entre la calzada y la cuneta.

Severidades

Baja: SC < 3,0 mm

Media: 3,0 < SC < 10,0 mm

Alta: SC > 10,0 mm

Deberá registrarse junto con la severidad, la longitud en metros de la

cuneta afectada.

Obstrucción. Es la presencia de sedimentos que son generados por el

flujo, que se genera por las bajas velocidades. También se presenta por

desprendimiento de materiales provenientes de taludes adyacentes a la

cuneta.

Severidades

Baja: menos del 1% de la sección.

Media: la cuneta se encuentra obstruida en un 30% de su sección

transversal.

Alta: la cuneta presenta obstrucción en más del 30% de su sección

transversal.

• Grietas. Aparece por el esfuerzo que actúan sobre el concreto, ya sea

por la combinación de las cargas del tránsito o del esfuerzo que genera

el suelo. Pueden estar relacionadas con problemas de dosificación del

concreto incluyendo los procesos constructivos. Cuando se realice la

inspección, se recomienda identificar si las grietas son generadas por

las cargas del tráfico o tienden a originarse por la calidad de los

materiales o procesos constructivos.

Severidades

Teniendo en cuenta la abertura de la grieta (g), las severidades que se

proponen son las siguientes:

Baja: g < 3,0 mm o fisuras selladas que no permitan infiltración de

agua fácilmente.

Media: 3,0 < g < 25,0 mm. Se puede observar la presencia de material

granular tipo arena y alguna presencia de vegetación.

Alta: g > 25,0 mm en donde se observa un potencial de infiltración

importante con material granular y presencia o no de vegetación.

• Escalonamiento. Diferencia de altura entre dos paños de concreto

que están separados por una junta o la presencia de un desnivel entre

la cuneta y el pavimento.

Severidades

Se define por la diferencia de altura entre las superficies de los

módulos, la clasificación de severidades es la siguiente:

Baja: e < 6,0 mm.

Media: 6.0 < e < 25.0 mm.

Alta: e > 25,0 mm.

Deberá registrarse junto con la severidad, la longitud de cuneta afectada

en metros

DRENAJE TRANSVERSAL⁶

Son elementos que permite el paso de las aguas que cruzan por debajo y

forma perpendicular al eje de la carretera, que transportan las aguas

recogidas de la plataforma, quebradas y de sus márgenes que se encuentra

aguas arriba de la vía en dirección aguas abajo.

⁶ Grupo Técnico. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia— 2006 [citado 01 Octubre 2016]. Capitulo II. Control de Aguas Superficiales pag.12

ALCANTARILLAS.

Son estructuras construidas en forma transversal al eje o siguiendo la orientación del curso de agua, que sirven para la evacuación o transporte de aguas, su función es la de drenar corrientes de agua provenientes de una quebrada y es conocido como alcantarilla de paso. También se les denomina alcantarillas de alivio a las estructuras que permiten evacuar los caudales provenientes por las cunetas.

La distancia que se deberá colocar las alcantarillas entre ellas, depende de varios factores tales como:

- -La topografía
- -La hidrología de la zona
- -La pendiente del tramo de carretera
- -La vegetación
- -El trazado, etc.

LAS PRINCIPALES PARTES DE UNA ALCANTARILLA SON:

- Encole: Es la estructura que está diseñada para reducir la velocidad y disipar la energía de los flujos de agua en la entrada de las obras de drenaje.
- Estructura de entrada: Son las obras construidas con el fin de conducir el flujo hacia la tubería tales como: solado, aletas, muro cabezal, etc.
- Poceta: Es la estructura que recibe el agua recolectada por el drenaje longitudinal (cunetas). Cumple la función de un encole y es utilizada en las alcantarillas de alivio. Es conocida también como caja de toma
- Muro Cabezal: Su finalidad es contener el material de la estructura del pavimento de la vía y de proteger la tubería.
- Aletas: Lo utilizan para contener los taludes que conforman el

terraplén de la vía y/o el terreno natural.

- Tubería: Puede ser de Concreto Armado o de Tubería Metálica Corrugada (TMC). Su objetivo es la de conducir del flujo de agua de un lado al otro de la vía, evitando la presencia de infiltraciones que puedan dañar a la estructura de pavimento.
- Estructura de salida: Son las obras construidas con el fin de entregar el flujo en vertimiento de las aguas. Se debe garantizar una estructura adecuada para evitar la socavación del terreno donde se cimento la alcantarilla.
- Descole: Es la estructura que está diseñada para reducir la velocidad y disipar la energía de los flujos de agua en la salida de las obras de drenaje.

DAÑOS MÁS COMUNES QUE SE PUEDE ENCONTRAR EN LOS DIFERENTES ELEMENTOS DE LA ALCANTARILLA:

- Grietas en aletas, muro cabezal y muros pocetas. Este daño afecta
 principalmente a la estabilidad y la funcionalidad de la estructura.
 Debe registrarse la longitud y el ancho en metros y la profundidad
 que tiene la grieta ya sea en metros o en milímetros.
- Grietas en la tubería principal. Este daño en el caso de las tuberías metálicas corrugada (TMC) debe registrarse la longitud, el espesor y la profundidad de la grieta en metros. Si el criterio del ingeniero o del inspector determina que la grieta es de un daño considerable que para la reparación es necesario el reemplazo total del tubo, debe registrar el diámetro y la longitud de tubería en metros que será reemplazada.

Grietas verticales en la unión entre el muro cabezal y las aletas.
 Este daño afecta principalmente a la estabilidad y la funcionalidad de la estructura.

Debe registrarse la longitud y el ancho en metros y la profundidad que tiene la grieta ya sea en metros o en milímetros.

- Fractura con pérdida parcial o total de la tubería. Este daño afecta principalmente la estabilidad y funcionalidad de la estructura y causara daño a la vía, ya que habrá infiltración de agua al terreno.
 Debe registrarse el número y la longitud en metros de los tubos afectados.
- Hundimientos o aplastamientos de secciones de tubería. Este
 daño existe cuando hay la presencia de asentamientos y
 hundimientos de la rasante o superficie del terreno.
 Debe registrarse el número de tubos afectados, y si es posible el
 desplazamiento vertical promedio de los mismos en metros.
- Socavación del concreto y suelo de fundación de aletas, solado, y/o muro cabezal. La socavación que puede existir sobre las estructuras, en su mayoría provocaran colapso.
 Debe registrarse el elemento de la alcantarilla que presenta la socavación así como el área afectada en metros cuadrados.
- Deterioro y pérdida del mortero de pega de las uniones de la tubería. Debe registrarse la pérdida del mortero de pega, también la longitud en metros que deberá ser reparada.
- Mantenimiento inadecuado. Existe este da
 ño cuando hay la
 presencia de maleza, colmataci
 ón parcial o total de las estructuras
 de entrada y salida de la alcantarilla.

Este daño se registrará indicando el porcentaje de tubo obstruido (con respecto al diámetro del mismo).

Cuando se reporten daños en los diferentes componentes de la alcantarilla se recomienda elaborar un esquema donde se coloque la ubicación del daño dentro del elemento y las características particulares.

1.4 FORMULACION DEL PROBLEMA.

¿En qué estado se encuentra la serviciabilidad de las obras de drenaje pluvial del tramo de la carretera Cuñumbuque – Zapatero?

1.5 JUSTIFICACIÓN DEL ESTUDIO

Se llevara a cabo, porque permitirá mostrar resultados de la Evaluación de la serviciabilidad de las obras de artes de drenaje pluvial de la carretera EMP. PE-5N (CUÑUMBUQUE) – ZAPATERO, para poder analizar las obras de artes que estén operando según diseño, determinar la serviciabilidad y el tamaño de los daños.

El interés específico es obtener resultados al llevar a cabo el Proyecto ya mencionado, esto será una Guía para que la Administración pueda determinar las Políticas y Estrategias de intervención, tanto a nivel de Red Vial Departamental como a nivel de proyectos específicos y lograr así que estas estrategias resulten en inversiones eficientes y eficaces de los limitados fondos públicos.

1.6 HIPOTESIS.

Se encuentra en un estado óptimo la serviciabilidad de las obras de drenaje pluvial del tramo de la carretera cuñumbuque – zapatero.

1.7 OBJETIVOS

OBJETIVO GENERAL.

Evaluar la serviciabilidad de las obras de drenaje pluvial de la carretera CUÑUMBUQUE – ZAPATERO.

OBJETIVOS ESPECIFICOS.

Para alcanzar el objetivo general, se deben lograr los siguientes objetivos específicos:

- Determinar el índice de serviciabilidad.
- Evaluar la severidad de los daños encontrados.
- Determinar las actividades para el mantenimiento correctivo.
- Valorar los daños encontrados de las obras de drenaje según Manual de inspección Visual de Estructuras de Drenaje.
- Determinar las actividades para el mantenimiento correctivo.
- Realizar el estudio de suelos del tramo de la carretera
 CUÑUMBUQUE ZAPATERO

II. MÉTODO

2.1 DISEÑO DE INVESTIGACIÓN

El tipo de Diseño a utilizar en la investigación es **NO EXPERIMENTAL**, porque se tendrá que observar del hecho en la condición actual, sin realizar la manipulación de las variables que será del tipo **Transversal (Descriptivo - Correlacional)** ya que permitirá recoger los datos en un solo momento.

Dónde:

M= Muestra "Tramo de la Carretera Cuñumbuque - zapatero"

O= Observación de la variable "Carretera"

r = "Serviciabilidad"

2.2 VARIABLES, OPERACIONALIZACIÓN

2.2.1 Variables

Las variables del proyecto son:

Variable Independiente: Obras de Arte de Drenaje Pluvial.

Variable Dependiente: Serviciabilidad.

2.2.2 Operacional de Variables.

Cuadro N° 1: Operacionalización de variables

VARIABLES	DEFINICION CONCEPTUAL	DEFINICION OPERACIONAL	INDICADORES	ESCALA DE MEDICION
	Es el conjunto de obras que permiten un manejo adecuado de	Catálogo de fallas	fallas de las obras de drenaje	
Obras de Arte de Drenaje Pluvial.		tipo de fallas	tipo de falla observada	Ordinal
	captación, conducción, y evacuación de los mismos.		Severidad de fallas	
	La Servicabilidad de las obras de drenaje, es la		Índice de serviciabilidad	
Serviciabilidad.	condición necesaria de una obra opere en un estado óptimo y funcional.	Índice de serviciabilidad.	Porcentaje de fallas	Ordinal

Fuente: Elaboración Propia

2.3 POBLACIÓN Y MUESTRA

POBLACIÓN: El tramo en estudio CUÑUMBUQUE – ZAPATERO cuenta con 8.00 km de longitud de carretera, las cuales existen obras de drenaje en largo de la carretera.

UBICACIÓN DEL PROYECTO

La carretera departamental ruta sm-102 tramo: CUÑUMBUQUE – ZAPATERO, se encuentra ubicada:

Departamento : San Martín

Provincia : Lamas

Distrito : Zapatero

Cuadro N° 2: Coordenadas

PUNTO INICIAL	PUNTO FINAL
06°29'03" S	06°31'49" S
76°28'45" W	76°29'39" W
Altitud: 289.00 m.s.n.m.	Altitud: 293 m.s.n.m.

Fuente: Elaboración Propia

MUESTREO: El tramo en estudio CUÑUMBUQUE – ZAPATERO cuenta con 8.00 km de longitud de carretera, las cuales existen obras de drenaje en largo de la carretera.

2.4 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS, VALIDEZ Y CONFIABILIDAD.

2.4.1 Técnicas e instrumentos de recolección de datos

El siguiente cuadro se mostrara las Técnicas e instrumentos de recolección de dato:

Cuadro N° 3: Técnicas e instrumentos

Técnicas	Instrumentos	Fuentes o informantes
Observación	Ficha de observaciones y registro	INVIAS – Colombia (Manual para la inspección visual de Estructuras de
	<u> </u>	Drenaje)

Fuente: Elaboración Propia

2.4.2 Validación y confiabilidad de los instrumentos

La validación de la técnica a usar se hará con 02 ingenieros civiles, Colegiados y habilitados.

2.5 Método de análisis de datos

Forma de tratamiento de los datos. Lo primero que se realizara para el análisis es de recoger la información con el instrumento de recolección de datos, después obtenida la información requerida se pasa a realizar la recopilación de toda la información en tablas con hojas de cálculos para la elaboración propia (Microsoft Excel 2010), esto dependiendo de los objetivos realizados, además proporcionando el entendimiento de la investigación y así precisar las conclusiones y recomendaciones de la investigación planteada.

2.6 Aspectos éticos

Se respetara la información como confidencial, debido a que no se pondrá nombre a ninguno de los instrumentos, estos serán codificados para registrarse de modo discreto y serán de manejo exclusivo de la investigadora, guardando el anonimato de la información.

III. RESULTADOS

3.1. EVALUACION DE LAS OBRAS DE DRENAJE PLUVIAL.

La evaluación se realizó con la finalidad de verificar el estado en cual se encuentra las obras de drenaje pluvial del tramo a evaluar. La metodología consistió en dar un recorrido minucioso e inspección visual de las cunetas y alcantarillas. Luego de recogida la información en campo se procede al análisis de datos, que se realizó con la herramienta virtual Excel, se utilizó como una base de datos para luego proseguir su análisis respectivo del tramo en estudio. Cabe indicar que para las cuentas se ha tomado un total de 160 muestras (80 de cada lado de la cuneta) de 100m de longitud, teniendo en cuenta que por el lado derecho de la cuneta contamos con 3 557.00 ml y por el lado izquierdo con 5, 360.30 ml. y para las alcantarillas son un total de 33 unidades.

De esta forma se ordenó y analizo la información según lo mencionado CAPITULO II del presente proyecto. Obteniéndose en primera instancia el nivel de Severidad por cada tramo de todas las fallas encontradas, se muestra a continuación:

3.1.1 NIVEL DE SEVERIDAD DE LAS FALLAS POR MUESTRA (CUNETAS).

Cuadro N° 4: Nivel de Severidad de Cunetas lado Derecho

PR		Longitud de Muestreo (m)	Forma de la Cuneta	Nivel de Severidad
DE	HASTA			
0+000	0+100	100	Tr	1
0+100	0+200	100	Tr	1
0+200	0+300	100	Tr	0
0+300	0+400	100		0
0+400	0+400 0+500			0
0+500	0+600	100		0
0+600	0+700	100	Tr	0
0+700	0+800	100	Tr	1
0+800	0+900	100		0
0+900	1+000	100		0
1+000	1+100	100	Tr / T	2
1+100	1+200	100	Tr	3
1+200	1+300	100		0
1+300	1+400	100	Tr	0
1+400	1+500	100		0

1+500	1+600	100	Tr	1
1+600	1+700	100	Tr	1
1+700	1+800	100		0
1+800	1+900	100		0
1+900	2+000	100		0
2+000	2+100	100		0
2+100	2+200	100		0
2+200	2+300	100		0
2+300	2+400	100		0
2+400	2+500	100	T	1
2+500	2+600	100		0
2+600	2+700	100		0
2+700	2+800	100		0
2+800	2+900	100		0
2+900	3+000	100	Tr	2
3+000	3+100	100	11111	0
3+100	3+200	100	Tr	1
3+200	3+300	100	11	0
3+300	3+400	100	+	0
3+300	3+400	100	+	0
			+ +	1
3+500	3+600	100	T	
3+600	3+700	100	1 1	2
3+700	3+800	100	+	1
3+800	3+900	100		1
3+900	4+000	100		0
4+000	4+100	100		0
4+100	4+200	100		0
4+200	4+300	100		0
4+300	4+400	100		0
4+400	4+500	100		0
4+500	4+600	100		0
4+600	4+700	100	T	1
4+700	4+800	100	T	1
4+800	4+900	100	T	1
4+900	5+000	100	T	2
5+000	5+100	100	Tr	1
5+100	5+200	100	Tr	1
5+200	5+300	100	Tr	1
5+300	5+400	100	Tr	1
5+400	5+500	100	Tr	1
5+500	5+600	100		0
5+600	5+700	100	Tr	1
5+700	5+800	100	Tr	1
5+800	5+900	100		0
5+900	6+000	100	1	0
6+000	6+100	100		0
6+100	6+200	100		0
6+200	6+300	100	Tr	1
6+300	6+400	100	† †	0
6+400	6+500	100	1	0
6+500	6+600	100		0
6+600	6+700	100	†	0
6+700	6+800	100	†	0
6+800	6+900	100	Tr	1
6+900	7+000	100	Tr	1
7+000	7+000	100	Tr	0
7+000	7+100	100	11	0
7+100	7+200	100	T	1
1 +200	1 ±300	100	1 1	<u>I</u>

7+300	7+400	100	Т	1
7+400	7+500	100	T	1
7+500	7+600	100	T	1
7+600	7+700	100		0
7+700	7+800	100	Tr	1
7+800	7+900	100	Tr	1
7+900	8+000	100		0

Fuente: Elaboración Propia

El nivel de Severidad en 29 tramos de 100m. es 1 (baja), en 4 tramos es 2 (regular), 1 tramos es 3 (Alto).

Cuadro N° 5: Nivel de Severidad Cunetas Lado Izquierdo

PR		Longitud de Muestreo (m)	Forma de la Cuneta	Nivel de Severidad
DE	HASTA			
0+000	0+100	100		0
0+100	0+200	100		0
0+200	0+300	100	Tr	1
0+300	0+400	100	Tr	0
0+400	0+500	100	Tr	0
0+500	0+600	100		0
0+600	0+700	100		0
0+700	0+800	100		0
0+800	0+900	100		0
0+900	1+000	100	T	1
1+000	1+100	100	Tr	1
1+100	1+200	100	Tr	2
1+200	1+300	100		0
1+300	1+400	100		0
1+400	1+500	100		0
1+500	1+600	100		0
1+600	1+700	100	Tr	1
1+700	1+800	100		0
1+800	1+900	100		0
1+900	2+000	100	T	1
2+000	2+100	100	T / Tr	1
2+100	2+200	100	T	1
2+200	2+300	100	T	1
2+300	2+400	100		0
2+400	2+500	100	Tr	1
2+500	2+600	100	Tr	1
2+600	2+700	100	T	1
2+700	2+800	100	Tr / T	1
2+800	2+900	100	Tr	1
2+900	3+000	100	Tr	2
3+000	3+100	100	T	1
3+100	3+200	100	T	2
3+200	3+300	100	T	1
3+300	3+400	100	Tr / T	1
3+400	3+500	100	T	0
3+500	3+600	100		0

3+600	3+700	100		0
3+700	3+800	100		0
3+800	3+900	100		0
3+900	4+000	100		0
4+000	4+100	100	T	0
4+100	4+200	100	Т	1
4+200	4+300	100	T	1
4+300	4+400	100	Т	1
4+400	4+500	100		0
4+500	4+600	100	Т	1
4+600	4+700	100	Т	1
4+700	4+800	100		0
4+800	4+900	100	Т	1
4+900	5+000	100	Tr	1
5+000	5+100	100		0
5+100	5+200	100		0
5+200	5+300	100		0
5+300	5+400	100		0
5+400	5+500	100	Т	1
5+500	5+600	100		0
5+600	5+700	100	Т	0
5+700	5+800	100	Т	1
5+800	5+900	100	Т	1
5+900	6+000	100	Т	1
6+000	6+100	100	T	1
6+100	6+200	100	Tr / T	1
6+200	6+300	100	T	1
6+300	6+400	100	Tr	0
6+400	6+500	100	Tr	1
6+500	6+600	100	T	2
6+600	6+700	100	T	1
6+700	6+800	100	T	1
6+800	6+900	100		0
6+900	7+000	100	T	1
7+000	7+100	100	Т	1
7+100	7+200	100		0
7+200	7+300	100	Т	1
7+300	7+400	100	Т	1
7+400	7+500	100	Tr / T	1
7+500	7+600	100		0
7+600	7+700	100	Т	1
7+700	7+800	100	Tr	1
7+800	7+900	100	Tr	1
7+900	8+000	100	Т	1
		_		

Fuente: Elaboración Propia

El nivel de Severidad en 42 tramos de 100m. es 1 (baja), en 4 tramos es 2 (regular), 0 tramos es 3 (Alto).

3.1.2 METRADO DE LOS TIPOS DE FALLAS.

Cuadro Nº 6: Metrado de Daño de Cuneta Lado Derecho.

PORCENTAJE Y LONGITUD DE DAÑO PR 0+000 - PR 08+000 - LADO DERECHO

FALLA	UNIDAD	LONGITUD TOTAL DE DAÑO	% DE LONGITUD TOTAL	% DE LONGITUD DE DAÑO
Escalonamiento	ml	285.00	8.01 %	21.73 %
Grietas	ml	120.80	3.40 %	9.21 %
Desgaste	ml	13.90	0.39 %	1.06 %
Desportillamiento	ml	0.00	0.00 %	0.00 %
Fracturamiento de la Estructura	ml	8.70	0.24 %	0.66 %
Separación de la Cuneta	ml	195.00	5.48 %	14.87 %
Obstrucción	ml	688.20	19.35 %	52.47 %
TOTAL		1311.60	36.87 %	100.00 %

Fuente: Elaboración Propia

El daño estructural predominante en los 3, 557.00 m de longitud total de la cuneta, son la Obstrucción, con un 19.35 % sobre el total de la longitud y un porcentaje 52.47 % entre las longitudes de daños.

Cuadro Nº 7: Metrado de Daño de Cuneta Lado Izquierdo.

PORCENTAJE Y LONGITUD DE DAÑO PR 0+000 - PR 08+000 - LADO IZQUIERDO

FALLA	UNIDAD	LONGITUD TOTAL DE DAÑO	% DE LONGITUD TOTAL	% DE LONGITUD DE DAÑO
Escalonamiento	ml	138.00	2.57 %	8.76 %
Grietas	ml	255.20	4.76 %	16.20 %
Desgaste	ml	0.00	0.00 %	0.00 %
Desportillamiento	ml	0.00	0.00 %	0.00 %
Fracturamiento de la Estructura	ml	18.60	0.35 %	1.18 %
Separación de la Cuneta	ml	58.50	1.09 %	3.71 %
Obstrucción	ml	1105.00	20.61 %	70.15 %
TOTAL		1575.30	29.38 %	100.00 %

Fuente: Elaboración Propia

El daño estructural predominante en los 5, 360.30 m de longitud total de la cuneta, son la Obstrucción, con un 20.61 % sobre el total de la longitud y un porcentaje 70.15 % entre las longitudes de daños.

3.1.3 NIVEL DE SEVERIDAD DE LAS FALLAS POR MUESTRA (ALCANTARILLA).

Cuadro N° 8: Nivel de Severidad de Alcantarilla.

PROGRESIVA	Tipo de Alcantarilla	Nivel de Severidad
00+020	TMC	0
00+508	CA	1
00+900	CA	1
01+230	TMC	2
01+758	TMC	2
02+036	CA	1
02+223	TMC	2
02+463	TMC	2 3
02+694	TMC	3
02+880	TMC	2
03+125	TMC	0
03+403	TMC	2
03+554	TMC	2
03+840	TMC	2
04+117	TMC	0
04+239	TMC	0
04+415	CA	2
04+447	TMC	1
04+575	TMC	2
04+640	TMC	1
04+990	CA	2
05+148	CA	3
05+292	CA	2
05+500	TMC	1
05+835	TMC	2
05+990	TMC	2
06+471	CA	3
06+190	TMC	1
06+863	TMC	0
07+049	CA	3
07+210	CA	2
07+492	TMC	2
07+821	CA	2

Fuente: Elaboración Propia

El nivel de Severidad en 7 alcantarillas es de 1 (baja), en 17 alcantarillas es 2 (regular), 4 alcantarillas es 3 (Alto).

3.1.4 METRADO DE LOS TIPOS DE FALLAS.

Cuadro Nº 9: Metrado de Daño de Alcantarilla Estructura de Entrada.

PORCENTAJE DEL TOTAL DE ALCANTARILLAS DAÑADAS PR 0+000 - PR 08+000

FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.06 %	7.41 %
Grietas en Tubería Principal	0.00	0.00 %	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %	0.00 %
Mantenimiento Inadecuado	25.00	75.76 %	92.59 %
TOTAL	27.00	81.82 %	100.00 %

Fuente: Elaboración Propia

El daño estructural predominante en las 33 alcantarillas, son la Mantenimiento Inadecuado, con un 75.76 % sobre el total de las alcantarillas y un porcentaje 92.59 % entre los daños.

Cuadro Nº 10: Metrado de Daño de Alcantarilla Estructura de Salida.

PORCENTAJE DEL TOTAL DE ALCANTARILLAS DAÑADAS PR 0+000 - PR 08+000

FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.06 %	7.69 %
Grietas en Tubería Principal	0.00	0.00 %	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	1.00	3.03 %	3.85 %

Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %	0.00 %	
Mantenimiento Inadecuado	23.00	69.70 %	88.46%	
TOTAL	26.00	78.79 %	100.00 %	

Fuente: Elaboración Propia

El daño estructural predominante en las 33 alcantarillas, son la Mantenimiento Inadecuado, con un 69.70 % sobre el total de las alcantarillas y un porcentaje 88.46 % entre los daños.

Cuadro Nº 11: Metrado de Daño de Alcantarilla Tuberia.

PORCENTAJE DEL TOTAL DE ALCANTARILLAS DAÑADAS PR 0+000 - PR 08+000

FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	0.00	0.00 %	0.00 %
Grietas en Tubería Principal	0.00	0.00 %	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %	0.00 %
Mantenimiento Inadecuado	14.00	42.42 %	100.00 %
TOTAL	14.00	42.42 %	100.00 %

Fuente: Elaboración Propia

El daño estructural predominante en las 33 alcantarillas, son la Mantenimiento Inadecuado, con un 42.42 % sobre el total de las alcantarillas y un porcentaje 100.00 % entre los daños.

3.2. PRESUPUESTO GENERAL.

El Costo Total del Mantenimiento del proyecto asciende a la suma de S/.129,808.68 soles tal como indica en el siguiente cuadro:

Cuadro N° 12: Resumen de Presupuesto de Obra

ÍTEM	DESCRIPCIÓN	PARCIAL (S/.)	
01	COSTO DIRECTO	S/.	93,226.57
02	GASTO GENERALES	S/.	9,322.66

03	UTILIDAD	S/.	7,458.13
04	SUB TOTAL	S/.	110,007.36
05	IGV	S/.	19,801.32
TOTAL PRESUPUESTO			129,808.68

Fuente: Elaboración Propia

3.3. ESTUDIO DE MECÁNICA DE SUELOS

El estudio definitivo de mecánica de suelos se realizó con la finalidad de determinar las propiedades físicas y mecánicas del suelo. El método consistió en realizar exploraciones a cielo abierto hasta una profundidad de 1.5 metros, los cuales fueron distribuido en todo el tramo de la carretera

De las calicatas se obtuvo de cada capa una muestra representativa en número y cantidades suficientes de suelo. Con el procesamiento de datos se obtuvo, tanto de campo como de laboratorio, se estableció la estratigrafía del terreno que se encuentran en todo el tramo de la carretera.

Con los resultados obtenidos en el laboratorio se ha determinado técnicamente la clasificación de suelo y se han generado los diferentes estratos en el tramo en estudio.

Cuadro N° 13: Resumen propiedades Físico, Mecánica y Clasificación de suelos

CALICATA		CLASIFIC	ACIÓN	\A/0/	LL	LP	IP	IL	IC
		AASTHO	SUCS	- W%					
C-01	M-1	A-2-6 (1)	SC	6.90	19.77	N.P	0.66	0.94	0.06
C-01	M-2	A-7-6 (11)	CL	19.81	42.13	19.91	22.22	-0.04	1.04
C 02	M-1	A-6 (2)	SC	5.34	18.00	N.P	18.00	0.23	0.72
C-02	M-2	A-7-6 (17)	СН	15.58	53.44	26.64	26.80	0.04	0.96
C 02	M-1	A-6 (9)	CL	18.88	37.56	24.60	12.96	-0.50	1.50
C-03	M-2	A-2-6 (1)	SC	7.21	19.61	N.P	19.61	0.37	0.63
C-04	M-1	A-6 (11)	CL	12.92	37.12	20.45	16.67	-0.49	1.49
	M-2	A-2-6 (0)	SC	3.05	19.65	N.P	19.65	0.15	0.85
C-05	M-1	A-2-6 (3)	SC	19.15	23.17	N.P	23.17	0.09	0.91
C 06	M-1	A-2-6 (3)	GC	8.57	22.03	N.P	22.03	0.38	0.62
C-06	M-2	A-6 (5)	CL	16.92	33.75	22.68	11.07	-0.52	1.52
C 07	M-1	A-6 (2)	SC	12.00	28.51	17.37	11.13	-0.50	1.50
C-07	M-2	A-6 (8)	CL	14.00	28.17	17.45	10.72	-0.33	1.33
C-08	M-1	A-2-6 (2)	GC	5.71	29.16	N.P	29.16	0.20	0.80
C-08	M-2	A-7-6 (10)	CL	17.78	28.58	27.15	1.43	-6.57	7.57

Fuente: Elaboración Propia.

Como podemos observar en el cuadro N° 13, al considerar las 8 calicatas y su clasificación de los materiales, se determina que de acuerdo a las excavaciones realizadas y los ensayos realizados en el laboratorio se determina la predominancia de suelos granulares de matriz fina.

Cuadro N°14: Participación del tipo de suelo

TIPO DE SUELO	CANTIDAD	PARTICIPACION (%)
SC	6.00	40.00
CL	6.00	40.00
СН	1.00	6.67
GC	2.00	13.33
TOTALES	15.00	100.00

Fuente: Elaboración Propia.

Como se aprecia en el cuadro N°14, se tiene 4 tipos de clasificaciones SUCS, donde tenemos un CH que es un suelo arcilloso de baja plasticidad (LL < 50) de comportamiento mecánico de malo a aceptable y no es recomendable, un CL que es un suelo arcilloso de alta plasticidad (LL > 50) de comportamiento mecánico de malo a aceptable y no es recomendable, un SC que es un suelo arenoso arcilloso con presencia de material finos (finos > 12%) de comportamiento mecánico de malo a aceptable y no recomendable, teniendo como ultima clasificación un GC que es un suelo gravoso arcilloso con presencia de material finos (finos > 12%) de comportamiento mecánico bueno y es recomendable.

IV. DISCUSION.

4.1 OBRAS DE DRENAJE PLUVIAL.

Se consideró para las cuentas un total de 160 muestras (80 de cada lado de la cuneta) de 100m. De longitud, teniendo en cuenta que por el lado derecho de la cuneta contamos con 3 557.00 ml y por el lado izquierdo con 5, 360.30 ml y con respecto a las alcantarillas un total de 33 unidades. Se ordenó y analizo la información, obteniendo el nivel de Severidad de todas las fallas encontradas:

4.1.1 SEVERIDAD DE LAS FALLAS (CUNETAS).

De la evaluación realizada basada el manual para la inspección visual de Estructuras de Drenaje que tuvo como finalidad de verificar el estado en cual se encuentra las cunetas se obtuvo lo siguiente.

Lado Derecho de la cuneta.- Se obtuvo un nivel de Severidad baja en 29 tramos de longuitud de 100m., un nivel de severidad regular en 4 tramos y un nivel alto en 1 tramos.

Lado Izquierdo de la cuneta.- Se obtuvo un nivel de Severidad baja en 42 tramos de longuitud de 100m., un nivel de severidad regular en 4 tramos y un nivel alto en 0 tramos.

De las cuales se ha verificado la severidad de las fallas, la cual se debe tener en consideración el tiempo para realizar el mantenimiento en los tramos para evitar dichas fallas.

4.1.2 METRADO DE LOS TIPOS DE FALLLAS.

De la inspección minuciosa realizada se ha obtenido los daños estructurales de las cunetas, por lo que cada tipo de daño encontrado se tomado nota con sus respectivas medidas.

Lado Derecho de la cuneta. Se ha tenido 6 tipos de daños, el más predominante es el da obstrucción con 688.20 ml teniendo un porcentaje de

19.35 % de total de cuneta, le sigue el daño de escalomaniento con 285.00 ml teniendo un porcentaje de 8.01 % de total de cuneta, luego viene el daño de separación de la cuneta con 195.00 ml teniendo un porcentaje de 5.48 % de total de cuneta, continua el daño de grietas con 120.80 ml teniendo un porcentaje de 3.40 % de total de cuneta, después el daño de desgaste con 13.90 ml teniendo un porcentaje de 0.39 % de total de cuneta y teniendo como el ultimo daño el fracturamiento de la estructura con 8.70 ml teniendo un porcentaje de 0.24% de total de cuneta.

Lado Izquierdo de la cuneta. Se ha tenido 5 tipos de daños, el más predominante es el da obstrucción con 1105.00 ml teniendo un porcentaje de 20.61 % de total de cuneta, le sigue el daño de grietas con 255.20 ml teniendo un porcentaje de 4.76 % de total de cuneta, luego viene el daño de escalonamiento con 138.00 ml teniendo un porcentaje de 2.57 % de total de cuneta, continua el daño de separación de cuneta con 58.50 ml teniendo un porcentaje de 1.09 % de total de cuneta y teniendo como el ultimo daño el fracturamiento de la estructura con 18.60 ml teniendo un porcentaje de 0.35 % de total de cuneta.

4.1.3 SEVERIDAD DE LAS FALLAS (ALCANTARILLAS).

De la evaluación realizada basada al manual para la inspección visual de Estructuras de Drenaje que tuvo como finalidad de verificar el estado en cual se encuentra las alcantarillas se obtuvo lo siguiente.

ALCANTARILLA.- Se obtuvo un nivel de Severidad baja en 7 alcantarillas, un nivel de severidad regular en 17 alcantarillas y un nivel alto en 4 alcantarillas.

4.1.4 METRADO DE LOS TIPOS DE FALLAS.

De la inspección minuciosa realizada se ha obtenido los daños estructurales de las alcantarillas, por lo que cada tipo de daño encontrado se tomado nota con sus respectivas medidas.

Estructura de entrada. Se ha tenido 2 tipos de daños, el más predominante es el daño de mantenimiento inadecuado con 25 alcantarillas teniendo un porcentaje de 75.76 % de total de alcantarilla y teniendo como el menos predominante el daño de grietas en aletas, muro cabezal y muros de poceta con 2 alcantarillas teniendo un porcentaje de 6.06 % de total de alcantarillas.

Estructura de salida. Se ha tenido 3 tipos de daños, el más predominante es el de daño mantenimiento inadecuado con 23 alcantarillas teniendo un porcentaje de 69.70 % de total de alcantarilla, el siguiente el daño de grietas en aletas, muro cabezal y muros de poceta con 2 alcantarillas teniendo un porcentaje de 6.06 % de total de alcantarillas y teniendo como el menos predominante el daño de socavación del concreto y suelo de fundación de Aletas, solado y/o muro cabezal con 1 alcantarilla teniendo un porcentaje de 3.03 % de total de alcantarillas.

Tubería. Se ha tenido solo un tipo de daño que es del mantenimiento inadecuado con 14 alcantarillas teniendo un porcentaje de 42.42 % de total de alcantarilla.

De las obras de drenaje pluvial donde se ha verificado la severidad de las fallas, se debe tener en consideración el tiempo transcurrido que se realizó el mantenimiento en los tramos para poder así evitar dichas fallas.

Realizada la cuantificación para los metrados de fallas, se obtuvo que para las cunetas las fallas más representativas es el escalonamiento y la obstrucción, como se observa en el cuadro N° 13 y N° 14 se debe a que se tiene la presencia de mucho fino (arcilla y limo), las cuales genera el desprendimiento de material de los taludes, genera la expansión de los suelos, etc., produciendo este tipos de fallas y en las alcantarillas el más representativo es el mantenimiento inadecuado que también se produce en mayor porcentaje por el desprendimiento de material en los taludes.

4.2 PRESUPUESTO GENERAL.

Para la elaboración del presupuesto total del mantenimiento se tuvo que elaborar la sustentación de metrados y el análisis de costos unitarios de las diferentes partidas proyectadas para el mantenimiento del drenaje pluvial, siendo un total de S/. 129,808.68 soles.

Para los costos de materiales y equipos se ha tenido que considerar los precios que demanda el mercado de la ciudad de Tarapoto, en el cual se comercializa la mayoría de los insumos, la cotización se realizó en los establecimientos comerciales y/o empresas constructoras de las maquinarias a utilizar; para los costos de mano de obra utilizados fueron los costos CAPECO. Este presupuesto se desarrolló con el programa S10-2005.

Para la elaboración del cronograma de obra se utilizó los metrados, los rendimientos y el número de cuadrillas, para poder realizar el cálculo de duración en días de cada partida. Se elaboró la programación de obra mediante las barras Gantt ya que para la representación gráfica del tiempo es excelente, muy clara y fácilmente entendimiento. Para la elaboración del cronograma se utilizó el programa Microsoft Office Project 2013, este programa trabaja con la secuencia lógica de ejecución de obra (precedencias), que se insertan en dicho programa. La ruta crítica se determinó mediante las predecesoras y sucesoras de las partidas a ejecutar donde se definió la duración del proyecto.

4.3 Estudios de suelo

Los ensayos realizados en el laboratorio se efectuaron de acuerdo a la Norma Técnica Peruana (E. 050), del análisis de muestras obtenidas de las 08 calicatas presenta cuatro tipos de clasificación, el primero está constituido por un CH que es un suelo arcilloso de baja plasticidad, un segundo estrato conformado por un CL que es un suelo arcilloso de alta plasticidad, un tercer estrato conformado por un SC que es un suelo arenoso arcilloso y la última capa constituida por un suelo gravoso arcilloso.

De acuerdo con los resultados obtenidos del estudio de mecánica de suelos y la evaluación de los tipos de fallas que cuenta el Manuel de inspección visual de estructuras de drenaje, se determina que las fallas más relevantes de ambos drenajes (Cunetas y Alcantarillas) a lo largo de la carretera Cuñumbuque – Zapatero, se cuenta con un suelo arcilloso que no es recomendable para las estructuras, lo cual se ha generado los desprendimientos de los taludes, las expansiones de los suelos y asentamientos de los mismos.

V. CONCLUSIONES.

- El proyecto se encuentra ubicado en el Distrito de Cuñumbuque Zapatero, Provincia de Lamas, Departamento San Martin. El tramo de la carretera cuenta con una serviciablidad de las obras de drenaje pluvial de 41.39 %, lo cual se utilizó el promedio aritmético para poder determinar la serviciabilidad del tramo, de donde se desprende que el 67.63 % es el drenaje longitudinal y un 15.15% en el drenaje transversal.
- De la evaluación del drenaje longitudinal que cuenta con una distancia de 8,917.30 m en total de ambos lados, ha sido conveniente tomar muestras de tramos de 100m, lo cual ha determinado que el nivel de severidad en 71 tramos es baja, en 8 tramos es regular y en 3 tramos es alta y de los drenajes transversales que se ha tomado como muestra a la alcantarilla por unidad se obtiene que en 7 alcantarillas el nivel de severidad es baja, en 17 alcantarillas es regular y 3 alcantarillas es alta.
- Para poder realizar el mantenimiento correctivo se determinó las actividades tales como: Trabajos Preliminares teniendo como partida Trazo y Replanteo, para el Drenaje se consideró Cunetas teniendo como partidas Demolición de Cuneta, Cuneta Revestida de Concreto F´c = 175 Kg/Cm2, Encofrado y Desencofrado, Juntas Asfálticas, Tratamiento de Grietas, Parchado de Carpeta Con Mezcla Asfáltica en Caliente, Limpieza de Cunetas y Eliminación de Material Excedente y en Alcantarillas se tiene las partidas de Relleno para Estructuras, Concreto Ciclópeo F´c = 175 Kg / Cm2 + 30% P.G, Solado, Encofrado y Desencofrado, Mampostería de Piedra Emboquillado, Tratamiento de Grietas y Limpieza de Alcantarillas.
- La valoración de los daños para el mantenimiento es de S/. 129,808.68
 soles, de donde se desprende el costo directo es de S/. 93,226.57 soles,

gastos generales es S/. 9,322.66 soles, utilidad es de S/. 7,458.13 soles y teniendo en cuenta el Impuesto General a las Ventas de S/. 19,801.32, dando oportunidad a las empresas constructoras que no estén exoneradas del IGV. El plazo de ejecución de la obra se ha considerado 30 días calendario, tiempo que justifica la programación de Barras Gantt.

El estudio de mecánica de suelos ha facilitado obtener resultados precisos, describiendo así el perfil estratigráfico del suelo concerniente al tramo en estudio de la carretera Cuñumbuque – Zapatero, proporcionando datos que permita la evaluación de los tipos de fallas principales que contempla el Manual de inspección visual de estructuras de drenaje (Cunetas y Alcantarillas), determinando que se encuentra con un suelo arcilloso (arena y grava), lo cual no es recomendable para la ejecución de dichas estructuras, los cuales ha generado y propiciado que las fallas geológicas (desprendimientos de talud, expansión y asentamiento de los suelos) sean más frecuentes, al no ser tratadas y evaluadas como correspondes.

VI. RECOMENDACIONES

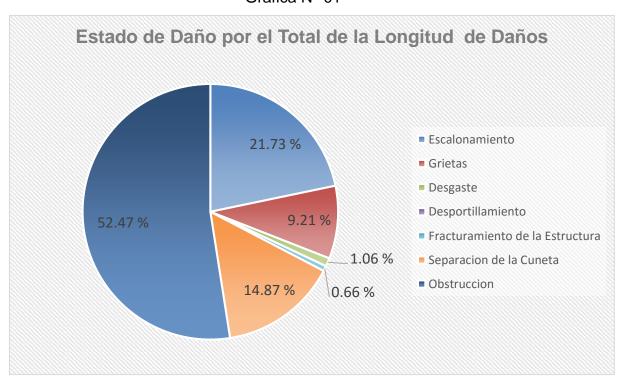
- Se recomienda que al momento de hacer evaluación de las fallas de las cunetas y alcantarillas, se realice después de haberse generado las precipitaciones pluviales, para así poder determinar mejor las fallas a encontrar.
- Se recomienda a la entidad competente, la elaboración del Expediente de Mantenimiento teniendo en cuenta la presente evaluación, así mismo el presupuesto presentado, dando así solución de los costos de los Mantenimientos para el sistema de drenaje en el departamento de San Martin.
- Se recomienda a la entidad competente, antes de la ejecución de dicho mantenimiento mencionado y planteado anteriormente, verificar las fallas encontradas en el presente estudio, debido que al tiempo de ejecución podrían mostrarse en aumento.
- Se recomienda llevar un control de calidad estricto en el proceso constructivo, además del realizar el mantenimiento cada 03 años para garantizar vida útil.
- Se recomienda que las fallas que presenta el manual, se agrupen por condición estructural y condición funcional, para así poder determinar el tipo de trabajo a realizar (Mantenimiento y/o Reparacion).

VII. REFERENCIAS

- GRUPO TÉCNICO. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia— 2006 [citado 22 Septiembre 2016]. Capitulo I. Generalidades pag. 4. Disponible en: http://www.invias.gov.co/index.php/documentos-tecnicos
- GRUPO TÉCNICO. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia– 2006 [citado 01 Octubre 2016]. Capitulo II. Control de Aguas Superficiales pag.7. Disponible en: http://www.invias.gov.co/index.php/documentos-tecnicos
- GRUPO TÉCNICO. MANUAL PARA LA INSPECCIÓN VISUAL DE ESTRUCTURAS DE DRENAJE. Universidad de Nacional de Colombia– 2006 [citado 01 Octubre 2016]. Capitulo II. Control de Aguas Superficiales pag.12. Disponible en: http://www.invias.gov.co/index.php/documentos-tecnicos
- GUILLEN MARTINEZ, Carlos Eduardo. Estabilidad de taludes en los Departamentos de Guatemala y Alta Verapaz, Casos Reales. Universidad de Nacional de Guatemala— 2004 [citado 22 Septiembre 2016]. Capitulo I. Marco Teorico pag. 1. Disponible en: http://biblioteca.usac.edu.gt/tesis/08/08_2408_C.pdf
- MINISTERIO DE TRANSPORTE Y COMUNICACIONES. "Glosario de términos de uso frecuente en proyectos de infraestructura vial". Lima Peru 2008: [citado 01 Octubre 2016] disponible en:
 http://www.mtc.gob.pe/portal/home/publicaciones_arch/glosario_final_10
 12 2007.pdf

- MIRANDA A, Juan Carlos. Deterioros de pavimento Método PCI.
 Universidad de Chile 2012 [citado 05 Octubre 2016]. Pag.41. Disponible en:
 - https://www.google.com.pe/url?sa=t&rct=j&q=&esrc=s&source=web&cd= 1&ved=0ahUKEwjL98Lbj8XQAhWI4SYKHaTrC2UQFggZMAA&url=https %3A%2F%2Fwww.u-
 - cursos.cl%2Fingenieria%2F2012%2F2%2FCl5531%2F1%2Fmaterial_do
 cente%2Fbajar%3Fid_material%3D630237&usg=AFQjCNGOl3M4rtLzD
 VK1OogKiQZIXPt-qA&bvm=bv.139782543,d.eWE
- MORALES MUÑOZ, Byron Omar. METODOLOGIA DE ESTABILIZACION DE TALUDES DE CARRETERAS. Pontificia Universidad Catolica del Ecuador

 – 2012 [citado 22 Septiembre 2016]. Capitulo II. Concepto Sobre Estabilidad de Taludes pag. 9. Disponible en:
 - http://repositorio.puce.edu.ec/handle/22000/7878


ANEXOS.

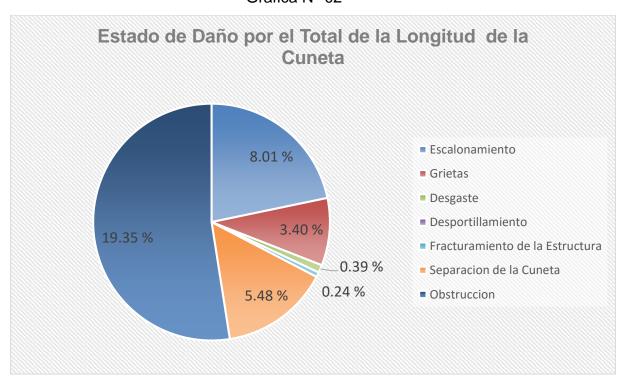
Anexo 01: Datos estadísticos.

01.- Porcentaje de daños del total de fallas del lado derecho de la cuneta Cuadro N° 01

FALLAS	LONGITUD (ml)	PORCENTAJE
Escalonamiento	285.00	21.73 %
Grietas	120.80	9.21 %
Desgaste	13.90	1.06 %
Desportillamiento	0.00	0.00 %
Fractura miento de la Estructura	8.70	0.66 %
Separación de la Cuneta	195.00	14.87 %
Obstrucción	688.20	52.47 %
TOTAL	1311.60	100.00 %

Grafica N° 01

En la gráfica N° 01: Se desprende que del total de los daños encontrados el más relevante es el de la Obstrucción contando con un 52.47 %, en comparación a los otros seis daños como el escalonamiento que es de un 21.73 %, el de

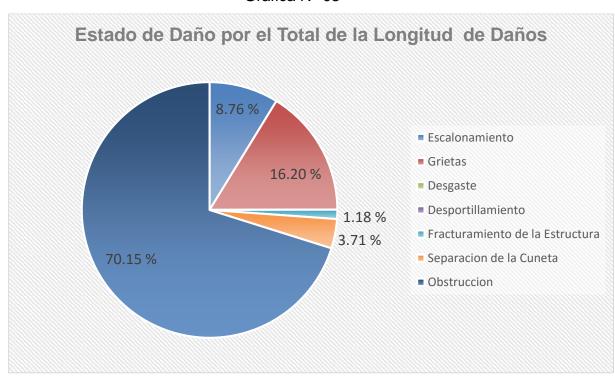

separación de cunetas con 14.87 %, el de grietas con 9.21 %, el de desgaste con 1.06 %, el de fracturamiento de la cuneta con 0.66 % y el de desportillamiento con 0.00 %.

02.- Porcentaje de daños, del total de Long. De cuneta del lado Derecho.

Cuadro N° 02

FALLAS	LONGITUD (ml)	PORCENTAJE
Escalonamiento	285.00	8.01 %
Grietas	120.80	3.40 %
Desgaste	13.90	0.39 %
Desportillamiento	0.00	0.00 %
Fracturamiento de la Estructura	8.70	0.24 %
Separacion de la Cuneta	195.00	5.48 %
Obstruccion	688.20	19.35 %
TOTAL	1311.60	36.87 %

Grafica N° 02

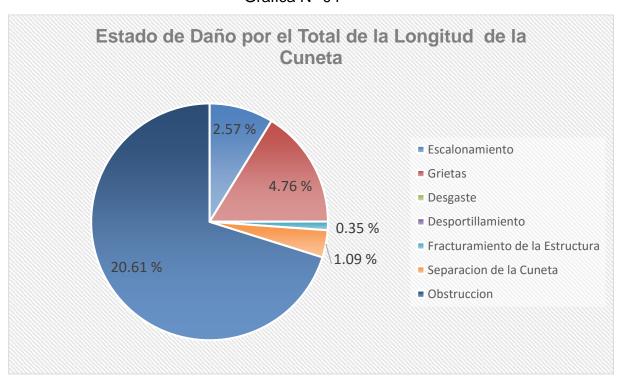

En la gráfica N° 02: Se desprende que los 3,557 ml de cuneta del lado derecho, el porcentaje más representativo del total de la cuneta es 19.35 % que es de la

Obstrucción, en comparación a los otros seis daños como el escalonamiento que es de un 8.01 %, el de separación de cunetas con 5.48 %, el de grietas con 3.40 %, el de desgaste con 0.39 %, el de fracturamiento de la cuneta con 0.24 % y el de desportillamiento con 0.00 %.

03.- Porcentaje de daños del total de fallas del lado izquierdo de la cuneta Cuadro N° 03

FALLAS	LONGITUD (ml)	PORCENTAJE
Escalonamiento	138.00	8.76 %
Grietas	255.20	16.20 %
Desgaste	0.00	0.00 %
Desportillamiento	0.00	0.00 %
Fracturamiento de la Estructura	18.60	1.18 %
Separacion de la Cuneta	58.50	3.71 %
Obstruccion	1105.00	70.15 %
TOTAL	1575.30	100.00 %

Grafica N° 03


En la gráfica N° 03: Se desprende que del total de los daños encontrados el más relevante es el de la Obstrucción contando con un 70.15 %, en comparación a los otros seis daños como el de grietas que es de un 16.20 %, el de escalonamiento con 8.76%, el de separación de cunetas con 3.71 %, el de fracturamiento de la cuneta con 1.18 %, el de desgaste y el de desportillamiento con 0.00 %.

04.- Porcentaje de daños, del total de Long. De cuneta del lado Izquierdo.

Cuadro N° 04

FALLAS	LONGITUD (ml)	PORCENTAJE
Escalonamiento	138.00	2.57 %
Grietas	255.20	4.76 %
Desgaste	0.00	0.00 %
Desportillamiento	0.00	0.00 %
Fracturamiento de la Estructura	18.60	0.35 %
Separacion de la Cuneta	58.50	1.09 %
Obstruccion	1105.00	20.61 %
TOTAL	1575.30	29.38 %

Grafica N° 04

En la gráfica N° 04: Se desprende que los 5,360.30 ml de cuneta del lado izquierdo, el porcentaje más representativo del total de la cuneta es 20.61 % que es de la Obstrucción, en comparación a los otros seis daños como el de grietas que es de un 4.76 %, el de escalonamiento con 2.57 %, el de separación de cunetas con 1.09 %, el de fracturamiento de la cuneta con 0.35 %, el de desgaste y el de desportillamiento con 0.00 %.

05.- Porcentaje de daños del total de fallas de la Estructura de Entrada.

Cuadro N° 05

FALLA	ALCANTARILLA (UND)	PORCANTAJE
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	7.41 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	25.00	92.59 %
TOTAL	27.00	100.00 %

Grafica N° 05

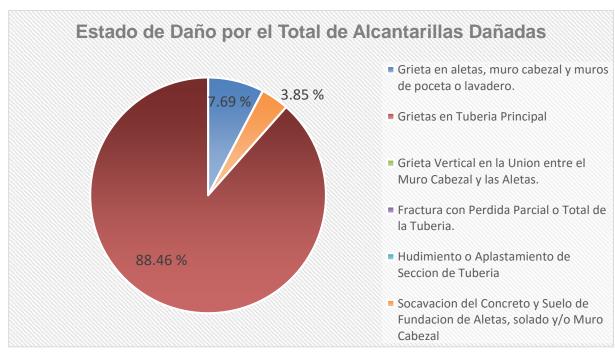
En la gráfica N° 05: Se desprende que del total de los daños encontrados el más relevante es el del Mantenimiento inadecuado contando con un 92.59 %, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero que es de un 7.41 %, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería, el de socavación del concreto y suelo de fundación de aletas, solado y/o muro cabezal y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

06.- Porcentaje de daños, del total de las Alcant. De la Est. de entrada.

Cuadro N° 06

FALLA	ALCANTARILLA (UND)	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.06 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	25.00	75.76 %
TOTAL	27.00	81.82 %

Grafica N° 06


En la gráfica N° 06: Se desprende que de los 33 und., el porcentaje más representativo del total de las alcantarillas es 75.76 % que es el Mantenimiento inadecuado, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero con un 6.06 %, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería, el de socavación del concreto y suelo de fundación de aletas, solado y/o muro cabezal y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

07.- Porcentaje de daños del total de fallas de la Estructura de Salida.

Cuadro N° 07

FALLA	ALCANTARILLA (UND)	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	7.69 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	1.00	3.85 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	23.00	88.46 %
TOTAL	26.00	100.00 %

Grafica N° 07


En la gráfica N° 07: Se desprende que del total de los daños encontrados el más relevante es el del Mantenimiento inadecuado contando con un 88.46 %, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero con un 7.69 %, el de socavación del concreto y suelo de fundación de aletas solado y/o muro cabezal con un 3.85 %, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

08.- Porcentaje de daños, del total de las Alcant. De la Est. de Salida.

Cuadro N° 08

FALLA	ALCANTARILLA (UND)	PORCENTAJE
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.06 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	1.00	3.03 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	23.00	69.70 %
TOTAL	26.00	78.79 %

Grafica N° 08

En la gráfica N° 08: Se desprende que de los 33 und., el porcentaje más representativo del total de las alcantarillas es 69.70 % que es el Mantenimiento inadecuado, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero con un 6.06 %, el de socavación del concreto y suelo de fundación de aletas solado y/o muro cabezal con un 3.03 %, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

09.- Porcentaje de daños del total de fallas de Tubería.

Cuadro N° 09

FALLA	ALCANTARILLA (UND)	PORCENTAJE
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	0.00	0.00 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la Unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	14.00	100.00 %
TOTAL	14.00	100.00 %

Grafica N° 09


En la gráfica N° 09: Se desprende que del total de los daños encontrados el más relevante es el del Mantenimiento inadecuado contando con un 100.00 %, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero, el de socavación del concreto y suelo de fundación de aletas solado y/o muro cabezal, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

10.- Porcentaje de daños, del total de las Alcant. De la Tubería.

Cuadro Nº 10

FALLA	ALCANTARILLA (UND)	PORCENTAJE
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	0.00	0.00 %
Grietas en Tubería Principal	0.00	0.00 %
Grieta Vertical en la unión entre el Muro Cabezal y las Aletas.	0.00	0.00 %
Fractura con Pérdida Parcial o Total de la Tubería.	0.00	0.00 %
Hundimiento o Aplastamiento de Sección de Tubería	0.00	0.00 %
Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal	0.00	0.00 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tubería.	0.00	0.00 %
Mantenimiento Inadecuado	14.00	42.42 %
TOTAL	14.00	42.42 %

Grafica N° 10

En la gráfica N° 10: Se desprende que de los 33 und., el porcentaje más representativo del total de las alcantarillas es 42.42 % que es el Mantenimiento inadecuado, en comparación a los otros siete daños como el de grietas en aletas, muro cabezal y muros de poceta o lavadero, el de socavación del concreto y suelo de fundación de aletas solado y/o muro cabezal, el de grietas en tubería principal, el de grieta vertical en la unión entre el muro cabezal y las aletas, el de fractura con perdido parcial o total de la tubería, el de hundimiento o aplastamiento de sección de tubería y el de deterioro y perdida del mortero de pega de las uniones de la tubería con 0.00 %.

Anexo 02: Informe de Estudio de Mecánica de Suelos.

GENERALIDADES

El presente estudio definitivo de Mecánica de suelos, es para poder desarrollar la tesis titulada "EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE – ZAPATERO – 2016"

Los trabajos que se realizaron en campo están orientados en la exploración del terreno de fundación, realizando exploraciones a cielo abierto los cuales están distribuidos en todo el tramo de la carretera. Se realizó la extracción de muestras representativas, las cuales fueron transportadas al laboratorio para la realización de los ensayos pertinentes.

OBJETIVOS

El objetivo del Estudio de Mecánica de Suelos, es la determinación de las propiedades índices de los suelos encontrados en las calicatas excavadas a lo largo de la carretera, así como su clasificación, las propiedades físicas y mecánicas en el tramo en estudio.

UBICACIÓN Y ACCESO

La carretera Cuñumbuque - Zapatero se encuentra ubicada en el departamento de San Martín, Provincia de Lamas, y distritos de Cuñumbuque y Zapatero, teniendo como coordenada de origen 336427E, 9283028N (Cuñumbuque) y coordenada final 334985E, 9276965N (Zapatero). El inicio de la carretera (localidad de Cuñumbuque) tiene una altitud de 289.00 m.s.n.m, y el término de

la misma (localidad de Zapatero) tiene una altitud de 800.00 m.s.n.m. El acceso a la carretera, desde la ciudad de Lima, ocurre de la siguiente manera:

El acceso a la zona de estudio desde la ciudad de Tarapoto, se realiza por vía terrestre a través de la carretera Fernando Belaunde Terry-Norte, ruta Tarapoto-Emp. PE-5N (Dv. Cuñumbuque), recorriendo una longitud de 18 Km.

El acceso a la ciudad de Tarapoto, desde Lima, distantes entre sí 1497 Km, puede hacerse por vía terrestre o vía aérea. Por vía terrestre a través de una carretera totalmente asfaltada, se puede viajar en cualquiera de las múltiples empresas de transporte terrestre, que ofrecen salidas diarias, diurnas y nocturnas, con una duración aproximada de 25 horas. Por vía aérea existen dos empresas que prestan servicio en la ruta Lima-Tarapoto y viceversa, las salidas son diarias en diferentes turnos, la duración del viaje es de aproximadamente 45 minutos.

Las calicatas de exploración se ubican según el siguiente cuadro.

TABLA DE COORDENADAS			
NUMERO DE CALICATA	DESCRIPCIÓN	NORTE (Y)	ESTE (X)
01	C-1	-6°29'33.0"	-76°28'52.1"
02	C-2	-6°29'07.5"	-76°23'26.4"
03	C-3	-6°30'14.1"	-76°28'26.7"
04	C-4	-6°30'42.5"	-76°28'55.1"
05	C-5	-6°30'29.6"	-76°29'02.4"
06	C-6	-6°30'42.2"	-76°28'54.9"
07	C-7	-6°31'43.8"	-76°29'26.1"
08	C-8	-6°32'11.5"	-76°29'34.4"

Fuente: Elaboración propia

CLIMA

El clima que presenta la zona en estudio (departamento de San Martín, provincia de Lamas), es caluroso a cálido durante todo el año. Siendo la temperatura mínima, en épocas de invierno, de 19.5° C y una máxima hasta de 33 ° C, llegando incluso a 35 °C en épocas calurosas.

El régimen de lluvias en la zona de influencia de la carretera es de Noviembre a Abril, con precipitación normal hasta 381.6 mm

TRABAJOS DE CAMPO

ESTUDIO EN LA VÍA

La exploración del subsuelo en la vía se ha realizado mediante excavaciones a cielo abierto (calicatas), de 1.50 m de profundidad. Las calicatas estuvieron distanciadas cada 1000 metros en promedio, ubicadas en forma alternada hacia el lado derecho e izquierdo de la vía, permitiendo conocer la estratigrafía tanto de la parte que da al talud como del borde opuesto de la vía, en las zonas a media ladera y hacia ambos lados en las zonas de relleno.

Se ha confeccionado el registro de excavación de cada calicata efectuado a lo largo de la vía, en la cual se detalla las capas que conforman el suelo de fundación que se presenta subyacente a ésta.

Se ha realizado un total de 08 calicatas de vías ejecutadas denominadas C - 01 a la C - 08, el cual abarca desde el Km. 00+000 al Km. 08+000.

TABLA DE CALICATAS						
NUMERO DE CALICATA	(m)		ROCA (m)			
C-01	1.50	Pavimento	-			
C-02	1.50	Pavimento	-			
C-03	1.50	Pavimento	1.00			
C-04	1.50	Pavimento	1.10			
C-05	1.50	Pavimento	-			
C-06	1.50	Pavimento	-			
C-07	1.50	Pavimento	-			
C-08	1.50	Pavimento	-			

Fuente: Elaboración propia

- Muestreo y registros de excavaciones:

Se realizó la extracción de muestras representativas de cada estrato de suelo, las cuales fueron cubiertas con material plástico para su almacenamiento y transporte libre de elementos que perjudiquen la integridad de la muestra.

ENSAYOS DE LABORATORIO

- Ensayos De Laboratorio De Vías

Los ensayos correspondientes para las muestras extraídas de las calicatas efectuadas en la vía han sido ejecutados en el Laboratorio de Mecánica de Suelos de la Universidad Cesar Vallejo, instalado en la localidad de Cacatachi. Los ensayos estándares efectuados en el laboratorio de campo han sido:

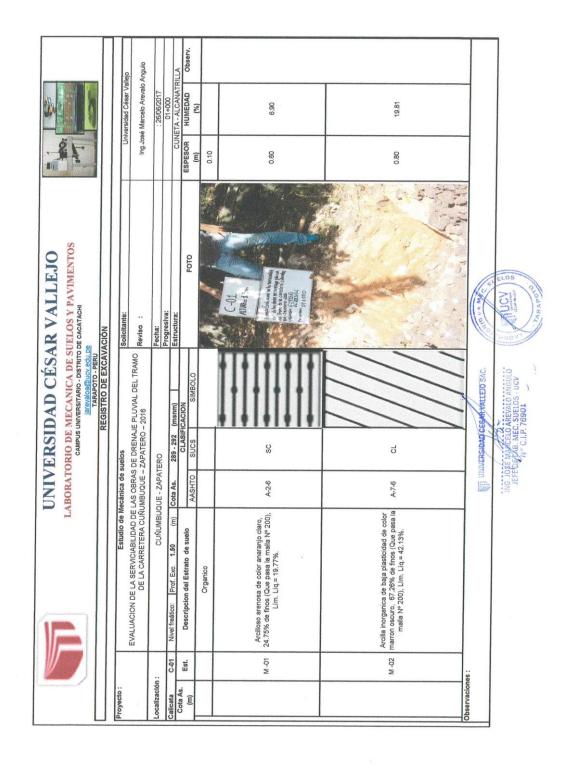
- 15 Análisis Granulométricos por tamizado ASTM D 422.
- 15 Limites de Atterberg, (Límite Líquido y Límite Plástico) ASTM D 4318.
- 15 Humedades Naturales ASTM D 2216.
- 4 California Bearing Ratio (CBR) ASTM D 1883, que incluye el ensayo preliminar de Próctor Modificado ASTM C 1557 – C.
- 15 Clasificaciones SUCS.
- 15 Clasificaciones AASHTO.

- Clasificación de Suelos

Las muestras ensayadas se han clasificado de acuerdo al American Association of State Highway Officials (AASHTO) y al Sistema Unificado de Clasificación de Suelos (SUCS). De acuerdo a los resultados obtenidos en laboratorio, se obtiene la siguiente clasificación AASHTO para los terrenos naturales que predominan en los estratos de las calicatas realizadas.

CALICATA	MUESTRA	PROFUNDIDAD (m)	CLASIFICACION AASHTO	CLASIFICACION SUCS
C - 01	M - 01	0.10 - 0.70	A-2-6 (1)	SC
C-01	M - 02	0.70 – 1.50	A-7-6 (11)	CL
C - 02	M - 01	0.30 - 0.70	A-6 (2)	SC
C = 02	M - 02	0.70 – 1.50	A-7-6 (17)	CH
C - 03	M - 01	0.00 - 0.60	A-6 (9)	CL
C = 03	M - 02	0.60 - 1.00	A-2-6 (1)	SC
C - 04	M - 01	0.00 - 0.60	A-6 (11)	CL
C = 04	M - 02	0.60 - 1.10	A-2-6 (0)	SC
C - 05	M - 01	0.20 - 1.50	A-2-6 (3)	SC
C - 06	M - 01	0.10 - 0.30	A-2-6 (3)	GC
C = 06	M - 02	0.30 - 1.50	A-6 (5)	CL
C - 07	M - 01	0.10 - 0.60	A-6 (2)	SC
C = 07	M - 02	0.60 - 1.50	A-6 (8)	CL
C - 08	M - 01	0.10 - 0.30	A-2-6 (2)	GC
C = 08	M - 02	0.30 - 1.50	A-7-6 (10)	CL

Fuente: Elaboración propia


CONCLUSIONES

- La carretera departamental se inicia en la ruta sm-102 tramo: EMP. PE-5N (CUÑUMBUQUE) y culmina en el ingreso de la localidad de Zapatero. La longitud total es de 8.00 Km., y se ubica en el departamento de San Martín, provincia de Lamas.
- Se han realizado 08 calicatas de 1.5 metros de profundidad a lo largo de la vía, hacia el lado derecho e izquierdo, para conocer la estratigrafía de toda la carretera. La distancia promedio entre calicatas ha sido 1000 m.
- 3. Los tipos de suelos que predominan, a lo largo de la vía son: arcillas inorgánicas de baja plasticidad y arcilla arenosa. Estos suelos son clasificados en el sistema unificado SUCS como CL y SC y en el sistema de clasificación AASHTO como A-2-6, A-7-6, A-6.

CALICATA N° 01

PERFIL ESTRATIGRAFICO - REGISTRO

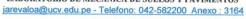
ENSAYOS DE LABORATORIO

Calicata 01 (M-1)

Determinación del % de Humedad Natural ASTM 2216

HUMEDAD	MATHEMAI	· ACT	TM D - 2216	2

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	93.27	67.63	84.63	grs
PESO DEL SUELO HUMEDO + TARRO	243.27	217.63	234.63	grs
PESO DEL SUELO SECO + TARRO	233.97	206.91	225.6	grs
PESO DEL AGUA	9.30	10.72	9.03	grs
PESO DEL SUELO SECO	140.70	139.28	140.97	grs
% DE HUMEDAD	6.61	7.70	6.41	%
PROMEDIO		6.90		%



UNIVERSIDAD CÉSAR VALLEJO

LABORATORIO DE MECANICA DE SUELOS Y PAVIMENTOS

CAMPUS UNIVERSITARIO - DISTRITO DE CACACTACHI - TARAPOTO-SAN MARTÍN ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO

MTC E-204 - 2000

Calicata : C-01 Tec. Contratista: Muestra : M-01 Tec. Supervisión: JMA

Prog.(Km.) : 01+000 CRISTHIAN ALONSO HEREDIA GUEVARA : 26/06/2017 Responsable: Prof./Esp.(m): 1.50

Fecha

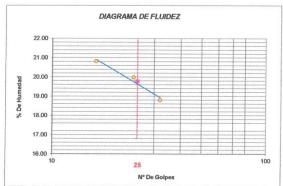

(a) Peso Muestra Húmeda 450.00 gr 421.36 gr (b) Peso Muestra Seca (c) Peso Muestra Seca DL 318.19 gr

Famices ASTM	Abertura en mm.	Peso Retenido (gr)	%Retenido Parcial	%Retenido Acumulado	% que pasa	Especificaciones	
3"	75,000	0.00	0.00	0.00	100.00		
2"	50,000	0,00	0.00	0.00	100.00		
1 1/2"	37.500	0.00	0.00	0.00	100.00		
1"	25.000	0.00	0.00	0.00	100.00		
3/4"	19.000	20.41	4.84	4.84	95.16		
1/2"	12.500	9.04	2.15	6.99	93.01		
3/8"	9,500	7.17	1.70	8.69	91.31		
1/4"	6.250	0.00	0.00	8.69	91.31		
Nº4	4.750	8.21	1.95	10,64	89.36		
Nº8	2.360	4.83	1.15	11.79	88.21		
Nº10	2.000	1.06	0.25	12.04	87.96		
Nº16	1.100	5.34	1.27	13.30	86.70		
Nº30	0.600	22.03	5.23	18.53	81.47		
Nº40	0.425	22.89	5.43	23.97	76.03		
N°50	0.300	38.64	9.17	33.14	66.86		
Nº100	0.150	103.33	24.52	57.66	42.34		
N°200	0.075	74.11	17.59	75.25	24.75		
Fondo		104.30	24.75	100.00	0.00		
3" 2"11/2" 1	1" 3/4" 1/2"3/8" 1/4"N°	°4 NB10 N°16 N°	°30N°40N°50 N°100	N°200	100	Limites de C	
						Limite Liquido	19.77
					90	Limite Plástico	0.00
					80	Ind. Plasticidad Ind. Consistencia	19.77

MTC E 111				
19.77				
0.00				
19.77				
0.06				
0.94				
	E 111 19.77 0.00 19.77 0.06			

Clasificación de Suelos			
Pasa Nº4	89.4		
Pasa Nº10	88.0		
Pasa Nº40	76.0		
Pasa Nº200	24.8		
D10			
D30			
D60			
SUCS	SC		
AASHTO	A-2-6		
Índice grupo	1		

Revisado por : Revisado por : Representante Contratista UCV


Firma:

Firma: Representante Supervisión

Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) ASTM D-4318

Determinación del Límite Líquido	ASTM D-4318 - N.T.P. 339.129				
LATA - CAPA 01	1 1	2	3		
PESO DE LATA grs	19.49	19.38	19.56		
PESO DEL SUELO HUMEDO + LATA grs	43.75	50.12	51.22		
PESO DEL SUELO SECO + LATA grs	39.57	45	46.21		
PESO DEL AGUA grs	4.18	5.12	5.01		
PESO DEL SUELO SECO grs	20.08	25.62	26.65		
% DE HUMEDAD	20.82	19.98	18.80		
NUMERO DE GOLPES	16	24	32		

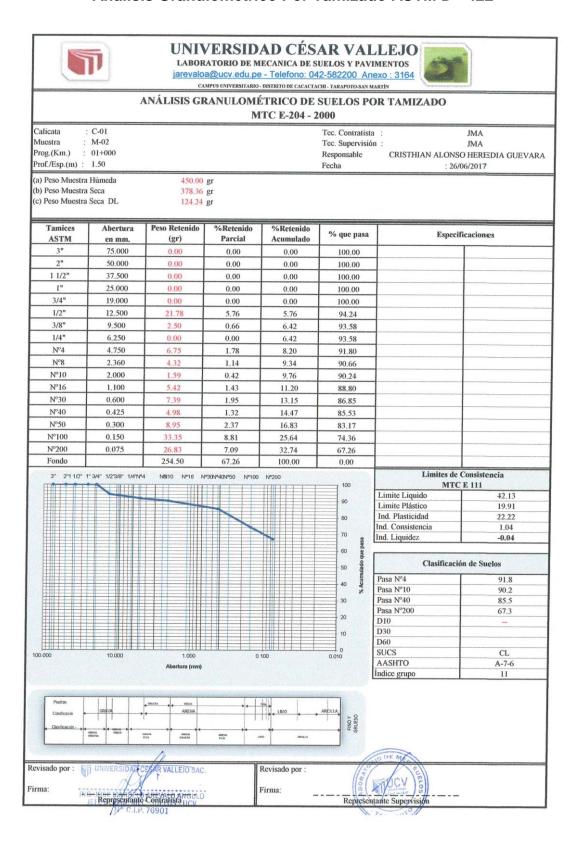
Indice de Flujo Fi	according to the State of the
Limite de contracción (%)	ND
Limite Liquido (%)	19.77
Limite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	19.77
Clasificación SUCS	SC
Clasificación AASHTO	A-2(6)
Indice de consistencia lc	

Determinación del Límite Plástico	ASTM D-4318 - N.T.		
LATA	2	3	1 4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs		ND	
PESO DEL AGUA grs		INF	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	

LIMITE DE CONTRACCION AS	TM D-427
Ensayo Nº	T
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

Calicata 01 (M - 02)

Determinación del % de Humedad Natural ASTM 2216

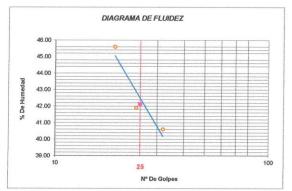


HUMEDAD	MAT	TURAL	ASTM	n	- 2216
I I WITH WATER	14741	OILE.	MO I IVI	~	- 4410

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	68.38	70.9	76.11	grs
PESO DEL SUELO HUMEDO + TARRO	218.38	220.90	226.11	grs
PESO DEL SUELO SECO + TARRO	194.32	195	201.69	grs
PESO DEL AGUA	24.06	25.90	24.42	grs
PESO DEL SUELO SECO	125.94	124.10	125.58	grs
% DE HUMEDAD	19.10	20.87	19.45	%
PROMEDIO		19.81		%

Análisis Granulométrico Por Tamizado ASTM D - 422

Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) **ASTM D-4318**



PROYECTO: -ZAPATERO - 2016

UBICACIÓN DEL PROYECTO: CUÑUMBUQUE - ZAPATERO

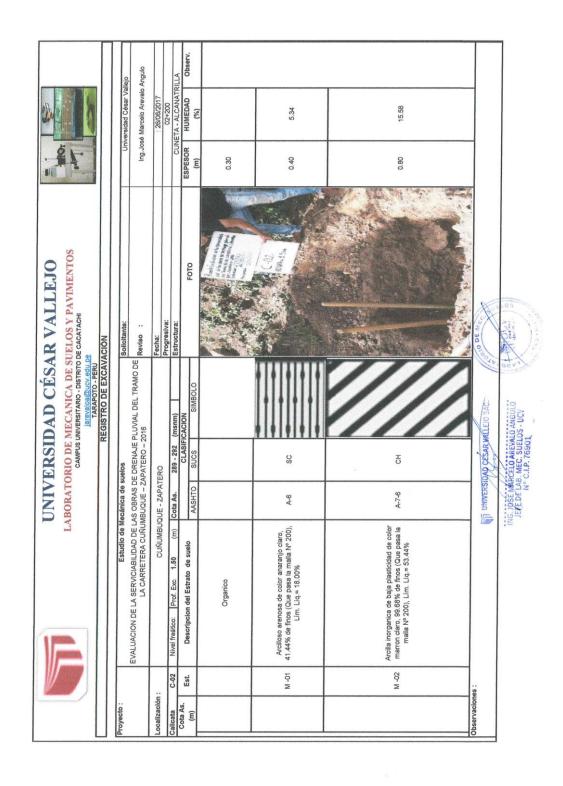
DESCRIPCIÓN I	EL SUELO : CL			Profundidad	de la Muestra:	1.50
HECHO POR:	: CRISTHIAN ALONSO	HEREDIA GUEVARA	Calicata:	C-01	Fecha:	: 26/06/2017
Determinación de						

Determination der Emilie Elquido	AOTH D-310 - N.T.F. 335.125			
LATA - CAPA 02	1	2	3	
PESO DE LATA grs	25.03	19.35	24.63	
PESO DEL SUELO HUMEDO + LATA grs	51.31	43.05	50.12	
PESO DEL SUELO SECO + LATA grs	43.08	36.05	42.76	
PESO DEL AGUA grs	8.23	7.00	7.36	
PESO DEL SUELO SECO grs	18.05	16.70	18.13	
% DE HUMEDAD	45.60	41.92	40.60	
NUMERO DE GOLPES	19	24	32	

Indice de Flujo Fi	
Límite de contracción (%)	ND
Límite Líquido (%)	42.13
Límite Plástico (%)	19.91
Indice de Plasticidad Ip (%)	22.22
Clasificación SUCS	CL
Clasificación AASHTO	A-7(6)
Indice de consistencia lo	

Determinación del Límite Plástico	ASTM D-4318 - N.T.P.	. 339.129	
LATA	2	3	1 4
PESO DE LATA grs	19.35		1
PESO DEL SUELO HUMEDO + LATA grs	37.18		
PESO DEL SUELO SECO + LATA grs	34.22		
PESO DEL AGUA grs	2.96		
PESO DEL SUELO SECO grs	14.87		
% DE HUMEDAD	19.91		
% PROMEDIO		19.91	

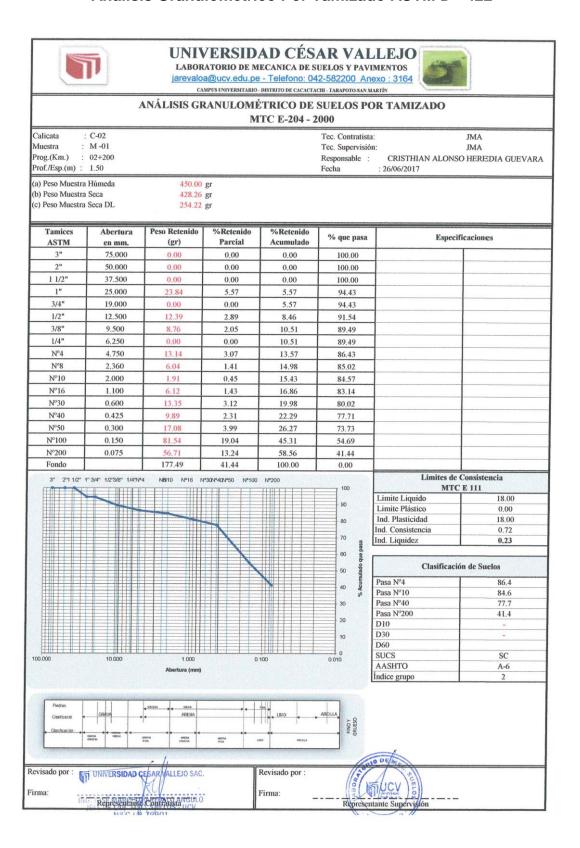
LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	I ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	



CALICATA N° 02

PERFIL ESTRATIGRAFICO - REGISTRO

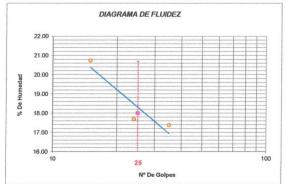
ENSAYOS DE LABORATORIO


Calicata 02 (M-1)

Determinación del % de Humedad Natural ASTM 2216

HUMEDAD	NATURAL	: ASTM	D - 2216

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	58.69	69.51	74	grs
PESO DEL SUELO HUMEDO + TARRO	208.68	219.51	224.00	grs
PESO DEL SUELO SECO + TARRO	201.68	212.43	215.27	grs
PESO DEL AGUA	7.00	7.08	8.73	grs
PESO DEL SUELO SECO	142.99	142.92	141.27	grs
% DE HUMEDAD	4.90	4.95	6.18	%
PROMEDIO		5.34		%



PROYECTO: CUÑUMBUQUE - ZAPATERO SC UBICACIÓN DEL PROYECTO: Kilometraje: Profundidad de la Muestra: DESCRIPCIÓN DEL SUELO : : CRISTHIAN ALONSO HEREDIA GUEVARA HECHO POR: C-02 Fecha: : 26/06/2017

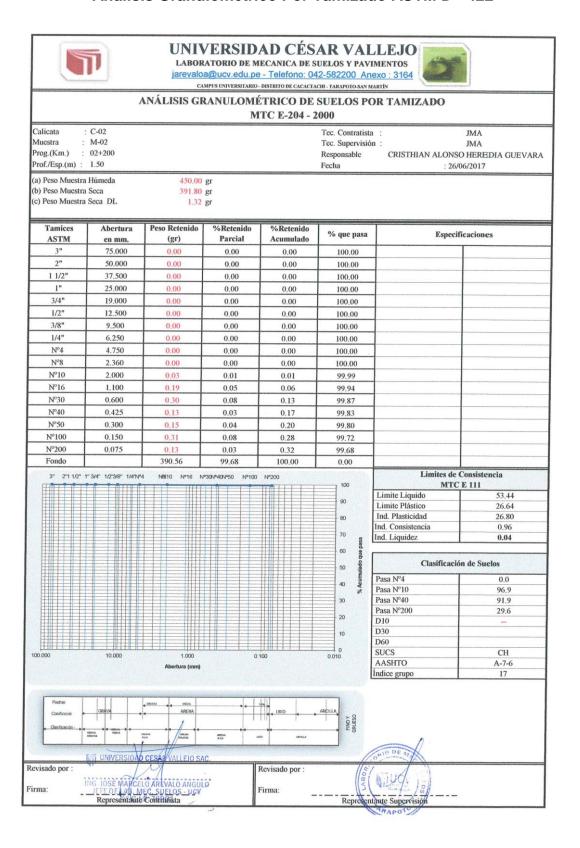
Determinación del Limite Líquido	ASTM D-4318 - N.T.P. 339.129			
LATA - CAPA 01	1	2	3	
PESO DE LATA grs	19.56	19.52	19.64	
PESO DEL SUELO HUMEDO + LATA grs	60.43	48.52	48.07	
PESO DEL SUELO SECO + LATA grs	53.41	44.16	43.86	
PESO DEL AGUA grs	7.02	4.36	4.21	
PESO DEL SUELO SECO grs	33.85	24.64	24.22	
% DE HUMEDAD	20.74	17.69	17.38	
NUMERO DE GOLPES	15	24	35	

Indice de Flujo Fi	
Límite de contracción (%)	ND
Limite Liquido (%)	18.00
Límite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	18.00
Clasificación SUCS	SC
Clasificación AASHTO	A-6
Indice de consistencia lc	

Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs	ND		
PESO DEL SUELO SECO + LATA grs			
PESO DEL AGUA grs		IAL	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	

LIMITE DE CONTRACCIO	N ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

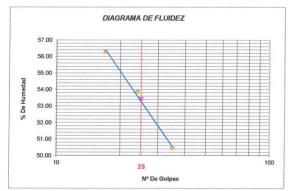
UNIVERSIDAD CESAR VALLEJO SAC. ING JOSE MARCEKO AREVALO ANGULO JEFE DE LIMB, MEC. SUELOS - UCV


Calicata 02 (M - 02)

Determinación del % de Humedad Natural ASTM 2216

HUMEDAD	NATURAL	ASTM D -	2216

MUESTRA - CAPA 02	1	2	3	UNIDAD	
PESO DE TARRO	68.37	71.75	73.11	grs	
PESO DEL SUELO HUMEDO + TARRO	218.37	221.75	223,11	grs	
PESO DEL SUELO SECO + TARRO	198.07	201.47	203.04	grs	
PESO DEL AGUA	20.30	20.28	20.07	grs	
PESO DEL SUELO SECO	129.70	129.72	129.93	grs	
% DE HUMEDAD	15.65	15.63	15.45	%	
PROMEDIO		15.58		%	7


CAMPUS UNIVERSITARIO - DISTRITO DE CACACTACHI - TARAPOTO-SAN MARTÍN

EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUNUMBUQUE

PROYECTO: — ZAPATERO – 2016

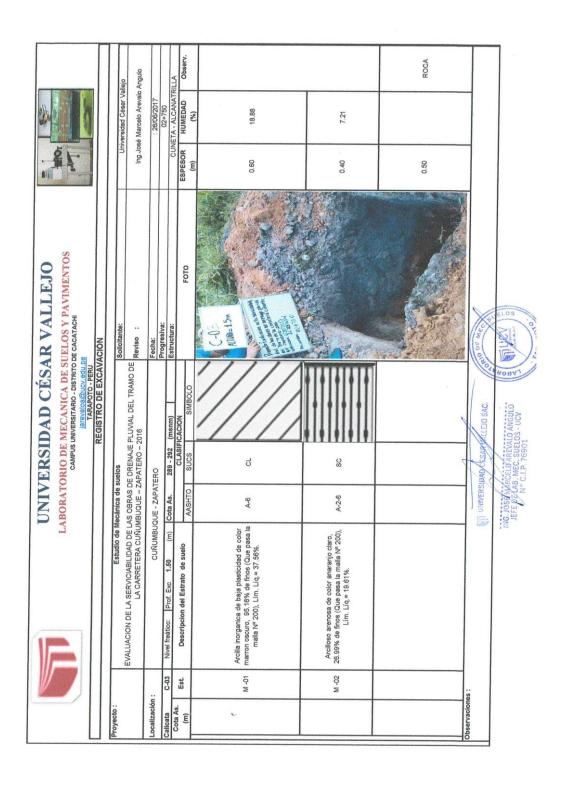
UBICACIÓN DEL	PROYECTO:	CUÑUMBUQUE - ZAPATERO		Kilometraje	:	02+200
DESCRIPCIÓN DE	EL SUELO :	CH		Profundidad	de la Muestra:	1.50
HECHO POR:	: CRISTHIAN AL	ONSO HEREDIA GUEVARA	Calicata:	C-02	Fecha:	: 26/06/2017

Determinación del Límite Líquido	ASTM D-4318 - N.T.P. 339.129			
LATA - CAPA 02	T 1	2	3	
PESO DE LATA grs	19.48	19.41	19.43	
PESO DEL SUELO HUMEDO + LATA grs	40.61	44.52	42.75	
PESO DEL SUELO SECO + LATA grs	33	35.73	34.93	
PESO DEL AGUA grs	7.61	8.79	7.82	
PESO DEL SUELO SECO grs	13.52	16.32	15.50	
% DE HUMEDAD	56.29	53.86	50.45	
NUMERO DE GOLPES	17	24	35	

Indice de Flujo Fi	
Limite de contracción (%)	ND
Límite Líquido (%)	53.44
Límite Plástico (%)	26.64
Indice de Plasticidad Ip (%)	26.81
Clasificación SUCS	CH
Clasificación AASHTO	A-7(6)
Indice de consistencia lc	

Determinación del Límite Plástico ASTM D-4318 - N.T.P. 339.129			
LATA	2	3	4
PESO DE LATA grs	19.55		
PESO DEL SUELO HUMEDO + LATA grs	39.66		
PESO DEL SUELO SECO + LATA grs	35.43		T
PESO DEL AGUA grs	4.23		T
PESO DEL SUELO SECO grs	15.88		
% DE HUMEDAD	26.64		
% PROMEDIO	26.64		

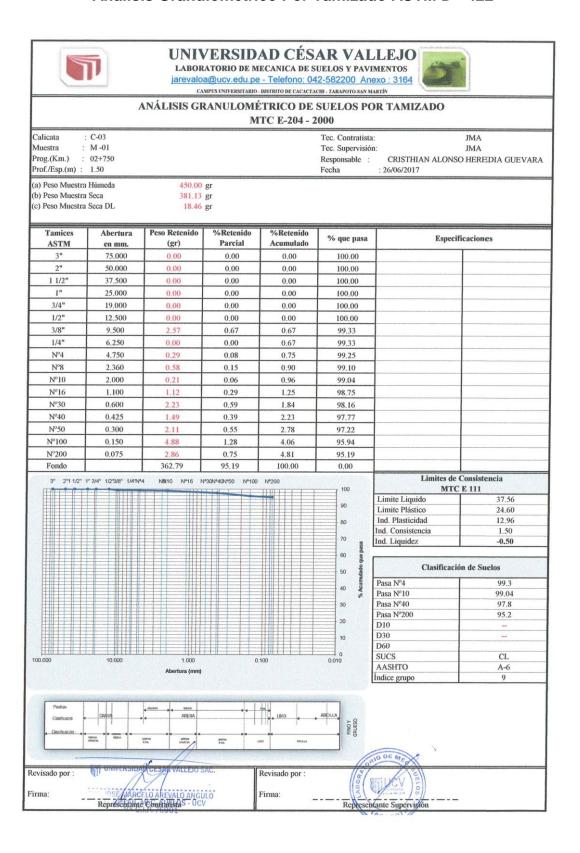
LIMITE DE CONTRACCION AST	M D-427
Ensayo Nº	T
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	1
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	



CALICATA N° 03

PERFIL ESTRATIGRAFICO - REGISTRO

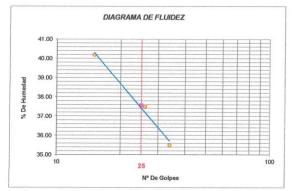
ENSAYOS DE LABORATORIO


Calicata 03 (M-1)

Determinación del % de Humedad Natural ASTM 2216

	HUMEDAD	NATURAL	: ASTN	1 D - 2216
--	---------	---------	--------	------------

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	69.06	60.44	69.47	grs
PESO DEL SUELO HUMEDO + TARRO	219.06	210.44	219.47	grs
PESO DEL SUELO SECO + TARRO	195.38	186.63	195.48	grs
PESO DEL AGUA	23.68	23.81	23.99	grs
PESO DEL SUELO SECO	126.32	126.19	126.01	grs
% DE HUMEDAD	18.75	18.87	19.04	%
PROMEDIO		18.88		%



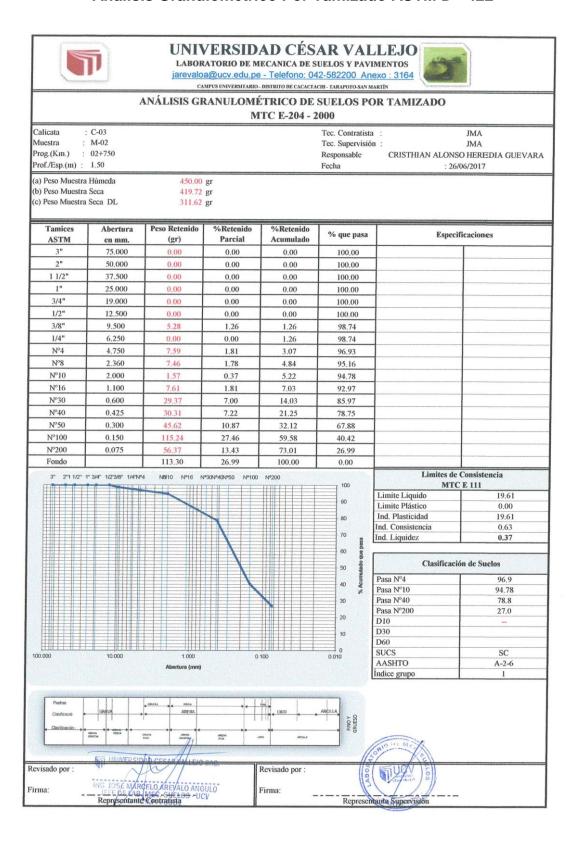
CUÑUMBUQUE - ZAPATERO PROYECTO: - ZAPATERO - 2016
UBICACIÓN DEL PROYECTO: CU Kilometraje: DESCRIPCIÓN DEL SUELO : Profundidad de la Muestra: 1.50 : CRISTHIAN ALONSO HEREDIA GUEVARA HECHO POR: C-03 Fecha: : 26/06/2017

Determinación del Límite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 01	1 1	2	3
PESO DE LATA grs	30.89	31.36	30.79
PESO DEL SUELO HUMEDO + LATA grs	55.48	57.28	63.27
PESO DEL SUELO SECO + LATA grs	48.43	50.21	54.76
PESO DEL AGUA grs	7.05	7.07	8.51
PESO DEL SUELO SECO grs	17.54	18.85	23.97
% DE HUMEDAD	40.19	37.51	35.50
NUMERO DE GOLPES	15	26	34

Indice de Flujo Fi	The same and
Limite de contracción (%)	ND
Límite Líquido (%)	37.56
Límite Plástico (%)	24.60
Indice de Plasticidad Ip (%)	12.96
Clasificación SUCS	CL
Clasificación AASHTO	A-6
Indice de consistencia lc	

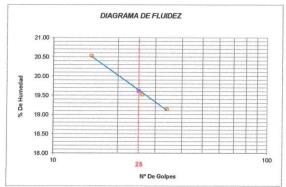
Determinación del Límite Plástico	ASTM D-4318 - N.T.P.	ASTM D-4318 - N.T.P. 339.129			
LATA	2	3	1 4		
PESO DE LATA grs	19.39		1		
PESO DEL SUELO HUMEDO + LATA grs	63.61				
PESO DEL SUELO SECO + LATA grs	54.88				
PESO DEL AGUA grs	8.73				
PESO DEL SUELO SECO grs	35.49				
% DE HUMEDAD	24.60				
% PROMEDIO		24.60			

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	- ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	


Calicata 03 (M - 02)

Determinación del % de Humedad Natural ASTM 2216

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	73.69	67.12	73.32	grs
PESO DEL SUELO HUMEDO + TARRO	223.68	217.12	223.32	grs
PESO DEL SUELO SECO + TARRO	213.29	206.95	213.6	grs
PESO DEL AGUA	10.39	10.17	9.72	grs
PESO DEL SUELO SECO	139.60	139.83	140.28	grs
% DE HUMEDAD	7.44	7.27	6.93	%
PROMEDIO		7.21		%


UNIVERSIDAD SAR VALLEJO SAC.

UBICACION DEL	PROYECTO:	CUNUMBUQUE - ZAPATERO		Kilometraje	:	02+750
DESCRIPCIÓN D	EL SUELO :	SC		Profundidad	de la Muestra:	1.50
HECHO POR:	: CRISTHIAN A	LONSO HEREDIA GUEVARA	Calicata:	C-03	Fecha:	: 26/06/2017
Determinación del	Limita Liquido	ACTM D 4240 N T D 220 420				

Determinación del Límite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 02	1	2	3
PESO DE LATA grs	31.23	19.38	19.41
PESO DEL SUELO HUMEDO + LATA grs	65.16	49.92	52.58
PESO DEL SUELO SECO + LATA grs	59.38	44.93	47.25
PESO DEL AGUA grs	5.78	4.99	5.33
PESO DEL SUELO SECO grs	28.15	25.55	27.84
% DE HUMEDAD	20.53	19.53	19.15
NUMERO DE GOLPES	15	26	34

Indice de Flujo Fi	
Limite de contracción (%)	ND
Límite Líquido (%)	19.61
Límite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	19.61
Clasificación SUCS	SC
Clasificación AASHTO	A-2(6)
Indice de consistencia lc	

Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	1 4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs		ND	
PESO DEL AGUA grs		NP	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	I ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

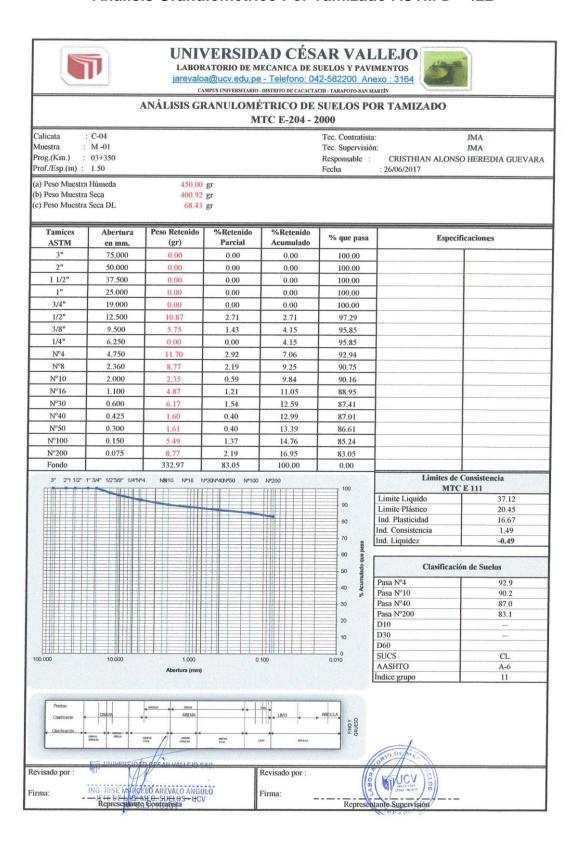
CALICATA N° 04

PERFIL ESTRATIGRAFICO - REGISTRO

ENSAYOS DE LABORATORIO

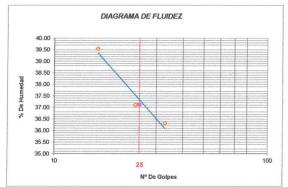
Calicata 04 (M-1)

Determinación del % de Humedad Natural ASTM 2216



HUMEDAD	NATL	IRAL	:	AST	TM	D-	2216	

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	90.48	95.35	88.05	grs
PESO DEL SUELO HUMEDO + TARRO	240.48	245.35	238.05	grs
PESO DEL SUELO SECO + TARRO	222.99	228.38	221.02	grs
PESO DEL AGUA	17.49	16.97	17.03	grs
PESO DEL SUELO SECO	132.51	133.03	132.97	grs
% DE HUMEDAD	13.20	12.76	12.81	%
PROMEDIO		12.92		%


UNIVERSIDAD CESAR VALLEJO SAC.

ING. JOSÉ MARCELO AREVALO ANGULO JEFE DE LAB MEC. SUELOS - UC

Determinación del Límite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 01	1	2	3
PESO DE LATA grs	19.57	19.42	19.71
PESO DEL SUELO HUMEDO + LATA grs	43.39	50.05	45.08
PESO DEL SUELO SECO + LATA grs	36.64	41.76	38.32
PESO DEL AGUA grs	6.75	8.29	6.76
PESO DEL SUELO SECO grs	17.07	22.34	18.61
% DE HUMEDAD	39.54	37.11	36.32
NUMERO DE GOLPES	16	24	33

Indice de Flujo Fi	
Límite de contracción (%)	ND
Limite Liquido (%)	37.12
Limite Plástico (%)	20.45
Indice de Plasticidad Ip (%)	16.67
Clasificación SUCS	CL
Clasificación AASHTO	A-6
Indice de consistencia lc	

C-04 Fecha:

: 26/06/2017

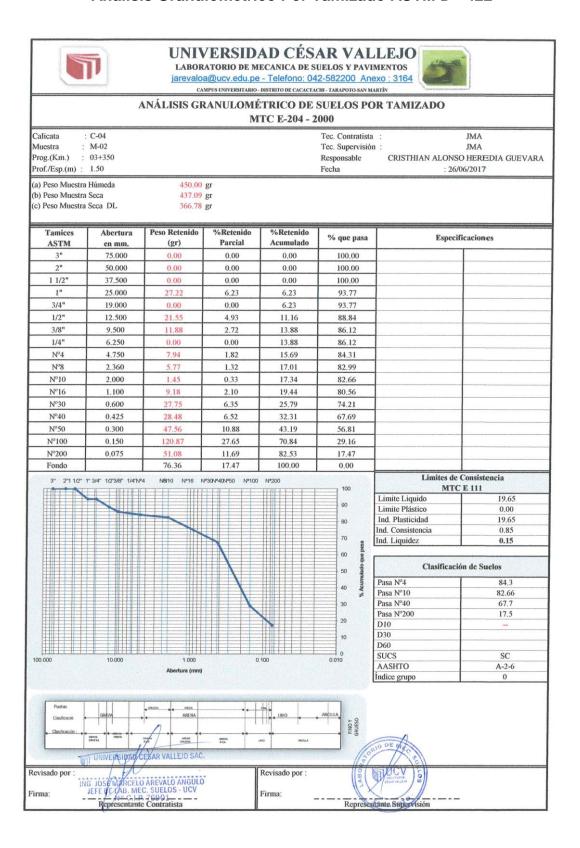
Determinación del Límite Plástico	ASTM D-4318 - N.T.P.	. 339.129	
LATA	2	3	1 4
PESO DE LATA grs	19.7		
PESO DEL SUELO HUMEDO + LATA grs	42.73		
PESO DEL SUELO SECO + LATA grs	38.82		
PESO DEL AGUA grs	3.91		
PESO DEL SUELO SECO grs	19.12		
% DE HUMEDAD	20.45		
% PROMEDIO		20.45	-

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Hůmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

UNIVERSIDAD CESAR VALLEJO SAC. ING JOSE MIRCELO AREVALO ANGULO JEFE DE LAB. MEC. SUELOS - UCV N° C.I.P. 76901

Calicata 04 (M - 02)

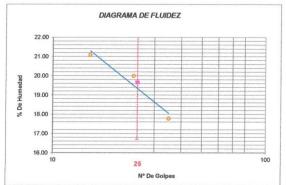
Determinación del % de Humedad Natural ASTM 2216



HUMEDAD	NATURAL	· ASTM	D - 2216

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	67.06	70.31	66.77	grs
PESO DEL SUELO HUMEDO + TARRO	217.06	220.31	217.67	grs
PESO DEL SUELO SECO + TARRO	212.88	215.34	213.5	grs
PESO DEL AGUA	4.18	4.97	4.17	grs
PESO DEL SUELO SECO	145.82	145.03	146.73	grs
% DE HUMEDAD	2.87	3.43	2.84	%
PROMEDIO		3.05		%

ING. JOSE MANOFLO AREVALO ANGULO JEFE DE USB MEC. SUELOS - UCV 1° C.I.P. 76901



 PROYECTO:
 - ZAPATERO - 2016
 Kilometraje:
 034350

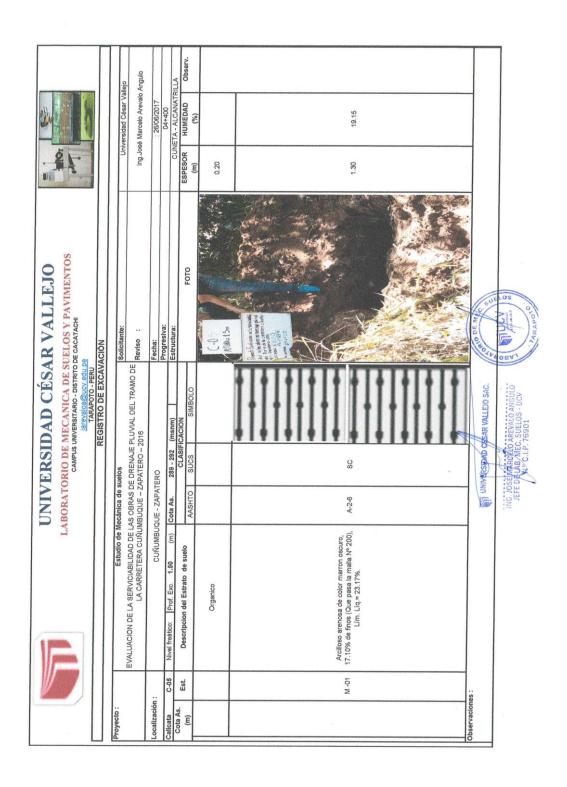
 UBICACIÓN DEL PROYECTO:
 SC
 Profundidad de la Muestra:
 1.50

 HECHO POR:
 : CRISTHIAN ALONSO HEREDIA GUEVARA
 Calicata:
 C-04
 Fecha:
 : 26/06/2017

Determinación del Límite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 02	1	2	3
PESO DE LATA grs	19.58	19.29	19.42
PESO DEL SUELO HUMEDO + LATA grs	54.55	53.02	51.75
PESO DEL SUELO SECO + LATA grs	48.46	47.4	46.87
PESO DEL AGUA grs	6.09	5.62	4.88
PESO DEL SUELO SECO grs	28.88	28.11	27.45
% DE HUMEDAD	21.09	19.99	17.78
NUMERO DE GOLPES	15	24	35

Indice de Flujo Fi	
Límite de contracción (%)	ND
Limite Liquido (%)	19.65
Límite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	19.65
Clasificación SUCS	SC
Clasificación AASHTO	A-2(6)
Indice de consistencia lc	

Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs		NP	
PESO DEL AGUA grs		IAL	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	


LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	T
Peso del agua Gr.	I ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

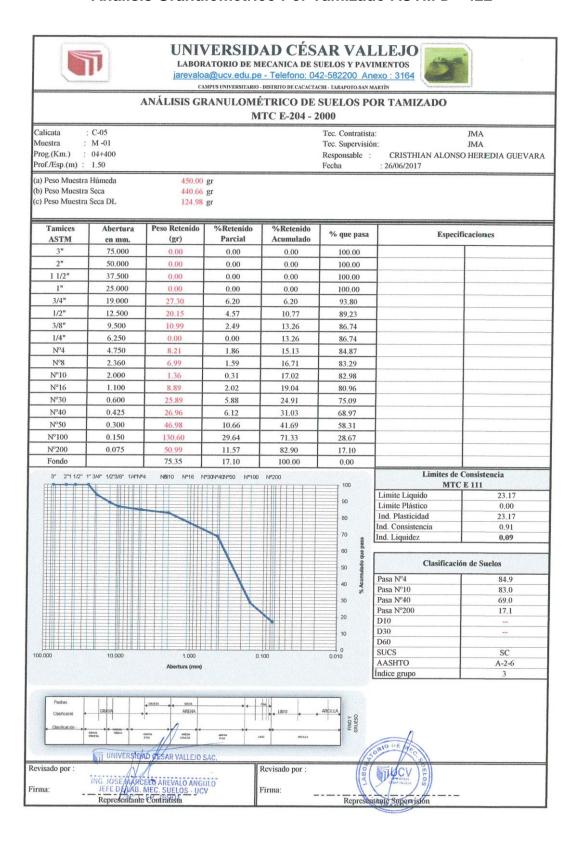
UNIVERSIDAD DESAR VALLEJO SAC.

CALICATA N° 05

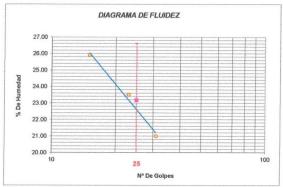
PERFIL ESTRATIGRAFICO - REGISTRO

ENSAYOS DE LABORATORIO

Calicata 05 (M-1)


Determinación del % de Humedad Natural ASTM 2216

LILIBATEDAD	BIA THE IT AT		0010
HUMEDAD	NATURAL	: ASTM D	- 2216


MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	69.91	69.63	66.1	grs
PESO DEL SUELO HUMEDO + TARRO	219.91	219.63	216.10	grs
PESO DEL SUELO SECO + TARRO	196.08	195.37	191.86	grs
PESO DEL AGUA	23.83	24.26	24.24	grs
PESO DEL SUELO SECO	126.17	125.74	125.76	grs
% DE HUMEDAD	18.89	19.29	19.27	%
PROMEDIO		19.15		%

UNIVERSIDAD CESAR VALLEIO SAC.

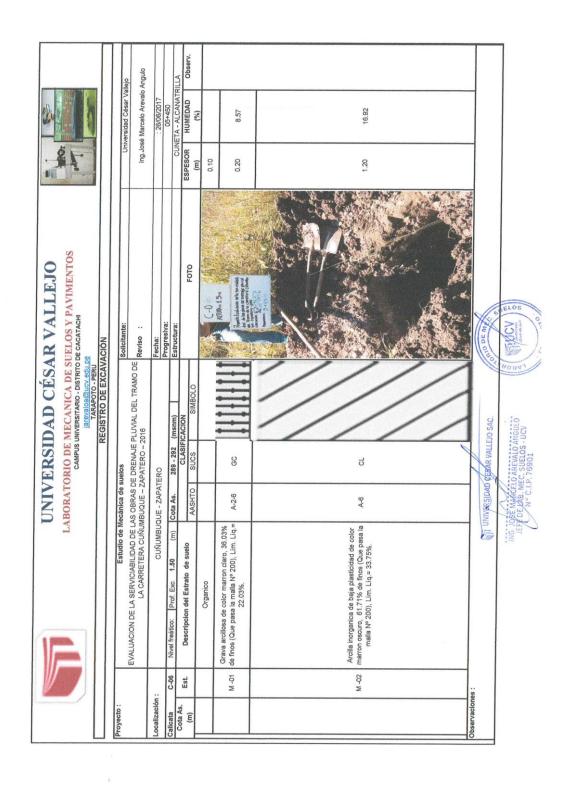
Determinación del Límite Líquido	ASTM D-4318 - N.T.	P. 339.129	
LATA - CAPA 01	1 1	2	3
PESO DE LATA grs	19.51	19.42	19.38
PESO DEL SUELO HUMEDO + LATA grs	56.92	50.26	60.41
PESO DEL SUELO SECO + LATA grs	49.22	44.39	53.29
PESO DEL AGUA grs	7.70	5.87	7.12
PESO DEL SUELO SECO grs	29.71	24.97	33.91
% DE HUMEDAD	25.92	23.51	21.00
NUMERO DE GOLPES	15	23	31

Indice de Flujo Fi	
Limite de contracción (%)	ND
Límite Líquido (%)	23.17
Límite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	23.17
Clasificación SUCS	SC
Clasificación AASHTO	A-2(6)
Indice de consistencia lc	- Anna Carlon

Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs		ND	
PESO DEL AGUA grs		INP	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	

D-427
T
IND

UNIVERSIDAD RESAR VALLEJO SAC.

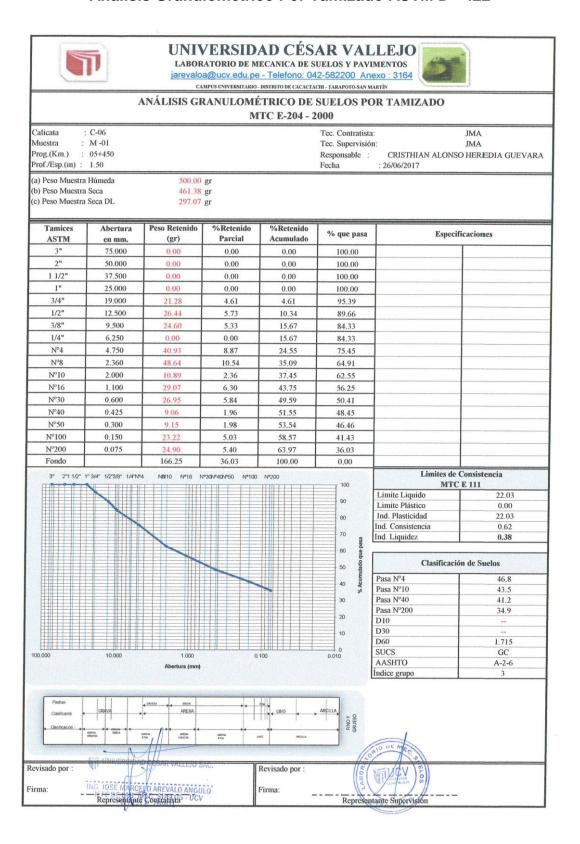

ING JOSE MARCELO AREVALO ANGULO
JEFEDALAB MEC. SUELOS - UCV
N° C.I.P. 76901

CALICATA N° 06

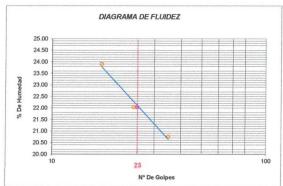
PERFIL ESTRATIGRAFICO - REGISTRO

ENSAYOS DE LABORATORIO

Calicata 06 (M-1)


Determinación del % de Humedad Natural ASTM 2216

HUMEDAD	NATURAL	: ASTM D - 2216	


MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	68.79	69.65	67.78	grs
PESO DEL SUELO HUMEDO + TARRO	218.79	219.65	267.78	grs
PESO DEL SUELO SECO + TARRO	202.59	211.13	253.67	grs
PESO DEL AGUA	16.20	8.52	14.11	grs
PESO DEL SUELO SECO	133.80	141.48	185.89	grs
% DE HUMEDAD	12.11	6.02	7.59	%
PROMEDIO		8.57		%

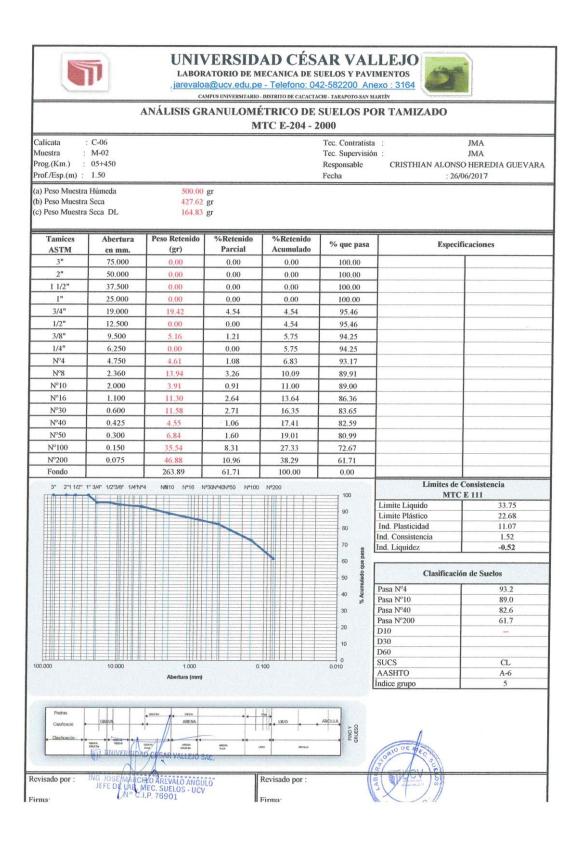
ING. JOSE MARCELO AREVALO ANGULO JEFE DE L'AB. MEC. SUELOS - UCV N° C.I.P. 76901

Determinación del Limite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 01	1	2	3
PESO DE LATA grs	19.39	19.38	19.59
PESO DEL SUELO HUMEDO + LATA grs	48.05	51.88	50.13
PESO DEL SUELO SECO + LATA grs	42.52	46.01	44.88
PESO DEL AGUA grs	5.53	5.87	5.25
PESO DEL SUELO SECO grs	23.13	26.63	25.29
% DE HUMEDAD	23.91	22.04	20.76
NUMERO DE GOLPES	17	24	35

Indice de Flujo Fi	
Limite de contracción (%)	ND
Límite Líquido (%)	22.03
Limite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	22.03
Clasificación SUCS	SC
Clasificación AASHTO	A-6
Indice de consistencia Ic	

Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	4
PESO DE LATA grs			
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs		ND	
PESO DEL AGUA grs		IAL	
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO		0.00	

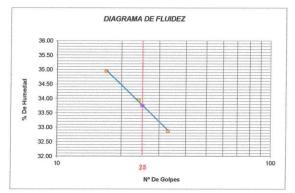
LIMITE DE CONTRACCIO	N ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	


Calicata 06 (M - 02)

Determinación del % de Humedad Natural ASTM 2216

	HUMEDAD	NATURAL	:	ASTM D - 2216	
--	---------	---------	---	---------------	--

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	73.78	67.13	70.16	grs
PESO DEL SUELO HUMEDO + TARRO	223.78	217.13	270.16	grs
PESO DEL SUELO SECO + TARRO	204.88	193.17	240.6	grs
PESO DEL AGUA	18.90	23.96	29.56	grs
PESO DEL SUELO SECO	131.10	126.04	170.44	grs
% DE HUMEDAD	14.42	19.01	17.34	%
PROMEDIO		16.92		%


Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) ASTM D-4318

: 26/06/2017

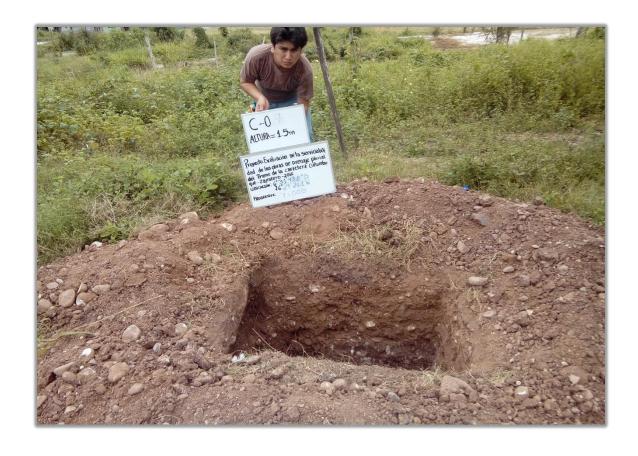
Determinación del Límite Líquido	ASTM D-4318 - N.T.I	ASTM D-4318 - N.T.P. 339.129		
LATA - CAPA 02	1 1	2	3	
PESO DE LATA grs	19.45	19.62	19.55	
PESO DEL SUELO HUMEDO + LATA grs	48.68	45.54	47.20	
PESO DEL SUELO SECO + LATA grs	41.11	38.97	40.36	
PESO DEL AGUA grs	7.57	6.57	6.84	
PESO DEL SUELO SECO grs	21.66	19.35	20.81	
% DE HUMEDAD	34.95	33.95	32.87	
NUMERO DE GOLPES	17	24	33	

: CRISTHIAN ALONSO HEREDIA GUEVARA

HECHO POR:

Indice de Flujo Fi	
Limite de contracción (%)	ND
Límite Líquido (%)	33.75
Limite Plástico (%)	22,68
Indice de Plasticidad Ip (%)	11.07
Clasificación SUCS	CL
Clasificación AASHTO	A-6
ndice de consistencia lc	

C-06 Fecha:


Determinación del Límite Plástico	ASTM D-4318 - N.T.P. 339.129			
LATA	2	3	1 4	
PESO DE LATA grs	19.48			
PESO DEL SUELO HUMEDO + LATA grs	52.75			
PESO DEL SUELO SECO + LATA grs	46.6			
PESO DEL AGUA grs	6.15			
PESO DEL SUELO SECO grs	27.12			
% DE HUMEDAD	22.68			
% PROMEDIO	22.68			

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

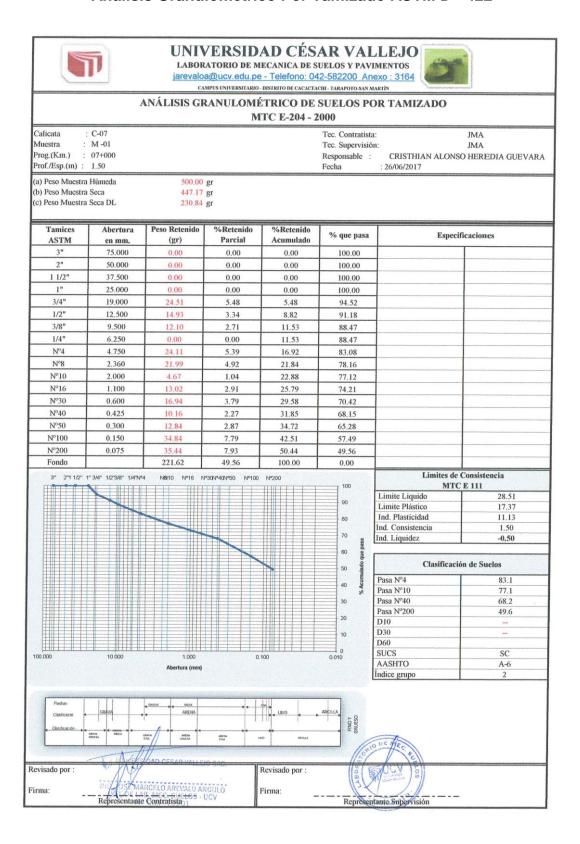
CALICATA N° 07

PERFIL ESTRATIGRAFICO - REGISTRO

ENSAYOS DE LABORATORIO

Calicata 07 (M-1)

Determinación del % de Humedad Natural ASTM 2216



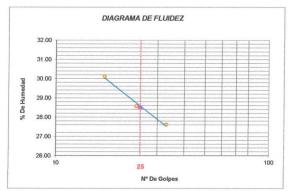
HUMEDAD	NATURAL	: ASTA	D - 2216

UNIVERSIDAD CESAR VALLEJO SAC.

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	66.1	69.05	93.46	grs
PESO DEL SUELO HUMEDO + TARRO	216.10	219.05	293.46	grs
PESO DEL SUELO SECO + TARRO	198.48	202.46	274.84	grs
PESO DEL AGUA	17.62	16.59	18.62	grs
PESO DEL SUELO SECO	132.38	133.41	181.38	grs
% DE HUMEDAD	13.31	12.44	10.27	%
PROMEDIO		12.00		%

Análisis Granulométrico Por Tamizado ASTM D - 422

Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) ASTM D-4318


CAMPUS UNIVERSITARIO - DISTRITO DE CACACTACHI - TARAPOTO-SAN MARTÍN

EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUNUMBUQUE

- ZAPATERO - 2016

UBICACIÓN DEL	PROYECTO:	CUÑUMBUQUE - ZAPATERO		Kilometraje:		07+000
DESCRIPCIÓN D	EL SUELO :	SC		Profundidad o	de la Muestra:	1.50
HECHO POR:	: CRISTHIAN AL	LONSO HEREDIA GUEVARA	Calicata:	C-07	Fecha:	: 26/06/2017

Determinación del Límite Líquido	ASTM D-4318 - N.T.F		
LATA - CAPA 01	1 1	2	3
PESO DE LATA grs	31.26	19.54	19.34
PESO DEL SUELO HUMEDO + LATA grs	61.2	51.4	50.3
PESO DEL SUELO SECO + LATA grs	54.27	44.32	43.6
PESO DEL AGUA grs	6.93	7.08	6.70
PESO DEL SUELO SECO grs	23.01	24.78	24.26
% DE HUMEDAD	30.12	28.57	27.62
NUMERO DE GOLPES	17	24	33

Indice de Flujo Fi	
Límite de contracción (%)	ND
Límite Líquido (%)	28.51
Límite Plástico (%)	17,37
Indice de Plasticidad Ip (%)	11.13
Clasificación SUCS	SC
Clasificación AASHTO	A-6
Indice de consistencia lo	

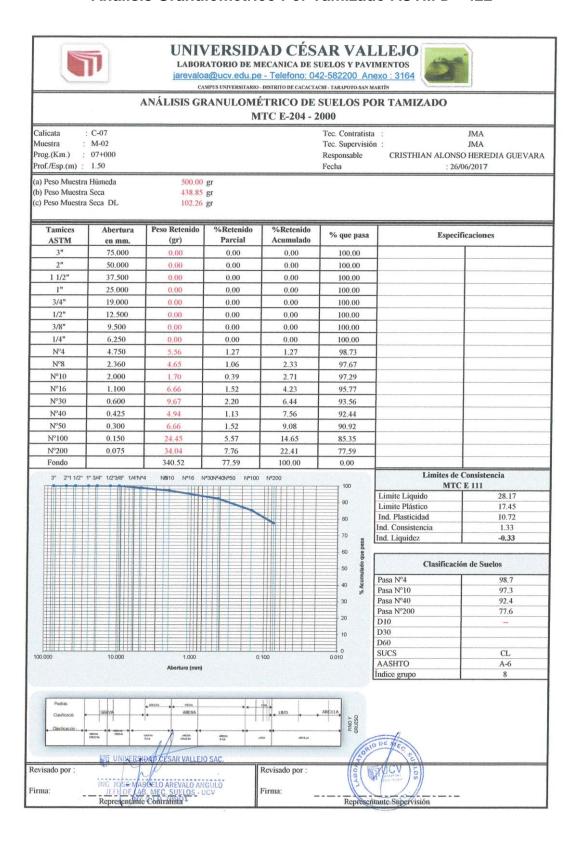
Determinación del Límite Plástico	ASTM D-4318 - N.T.P. 339.129			
LATA	2	3	4	
PESO DE LATA grs	19.66		1	
PESO DEL SUELO HUMEDO + LATA grs	46.55			
PESO DEL SUELO SECO + LATA grs	42.57			
PESO DEL AGUA grs	3.98			
PESO DEL SUELO SECO grs	22.91			
% DE HUMEDAD	17.37			
% PROMEDIO	17.37			

LIMITE DE CONTRACCIO	N ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	I ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	
	-

UNIVERSIDAD CESAR VALLEJO SAC.

Calicata 07 (M - 02)

Determinación del % de Humedad Natural ASTM 2216



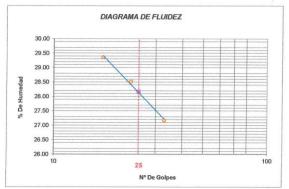
HUMEDAD	MATHDAL	ACTA	1 D - 2216
HOWEDAD	INMIGRAL	. ASIN	11 11 - 2210

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	60.44	70.89	84.63	grs
PESO DEL SUELO HUMEDO + TARRO	210.44	220.89	284.63	grs
PESO DEL SUELO SECO + TARRO	191.88	202	260.87	grs
PESO DEL AGUA	18.56	18.89	23.76	grs
PESO DEL SUELO SECO	131.44	131.11	176.24	grs
% DE HUMEDAD	14.12	14.41	13.48	%
PROMEDIO		14.00		%

ING. JOSÉ MARCELO AREVALO ANGULO JEFE DE AB. MEC. SUELOS - UCV N° C.I.P. 76901

Análisis Granulométrico Por Tamizado ASTM D - 422

Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) **ASTM D-4318**



PROYECTO:

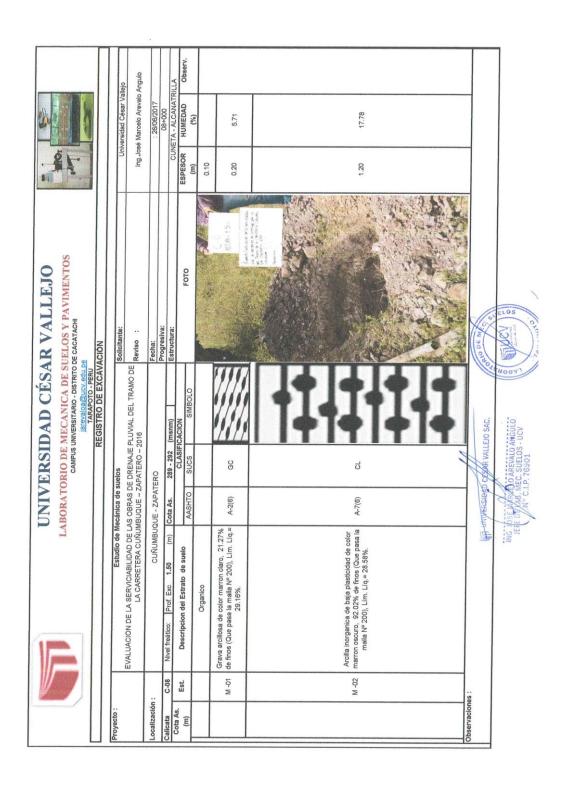
UBICACIÓN DEL	PROYECTO:	CUÑUMBUQUE - ZAPATERO		Kilometraje:		07+000
DESCRIPCIÓN D	EL SUELO :	CL		Profundidad d	le la Muestra:	1.50
HECHO POR:	: CRISTHIAN AL	LONSO HEREDIA GUEVARA	Calicata:	C-07	Fecha:	: 26/06/2017

Determinación del Límite Líquido	ASTM D-4318 - N.T.P. 339.129			
LATA - CAPA 02	1 1	2	3	
PESO DE LATA grs	25.02	31.37	30.59	
PESO DEL SUELO HUMEDO + LATA grs	57.1	62.38	60.87	
PESO DEL SUELO SECO + LATA grs	49.82	55.5	54.4	
PESO DEL AGUA grs	7.28	6.88	6.47	
PESO DEL SUELO SECO grs	24.80	24.13	23.81	
% DE HUMEDAD	29.35	28.51	27.17	
NUMERO DE GOLPES	17	23	33	

Indice de Flujo Fi	
Límite de contracción (%)	ND
Límite Líquido (%)	28.17
Límite Plástico (%)	17.45
Indice de Plasticidad Ip (%)	10.73
Clasificación SUCS	CL
Clasificación AASHTO	A-6
Indice de consistencia lc	

Determinación del Límite Plástico	ASTM D-4318 - N.T.P.	. 339.129	
LATA	2	3	4
PESO DE LATA grs	19.44		
PESO DEL SUELO HUMEDO + LATA grs	43		
PESO DEL SUELO SECO + LATA grs	39.5		
PESO DEL AGUA grs	3.5		
PESO DEL SUELO SECO grs	20.06		
% DE HUMEDAD	17.45		
% PROMEDIO		17 45	The same of the sa

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	T
Peso del agua Gr.	I ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	



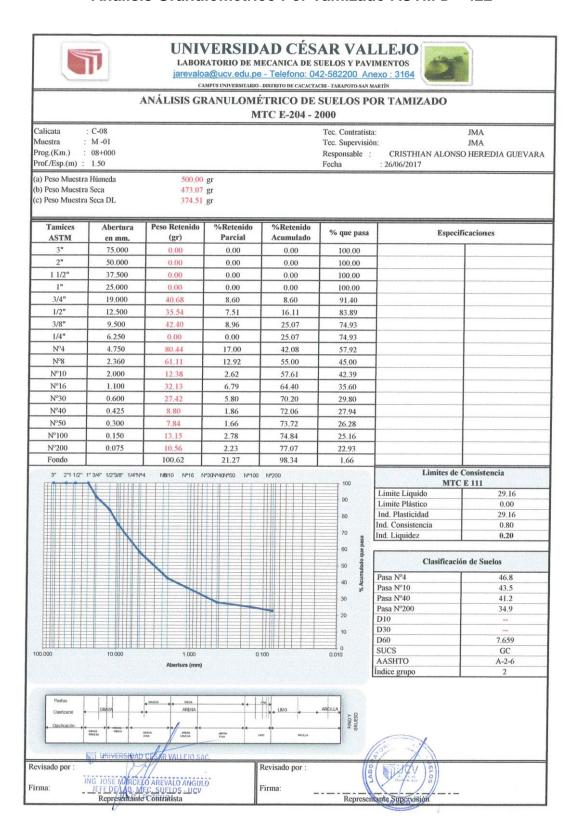
CALICATA N° 08

PERFIL ESTRATIGRAFICO - REGISTRO

ENSAYOS DE LABORATORIO

Calicata 08 (M-1)

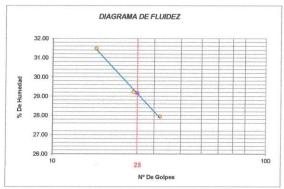
Determinación del % de Humedad Natural ASTM 2216



HIBSEDAD	MATHRAL	ASTM D - 2216	

MUESTRA - CAPA 01	1	2	3	UNIDAD
PESO DE TARRO	58.70	74.00	90.25	grs
PESO DEL SUELO HUMEDO + TARRO	208.70	224.00	290.25	grs
PESO DEL SUELO SECO + TARRO	200.27	215.92	279.87	grs
PESO DEL AGUA	8.43	8.08	10.38	grs
PESO DEL SUELO SECO	141.57	141.92	189.62	grs
% DE HUMEDAD	5.95	5.69	5.47	%
PROMEDIO		5.71		%

ING JOSE MARCELO AREVALO ANGULO JEFE DE HAB. MEC. SUELOS - UCV


Análisis Granulométrico Por Tamizado ASTM D - 422

Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) **ASTM D-4318**

Determinación del Límite Líquido	ASTM D-4318 - N.T.F	2. 339.129	
LATA - CAPA 01	1	2	3
PESO DE LATA grs	30.72	31.40	30.40
PESO DEL SUELO HUMEDO + LATA grs	61.75	60.36	62.40
PESO DEL SUELO SECO + LATA grs	54.32	53.81	55.41
PESO DEL AGUA grs	7.43	6.55	6.99
PESO DEL SUELO SECO grs	23.60	22.41	25.01
% DE HUMEDAD	31.48	29.23	27.95
NUMERO DE GOLPES	16	24	32

Indice de Flujo Fi	
Límite de contracción (%)	ND
Límite Líquido (%)	29.16
Límite Plástico (%)	0.00
Indice de Plasticidad Ip (%)	29.16
Clasificación SUCS	GC
Clasificación AASHTO	A-2(6)
Indice de consistencia lo	

C-08 Fecha:

: 26/06/2017

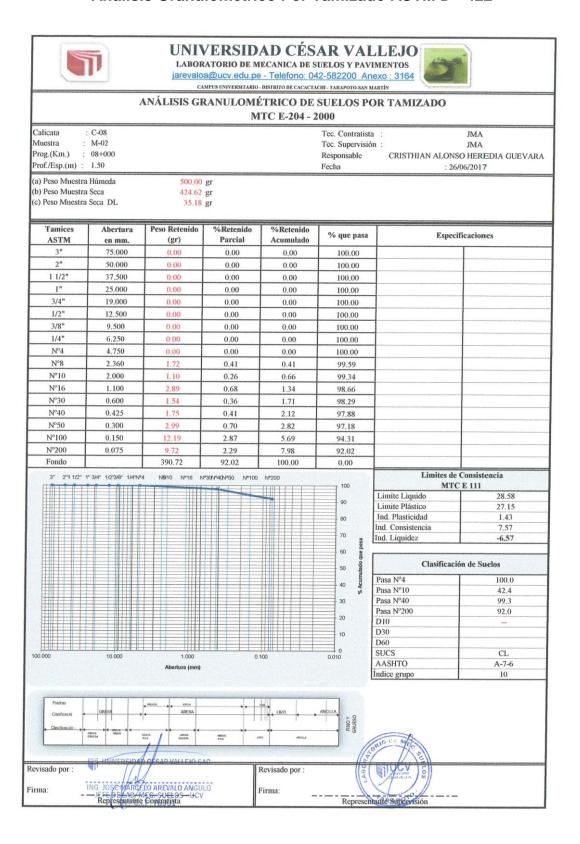
Determinación del Límite Plástico	ASTM D-4318 - N.T.	P. 339.129	
LATA	2	3	4
PESO DE LATA grs	NP		
PESO DEL SUELO HUMEDO + LATA grs			
PESO DEL SUELO SECO + LATA grs			
PESO DEL AGUA grs			
PESO DEL SUELO SECO grs			
% DE HUMEDAD			
% PROMEDIO	0.00		

LIMITE DE CONTRACCION	ASTM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	ND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

HECHO POR:

Calicata 08 (M - 02)

Determinación del % de Humedad Natural ASTM 2216

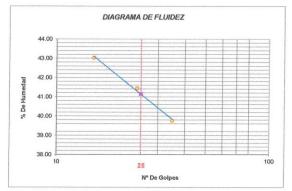


HUMEDAD	NATURAL	ASTM D	- 2216

MUESTRA - CAPA 02	1	2	3	UNIDAD
PESO DE TARRO	73.84	73.11	88.05	grs
PESO DEL SUELO HUMEDO + TARRO	223.84	223.11	288.05	grs
PESO DEL SUELO SECO + TARRO	200.71	200.95	257.88	grs
PESO DEL AGUA	23.13	22.16	30.17	grs
PESO DEL SUELO SECO	126.87	127.84	169.83	grs
% DE HUMEDAD	18.23	17.33	17.76	%
PROMEDIO		17.78		%

19SEMARCELO AREVALO ANGULO PLAB. MEC. SUELOS · UCV N° C.I.P. 76901

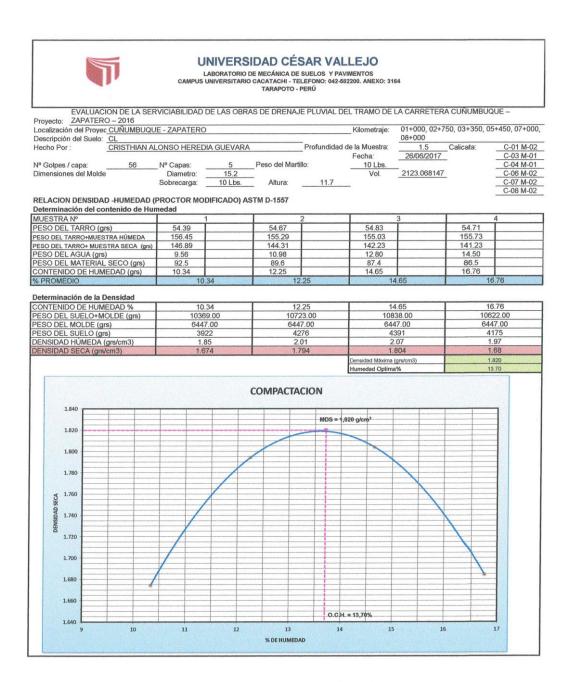
Análisis Granulométrico Por Tamizado ASTM D - 422


Determinación de Límites de Atterberg (Límite Líquido y Límite Plástico) **ASTM D-4318**

CUÑUMBUQUE - ZAPATERO PROYECTO: - ZAPATERO - 2016
UBICACIÓN DEL PROYECTO: CU Kilometraje: DESCRIPCIÓN DEL SUELO : Profundidad de la Muestra: 1.50 : CRISTHIAN ALONSO HEREDIA GUEVARA HECHO POR: C-08 Fecha: : 26/06/2017

Determinación del Limite Líquido	ASTM D-4318 - N.T.P. 339.129					
LATA - CAPA 02	1	2	3			
PESO DE LATA grs	30.65	30.27	30.43			
PESO DEL SUELO HUMEDO + LATA grs	60.23	60.68	62.84			
PESO DEL SUELO SECO + LATA grs	51.33	51.77	53.62			
PESO DEL AGUA grs	8.90	8.91	9.22			
PESO DEL SUELO SECO grs	20.68	21.50	23.19			
% DE HUMEDAD	43.04	41.44	39.76			
NUMERO DE GOLPES	15	24	35			

Indice de Flujo Fi	
Límite de contracción (%)	ND
Límite Líquido (%)	41.14
Límite Plástico (%)	25.59
Indice de Plasticidad Ip (%)	15.55
Clasificación SUCS	CL
Clasificación AASHTO	A-7(6)
Indice de consistencia lc	

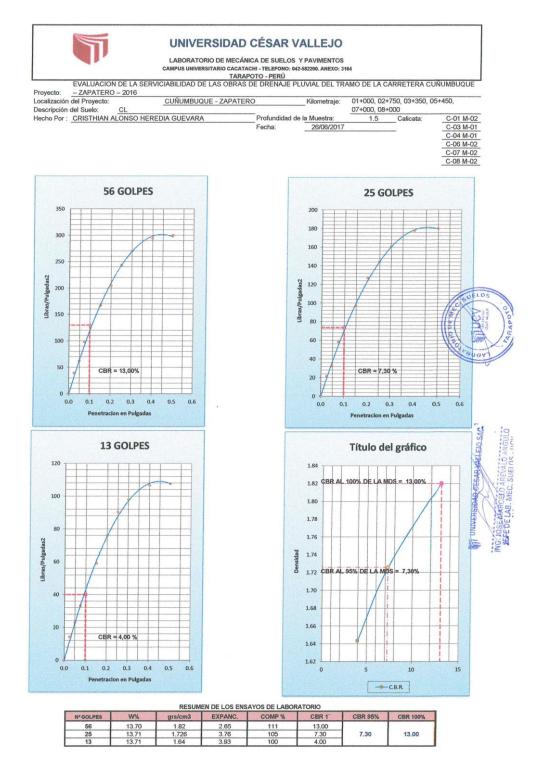

Determinación del Límite Plástico	ASTM D-4318 - N.T.P. 339.129					
LATA	2	3	1 4			
PESO DE LATA grs	19.44	****	1			
PESO DEL SUELO HUMEDO + LATA grs	43					
PESO DEL SUELO SECO + LATA grs	38.2					
PESO DEL AGUA grs	4.8		1			
PESO DEL SUELO SECO grs	18.76					
% DE HUMEDAD	25.59					
% PROMEDIO	25.59					

LIMITE DE CONTRACCION AS	TM D-427
Ensayo Nº	
Peso Rec + Suelo húmedo Gr.	
Peso Rec + Suelo seco Gr.	
Peso de rec. De contracción Gr.	
Peso del suelo seco Gr.	
Peso del agua Gr.	IND
Humedad %	
Volumen Inicial (Suelo Húmedo) cm3	
Volumen Final (Suelo Seco) cm3	
Limite de Contracción %	
Relación de Contracción	

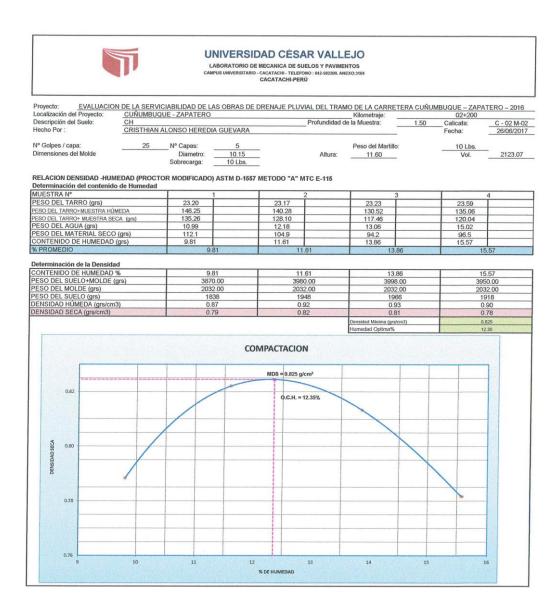
THIVERSIDAD CESAR VALLEJO SAC. SE MARCELO AREVALO ANGULO DE UAS: MEC. SUELOS UCV DE CA.P. 76901

Ensayo preliminar de Próctor Modificado ASTM C 1557 – C Clasificación de CL

Análisis de California Bearing Ratio (CBR) ASTM D 1883 Clasificación de CL


		ON	

Penetración en	Mold N° de golpes	le N°		66	Mol Nº de golpes	lde N°		26	Mo N° de golpes	de Nº		
	Lec		CORRECCIÓN		Lec	T	CORRECCIÓN		Lec	CORRECCIÓN		
	Dial	Lbs	Lbs/	Pulg2	Dial	Lbs	Lbs/	Pulg2	Dial	Lbs	Lbs/	Pulg2
0.000												
0.025	7.60	118.49	39.50		2.20	64.64	21.55		0.00	42.70	14.23	
0.050	14.50	187.31	62.44		5.40	96.55	32.18		2.60	68.63	22.88	
0.075	25.20	294.01	98.00		13.20	174.34	58.11		5.70	99.55	33.18	
0.100	34.90	390.75	130.25	13.02	17.80	220.22	73.41	7.34	8.10	123.48	41.16	4.12
0.150	46.00	501.44	167.15		24.80	290.02	96.67		13.50	177.33	59.11	
0.200	57.30	614.13	204.71	13.65	33.90	380.77	126.92	8.46	18.60	228.19	76.06	5.07
0.250	69.00	730.81	243.60		39.10	432.63	144.21		22.90	271.08	90.36	
0.300	77.00	810.59	270.20		44.10	482.50	160.83		25.20	294.01	98.00	
0.400	84.20	882.40	294.13		49.20	533.36	177.79		27.80	319.94	106.65	
0.500	86.00	900.35	300.12		49.90	540.34	180.11		28.10	322.93	107.64	



Análisis de California Bearing Ratio (CBR) ASTM D 1883 Clasificación de CL

Ensayo preliminar de Próctor Modificado ASTM C 1557 – C Clasificación de CH

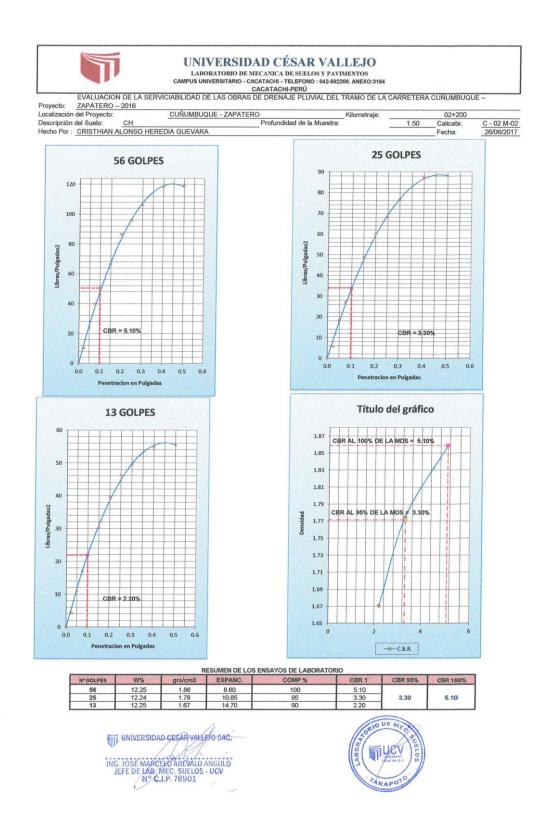
Análisis de California Bearing Ratio (CBR) ASTM D 1883

Clasificación de CH

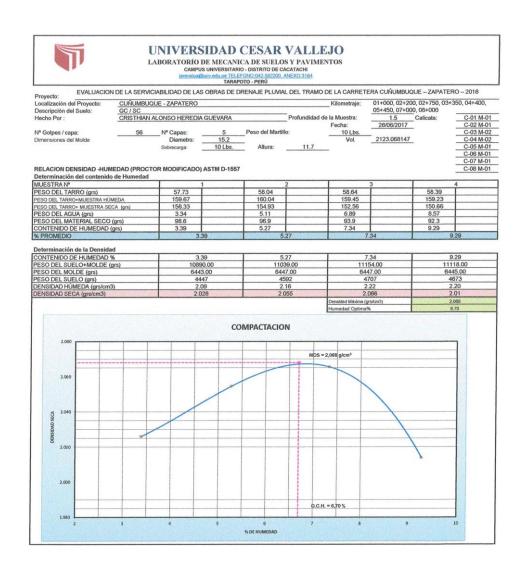
UNIVERSIDAD CÉSAR VALLEJO

LABORATORIO DE MECANICA DE SUELOS Y PAVIMENTOS CAMPUS UNIVERSITARIO - CACATACHS - TELEPONO : 042-582200, ANEXO-3164 CACATACHI-PERÚ

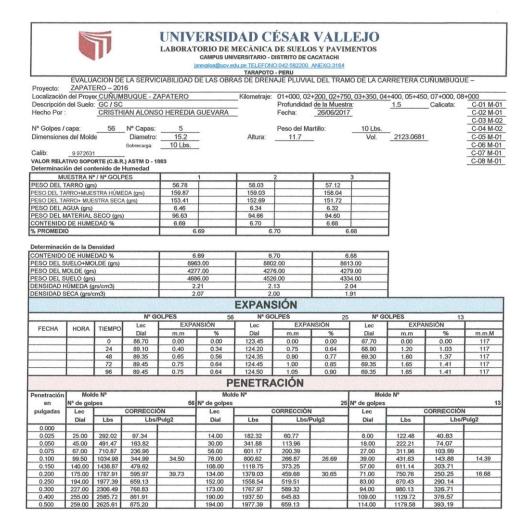
Localización del Proyecto: CUÑUMBUQUE - ZAPATE							DEL TRAMO DE		Kilometraje:		02+200	12
Descripción o		СН					Profundidad d	le la Muestra:		1.50	Calicata:	C - 02 M-0
Hecho Por :		CRISTHIAN A	LONSO HERE	DIA GUEVAR	A			•			Fecha:	26/06/201
Nº Golpes / c	apa:	25	Nº Capas:	5			Peso del Mart	illo:	10 Lbs.			
Dimensiones			Diametro: Sobrecarga:	15.2 10 Lbs.		Altura:	11.7		Vol.	2123.06815		
Calib:	1.991882			10 200								
		(C.B.R.) ASTM D	- 1883 MTC E-13	2								
Determinació	n del contenido									_		
		°/N° GOLPES			1		2		3]		
PESO DEL TA				23.00		23.56		21.52]		
	RRO+MUESTRA			108.00		135.82		116.33				
	RRO+ MUESTRA	SECA (grs)		98.73		123.58		105.98]		
PESO DEL AGUA (grs)			9.28		12.24		10.35		l			
PESO DEL MATERIAL SECO (grs) CONTENIDO DE HUMEDAD %			75.73		100.02		84.46					
		6		12.25	12.25 12.24 12.25 12.25 12.24			12.25		1		
% PROMEDIO				12	25	12	2.24	12	2.25	ı		
	n de la Densida	_										
CONTENIDO	DE HUMEDAD 9			12			.24		.25			
		irs)		1155			50.00		20.00			
						712	0.00		8.00			
ESO DEL MO	DLDE (grs)			712								
PESO DEL SU PESO DEL MO PESO DEL SU	DLDE (grs) ELO (grs)			443	0.00		0.00	398				
PESO DEL MO PESO DEL SU PENSIDAD HÚ	DLDE (grs) ELO (grs) JMEDA (grs/cm3)		443	0,00	1.	99	1.	88			
PESO DEL MO PESO DEL SU PENSIDAD HÚ	DLDE (grs) ELO (grs) JMEDA (grs/cm3)		443	0,00 09 36	1.	99 78	1.				
PESO DEL MO PESO DEL SU PENSIDAD HÚ	DLDE (grs) ELO (grs) JMEDA (grs/cm3)		443 2.1 1.4	0,00 09 36	1.	99 78	1.	88			
PESO DEL MO PESO DEL SU PENSIDAD HÚ	DLDE (grs) ELO (grs) JMEDA (grs/cm3)	Nº GOL	443 2.1 1.4	0,00 09 36	1. 1. XPANSIÓ	99 78	1.	88	DLPES	1	3
ESO DEL MO ESO DEL SU ENSIDAD HÚ ENSIDAD SE	DLDE (grs) ELO (grs) JMEDA (grs/cm3) CA (grs/cm3)		Nº GOL Lec	443 2.1 1.4	0.00 09 36 E	1. 1. XPANSIÓ	99 78)N	1. 1.	88 67	DLPES EXPAN		3
ESO DEL MO ESO DEL SU ENSIDAD HÚ ENSIDAD SE	DLDE (grs) ELO (grs) JMEDA (grs/cm3	TIEMPO		443 2.1 1.3 PES	0.00 09 36 E	1. 1. XPANSIÓ Nº GC	99 78 DN DLPES	1. 1.	88 67 N° GC			3 m.m.M
ESO DEL MO ESO DEL SU ENSIDAD HÚ ENSIDAD SE	DLDE (grs) ELO (grs) JMEDA (grs/cm3) CA (grs/cm3)		Lec	.PES EXPAN	0,00 09 86 E 56 ISIÓN	1. XPANSIÓ N° GC Lec	99 78 N DLPES EXPAN	1. 1. 25 ISIÓN	88 67 N° GC Lec	EXPAN	ISIÓN	
ESO DEL MO ESO DEL SU ENSIDAD HÚ ENSIDAD SE FECHA 18/06/2017 19/06/2017	DLDE (grs) IELO (grs) IMEDA (grs/cm3) IMEDA (grs/cm3) IMEDA (grs/cm3)	TIEMPO 0 24	Lec Dial	443 2.0 1.2 PES EXPAN	0.00 199 36 E 56 ISIÓN	1. 1. XPANSIÓ N° GC Lec Dial	99 78 DN DLPES EXPAN m.m	1. 1. 25 ISIÓN %	88 67 N° GC Lec Dial	EXPAN m.m	VSIÓN %	m.m.M
PESO DEL MO PESO DEL SU PENSIDAD HÚ DENSIDAD SE FECHA 18/06/2017 19/06/2017 20/06/2017	DLDE (grs) IELO (grs) IMEDA (grs/cm3) IMEDA (grs/cm3) HORA 15:30:00	TIEMPO 0 24 48	Lec Dial 0	443 2.0 1.3 PES EXPAN m.m 0.00	56 E Sision %	1. 1. XPANSIÓ N° GC Lec Dial 0 7	99 78 DN DLPES EXPAN m.m 0.00	1. 1. 25 ISIÓN % 0.00	88 67 N° GC Lec Dial 0	m.m 0.00	% 0.00	m.m.M 117
PESO DEL MO PESO DEL SU DENSIDAD HÚ DENSIDAD SE FECHA 18/06/2017	DLDE (grs) ELO (grs) ELO (grs) MEDA (grs/cm3) CA (grs/cm3) HORA 15:30:00 15:30:00	TIEMPO 0 24	Lec Dial 0 4	2.9 1.8 PES EXPAN m.m 0.00 3.70	56 SISIÓN % 0.00 3.16	1. 1. XPANSIÓ Nº GC Lec Dial 0 7	99 78 N DLPES EXPAN 0.00 6.50	1. 1. 25 ISIÓN % 0.00 5.56	88 67 N° GC Lec Dial 0	m.m 0.00 9.10	% 0.00 7.78	m.m.M 117 117


Penetración	Mole	de Nº			Mo	lde Nº			Mol	lde N°			
en	N° de golpes 56 N					° de golpes 25				5 Nº de golpes			
pulgadas	Lec		CORRECCIÓN		Lec	1	CORRECCIÓN		Lec		CORRECCIÓN		
	Dial	Lbs	Lbs/	Pulg2	Dial	Lbs	Lbs/	Pulg2	Dial	Lbs	Lbs/	Pulg2	
0.000	0	0.00	0.00		0	0.00	0.00		0	0.00	0.00		
0.025	15	30.61	10.20		9	17.20	5.73		7	13.21	4.40		
0.050	36	72.44	24.15		28	55.04	18,35		17	33.13	11.04		
0.075	60	120.24	40.08		41	80.94	26.98		26	51.06	17.02		
0.100	75	150.12	50.04	5.00	50	98.86	32.95	3.30	33	65.00	21.67	2.17	
0.150	100	199.92	66.64		74	146.67	48.89		46	90.90	30.30		
0.200	130	259.68	86.56	5.77	91	180.53	60.18	4.01	60	118.78	39.59	2.64	
0.250	144	287.56	95.85		103	204.43	68.14		70	138.70	46.23		
0.300	160	319.43	106.48		116	230.33	76.78		75	148.66	49.55		
0.400	178	355.29	118.43		132	262.20	87.40		83	164.60	54.87	Section 1	
0.500	179	357.28	119.09		133	264.19	88.06		84	166.59	55.53		

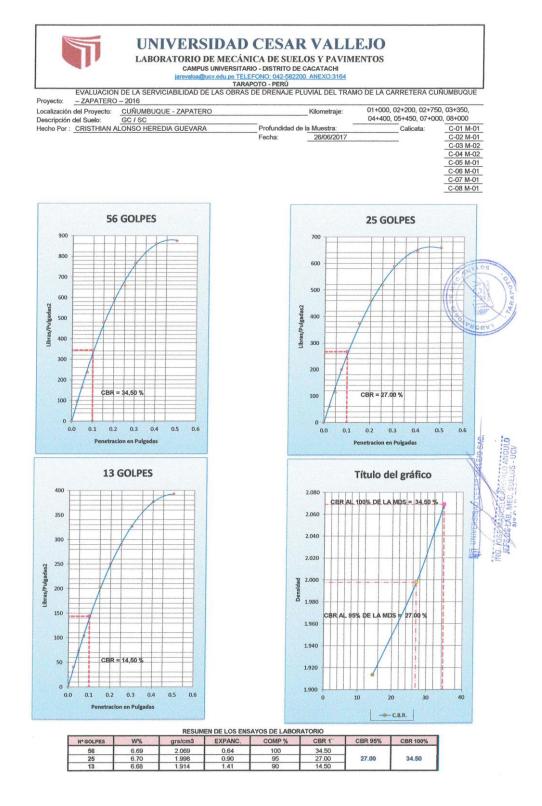
Observación : Penetración ejecutada en una prensa Multiplex E-50, con celda de 4.50 Kn con aproximación con sensor de carga R-674-009 desvs.45, velocidad continue 1.27 mentrán



Análisis de California Bearing Ratio (CBR) ASTM D 1883 Clasificación de CH


Ensayo preliminar de Próctor Modificado ASTM C 1557 – C Clasificación de GC y SC

ING. JOSE MARCELO AREVALO ANGULO
JEFE DE LAB. MEC. SUELOS - UCV
N° C.1.P. 76901


Análisis de California Bearing Ratio (CBR) ASTM D 1883 Clasificación de GC y SC

UNIVERSIDAD CESAR VALCEJO SAG.
INC. JOSE MARRETO AREVATO ANGULO
EFE DE LAB. MEC. SUELOS - UCV
N° C.I.P. 76901

Análisis de California Bearing Ratio (CBR) ASTM D 1883 Clasificación de GC y SC

Anexo 03: Panel Fotográfico.

Fotografía N° 01: Se aprecia al tesista midiendo para clasificar severidad del daño de Escalonamiento.

Fotografía N° 02: Se aprecia al tesista midiendo para clasificar severidad del daño de Fracturamiento de la Estructura.

Fotografía N° 03: Se aprecia el daño de Obstrucción.

Fotografía N° 04: Se aprecia la Estructura de Salida con Socavación del Concreto y Suelo de Fundación de Aletas, solado y/o Muro Cabezal.

Anexo 04: Presupuesto Total.

Presupuesto

Presupuesto

0203001

EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE - ZAPATERO - 2016

Subpresupuesto

001

EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE - ZAPATERO - 2016

Cliente HEREDIA GUEVARA, CRISTHIAN ALONSO

Costo al 09/06/2017

Lugar SAN MARTIN - LAMAS - CUÑUMBUQUI

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	TRABAJOS PRELIMINARES				6,010.40
01.01	TRAZO Y REPLANTEO	km	8.00	751.30	6,010.40
02	DRENAJE				87,216.17
02.01	CUNETA				75,015.49
02.01.01	DEMOLICION DE CUNETAS	m3	57.93	33.79	1,957.45
02.01.02	CUNETA REVESTIDAS DE CONCRETO F'c = 175 kg/cm2	m3	57.93	443.43	25,687.90
02.01.03	ENCOFRADO Y DESENCOFRADO DE CUNETAS REVESTIDA	m2	19.69	39.28	773.42
02.01.04	JUNTAS ASFALTICAS	m	4,716.49	5.31	25,044.56
02.01.05	TRATAMIENTO DE GRIETAS	m	376.00	21.86	8,219.36
02.01.06	PARCHADO DE CARPETA CON MEZCLA ASFALTICA EN CALIENTE	m3	2.54	1,956.65	4,969.89
02.01.07	LIMPIEZA DE CUNETAS	m	1,793.20	4.47	8,015.60
02.01.08	ELIMINACION DE MATERIAL EXCEDENTE	m3	53.93	6.44	347.31
02.02	ALCANTARILLAS				12,200.68
02.02.01	RELLENO PARA ESTRUCTURAS	m3	5.22	164.26	857.44
02.02.02	CONCRETO CICLOPEO fc=175 kg/cm2 + 30% P.G	m3	9.44	468.23	4,420.09
02.02.03	SOLADO	m2	0.40	397.21	158.88
02.02.04	ENCOFRADO Y DESENCOFRADO	m2	31.14	64.37	2,004.48
02.02.05	MAMPOSTERIA DE PIEDRA EMBOQUILLADO	m3	0.95	609.53	579.05
02.02.06	TRATAMIENTO DE GRIETAS	m	10.00	21.86	218.60
02.02.07	LIMPIEZA DE ALCANTARILLAS	und	26.00	152.39	3,962.14
	Sub Presupuesto				93,226.57
				=	=======================================
	Gastos Generales (10% CD)				9,322.66
	Utilidad (08% CD)				7,458.13
				=	=======================================
	SUB TOTAL				110,007.36
	IGV (18%ST)				19,801.32
				=	
	TOTAL_PRESUPUESTO				129,808.68

SON: CIENTO VEINTINUEVE MIL OCHOCIENTOS OCHO Y 68/100 NUEVOS SOLES

CALCULO DE GASTOS GENERALES

<u>S/.</u>

COSTO DIRECTO 93,226.57

GASTOS GENERALES

FIJOS -

 VARIABLES
 9,322.66

 UTILIDAD (10% C.D.)
 7,458.13

 SUB TOTAL
 110,007.36

 IGV (18% C.D.)
 19,801.32

PRESUPUESTO TOTAL DE OBRA 129,808.68

GASTOS GENERALES VARIABLES

PERSONAL TECNICO, ADMINISTRATIVO Y AUXILIAR

DESCRIPCION	MESES	CANTIDAD	P.UNIT.	COSTO TOTAL (S/.)
INGº RESIDENTE DE OBRA	2	1	1,800.00	3,600.00
TOPOGRAFO	1	1	1,250.00	1,250.00
MAESTRO DE OBRA	1	1	1,250.00	1,250.00
				6,100.00
	LEY	ES SOCIALES (5	50%)	3,050.00
		TOTAL (S/.)		9,150.00

EQUIPOS NO INCLUIDOS EN LOS COSTOS DIRECTOS

		TOTAL (S/.)		172.66
FOTOCOPIADORA	1	1	22.66	22.66
COMPUTADORA	1	1	50.00	50.00
EQUIPO DE TOPOGRAFIA	1	1	100.00	100.00

RESUMEN DE GASTOS GENERALES VARIABLES

PERSONAL TECNICO, ADMINISTRATIVO Y AUXILIAR

EQUIPOS NO INCLUIDOS EN LOS COSTOS DIRECTOS

172.66

TOTAL S/. 9,322.66

TOTAL GASTOS GENERALES S/. 9,322.66

CALCULO DEL PORCENTAJE DE GASTOS GENERALES

% DE GASTOS GENERALES VARIABLES 10.00

% DE GASTOS GENERALES 10.00

Anexo 05: Análisis de Costos

Unitarios.

Análisis de precios unitarios

Presupuesto	0203001	EVALUACION DE L TRAMO		IDAD DE LAS OI ERA CUÑUMBUG			/IAL DEL	
Subpresupuesto	001 EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE - ZAPATERO - 2016							
Partida	01.01	TBA70	Y REPLANTEO		Fech	na presupuesto	09/06/2017	
raniua	01.01	TRAZO	TREPLANTEO					
Rendimiento	km/DIA	1.0000	EQ. 1.0000	Costo unitario di	recto por : km	751.30		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0404040005	PEON	wano de Obia	hh	2.0000	16.0000	14.81	236.96	
0101010005 0101010007	NIVELADOR		hh	1.0000	8.0000	16.47	131.76	
0101030000								
0 10 1030000	TOPOGRAFO		hh	1.0000	8.0000	20.07	160.56 529.28	
		Materiales						
0204030001	ACERO CORR	UGADO fy = $4200 \text{ kg/cm} 2$	GRAIkg		0.1500	3.00	0.45	
0240020001	PINTURA ESM	1ALTE	gal		0.5000	32.80	16.40 16.85	
		Equipos					10.00	
03010000020001	NIVEL TOPOG	RAFICO	hm	1.0000	8.0000	8.00	64.00	
0301000020	ESTACION TO	OTAL INC. 2 PRISMAS	he	1.0000	8.0000	15.00	120.00	
0301010006	HERRAMIENT	AS MANUALES	%mo		4.0000	529.28	21.17	
							205.17	
Partida	02.01.01	DEMOLI	CION DE CUNE	TAS				
Rendimiento	m3/DIA	30.0000	EQ. 30.0000	Costo unitario dir	recto por : m3	33.79		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010003	OPERARIO		hh	1.0000	0.2667	20.07	5.35	
0101010005	PEON		hh	2.0000	0.5333	14.81	7.90	
							13.25	
		Equipos						
0301010006	HERRAMIENT	AS MANUALES	%mo		4.0000	13.25	0.53	
03011400020005	MARTILLO NE		hm	1.0000	0.2667	15.00	4.00	
03011600010003	CARGADOR S	OBRE LLANTAS DE 125-	135 HI hm	0.4000	0.1067	150.00	16.01 20.54	
Partida	02.01.02	CUNETA	A REVESTIDAS	DE CONCRETO	F´c = 175 kg/e	cm2		
Rendimiento	m3/DIA	15.0000	EQ. 15.0000	Costo unitario dir	recto por : m3	443.43		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010003	OPERARIO	ue Obia	hh	1.0000	0.5333	20.07	10.70	
0101010003								
_	OFICIAL		hh	2.0000	1.0667	16.47	17.57	
0101010005	PEON		hh	10.0000	5.3333	14.81	78.99 107.26	
_		Materiales						
02070100010002	PIEDRA CHAN	ICADA 1/2"	m3		0.6900	100.00	69.00	
0207040002	AGREGADO F	INO	m3		0.6400	115.00	73.60	
0213010001	CEMENTO PC	RTLAND TIPO I (42.5 kg)	bol		6.3900	25.00	159.75	
0290130022	AGUA		m3		0.2400	5.00	1.20	
		Equipos					303.55	
0301010006	HERRAMIENT	AS MANUALES	%mo		4.0000	107.26	4.29	
03012900010002		CONCRETO 4 HP 1.25"	hm	1.8750	1.0000	15.00	15.00	
03012900030001		A DE CONCRETO 11 P3 (2		1.0000	0.5333	25.00	13.33	
		3 (2)	,	3000	2.2300	_5.00	32.62	

Partida	02.01.03 ENCOFRADO Y DESENCOFRADO DE CUNETAS REVESTIDA							
Rendimiento	m2/DIA	15.0000	EQ. 15.0000	Costo unitario di	recto por : m2	39.28		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010003	OPERARIO	mano de Obia	hh	1.0000	0.5333	20.07	10.70	
0101010004	OFICIAL		hh	1.0000	0.5333	16.47	8.78	
0101010005	PEON		hh	1.0000	0.5333	14.81	7.90	
0 10 10 10000	LON		****	1.0000	0.5555	H.01	27.38	
		Materiales					27.00	
02040100010001	AL AMBRE NE	EGRO RECOCIDO Nº 8	kg		0.2000	4.20	0.84	
02041200010001		RA MADERA CON CABEZA	_		0.0400	4.50	0.18	
02041200010005			-					
023 1000002	MADERA PA	RA ENCOFRADO	p2		2.3780	4.00	9.51	
							10.53	
E		Equipos						
0301010006	HERRAMIEN	TAS MANUALES	%mo		5.0000	27.38	1.37	
							1.37	
Partida	02.01.04	JUNTAS	ASFALTICAS					
Rendimiento	m/DIA	60.0000	EQ. 60.0000	Costo unitario d	lirecto por : m	5.31		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010004	OFICIAL		hh	1.0000	0.1333	16.47	2.20	
0101010005	PEON		hh	1.0000	0.1333	14.81	1.97	
0 10 10 10003	FLON		1111	1.0000	0.1555	14.01	4.17	
		Materiales					4.11	
02010500010001	ASFALTO RO		gal		0.0400	18.61	0.74	
0207040002	AGREGADO		-		0.0020	115.00	0.23	
0207040002	AGREGADO	FINO	m3		0.0020	115.00	0.23	
		Equipes					0.97	
0301010006	LIEDDAMIEN	Equipos TAS MANUALES	0/		4.0000	4.17	0.17	
030 10 10006	HERRAMIEN	I AS MANUALES	%mo		4.0000	4.17		
							0.17	
Partida	02.01.05	TRATAM	IIENTO DE GRI	IETAS				
Rendimiento	m/DIA	100.0000	EQ. 100.0000	Costo unitario d	lirecto por : m	21.86		
Código	Descripción	Recurso	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
		Mano de Obra						
0101010002	CAPATAZ		hh	0.2000	0.0160	24.08	0.39	
0101010003	OPERARIO		hh	1.0000	0.0800	20.07	1.61	
0101010004	OFICIAL		hh	2.0000	0.1600	16.47	2.64	
0101010005	PEON		hh	4.0000	0.3200	14.81	4.74	
							9.38	
		Materiales						
0240150004	SELLADOR E		1		0.2000	60.50	12.10	
							12.10	
		Equipos						
0301010006	HERRAMIEN [*]	TAS MANUALES	%mo		4.0000	9.38	0.38	
000 10 10000		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	701110			0.00	0.38	
							0.00	
Partida	02.01.06	PARCHA	DO DE CARPE	TA CON MEZCLA	A ASFALTICA	A EN CALIEN	TE	
Rendimiento	m3/DIA	4.0000	EQ. 4.0000	Costo unitario di	recto por : m3	1,956.65		
Código	Descripción	Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.	
0101010002	CAPATAZ		hh	1.0000	2.0000	24.08	48.16	
0101010002	OFICIAL		hh	2.0000	4.0000	16.47	65.88	
0101010004	PEON		hh	10.0000	20.0000	14.81	296.20	
0 10 10 10000	FLOIN		1111	10.0000	20.0000	14.01	410.24	
		Materiales					4 10.24	
02040500050004	MEZOLAACE		O		40000	000 00	4.470.00	
02010500050004	WEZULA ASF	FALTICA EN CALIENTE	m3		1.3000	900.00	1,170.00	
							1,170.00	
_		F						
0004040000	HEDDAMES	Equipos	0/		4 0000	440.0:	40.44	
0301010006		TAS MANUALES	%mo		4.0000	410.24	16.41	
0301010006 03011000040002				1.0000	4.0000 2.0000	410.24 180.00	16.41 360.00 376.41	

376.41

Partida	02.01.07	LIMPII	EZA DE CUNETAS	s			
Rendimiento	m/DIA	120.0000	EQ. 120.0000	Costo unitario d	lirecto por : m	4.47	
Código	Descripció	n Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010003	OPERARIO		hh	1.0000	0.0667	20.07	1.34
0101010005	PEON		hh	3.0000	0.2000	14.81	2.96
		Emilian					4.30
0301010006	HERRAMIEN	Equipos ITAS MANUALES	%mo		4.0000	4.30	0.17 0.17
Partida	02.01.08	ELIMI	NACION DE MATE	RIAL EXCEDEN	TE		
Rendimiento	m3/DIA	220.0000	EQ. 220.0000	Costo unitario di	recto por : m3	6.44	
Código	Descripció	n Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010004	OFICIAL		hh	0.5000	0.0182	16.47	0.30
							0.30
03011600010003	CARGADOR	Equipos SOBRE LLANTAS DE 12	5-135 Hlhm	0.1250	0.0045	150.00	0.68
0301160004	VOLQUETE		hm	1.0000	0.0364	150.00	5.46
							6.14
Partida	02.02.01	RELLE	NO PARA ESTRU	JCTURAS			
Rendimiento	m3/DIA	15.0000	EQ. 15.0000	Costo unitario di	recto por : m3	164.26	
Código	Descripció	n Recurso Mano de Obra	Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0101010002	CAPATAZ		hh	0.5000	0.2667	24.08	6.42
0101010005	PEON		hh	4.0000	2.1333	14.81	31.59
		Maradala					38.01
0207040003	MATERIAL F	Materiales	m3		1.3500	80.00	108.00
0290130022	AGUA	KLLLINO	m3		0.1450	5.00	0.73
							108.73
		Equipos					
0301010006		ITAS MANUALES	%mo		4.0000	38.01	1.52
0301100001	COMPACTA	DORA VIBRATORIA TIPO) PLANhm	2.0000	1.0667	15.00	16.00 17.52
							17.52
Partida	02.02.02	CONC	RETO CICLOPEO	f'c=175 kg/cm2 -	+ 30% P.G		
Rendimiento	m3/DIA	18.0000	EQ. 18.0000	Costo unitario di	recto por : m3	468.23	
Código	Descripció		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
0404040002	CADATAZ	Mano de Obra	h h	0.2000	0.0000	24.09	2 14
0101010002 0101010003	CAPATAZ OPERARIO		hh hh	0.2000 2.0000	0.0889 0.8889	24.08 20.07	2.14 17.84
0101010003	OFICIAL		hh	2.0000	0.8889	16.47	14.64
0101010005	PEON		hh	11.0000	4.8889	14.81	72.40
							107.02
0007040044	DIEDD 4 00 4	Materiales				=====	05.00
0207010011	PIEDRA GRA		m3		0.3500	72.38	25.33
0207040002 0207040004	AGREGADO AGREGADO		m3 m3		0.3970 0.7940	115.00 115.00	45.66 91.31
0213010001		ORTLAND TIPO I (42.5 k			7.0370	25.00	175.93
0290130022	AGUA	OTT EATED THE OT (42.5 K	m3		0.1840	5.00	0.92
	0/ .		0		3540	5.00	339.15
		Equipos					
0301010006	HERRAMIEN	ITAS MANUALES	%mo		4.0000	107.02	4.28
03012900010002	VIBRADOR [DE CONCRETO 4 HP 1.25	" hm	1.0000	0.4444	15.00	6.67
03012900030001	MEZCLADO	RA DE CONCRETO 11 P3	(23 HP) hm	1.0000	0.4444	25.00	11.11
							22.06

22.06

02.02.03 SOLADO Partida EQ. **22.0000** 397.21 Rendimiento m2/DIA 22.0000 Costo unitario directo por : m2 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Mano de Obra 0101010002 CAPATAZ hh 0.2000 0.0727 24.08 1.75 0101010003 **OPERARIO** hh 2.0000 0.7273 20.07 14.60 OFICIAL 0101010004 2.0000 0.7273 16.47 11.98 hh 0101010005 PEON 11.0000 4.0000 14.81 59.24 hh 87.57 Materiales 0207010011 PIEDRA GRANDE 0.3500 72 38 25.33 m3 0.5100 0207040002 AGREGADO FINO m3 115.00 58.65 0207040004 AGREGADO GRUESO m3 0.7100 115.00 81.65 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) 5.0000 25.00 125.00 bol 0290130022 AGUA m3 0.1940 5.00 0.97 291.60 Equipos HERRAMIENTAS MANUALES 0301010006 %mo 4.0000 87.57 3.50 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" 1.0000 0.3636 15.00 5.45 03012900030001 MEZCLADORA DE CONCRETO 11 P3 (23 HP) hm 0.3636 10000 25.00 9 09 18.04 Partida 02.02.04 **ENCOFRADO Y DESENCOFRADO** EQ. **15.0000** Costo unitario directo por : m2 Rendimiento m2/DIA 15.0000 64.37 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Mano de Obra 0101010003 **OPERARIO** hh 1.0000 0.5333 20.07 10.70 0101010004 OFICIAL hh 2.0000 1.0667 16.47 17.57 0101010005 PEON 2.0000 1.0667 14.81 15.80 hh 44.07 Materiales 02040100010001 ALAMBRE NEGRO RECOCIDO Nº 8 0.2000 4.20 0.84 kg CLAVOS PARA MADERA CON CABEZA DE ; kg 02041200010005 0.2000 4.50 0.90 0231000002 MADERA PARA ENCOFRADO 4.2000 p2 4.00 16.80 18.54 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 4.0000 44.07 1.76 1.76 Partida 02.02.05 MAMPOSTERIA DE PIEDRA EMBOQUILLADO 5.0000 EQ. 5.0000 Rendimiento m3/DIA Costo unitario directo por : m3 609.53 Código Descripción Recurso Unidad Cuadrilla Cantidad Precio S/. Parcial S/. Mano de Obra 0101010002 CAPATAZ 0.2000 hh 0.3200 24 08 7.71 0101010003 OPERARIO hh 0.6250 1.0000 20.07 20.07 0101010004 OFICIAL hh 2.0000 3.2000 16.47 52.70 0101010005 **PEON** hh 1.2500 2.0000 14.81 29.62 110.10 Materiales 0207010011 PIEDRA GRANDE m3 0.6000 72.38 43.43 0207040001 MATERIAL GRANULAR 1.0540 70.00 73.78 m3 0207040002 AGREGADO FINO m3 0.3970 115.00 45.66 0207040004 AGREGADO GRUESO 0.7940 115.00 m3 91.31 0213010001 CEMENTO PORTLAND TIPO I (42.5 kg) 7.0370 25.00 175.93 bol 0290130022 AGUA 0.1840 5.00 m3 0.92 431.03 Equipos 0301010006 HERRAMIENTAS MANUALES %mo 4.0000 110.10 4.40 03012900010002 VIBRADOR DE CONCRETO 4 HP 1.25" 1.0000 hm 1.6000 15.00 24.00 03012900030001 MEZCLADORA DE CONCRETO 11 P3 (23 HP) hm 1.0000 1.6000 25.00 40.00

68.40

Partida	02.02.06		TRATAMIEN	TO DE GR	IETAS			
Rendimiento	m/DIA	100.0000	EQ.	100.0000	Costo unitario d	irecto por : m	21.86	
Código	Descripción	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra	l					
0101010002	CAPATAZ			hh	0.2000	0.0160	24.08	0.39
0101010003	OPERARIO			hh	1.0000	0.0800	20.07	1.61
0101010004	OFICIAL			hh	2.0000	0.1600	16.47	2.64
0101010005	PEON			hh	4.0000	0.3200	14.81	4.74
								9.38
		Materiales						
0240150004	SELLADOR I	POXISO		1		0.2000	60.50	12.10
								12.10
		Equipos						
0301010006	HERRAMIEN	TAS MANUALES	S	%mo		4.0000	9.38	0.38
								0.38
Partida	02.02.07		LIMPIEZA DI	E ALCANT	ARILLAS			
Rendimiento	und/DIA	1.5000	EQ.	1.5000	Costo unitario dire	ecto por : und	152.39	
Código	Descripciór	Recurso		Unidad	Cuadrilla	Cantidad	Precio S/.	Parcial S/.
		Mano de Obra	Ì					
0101010003	OPERARIO			hh	1.0000	5.3333	20.07	107.04
0101010005	PEON			hh	0.5000	2.6667	14.81	39.49
								146.53
		Equipos						
0301010006	HERRAMIEN	TAS MANUALES	3	%mo		4.0000	146.53	5.86
								5.86

Anexo 06: Metrados.

PLANILLA DE METRADO

PROYECTO: EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE - ZAPATERO -

2016

HECHO POR: CRISTHIAN ALONSO HEREDIA GUEVARA.

FECHA: JULIO 2017

PART.	ESPECIFICACIONES	N° DE		METRADO				
N°		VECES	LARGO	ANCHO	ALTURA	PARCIAL	TOTAL	UNID.
01.00	TRABAJOS PRELIMINARES						_	
01.01	TRAZO Y REPLANTEO	1.00	8.00			8.00	8.00	KM
02.00	DRENAJE							
02.01	CUNETA							
02.01.01	DEMOLICION DE CUNETAS						57.93	M3
	Cuneta Triangular	1.00	365.00	0.137	m3/ml	50.01		
	Cuneta Trapezoidal	1.00	57.00	0.139	m3/ml	7.92		
02.01.02	CUNETAS REVESTIDA DE CONCRETO F'c = 175 kg/cm2						57.93	M3
	Cuneta Triangular	1.00	365.00	0.137	m3/ml	50.01		
	Cuneta Trapezoidal	1.00	57.00	0.139	m3/ml	7.92		
02.01.03	ENCOFRADO Y DESENCOFRADO DE CUNETAS REVESTIDA						19.69	M2
	Cuneta Triangular	1.00	365.00	0.05	m2/ml	17.03		
	Cuneta Trapezoidal	1.00	57.00	0.05	m2/ml	2.66		
02.01.04	JUNTAS ASFALTICAS						4716.79	М
02.01.01	Cuneta Triangular	1.00	6265.30	0.61	ml/ml	3792.59		
	Cuneta Trapezoidal	1.00	1496.00	0.62	ml/ml	924.20		
02.01.05	TRATAMIENTO DE GRIETAS	1.00	376	0.02		0220	376	М
02.01.06	PARCHADO DE CARPETA CON MEZCLA ASFALTICA EN CALIENTE	1.00	253.50	0.2	0.05	2.54	2.54	M3
02.01.07	LIMPIEZA DE CUNETAS	1.00	1793.20	0.2	0.00	2.01	1793.20	M
02.01.08	ELIMINACION DE MATERIAL EXCEDENTE	1.00	1700.20		57.93	1	1700.20	M3
02.02	ALCANTARILLA	1.00			01.00			
02.02.01	RELLENO PARA ESTRUCTURAS						5.24	M3
02.02.01	Muro de Salida	1.00	4.00	1.3	31	5.24	0.21	
02.02.02	CONCRETO CICLOPEO f'c=175 kg/cm2 + 30% P.G	1.00	1.00		<u> </u>	0.21	9.44	M3
02.02.02	Muro de Salida	1.00	4.00	2.4	45	9.78	0.11	
	Tubo	1.00	0.52	0.0		-0.34		
02.02.03	SOLADO	1.00	0.02	0.		0.04	0.40	M3
02.02.00	Muro de Salida	1.00	1.99	4.00	0.05	0.40	0.10	
02.02.04	ENCOFRADO Y DESENCOFRADO	1.00	1.00	4.00	0.00	0.40	31.14	M2
02.02.04	Muro de Salida						01.14	
	Zapata	2.00	4.00		0.50	4.00		
	Zupulu	2.00	1.99		0.50	1.99		
	Pantalla (Cara Exterior)	1.00	4.00		2.51	10.05		
	Pantalla (Cara Interior)	1.00	4.00		2.55	10.03		
	Cara Laterales	2.00	4.00	2.45	2.00	4.89		
02.02.05	MAMPOSTERIA DE PIEDRA EMBOQUILLADO	2.00		۷.٦٥		7.00	0.95	M3
02.02.03	Estructura de Entrada						0.30	
	Uña 1	1.00	3.90	0.0	 N8	0.32		
	Uña 2	1.00	3.90	0.		0.62		
02.02.06	TRATAMIENTO DE GRIETAS	1.00	10.00	0.	10	10.00		М
02.02.06	LIMPIEZA DE ALCANTARILLAS	26.00	1.00			26.00		UND
02.02.01	FIMI IFTY OF VEOVIALVITETYO	20.00	1.00			20.00		0.10
			l			I		

Anexo 07: Formula Polinomica.

Fórmula Polinómica

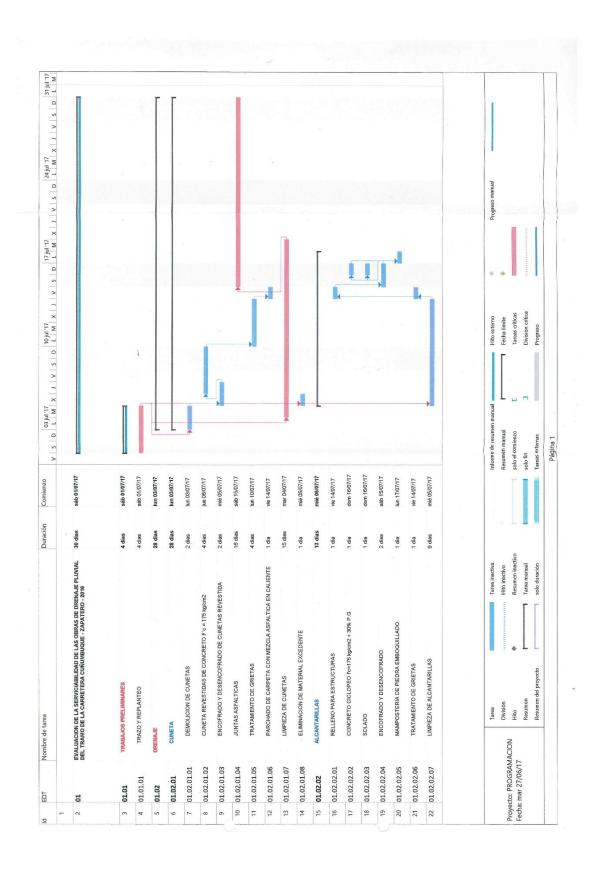
Presupuesto **"0203001 EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL**

TRAMO DE LA CARRETERA CUÑUMBUQUE - ZAPATERO - 2016

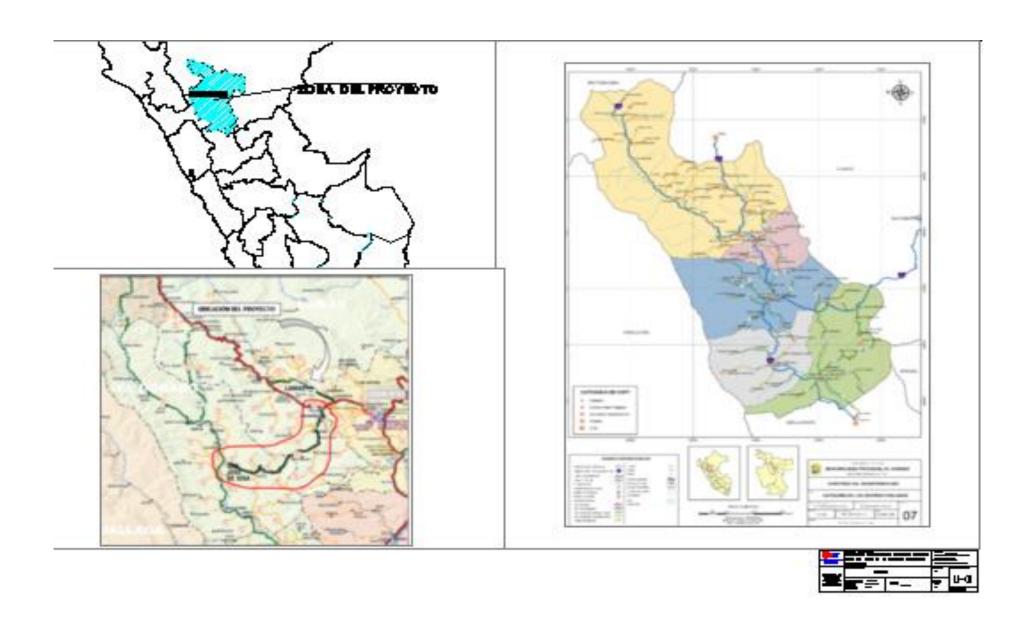
Subpresupuesto 00 EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE

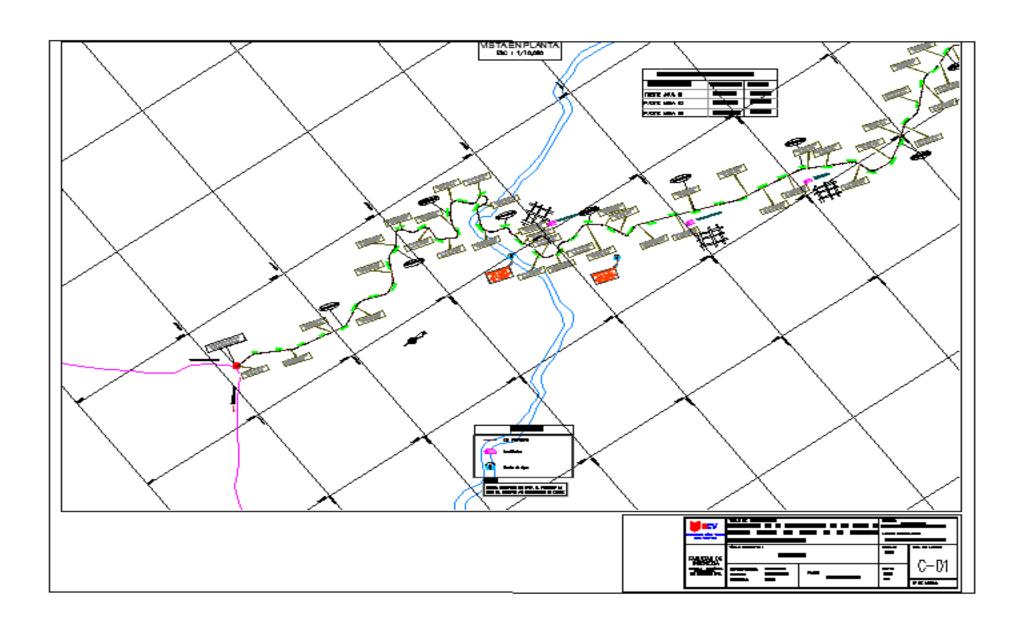
LA CARRETERA CUÑUMBUQUE - ZAPATERO - 2016

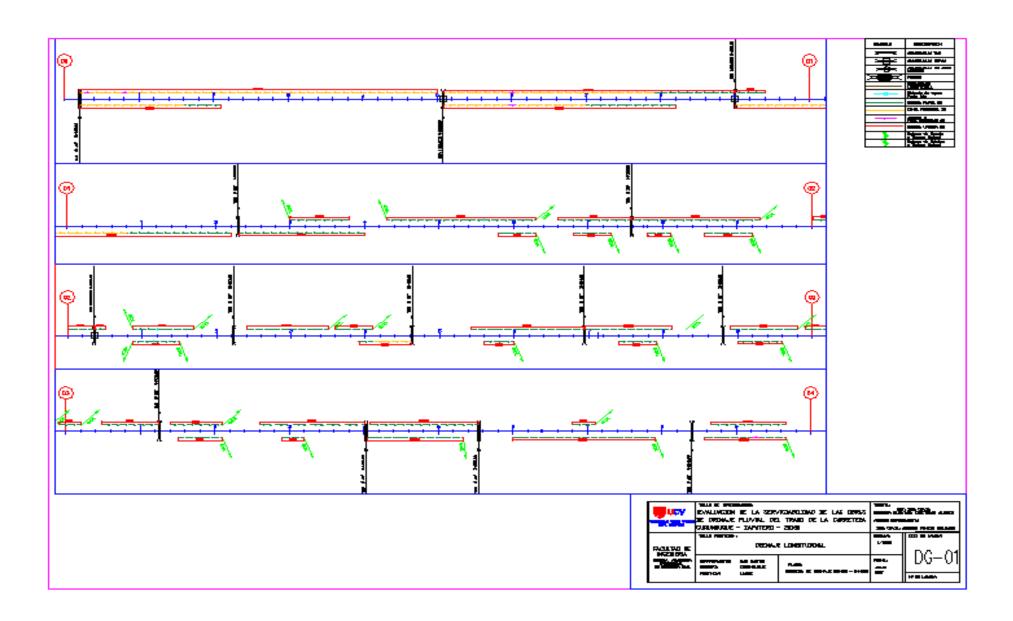
Fecha Presupuesto 09/06/2017

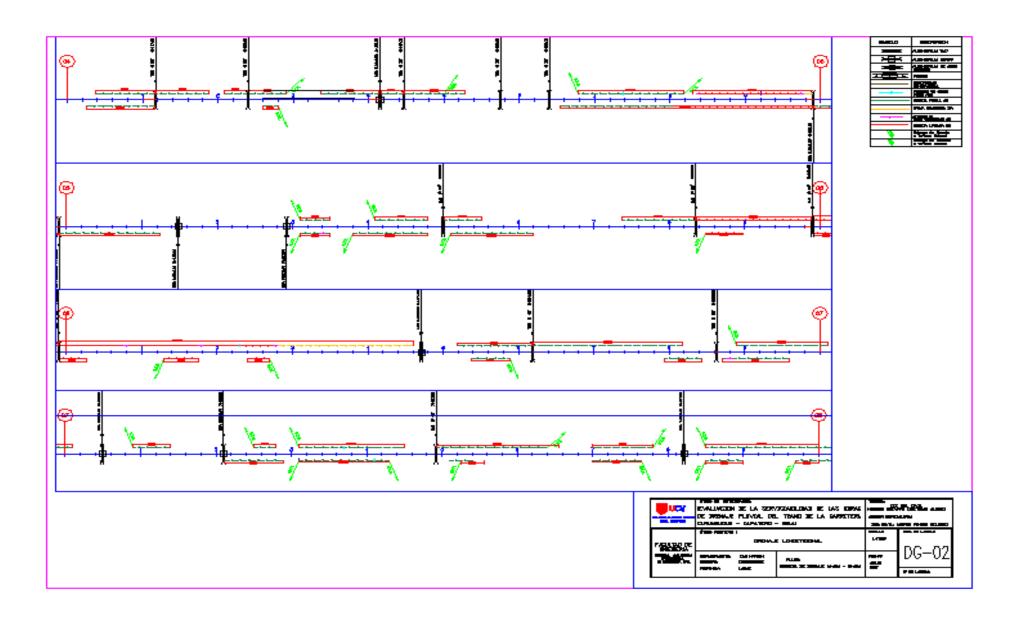

Moneda **NUEV OS SOLES**

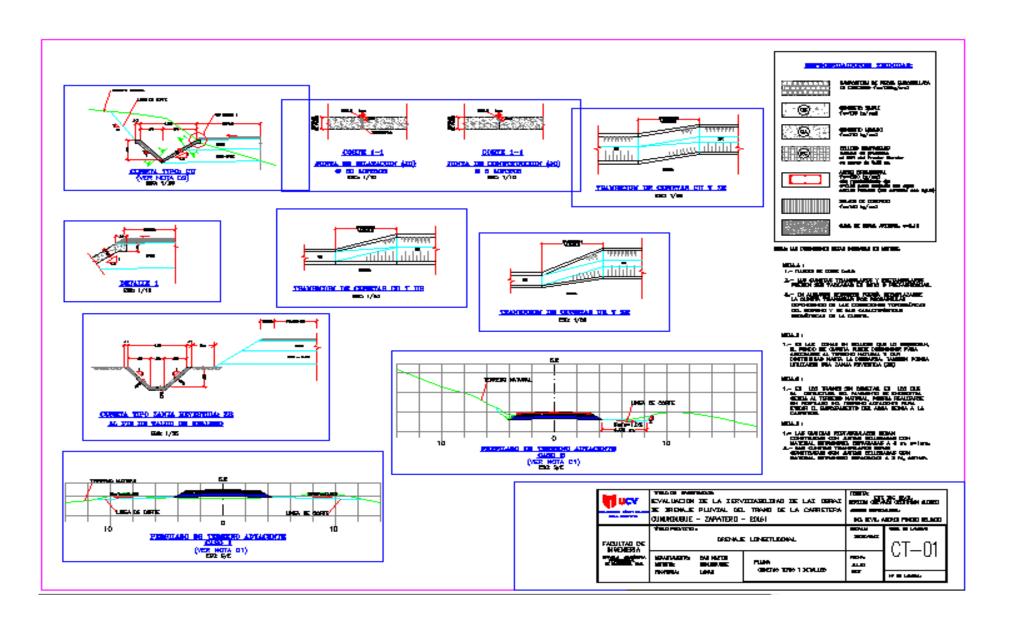
Ubicación Geográfica 22050: SAN MARTIN - LAMAS - CUÑUM BUQUI

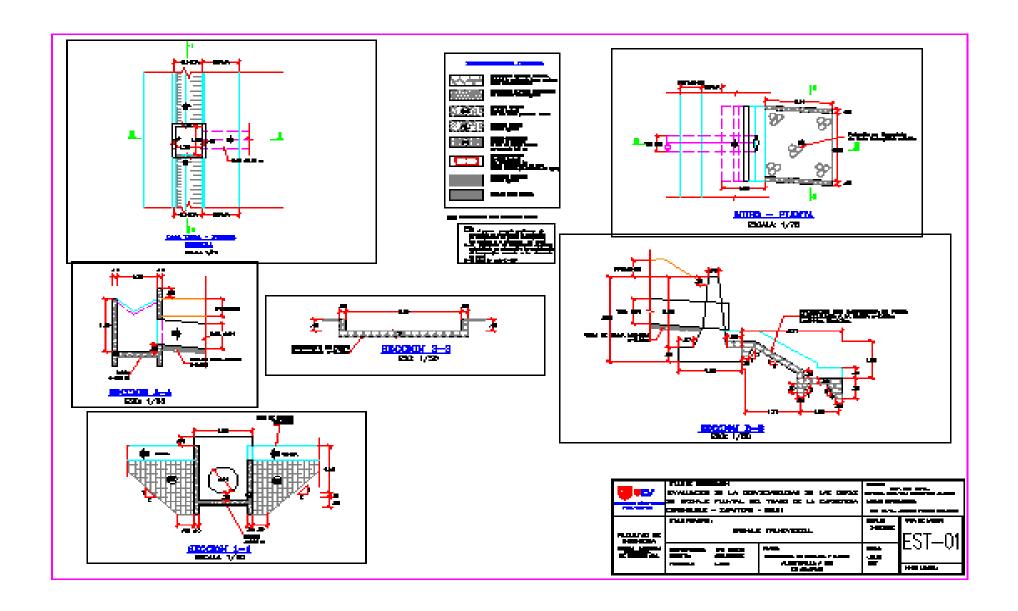

K = 0.437*(Mr / Mo) + 0.177*(CMHr / CMHo) + 0.171*(AAr / AAo) + 0.062*(DMAr / DMAo) + 0.153*(Ir / Io)

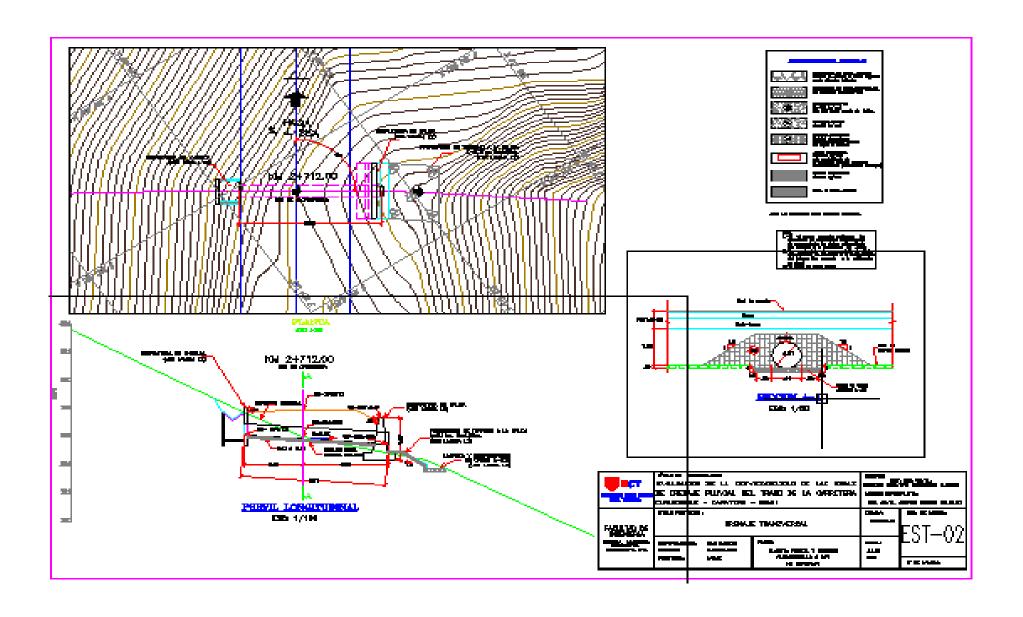

Monom	Factor	(%)	Símbolo	Indice	Descripción
<u> </u>	0.437	100.000	M	47	MANO DE OBRA INC. LEYES SOCIALES
2	0.177	31.073		48	MAQUINARIA Y EQUIPO NACIONAL
		58.757	CMH	21	CEMENTO PORTLAND TIPO I
_		10.169		37	HERRAMIENTA MANUAL
3	0.171	64.912	AA	05	AGREGADO GRUESO
_		35.088		13	ASFALTO
4	0.062	85.484	DMA	30	DOLAR (GENERAL PONDERADO)
		1.613		02	ACERO DE CONSTRUCCION LISO
_		12.903		43	MADERA NACIONAL PARA ENCOF. Y CARPINT.
5	0.153	100.000	I	39	INDICE GENERAL DE PRECIOS AL CONSUMIDOR


Anexo 08: Cronograma del Proyecto.




Anexo 09: Planos.





Anexo 10: Validación de Instrumento.

INFORME DE JUICIO DE EXPERTO SOBRE INSTRUMENTO DE INVESTIGACIÓN

DATOS GENERALES:

Apellidos y Nombre del experto: Becerra Guevara, Ricardo Lenin

Grado Académico: Ingeniero Civil

Institución donde labora: Empresa R.B.G S.A.C
Cargo que desempeña: Supervisor de Obra – Proyectista
Título de la Investigación: "Evaluación De La Serviciabilidad De Las Obras De Drenaje
Pluvial Del Tramo De La Carretera Cuñumbuque – Zapatero – 2016"
Instrumento motivo de evaluación: Ficha de Observaciones y Registro.
Autor del Instrumento: Heredia Guevara, Cristhian Alonso

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTARI E (3) RUENA (4) EYCELENTE (5)

CRITERIOS	INDICADORES	1	2	3	4	5
CLARIDAD	Los ítems están formulados con lenguaje apropiado es decir libre de ambigüedades.				Χ	
OBJETIVIDAD	Los ítems permitirán mensurar las variables en todas sus dimensiones e indicadores en sus aspectos conceptuales y operacionales.				Х	
ACTUALIDAD	El instrumento evidencia vigencia acorde con el conocimiento científico, tecnológico y legal inherente a la serviciabilidad				X	
ORGANIZACION	Los ítems traducen organicidad lógica en concordancia con la definición operacional y conceptual de las variables, en todas sus dimensiones e indicadores, de manera que permitan hacer abstracciones e inferencias en función a la hipótesis, problema y objetivos de la investigación.				X	
SUFICIENCIA	Los ítems expresan suficiencia en cantidad y calidad.		T		X	
INTENCIONALIDAD	Los ítems demuestran estar adecuados para el examen de contenido y mensuración de las evidencia inherentes a la serviciabilidad.				X	
CONSISTENCIA	La información que se obtendrá mediante los ítems, permitirá analizar, describir y explicar la realidad motivo de la investigación.					X
COHERENCIA	Los ítems expresan coherencia entre la variable, dimensiones e indicadores.				X	
METODOLOGIA	Los procedimientos insertados en el instrumento responden al propósito de la investigación.					X
PERTINENCIA	El instrumento responde al momento oportuno y más adecuado.	1	1	1	X	- / -
	Subtotal			T		
	TOTAL	+	+		-	

OPINION DE APLICABILIDAD: APTO PARA LA APLICACIÓN II.

III. PROMEDIO DE VALORACIÓN:

Tarapoto, Junio del 2017

INFORME DE JUICIO DE EXPERTO SOBRE INSTRUMENTO DE INVESTIGACIÓN

DATOS GENERALES:

Apellidos y Nombre del experto: Bartra Ruiz Miguel Ángel

Grado Académico: Ingeniero Civil

Institución donde labora: Empresa Aybarsa Consultores E.I.R.L

Institución donde labora: Empresa Aybarsa Consultores E.I.K.L

Cargo que desempeña: Supervisor de Obra

Título de la Investigación: "Evaluación De La Serviciabilidad De Las Obras De Drenaje
Pluvial Del Tramo De La Carretera Cuñumbuque – Zapatero – 2016"

Instrumento motivo de evaluación: Ficha de Observaciones y Registro.

Autor del Instrumento: Heredia Guevara, Cristhian Alonso

MUY DEFICIENTE (1) DEFICIENTE (2) ACEPTABLE (3) BUENA (4) EXCELENTE (5)

CRITERIOS	INDICADORES	11	12	13	14	15
CLARIDAD	Los ítems están formulados con lenguaje apropiado es decir libre de ambigüedades.	Ė			X	
OBJETIVIDAD	Los ítems permitirán mensurar las variables en todas sus dimensiones e indicadores en sus aspectos conceptuales y operacionales.				X	
ACTUALIDAD	El instrumento evidencia vigencia acorde con el conocimiento científico, tecnológico y legal inherente a la Obras de Arte de Drenaje Pluvial.				X	
ORGANIZACION	Los ítems traducen organicidad lógica en concordancia con la definición operacional y conceptual de las variables, en todas sus dimensiones e indicadores, de manera que permitan hacer abstracciones e inferencias en función a la hipótesis, problema y objetivos de la investigación.					X
SUFICIENCIA	Los ítems expresan suficiencia en cantidad y calidad.				X	
INTENCIONALIDAD	Los ítems demuestran estar adecuados para el examen de contenido y mensuración de las evidencia inherentes a la Obras de Arte de Drenaje Pluvial.				X	
CONSISTENCIA	La información que se obtendrá mediante los ítems, permitirá analizar, describir y explicar la realidad motivo de la investigación.					X
COHERENCIA	Los ítems expresan coherencia entre la variable, dimensiones e indicadores.					X
METODOLOGIA	Los procedimientos insertados en el instrumento responden al propósito de la investigación.					X
PERTINENCIA	El instrumento responde al momento oportuno y más adecuado.		1	1	X	
	Subtotal				\neg	
	TOTAL					

OPINION DE APLICABILIDAD: Opto para la explicación II.

III. PROMEDIO DE VALORACIÓN:

Tarapoto, Junio del 2017

Anexo 11: Matriz de Consistencia.

MATRIZ DE CONSISTENCIA DE LA INVESTIGACIÓN

TÍTULO: "EVALUACION DE LA SERVICIABILIDAD DE LAS OBRAS DE DRENAJE PLUVIAL DEL TRAMO DE LA CARRETERA CUÑUMBUQUE – ZAPATERO - 2016".

PROBLEMA	OBJETIVOS	HIPÓTESIS	FUNDACION TEORICA
Hipótesis general: Se encontrará en un estado óptimo la serviciabilida d del tramo de la carretera cuñumbuque – zapatero.	obras de drenaje. *Determinar el índice de serviciabilidad. *Evaluar la severidad de los daños encontrados. *Valorar el estado de las obras de drenaje según Manual de inspección Visual de Estructuras de Drenaje.		DRENAJE LONGITUDINAL Canaliza las aguas de escorrentías superficiales caídas sobre la plataforma y taludes de una carretera, de forma paralela al eje de la calzada. CUNETAS Son zanjas o canales abiertos que son construidos a los lados de una carretera, recibe las aguas pluviales y las conduce hacia un lugar que no provoquen daños o inundaciones. DRENAJE TRANSVERSAL Son elementos que permite el paso de las aguas que cruzan por debajo y forma perpendicular al eje de la carretera, que transportan las aguas recogidas de la plataforma, quebradas y de sus márgenes que se encuentra aguas arriba de la vía en dirección aguas abajo. ALCANTARILLAS. Son estructuras construidas en forma transversal al eje o siguiendo la orientación del curso de agua, que sirven para la evacuación o transporte de aguas.

DISEÑO DE INVESTIGACION	POBLACIÓN Y MUESTRA	VARIABLE DE ESTUDIO	INSTRU	JMENTOS DE RE	COLECCION DE DATOS
El tipo de Diseño a utilizar en la investigación es NO EXPERIMENTAL , porque se tendrá que observar del hecho en la condición actual, sin realizar la manipulación de las variables que será del tipo Transversal (Descriptivo-Correlacional) ya que permitirá recoger los datos en un solo momento. M= Muestra "Tramo de la Carretera Cuñumbuque - zapatero" O= Observación de la variable "Carretera" r = "Serviciabilidad"	POBLACIÓN: El tramo en estudio CUÑUMBUQUE – ZAPATERO cuenta con 8.00 km de longitud de carretera, las cuales existen obras de drenaje en largo de la carretera. MUESTREO: El tramo en estudio CUÑUMBUQUE – ZAPATERO cuenta con 8.00 km de longitud de carretera, las cuales existen obras de drenaje en largo de la carretera.	Las variables del proyecto son: Variable Independiente: Obras de Arte de Drenaje Pluvial. Variable Dependiente: Serviciabilidad.	Técnicas Observaci ón	Ficha de observaciones y registro	Fuentes o informantes INVIAS – Colombia (Manual para la inspección visual de Estructuras de Drenaje)

FUENTE: ELABORACION PROPIA

Anexo 12: Formato para Inspección Visual de Cunetas.

NACIONAL NACIONAL	Headia Naticipalità LONGITUD (m) TOTAL MODULO 200 2,5	FORMA (1)	DE LAS OBRAS DEL CONTRATO No.	RAS DEL	CONTRA	TO No.	AMANTENMENTO INTEGRAL:	OF 2000% Pretare - Hruda PECHA, 2,5:08/2006
~ I I I	integrates LONGITUD (m) OTAL MODULE 2000 £.5	FORMA (1)					STO INTEGRAL:	PECHA
7000 2007 A	ricquita LONGITUD (m) OTAL MODULE 200 \$5.5	FORMA (1)						
7007 F156401-	LONGTUD (m) OTAL MODULE 200 2.5	FORMA ⁽¹⁾					NOR	' '
007	10NGITUD (m) 07AL MODULC 2000 3.5	FORMA (1)					A.M.V.: SECTOR ADM. VIAL. No.:	LEWANTADO PORE REPT
8 -	LONGTUD (IN) OTAL MODULC 200 4.5	FORMA ⁽¹⁾			ļ			
×	300	>	TPO SE	SEV. CANT.	Nn	FOTOGRAFIA No.	OBSERVACIONES	SWEETERS
				8		40243 p	Sepresses detriviation on at PR. 4.4-00 de tou per material provisionie de un destitationiente, se reconsisuale extende de material	A CONTRACTOR OF THE CONTRACTOR
			+	Ţ		T		
			+	1				•
			+	_				
			+	1	1	1		
			+	1				
				<u> </u>				
			+	1				
	<u> </u>		+	_				
			-					
	<u> </u>							
			+	<u></u>				
AD POSSES TO	CORPORATION OF PROCESS	STAR-R-TRAPEDIO	A.T.SDACIR	DACIDOLAR-S-		1		

NOMBRE DE LA CARRETERA: Nivel de Gravedad : Longitud(m),		СИЙИМВИДИ	E) - ZAPATERO	O = 8.00 KM Tipo de Via: D	Pepartamental				C PR: 0+000 Existencia de A	PR: 08+000 Arboles: SI	Fecha: 19/05/20		Levantada por :	: Est Cristhian A.	. Heredia Guevara	ì			Seve Baja Regular Alta	ridad 1 2 3					
PR	Longitud de				Escalonamiento			Grietas			Desgaste		D	esportillamien	ito	Fractura	amiento de la E	Estructura	Sepa	racion de la C	uneta		Obstruccion		
	de Muestreo	Forma de la Cuneta	Lado de Cuneta	EJ	Deterioro %	Gravedad	GR	Deterioro	Gravedad	DSU	Deterioro %	Gravedad	DPT-DLP	Deterioro %	Gravedad	FRAC	Deterioro %	Gravedad	sc	Deterioro %	Gravedad	OBS	Deterioro %	Gravedad Nivel	de Severidad
DE HASTA	(m)		_	Long (m)			Long (m)	%		Met. (m2)	Deterior 7	Giuveuuu	Met. (m2)	Deterior 70	Giuveada	Met. (m2)	Deterior A	- Oravedad	Long (m)	Deterior 70	Giuvedad	Long (m)	Deterior 70	Giurculu	<u> </u>
0+000 0+100 0+100 0+200	100 100	Tr Tr	D D	48.00 55.00	48.00% 55.00%	3	3.00	3.00%	11		-	-				3.00	3.00%	3						-	1
0+200 0+300	100	Tr	D	10.00	10.00%	3																			0
0+300 0+400 0+400 0+500	100 100				+	 		 	-		-	+			 		 	 		-			-	ļ	0
0+500 0+600	100					1						<u> </u>						1							0
0+600 0+700 0+700 0+800	100 100	Tr Tr	D D	9.00 75.00	9.00% 75.00%	1 2	3.00	3.00%	2		ļ			ļ	 		ļ	-						ļ	0
0+800 0+900	100	- "	-	75.00	75.00%	-	3.00	3.00%			1	1					1								0
0+900 1+000	100	T / T		40.00	40.000		40.00	40.000/								0.00	0.000/		40.00	40.000/		05.00	05.000/		0
1+000 1+100 1+100 1+200	100	Tr/T Tr	D D	12.00	12.00%	3	18.00	18.00%	3		 					0.30	0.30%	11	40.00 95.00	40.00% 95.00%	3	25.00	25.00%	3	3
1+200 1+300	100											1					1	1							0
1+300 1+400 1+400 1+500	100 100	Tr	D	30.00	30.00%	3		ļ			1	.L				ļ	-	-					ļ	ļ	0
1+500 1+600	100	Tr	D			1	45.00	45.00%	2	6.00	6.00%	2										4.00	4.00%	3	1
1+600 1+700 1+700 1+800	100 100	Tr	D	-	-	1		-	1	-	-	ļ			1		1	1		ļ		50.00	50.00%	2	1
1+800 1+900	100					 					 				 		1	1							0
1+900 2+000	100																								0
2+000 2+100 2+100 2+200	100 100	1	 	+	+	1	-	1	 	-	1	+		l	1		1	1		-					0
2+200 2+300	100		1	-		1		1			ļ	1			ļ			1							0
2+300 2+400 2+400 2+500	100 100	 	D		+	+	15.00	15.00%	2		 	 		 	+		+	+		 		15.00	15.00%	2	0
2+500 2+600	100	<u> </u>	<u> </u>									1													Ö
2+600 2+700 2+700 2+800	100 100				-			-				-			-		-	-							0
2+800 2+900	100			†		1						1													0
2+900 3+000 3+000 3+100	100	Tr	D	27.00	27.00%	3													60.00	60.00%	3	60.00			2
3+100 3+100	100	Tr	D				3.00	3.00%	3			†					·	1							1
3+200 3+300	100					1					-				<u> </u>		ļ	1							0
3+300 3+400 3+400 3+500	100 100				+	-		-				+		-	-		-	-						-	0
3+500 3+600	100	Т	D																			7.00	7.00%	4	1
3+600 3+700 3+700 3+800	100 100	T	D			 	3.00	3.00%	3	7.90	7.90%	3			-		ļ	 				90.00 5.60	90.00% 5.60%	2	2
3+800 3+900	100	***************************************			<u> </u>	1						 			1	***************************************	1	1				19.00	19.00%	2	1
3+900 4+000 4+000 4+100	100																								0
4+100 4+100 4+100 4+200	100 100				+	 		-	<u> </u>		 	 			-		 	 							0
4+200 4+300	100					ļ											ļ								0
4+300 4+400 4+400 4+500	100 100			-	+	 		-	-		 	 		-	 		+	+		-	-				0
4+500 4+600	100					1		1			1	<u> </u>			1										0
4+600 4+700 4+700 4+800	100 100		D D	+		·	6.00 0.50	6.00% 0.50%	2		ļ	·			.		ļ			ļ		18.90	0.19%	3	1
4+800 4+900	100 100	Ť	D		<u> </u>		3.00	3.00%	3			†						<u> </u>				19.60	0.20%	1	1
4+900 5+000 5+000 5+100	100 100	Tr	D D			1					1						1	1				100.00 6.00	1.00% 6.00%	2	2
5+100 5+200	100	Tr	D		 	 		-	<u> </u>		 				 		 	 				86.00	86.00%	 	1
5+100 5+200 5+200 5+300	100	Tr	D									I						I				50.00	50.00%	1	1
5+300 5+400 5+400 5+500	100 100	Tr Tr	D D	+		+	 	 			 	<u> </u>	 	 	 	2.40	2.40%	1 1		 	 	47.00 4.00	47.00% 4.00%	3	1
5+500 5+600	100			T		1	4.00	1.000/	I		I					I	1	Ţ							0
5+600 5+700 5+700 5+800	100 100	Tr Tr	D D		-	-	4.00 6.00	4.00% 6.00%	3			 		-	-	 	+	+			-		-	 	1
5+800 5+900	100	<u> </u>					0.00	0.0070										1							Ö
5+900 6+000 6+000 6+100	100 100	-	1	-	-	-		-		1	1	-		-	-		-	-							0
6+100 6+200	100	İ	t	1	1	1	1	1			1	t	<u> </u>				1	1							0
6+200 6+300 6+300 6+400	100 100	Tr	D	+	ļ	ļ		ļ			-	+			ļ	ļ	ļ	ļ		ļ		20.00	20.00%	1	1
6+400 6+500	100	 	 	l	-	-	-	 	<u> </u>			l		-	-	 	1	1		l					0
6+500 6+600	100				-						ļ	ļ					ļ			-					0
6+600 6+700 6+700 6+800	100 100	 	+	1	+	-	 	-	-		-	+		-	-	 	 	+		-	-		-		0
6+800 6+900	100	Tr	D			1					1				1		1	1				10.00	10.00%	1	1
6+900 7+000 7+000 7+100	100 100	Tr Tr	D D	6.00	6.00%	2		-		1	-	1	-	-			-	-		-		32.00	32.00%	1	0
7+100 7+200	100			0.00	0.0078	1					1	1			<u> </u>		<u> </u>	1							0
7+200 7+300	100	Ţ	D				1.00	1.200/									ļ	1				19.10	19.10%	3	1
7+300 7+400 7+400 7+500	100 100	+ +	D D	6.00	6.00%	3	1.20 0.80	1.20%	2	-	1	+		-	1		 	1		-	-		-		1
7+500 7+600	100	Ť	D			1	1.30	1.30%	2																1
7+600 7+700 7+700 7+800	100 100	Tr	D	6.00	6.00%	1 3	8.00	8.00%	3		 	 		 	 	 	 	 			 		 		1
7+800 7+900	100	Tr	D	3.00		<u> </u>		1	L			1			1	3.00	3.00%	1 1							1
7+900 8+000 LONGITUD TOT.	100		I	284.0	n		120.80		1	13.90	1	1	0.00			8.70	1	1	195.00			688.20			0
LONGITUD TOT.	· ~ DE FALLA			Z04.U	<u>~</u> 1		120.80	1		13.90	4		0.00	1		0./(4		195.00	1		000.20	j		

PORCENTAJE Y LONGITUD DE DAÑO PR 0+000 - PR 08+000 - LADO DERECHO

FALLA	UNIDAD	LONGITUD	% DE	% DE
FALLA	UNIDAD	TOTAL DE DAÑO	LONGITUD	LONGITUD DE
Escalonamiento	ml	285.00	8.012 %	21.729 %
Grietas	ml	120.80	3.396 %	9.210 %
Desgaste	ml	13.90	0.391 %	1.060 %
Desportillamiento	ml	0.00	0.000 %	0.000 %
Fracturamiento de la Estructura	ml	8.70	0.245 %	0.663 %
Separacion de la Cuneta	ml	195.00	5.482 %	14.867 %
Obstruccion	ml	688.20	19.348 %	52.470 %
TOTAL		1311.60	36.874 %	100.000 %

NOMBRE DE LA Nivel de Graved			СИЙИМВИОИ) = 8.00 KM Tipo de Via: D	epartamental	FC	ORMATO N° 0		N INSPECCIO PR: 0+000 Existencia de A		CUNETAS Fecha: 19/05/20		Levantada por :	Est Cristhian A.	Heredia Guevara	a .			Baja Regular	eridad 1 2					
		1				Scalonamiento			Grietas											Alta	3	J				2
PF	R	Longitud de	Forma de la	Lado de	EJ	scalonamiento) T	GR	Deterioro		DSU	Desgaste		DPT-DLP	esportillamien		FRAC	miento de la E	1	Sep	aracion de la C	1	OBS	Obstruccion		Nivel de Severidad
DE	HASTA	Muestreo (m)	Cuneta	Cuneta	Long (m)	Deterioro %	Gravedad	Long (m)	Weterioro	Gravedad	Met. (m2)	Deterioro %	Gravedad	Met. (m2)	Deterioro %	Gravedad	Met. (m2)	Deterioro %	Gravedad	Long (m)	Deterioro %	Gravedad	Long (m)	Deterioro %	Gravedad	
0+000	0+100	100																								0
0+100 0+200	0+200 0+300	100	Tr	T	12.00	12.00%	3	3.00	3.00%	3		-	 								-					1
0+300 0+400	0+400 0+500	100 100	Tr Tr		24.00 9.00	24.00% 9.00%	3 2					-	<u> </u>					-	ļ							0
0+500	0+600	100			3.00	3.00%						1	<u> </u>								<u> </u>					Ö
0+600 0+700	0+700 0+800	100 100			 	 	 					 	ļ			ļ					-					0
0+800	0+900 1+000	100	-			ļ		14.50	14.50%				<u> </u>				0.60	0.600/			1					0
0+900 1+000	1+100	100 100	Tr		18.00	18.00%	3	13.00	13.00%	3							0.60	0.60%								1
1+100 1+200	1+200 1+300	100 100	Tr			 	 			ļ		 	-			ļ		 	-		 		60.00	60.00%	3	2
1+300 1+400	1+400 1+500	100 100				-	1					1	<u> </u>					1	1							Ö
1+500	1+600	100				<u> </u>	<u> </u>					<u> </u>	<u> </u>													0
1+600 1+700	1+700 1+800	100	Tr	l l		-														20.00	20.00%	3				1 0
1+800	1+900	100											ļ													0
1+900 2+000	2+000 2+100	100 100	T / Tr					10.00	10.00%	1													54.00	54.00%	1	1
2+100 2+200	2+200 2+300	100 100	T		6.00	6.00%		4.00	4.00%	- 2			-								-		24.00 5.00	24.00% 5.00%	2	1 1
2+300	2+400	100			0.00	0.00%			1																	0
2+400 2+500	2+500 2+600	100 100	Tr Tr		12.00	12.00%	3	3.00	3.00%	3		-	 				6.00	6.00%	3		-		23.50 41.50	23.50% 41.50%	2	1
2+600	2+700	100	T		18.00	18.00%	3	12.00	12.00%	3		1	1							12.00	12.00%	3	17.00 4.00	17.00% 4.00%	2	1 1
2+700 2+800	2+800 2+900	100 100	Tr/T Tr	i				3.00	3.00%	3										14.00	14.00%	3	60.00	60.00%	2	1
2+900 3+000	3+000 3+100	100	Tr T	I																			90.00 32.00	90.00% 32.00%	2	2
3+100	3+200	100	Ť	I		<u> </u>	<u> </u>						<u> </u>										75.50	75.50%	3	2
3+200 3+300	3+300 3+400	100 100	Tr/T		6.00	6.00%	3	6.00	6.00%	3 3		 	 			-		-			+		40.00 2.00	40.00% 2.00%	3	1 1
3+400 3+500	3+500 3+600	100 100	T	I				3.00	3.00%	2													48.00	48.00%	3	0
3+600	3+700	100																								0
3+700 3+800	3+800 3+900	100 100				-	-					-						-			-					0
3+900	4+000 4+100	100	-										1										50.00	50.000/		0
4+000 4+100	4+200	100	Ť																				0.70	50.00% 0.70%	3	1
4+200 4+300	4+300 4+400	100	T	<u> </u>		-	-	3.00	3.00%	3		-									-		10.00 25.00	10.00% 25.00%	2	1 1
4+400 4+500	4+500 4+600	100				<u> </u>		1.20	1.20%											12.50	12.50%					0
4+600	4+700	100	† †	<u> </u>	<u> </u>	<u> </u>	ł	5.50	1.20% 5.50%	2		ł	<u> </u>			l			<u> </u>	12.50	12.50%	3				1
4+700 4+800	4+800 4+900	100 100				ļ	-	16.00	16.00%	-		-	ļ								ļ					0 1
4+900	5+000	100	Tr	i				10.00	10.0076														14.00	14.00%	2	1
5+000 5+100	5+100 5+200	100				 						-	 				<u> </u>	-			-					0
5+200 5+300	5+200 5+300 5+400	100											<u> </u>				1	1	I		1					0
5+400	5+500	100	<u> </u>		†	<u> </u>	1	!				<u> </u>	ļ	<u> </u>									8.00	8.00%	1	1
5+500 5+600	5+600 5+700	100 100	T	1	 	-	-	 	-	-	-	-	 			-		-	-	 	-	-		-		0
5+700	5+800	100	ij	i		-							<u> </u>								1		63.50	63.50%	2	1
5+800 5+900	5+900 6+000	100 100			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u></u>		<u></u>	<u> </u>			<u> </u>			<u> </u>			<u></u>	13.00 25.50	13.00% 25.50%	2	1
6+000 6+100	6+100 6+200	100 100	Tr/T		ļ 	1	-	3.00	3.00%	3	ļ 	ļ —	 				ļ	1			-		35.00 30.80	35.00% 30.80%	3	1 1
6+200	6+300	100	T	i i			<u> </u>	1.00	1.00%	3		<u> </u>	<u> </u>										30.00	30.0076		1
6+300 6+400	6+400 6+500	100	Tr Tr		6.00	6.00%	3	30.00	30.00%	3	-	-	 			-		-	-	 	-	-		-		0
6+500 6+600	6+600 6+700	100 100	Ţ		15.00	15.00%	I,-	21.00 9.00	21.00% 9.00%	3			 					ļ	ļ		ļ		45.60	45.60%	2	2
6+700	6+800	100	Ť		15.00	15.00%	3	3.00	9.00% 3.00%	3			<u> </u>										28.00	28.00%	2	1
6+800 6+900	6+900 7+000	100 100	т т	-	-	-	-	18.00	18.00%	3	-	-	+			-	-	-	-	-	+	-	35.00	35.00%	1	0
7+000	7+100	100	Ť	i		ļ				<u> </u>		ļ	↓			L		ļ			ļ		13.00	13.00%	3	1
7+100 7+200	7+200 7+300	100 100	Т Т	T		+	 	9.00	9.00%	3		1	 			 			 	 	+	-	4.00	4.00%	2	0
7+300 7+400	7+400 7+500	100	Tr/T		6.00	6.00%	3	40.00	40.00%	2		-	-				3.00 7.00	3.00% 7.00%	2				44.40	44.40%	3	1 1
7+500	7+600	100	11/1														7.00	7.00/8								Ó
7+600 7+700	7+700 7+800	100 100	T Tr	 		 	 	14.00	14.00%	2		 	 					 	 		-		63.00	63.00%	1	1 1
7+800	7+900	100	Tr	<u> </u>	6.00	6.00%	3	3.00	3.00%	3		ļ	ļ				2.00	2.00%	2		ļ					1
7+900 LC	8+000 ONGITUD TO	100 TAL DE FALLA	T S	I	138.00		1	255.20	l		0.00	o d		0.00		1	18.60	1	1	58.50			20.00 1105.00	20.00%	. 3	1

PORCENTAJE Y LONGITUD DE DAÑO PR 0+000 - PR 08+000 - LADO IZQUIERDO

FALLA	UNIDAD	LONGITUD	% DE	% DE
FALLA	UNIDAD	TOTAL DE DAÑO	LONGITUD	LONGITUD DE
Escalonamiento	ml	138.00	2.574 %	8.760 %
Grietas	ml	255.20	4.761 %	16.200 %
Desgaste	ml	0.00	0.000 %	0.000 %
Desportillamiento	ml	0.00	0.000 %	0.000 %
Fracturamiento de la Estructura	ml	18.60	0.347 %	1.181 %
Separacion de la Cuneta	ml	58.50	1.091 %	3.714 %
Obstruccion	ml	1105.00	20.615 %	70.145 %
TOTAL		1575.30	29.388 %	100.000 %

Anexo 13: Formato para Inspección Visual de Alcantarillas.

FORMATO N° 02 RESUMEN INSPECCION VISUAL DE ALCANTARILLA								
NOMBRE DE LA CARRETERA: EMP. PE-5N (CUÑUMBUQUE) - ZAPATERO = 8.00 KM		PR: 0+000 PR: 08+000		Fecha: 19/05/2017	Levantada por : Est. Cristhian A. Heredia Guevara		Baja	1
Nivel de Gravedad : Longitud(m), Area(m2)	Tipo de Via: Departamental	Existencia de Arboles: SI	NO	\boxtimes			Regular	2
				•			Alta	3

																				7 1192		_				
PROGRESIVA Tipo de Alcantarilla		Grieta en aletas, muro cabezal y muros de poceta o lavadero.						tical en la Ui Cabezal y la	nion entre el s Aletas.		on Perdida Pa de la Tuberia		cial o Total Hudimiento o Aplastamiento de Seccion de Tuberia Socavacion del Concreto y Suelo de Fundacion de Aletas, solado y/o Muro Cabezal Deterioro y Perdida del morte pega de las Uniones de la Tu								Nivel de Severidad					
		E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	E. E	E. S	DUCTO	
00+020	TMC																									0
00+508	CA		2.0 M																							1
00+900	CA																									1
01+230	TMC																						20.00%	30.00%	10.00%	2
01+758	TMC																						20.00%	40.00%	20.00%	2
02+036	CA	1.0M																					10.00%			1
02+223	TMC																						30.00%		10.00%	2
02+463	TMC		3.00 M																				30.00%	40.00%	10.00%	2
02+694	TMC																	TOTAL					30.00%			3
02+880	TMC																						30.00%	20.00%	10.00%	2
03+125	TMC																									0
03+403	TMC																						20.00%	30.00%	20.00%	2
03+554	TMC	4.0 M																					20.00%	20.00%		2
03+840	TMC																						30.00%	30.00%		2
04+117	TMC																									0
04+239	TMC																									0
04+415	CA																							40.00%		2
04+447	TMC																						20.00%	10.00%		1
04+575	TMC																						10.00%	30.00%	15.00%	2
04+640	TMC																						10.00%	20.00%		1
04+990	CA																						25.00%	30.00%		2
05+148	CA																						65.00%	75.00%	70.00%	3
05+292	CA																						15.00%	30.00%		2
05+500	TMC																						20.00%	15.00%		1
05+835	TMC																						20.00%	25.00%		2
05+990	TMC																						15.00%	40.00%	10.00%	2
06+471	CA																						40.00%	40.00%	30.00%	3
06+190	TMC																						10.00%	20.00%		1
06+863	TMC																									0
07+049	CA																						50.00%	30.00%	15.00%	3
07+210	CA																						10.00%	15.00%	10.00%	2
07+492	TMC																						15.00%	20.00%	10.00%	2
07+821	CA																						20.00%	10.00%	10.00%	2
TOTAL DE ALCANTA	ARILLAS DAÑADAS	2.00	2.00															1.00					25.00	23.00	14.00	

PORCENTAJE DEL TOTAL DE DAÑOS PR 0+000 - PR 08+000 - ESTRUCTURA DE ENTRADA

FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.061 %	7.407 %
Grietas en Tuberia Principal	0.00	0.000 %	0.000 %
Grieta Vertical en la Union entre el Muro Cabezal y las Aletas.	0.00	0.000 %	0.000 %
Fractura con Perdida Parcial o Total de la Tuberia.	0.00	0.000 %	0.000 %
Hudimiento o Aplastamiento de Seccion de Tuberia	0.00	0.000 %	0.000 %
Socavacion del Concreto y Suelo de Fundacion de Aletas, solado y/o Muro	0.00	0.000 %	0.000 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tuberia.	0.00	0.000 %	0.000 %
Matenimiento Inadecuado	25.00	75.758 %	92.593 %
TOTAL	27.00	81.818 %	100.000 %

PORCENTAJE DEL TOTAL DE DAÑOS PR 0+000 - PR 08+000 - ESTRUCTURA DE SALIDA									
FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS						
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	2.00	6.061 %	7.692 %						
Grietas en Tuberia Principal	0.00	0.000 %	0.000 %						
Grieta Vertical en la Union entre el Muro Cabezal y las Aletas.	0.00	0.000 %	0.000 %						
Fractura con Perdida Parcial o Total de la Tuberia.	0.00	0.000 %	0.000 %						
Hudimiento o Aplastamiento de Seccion de Tuberia	0.00	0.000 %	0.000 %						
Socavacion del Concreto y Suelo de Fundacion de Aletas, solado y/o Muro Cabezal	1.00	3.030 %	3.846 %						
Deterioro y Perdida del mortero de pega de las Uniones de la Tuberia.	0.00	0.000 %	0.000 %						
Matenimiento Inadecuado	23.00	69.697 %	88.462 %						
TOTAL	26.00	78.788 %	100.000 %						

PORCENTAJE DEL TOTAL DE DAÑOS PR 0+000 - PR 08+000 - DUCTO

FALLA	TOTAL DE ALCANTARILLAS DAÑADAS	% DEL DAÑO TOTAL DE ALCANTARILLA	% DE DAÑOS
Grieta en aletas, muro cabezal y muros de poceta o lavadero.	0.00	0.000 %	0.000 %
Grietas en Tuberia Principal	0.00	0.000 %	0.000 %
Grieta Vertical en la Union entre el Muro Cabezal y las Aletas.	0.00	0.000 %	0.000 %
Fractura con Perdida Parcial o Total de la Tuberia.	0.00	0.000 %	0.000 %
Hudimiento o Aplastamiento de Seccion de Tuberia	0.00	0.000 %	0.000 %
Socavacion del Concreto y Suelo de Fundacion de Aletas, solado y/o Muro Cabezal	0.00	0.000 %	0.000 %
Deterioro y Perdida del mortero de pega de las Uniones de la Tuberia.	0.00	0.000 %	0.000 %
Matenimiento Inadecuado	14.00	42.424 %	100.000 %
TOTAL	14.00	42.424 %	100.000 %