

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA CIVIL

"Causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía Samanco - Propuesta de Solución, Distrito de Nuevo Chimbote, Provincia del Santa, Ancash – 2019"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

AUTORES:

MICHER SIMON, Miguel Angel Junior (ORCID: 0000-0001-7035-9690)

SARMIENTO AHON, Gian Franco (ORCID: 0000-0001-7257-3156)

ASESORA:

MGTR. LEGENDRE SALAZAR, Sheila Mabel (ORCID: 0000-0003-3326-6895)

LÍNEA DE INVESTIGACIÓN:

Diseño de Obras Hidráulicas Y Saneamiento

CHIMBOTE – PERÚ 2019

DEDICATORIA

El presente trabajo de investigación está dedicado a nuestras familias, quienes fueron parte fundamental para la elaboración de este trabajo de investigación, ellos son los que nos dieron grandes ánimos y esperanzas.

A nuestros amigos, quienes nos apoyaron y brindaron la ayuda necesaria para la realizar nuestros estudios de investigación, así como sus enseñanzas.

A nuestros asesores quienes fueron parte fundamental de nuestra educación y orientación, para todos ellos va dedicado este trabajo de investigación.

Micher Simon Miguel Angel Junior

Sarmiento Ahon Gian Franco

AGRADECIMIENTO

Agradecemos a la universidad que nos brindó a los mejores profesionales que nos guiaron a lo largo de la carrera.

Le agradecemos a Dios por su bendición al permitirnos cumplir un objetivo más en nuestras vidas.

Le agradecemos a nuestra familia por siempre apoyarnos en todo el largo de nuestra vida.

Gracias a nuestra asesora la ingeniera Sheila Legendre Salazar así como al ingeniero Gonzalo Diaz Garcia quienes nos brindaron su apoyo y sus consejos para culminar el trabajo de investigación.

Micher Simon Miguel Angel Junior

Sarmiento Ahon Gian Franco

ACTA DE APROBACIÓN DE LA TESIS

Código: F07-PP-PR-02.02

Versión : 09

Fecha: 23-03-2018

Página : 1 de 27

El Jurado encargado de evaluar la tesis presentada por don(a) MICHER SIMÓN, MIGUEL ANGEL JUNIOR y SARMIENTO AHON, GIAN FRANCO cuyo título es: CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA SAMANCO - PROPUESTA DE SOLUCION, DISTRITO DE NUEVO CHIMBOTE, SANTA, ANCASH - 2019.

Chimbote, viernes, 12 de julio de 2019

Mgtr. OSÉ PEPE MUÑOZ ARANA

PRESIDENTE

Mgtr. LEGENDRE SALAZAR SHEILA MABEL

SECRETARIO

Mgtr. DÍAZ GARCÍA GONZALO HUGO VOCAL

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicerrectorado de Investigación y Calidad	Aprobó	Rectorado
---------	-------------------------------	--------	---	--------	-----------

DECLARATORIA DE AUTENTICIDAD

Nosotros: Micher Simon Miguel Angel Junior identificados con DNI N° 70612410 y Sarmiento Ahon Gian Franco identificados con DNI N° 73742251, con la finalidad de cumplir con las resoluciones vigentes estimadas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Civil, declaramos bajo juramento que toda la documentación existente es veraz y auténtica.

Así mismo, declaramos también bajo juramento que los datos expresados en el presente trabajo de investigación son auténticos y veraces.

A su vez aceptamos la responsabilidad correspondiente ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de la información aportada por lo cual nos sometemos a lo dispuesto en las normas académicas de la Universidad César Vallejo.

Chimbote, 07 de mayo de 2019

Michel Simon Miguel Angel Junior

Sarmiento Affon Gian Franco

ÍNDICE

Carátul	a	i
Dedica	toria	ii
Agrade	cimiento	iii
Página	del Jurado	iv
Declara	ación de Autenticidad	v
Índice.		vi
Resum	en	vii
Abstrac	zt	
I.	INTRODUCCIÓN	1
II.	MÉTODOS	7
2.1.	Tipo y Diseño de la investigación	7
2.2.	Variables, Operacionalización	
2.3.	Población y muestra	
2.4.	Técnicas e instrumentos de recolección de Datos, Validez y Confiabilidad	
2.5.	Procedimiento	
2.6.	Métodos de análisis de datos	
2.7.	Aspectos Éticos	
III.	RESULTADOS	
3.1.		
	1.1. Muestreo (ASTM –D420-69)	
	1.2. Contenido de Humedad (ASTM – D2216-71)	
	1.3. Ensayo granulométrico (ASTM – D6913)	
	1.4. Límite de Consistencia (ASTM - D4318)	
3.2.		
	2.1. Altimetría	
	2.2. Fotogrametría	
3.3.	Oceanografía Geológica	
	3.1. Batimetría	
IV. V.	DISCUSIÓN CONCLUSIONES	
v. VI.	RECOMENDACIONES	
VI. VII.	PROPUESTA	
VII. VIII.	REFERENCIAS	
	OS	

RESUMEN

La siguiente investigación se llevó al cabo en el área conocida como península el Ferrol,

área formada entre la bahía del Ferrol donde está ubicada la ciudad de Chimbote y la Bahía

de Samanco, teniendo como principal objetivo Determinar las causas de la invasión de las

aguas de la Bahía el Ferrol a la Bahía de Samanco. A su vez teniendo como planteamiento

de problema ¿Cuáles son las causas de la invasión de las aguas de la bahía el Ferrol a la

Bahía de Samanco?

De mismo modo fue primordial determinar el tipo de suelo que se encontraba en el área así

como el porcentaje de humedad que contenía obteniendo como resultado que el terreno es

arena mal graduada, además se buscó conocer las cotas de playa de la península el Ferrol

obteniendo como resultado la existencia de desniveles entre ambas playas, se determinó el

nivel batimétrico de las costas cercanas obteniendo como resultado profundidades

promedias cerca de las costas de 0 a 3m, utilizando una metodología descriptiva no

experimenta y al conocer las causas de la invasión de las aguas se planteó una propuesta de

solución.

Después de conocer las causas que provocaban la presencia de aguas dentro de la península

el Ferrol en un área conocida como marisma, se llegó a la conclusión que era producto de

los desniveles entre la Bahía el Ferrol y la Península el Ferrol provocando que el área en

desnivel sea propensa a las inundaciones, conociendo las causas se optó por proponer un

plan de control de erosión evitando dañar el ecosistema presente en la zona, utilizando para

ello geotubos geosintéticos con el fin de que la propuesta sea económica y amigable con el

medio ambiente.

Palabras Clave: Invasión, Bahía, Marisma, Erosión.

vii

ABSTRACT

The following investigation refers to the space in the area known as the Ferrol peninsula,

the area of the Ferrol bay where the city of Chimbote and Samanco Bay are located, having

as main objective to determine the causes of the invasion of the waters from La Bahía del

Ferrol to the Bay of Samanco. Did you ever have a problem statement? What are the

causes of the invasion of the waters of the bay? The Ferrol to the Bay of Samanco?

The same way it was essential to determine the type of soil that will be seen in the area as

well as the percentage of moisture that the content that results is the land graduated, also

sought to know the shares of the beach of the Ferrol peninsula obtaining as a result of the

existence between the beaches, the bathymetric level of the costs was determined, were

obtained, were obtained, as a result, the averages were reduced near the coasts from 0 to

3m, a descriptive way of not experimenting and Know the causes of the invasion of the

waters proposed a solution.

After knowing the causes that caused the presence of the waters within the Ferrol peninsula

in an area known as marsh, it is concluded that it was the product of the natural resources

in the Ferrol Bay and the Ferrol Peninsula causing The area in the erosion control plan is

reflected in the ecosystem present in the area, as in the geosynthetic geotubes with the

purpose of proposing the economy of the sea and the environment.

Keywords: Invasion, Bay, Marsh, Erosion

viii

I.INTRODUCCIÓN

Las poblaciones costeras del Perú se desarrollaron mediante la utilización de los recursos provenientes del mar, en la actualidad este desarrollo muchas veces es perjudicado por fenómenos naturales, tales como el fenómeno del Niño Costero, que afecta a la población que vive en las cosas ya que su economía proviene de la explotación de los recursos marinos.

Uno de los problemas actuales en la ciudad de Chimbote es la contaminación existente, originado por la desembocadura de las aguas residuales en las costas de la ciudad. Debido a la contaminación existente a las costas de la Bahía el Ferrol la pesca ha tenido que verse obligada a trasladarse mar adentro o en muchos casos a la Bahía de Samanco, siendo esta área usada por los pescadores en sus faenas de pesca. A lo largo del tiempo en la Península el Ferrol se observó un área propensa a inundaciones por el avance de las aguas de la Bahía el Ferrol, generando un problema de erosión costera.

Salazar O. en su tesis titulada, "Estudio De infiltración En el Campo Experimental de Zonas Áridas y Semiáridas Noria De Guadalupe, Concepción Del Oro, Zacatecas", se propuso como principal objetivo conocer como ocurre el proceso de infiltración en la región norte del estado de Zacatecas, México. En el trabajo de investigación utilizo la metodología explicativa, dando como resultado que la infiltración aumenta cuando existe agua disponible sobre la superficie del suelo.

Para Barrigas C. y Pilamunga A. en su tesis titulada, "Velocidad De Infiltración Del Agua En El Sub-Suelo De Las Comunidades Tiquibuzo Y San José De La Comuna, Pertenecientes A La Parroquia Chillanes, Cantón Chillanes, Provincia De Bolivar, Asociado A La Granulometría Y a La Textura De Sus Componentes". Se buscó determinar la velocidad de infiltración del agua en el sub-suelo de las Comunidades de San José de la Comuna y Tiquibuzo, pertenecientes a la Parroquia Chillanes del Cantón Chillanes, asociado a la granulometría y a la textura de sus componentes, en esta investigación se usó la metodología exploratoria, dando como resultado que la textura y granulometrías de los mismos influyen directamente en la velocidad de infiltración del suelo.

Para Guido P., Ramírez A., Godínez L., Cruz S. y Juárez A. en el artículo científico titulado Estudio de la erosión costera en Cancún y la Riviera Maya, México. Se consideró

como objetivo principal estudiar las posibles causas de la erosión costera con el fin de proponer alguna solución, llegando a la conclusión que las posibles causas de la erosión costera son de procedencia naturales tales como huracanes, elevación del nivel del mar, desniveles en las cosas cercanas o antropogénicos como ocupación de las dunas principales, mala ubicación de obras de protección, construcción de puertos, etc.

Para Mendoza J. en su tesis "Influencia de la granulometría en la licuación de arenas". Considero como principal objetivo calcular la influencia de la granulometría de arenas en el fenómeno de licuación, mediante la realización de ensayos a escala reducida, en esta investigación se usó la metodología experimental, llegando a la conclusión que ensayos a escala reducida en la mesa vibratoria, usando distintas gradaciones de arenas sueltas y saturadas, logrando apreciar el fenómeno de licuación en cuatro de los seis ensayos ejecutados; el fenómeno se presentó en las arenas sueltas de baja gradación y medianamente gradadas

Para esto necesitamos conocer lo siguiente; Mar, se conoce a mar a la zona donde se dio origen a toda la vida tal y como la conocemos, posee una gran variedad de ecosistemas, así como flora y fauna micro y macroscópica (Lara-Lara, 2008, p 135). La cual se viene influenciada por la marea, conocemos como marea al movimiento asiduo de las aguas del mar, aumentando o disminuyendo el nivel del mar en intervalos de tiempo, siendo esto habitual cada día, cuando asciende el nivel de mar se le da el nombre de pleamar o marea alta, mientras cuando desciende recibe el nombre de bajamar o marea baja, generados por la intervención de la fuerza gravitatoria de la Luna, teniendo una reincidencia cada 6 horas, cuando ocurren eclipses solares se genera un fenómeno conocido como mareas vivas (Burton, 1977, p 13).

También influyen las Corrientes marinas u oceánicas tienen un impacto en las mareas, se les conoce así a las masas de agua que circulan como ríos por los océanos. Estas corrientes pueden ser frías o cálidas dependiendo el lugar de origen. En las costas de Chile y Perú se conoce una corriente de agua fría que transita de sur a norte conocida como Corriente de Humboldt, mientras también existe otra corriente de aguas cálidas llamada corriente del Niño, que recorre las costas de Ecuador y Perú (APTUS Chile, 2017, p 19). El principal generador de olas es atribuido al viento, ya que cede parte de su energía al agua. Varían de la fuerza que tiene el viento, ya que en grandes huracanes se aprecian olas gigantescas. Las

olas tienen un desplazamiento vertical. Los terremotos producidos en el lecho marino también generan olas de gran magnitud (Weihaupt, 1979, p 35).

La ciudad de Chimbote está asentada en una Bahía lo cual se le conoce al área costera ubicada entre puntos resistentes al desgaste, generando una playa con una morfología cóncava, el abastecimiento de sedimento es mayormente producido por los ríos, o la deriva litoral (Sweers, 1999, p 24). El área estudiada es conocida como Península, es una extensión de tierra la cual se encuentra cercada por el mar, esta porción de tierra se encuentra conectada al continente, en algunas ocasiones es confundida por islas ya que la porción de tierra que las une al continente es muy estrecha o incluyo puede ser cubierta por el mar cuando aumenta la marea. (Davis, 1985, p 381). Se generó un nuevo ecosistema conocido como Marisma, el cual se le denomina a los terrenos desnivelados cercanos al mar, los cuales son inundados en intervalos de tiempo por el mar (Bortolus A. 2009, p 10).

Para conocer las causas se investiga las propiedades del Suelo, es una capa de diferentes dimensiones de grosor, está compuesto por material terroso. Se genera una relación compuesta de energía y materia a través de la materia orgánica e inorgánica, poseyendo una gran pluralidad de seres vivos (Jaramillo et al, 1994, p 88). El suelo provoca interrelaciones dinámicas entre el aire y las capas del suelo, que tienen una influencia en el ciclo hidrológico y el clima, son una fuente de crecimiento para una gran cantidad de seres vivos. Posee gran repercusión en el medio ambiente ya que descompone la materia (Hillel, 1998, p 771).

Una de sus propiedades del suelo es la Textura, se le conoce a la proporción de las partículas que componen un suelo, siendo estas de diferentes dimensiones conocidas. Las arenas son consideradas de gran dimensión de 0.0625 a 2 mm, Limo de 0.0039 a 0.0625 mm y Arcillas inferior a 0.0039 (Buckman y Brady, 1966, p 135). Humedad del Suelo, se le conoce a la proporción existente de agua en un suelo, cuando es conservada por este generalmente ocupan los espacios vacíos entre partículas de mayor dimensión (White, 1979, p 54). Permeabilidad, es la propiedad del suelo en la que permite el paso de líquidos a través de sus poros (Terzaghi, K. y Peck, 1948, p 45).

Licuación de suelos, Se conoce como licuación de suelos cuando un suelo pierde su resistencia al corte, y por lo tanto se comporta como un líquido, mayormente en casos de

sismos afectando las cimentaciones, los suelos más propensos a sufrir de licuación son las arenas finas. (Poulos, 1985, p 772).

Para conocer las propiedades del suelo se necesitó realizar un estudio de suelos empezando por el Muestreo de un Suelo, se conoce al acto de obtener un porcentaje del material a estudiar, en este procedimiento se considera el almacenamiento y transporte de la muestra (J. Bowles, 1981, p 59).

Contenido de Humedad en Suelo, es la conexión existente entre los volúmenes de agua y suelo presente en una muestra (Powrie, 2004, p 125).

Ensayo Granulométrico, Los suelos se encuentran conformados por partículas de distintas morfologías, siendo esta variación importante ya que influyen en las propiedades mecánicas de un suelo (Lambe y Whitman, 1972, p 53). El análisis granulométrico clasifica las partículas que componen el suelo mediante dimensiones y da a conocer las disposiciones mediante porcentajes de cómo estas se encuentran, siendo útil para conocer los tipos de suelo, para ello se utilizan los tamices en un orden, teniendo cada uno de ellos un diámetro especificado. (Vargas, 2010, p 17).

Límite de Consistencia, consiste en conocer los limites Plásticos, Líquidos, El Límite Liquido se conoce como la cantidad de humedad necesario para tener una resistencia a la cortante de 25 gr/cm² Límite Plástico se conoce como el límite entre el estado plástico y semi-sólido (Perloff y Baron, 1977, p 298).

Conocimos los niveles de la superficie utilizando la Topografía, se conoce como topografía a todo procedimiento y principio utilizado para la determinación de una ubicación relativa (Dominguez, 1998, p 51). Se le conoce como topografía a la ciencia encargada de calcular los niveles sobre la superficie con la finalidad de trazar planos y mapas. (López, Martínez y Blasco, 2009, p 7).

Altimetría, se le conoce al grupo de procedimientos que tiene como objetivo conocer las cotas de los puntos dispuestos en una superficie. El principal propósito del estudio es averiguar el nivel de los puntos ubicados en la superficie respecto un punto referencial (Higgins, 1943, p. 4).

Fotogrametría aérea, se le conoce a la técnica de recolectar datos cuantitativos de objetos y el entorno en el que se encuentran, mediante un procedimiento de registro de datos, análisis e interpretación de fotografías (Allam, 1978, p 1513).

Para conocer las profundidades del mar se investigó sobre la Hidrografía Marina u Oceanografía, el cual se le denomina a todo conocimiento que tiene como objetivo estudiar el desarrollo natural que se lleva al cabo en el océano, y como este influye al mundo (Vetter, 1973, p 302)

Oceanografía Química, esta rama se encarga de conocer las propiedades de las aguas marinas y todos los procesos químicos que este presenta, y su relación con la transformación biológica y geológica (Valles *et al*, 2015, p 311)

Oceanografía Biológica, esta rama de la oceanografía se encarga de encontrar un entendimiento más extenso de cómo influye el sistema marino en la vida, y como afecta la intervención humana en la fauna marina (Chávez, 1975, p 15).

Oceanografía Física, esta rama se encarga de entender las características físicas del mar, tales como la difusión de la luz, el sonido, el origen y la difusión de las ondas producidas por las olas, mareas en las costas y las corrientes marinas (Grant M, 1991, p 7).

Oceanografía Geológica, esta rama busca describir la geomorfología tanto la que está presente en la superficie ubicado en los márgenes oceánicos, como la del lecho marino, como pueden las zonas abisales o montañas submarinas (Pentz, 1974, p 12).

Para conocer profundidad del lecho marino y conocer los niveles se utiliza la Batimetría, conocemos como batimetría a la topografía efectuada en el mar, se le conoce como cartografía náutica. Se considera a la batimetría como el arte que se encarga de medir las profundidades. Se representa en un plano mediante las curvas batimétricas o veriles (Burrough, 1989, p 24).

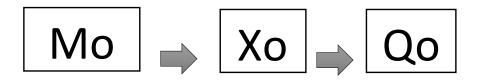
La Formulación del Problema es ¿Cuáles son las causas de la invasión de las aguas de la bahía el Ferrol a la Bahía de Samanco?

La Justificación del Estudio tuvo como finalidad determinar las causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía de Samanco efectuando estudios para conocer sus

posibles causas y encontrar una solución más precisa, esta investigación es de gran importancia ya que se puede evitar un problema ambiental y geológico de la zona, afectando en gran medida los ecosistemas tal y como lo conocemos. No solo los ecosistemas se verán afectados ya que geológicamente ocurrirá un gran cambio afectando a la población, tanto en la pesca como en el turismo de la zona y originando una mayor erosión costera.

La investigación es de tipo descriptiva, por lo tanto, se considera que no todas las investigaciones descriptivas consideren un planteamiento de hipótesis, por lo que se considera que este trabajo de investigación no cuenta con hipótesis (Hernández, 2014, p 52).

El objetivo general de la investigación fue determinar las causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía de Samanco. Y como objetivos específicos se plantearon:


Realizar un estudio de Mecánicas de Suelos, conocer la diferencia de cotas de Playa en la Península del Ferrol, realizar la batimetría en las costas adyacentes al área estudiada y realizar una propuesta de solución.

II. MÉTODO

2.1. Tipo y Diseño de la investigación

La siguiente investigación es considerada descriptiva; ya que se obtuvo la información relacionada tal y como se encontró en el área estudiada; además se le considera explicativa ya que se busca la razón de porque surge el problema a su vez es libre ya que no es respaldado por alguna entidad. Considerándola aplicada ya que generara conocimientos.

Se contó con el siguiente esquema:

Donde:

Mo: Muestra

Xo: Estudios de suelo y estudios básicos

Qo: Resultados

2.2. Variables, Operacionalización

Variables independientes: Causas de la invasión de las aguas de la Bahía el Ferrol.

Variable		Definición conceptual	Definición Operacional	Dimensiones	Indicadores	Escala de Medición	
		La invasión de las aguas de los mares es	Las causas que originan la invasión de	Topografía Oceanografía Geológica	Altimetría Fotogrametría Batimetría	Razón Razón Razón	
Causas Invasión las aguas	de de de	un desarrollo activo, en lo cual el frente de agua salada marcha hacia adentro de la tierra en las etapas de baja recarga del	agua se pueden comprender mediante la observación y la aplicación de estudios, como estudios geológicos		Muestreo	Razón	
la Bahía Ferrol a Bahía		acuífero y se retira hacia el mar cuando la recarga es alta, este equilibrio puede ser alterado, mediante factores climáticos y geográficos dando como resultado el	como es la altimetría y la batimetría, estudios de suelo, ya que al conocer la causa se puede proponer una solución más adecuada.	puede ser estudios de suelo, ya que al conocer la causa se puede proponer una solución más adecuada.	Mecánica de suelos	Contenido de humedad	Razón
Samanco.		aumento del nivel del mar. (Morell, 1996, p 209).			Granulometría	Razón	
					Límites de consistencia	Razón	

Fuente: Elaboración propia

2.3. Población y muestra

Población

La población estudiada es la Península el Ferrol entre la Bahía el Ferrol y la Bahía de Samanco, Distrito de Nuevo Chimbote, Provincia del Santa, Ancash – 2019.

Muestra

La muestra analizada en la investigación es el área inundada por las aguas en la Península el Ferrol entre la Bahía el Ferrol y la Bahía de Samanco, Distrito de Nuevo Chimbote, Provincia del Santa, Ancash – 2019.

2.4. Técnicas e instrumentos de recolección de Datos, Validez y Confiabilidad

Técnicas e instrumentos de recolección de datos

La técnica utilizada para la investigación se basa en la observación, ya que el análisis fue realizado por los autores, así como un estudio documental ya que se elaboración por medios externos y fueron interpretados por los mismos autores.

Instrumento

Se utilizó en la investigación las fichas técnicas y protocolos como herramientas para la recolección de datos, se realizarán los ensayos siguiendo los parámetros del ASTM, IGN.

Validez y confiabilidad

Conocemos la validez como la calidad en la que un instrumento de cálculo puede medir la variable buscada.

Validez es la condición con la que puede medir la variable que se busca utilizando una herramienta de cálculo, y estas serán ratificadas por un especialista.

2.5. Procedimiento

Topografía: Se procedió a la colocación de puntos de control (BM'S) a coordenadas UTM WGS-84, zona 17 sur con ayuda de un GPS. Se estaciono el equipo tomando como referencia los puntos de control para luego procedes con el levantamiento topográfico de la

zona a estudiar, mediante el uso de prismas, Drone y estación total, luego es exportado a un software de ingeniería (Autocad Civil 3D) y tener una representación gráfica en planos digitales (Ruiz, 1991, p 64).

Fotogrametría: Se procedió a poner puntos de control del terreno a estudiar, luego mediante el software del Drone Phanton 4 pro Obsidiam, teniendo en consideración una altura de vuelo de 70.00 m con traslapes al 70%. Luego esos datos fueron enviados al Software AGISOFT PHOTOSCAN PRO, dando como resultado la ortófono y la nube de puntos densos, las cuales fueron exportadas al software CIVIL 3D para ser procesados y obtener resultados finales. (Zelaya, Guevara y Pacas, 2016, p 35).

Batimetría: Siguiendo el procedimiento de la altimetría, con ayuda de un vehículo acuático (bote) y ayuda de una soga con una pesa de 15kg la cual se asentó al nivel del terreno bajo el nivel del mar para poder ser medida la profundidad y ser medida con el equipo topográfico, luego es procesado con ayuda de un software de ingeniería civil "Autocad Civil 3D" (Sopó *et al*, 2013, p 3).

Muestreo: Luego de tener el estudio topográfico, se mide el área de estudio, y mediante la norma ASTM – D420-69 tomamos como referencia el número de muestras por área a estudiar. Para obtener las muestras se utilizó un barreno para tener una mayor facilidad de extracción. (ASTM – D420-69)

Contenido de Humedad: Es un ensayo que se utiliza para conocer el porcentaje de agua que se halla en una porción de suelo en relación a su peso seco utilizando el horno para comparar los pesos. (ASTM D2216-71)

Análisis Granulométrico: Es un ensayo utilizado para separar mediante mallas la muestra de suelo y así poder conocer el tipo de suelo que es mediante el % de material que se encuentra. (ASTM – D6913)

Límites de Consistencia: Los límites de consistencias son utilizados para conocer el contenido de humedad que necesita para poder ser considerado como un material no plástico o plástico, para ello se utiliza el material que pasa el tamiz N°40.(ASTM - D4318)

2.6. Métodos de análisis de datos

El tipo de la investigación será descriptiva, siendo comprobado con las teorías relacionadas y la norma técnica peruana.

2.7. Aspectos Éticos

En este trabajo de Investigación se tendrá siempre la legitimidad de los resultados obtenidos, considerando el dominio intelectual.

III. RESULTADOS

3.1. Mecánica de Suelos

3.1.1. Muestreo (ASTM –D420-69)

El muestreo se realizó con ayuda de la norma ASTM D420 eligiéndose un total de 5 calicatas, fueron extraídas con ayuda del barreno.

TABLA N°1: Muestras extraídas

Calicata	Coordenada UTM (17L)	Nivel Freático
Calicata-01	766780 m. E 8985306 m. N	0.65 m
Calicata-02	767285 m. E 8985810 m. N	0.68 m
Calicata-03	766625 m. E 8985189 m. N	0.65 m
Calicata-04	767088 m. E 8985036 m. N	0.60 m
Muestra-05	766856 m. E 8984752 m. N	0.65 m

Fuente: Elaboración Propia

3.1.2. Contenido de Humedad (ASTM – D2216-71)

a) M-01, Calicata 01

TABLA N°2: Contenido de Humedad de la muestra 1, Calicata 01

Procedimientos		
Peso Tara (gr)	12.50	
Peso Tara + Suelo Húmedo (gr)	254.60	
Peso Tara +Suelo Seco (gr)	210.00	
Peso Agua (gr)	44.60	
Peso suelo Seco (gr)	197.50	
Contenido de Humedad %	22.58%	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración Propia

INTERPRETACIÓN: En la TABLA N°2 se observa el resultado del ensayo de contenido de humedad dando como resultado que el porcentaje de humedad de la Calicata 01 es de 22.58%.

b) M-01, Calicata 02

TABLA N°3: Contenido de Humedad Muestra 1, Calicata 02

Pro	Procedimientos		
Peso Tara (gr)	12.50		
Peso Tara + Suelo Húmedo (gr)	196.60		
Peso Tara +Suelo Seco (gr)	163.10		
Peso Agua (gr)	33.50		
Peso suelo Seco (gr)	141.60		
Contenido de Humedad %	23.66%		

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACIÓN: En la TABLA N°3 se observa el resultado del ensayo de contenido de humedad dando como resultado que el porcentaje de humedad de la Calicata 02 es de 23.66%.

c) M-01, Calicata 03

TABLA N°4: Contenido de Humedad Muestra 1, Calicata 03

Pro	Procedimientos		
Peso Tara (gr)	23.00		
Peso Tara + Suelo Húmedo (gr)	185.50		
Peso Tara +Suelo Seco (gr)	150.20		
Peso Agua (gr)	35.30		
Peso suelo Seco (gr)	127.20		
Contenido de Humedad %	27.75%		

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACIÓN: En la TABLA N°4 se observa el resultado del ensayo de contenido de humedad dando como resultado que el porcentaje de humedad de la Calicata 03 es de 27.75%.

d) M-01, Calicata 04

Tabla N°5: Contenido de Humedad Muestra 1, Calicata 04

Pro	Procedimientos		
Peso Tara (gr)	12.40		
Peso Tara + Suelo Húmedo (gr)	196.50		
Peso Tara +Suelo Seco (gr)	168.10		
Peso Agua (gr)	28.40		
Peso suelo Seco (gr)	155.70		
Contenido de Humedad %	18.24%		

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACIÓN: En la TABLA N°5 se observa el resultado del ensayo de contenido de humedad dando como resultado que el porcentaje de humedad de la Calicata 04 es de 18.24%.

e) M-01, Calicata 5

Tabla N°6: Contenido de Humedad Muestra 1, Calicata 05

Pro	Procedimientos		
Peso Tara (gr)	10.80		
Peso Tara + Suelo Húmedo			
	211.10		
Peso Tara +Suelo Seco (gr)	175.50		
Peso Agua (gr)	35.60		
Peso suelo Seco (gr)	164.70		
Contenido de Humedad %	21.62%		

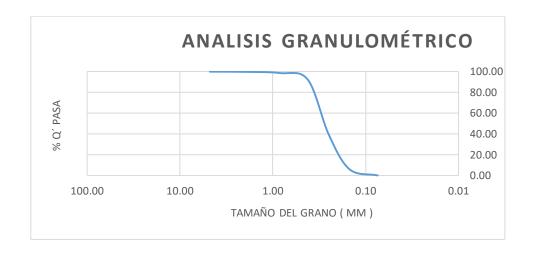
Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACIÓN: En la TABLA N°6 se observa el resultado del ensayo de contenido de humedad dando como resultado que el porcentaje de humedad de la Calicata 05 es de 21.62%.

3.1.3. Ensayo granulométrico (ASTM – D6913)

a) Calicata 01


Tabla N°7: Análisis Granulométrico Calicata 1

Mallas	Peso retenido (gr)	% que pasa
N°4	0.00	100.00
N°10	1.00	99.81
N°20	6.00	98.70
N°40	34.00	92.39
N°60	284.00	39.70
N°100	181.00	6.12
N°200	32.00	0.19
<n°200< td=""><td>1.00</td><td></td></n°200<>	1.00	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

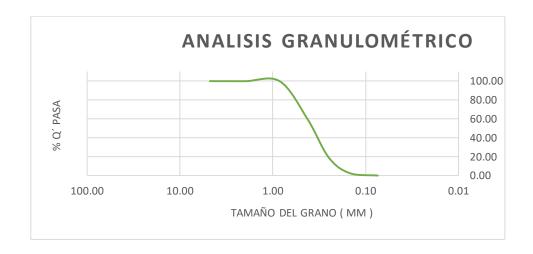
Gráfico Nº 1: Curva Granulométrica Calicata 1

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACION: Según el estudio realizado sobre la calicata 1 dio a conocer por el % de partículas que el tipo de suelo es SP arena mal graduada según la clasificación SUCS.

b) Calicata 02: Curva Granulométrica Calicata 2


Tabla N°8: Análisis Granulométrico Calicata 2

Mallas	Peso retenido (gr)	% que pasa
N°4	0.00	100.00
N°10	0.50	99.92
N°20	0.50	99.85
N°40	261.00	59.44
N°60	259.50	19.27
N°100	107.00	2.71
N°200	17.00	0.08
<n°200< td=""><td>0.50</td><td></td></n°200<>	0.50	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

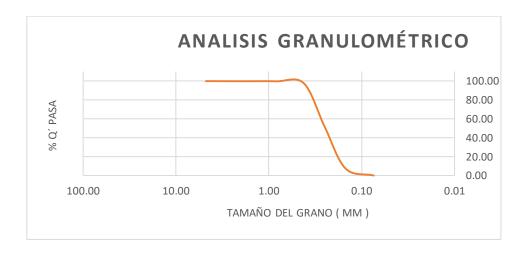
Gráfico N° 2: Curva Granulométrica Calicata 2

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACION: Según el estudio realizado en la calicata 2 dio a conocer por el % de partículas que el tipo de suelo es SP arena mal graduada según la clasificación SUCS.

c) Calicata 03


Tabla N°9: Análisis Granulométrico Calicata 3

Mallas	Peso retenido (gr)	% que pasa
N°4	0.00	100.00
N°10	0.50	99.90
N°20	0.50	99.80
N°40	10.00	97.78
N°60	228.50	51.71
N°100	219.00	7.56
N°200	37.00	0.10
<n°200< td=""><td>0.50</td><td></td></n°200<>	0.50	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

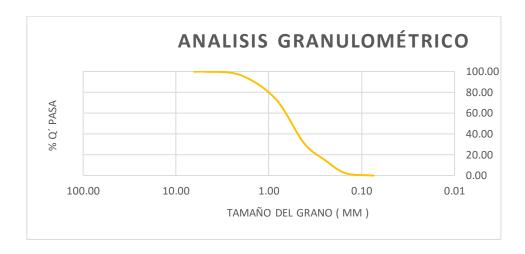
Gráfico N° 3: Granulométrica Calicata 3

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACION: Según el estudio en la calicata 3 dio a conocer por el % de partículas que el tipo de suelo es SP arena mal graduada según la clasificación SUCS.

d) Calicata 04


Tabla N°10: Análisis Granulométrico Calicata 3

Mallas	Peso retenido (gr)	% que pasa
3/8"	0.00	100.00
N°4	0.20	99.96
N°10	15.00	96.58
N°20	102.30	73.60
N°40	187.00	31.57
N°60	73.00	15.17
N°100	57.00	2.36
N°200	10.30	0.04
<n°200< td=""><td>0.20</td><td></td></n°200<>	0.20	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

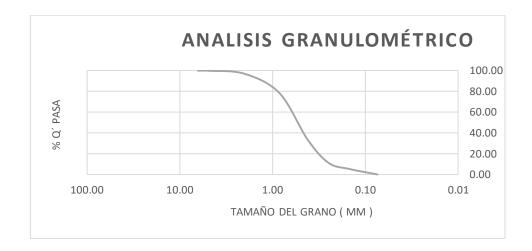
Gráfico N° 4: Granulométrica Calicata 4

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACION: Según el estudio realizado en la calicata 4 dio a conocer por el % de partículas que el tipo de suelo es SP arena mal graduada según la clasificación SUCS.

e) Calicata 05


Tabla N°10: Análisis Granulométrico Calicata 3

Mallas	Peso retenido (gr)	% que pasa
3/8"	0.00	100.00
N°4	0.70	99.89
N°10	15.00	97.50
N°20	97.60	81.96
N°40	232.10	45.00
N°60	117.20	26.34
N°100	31.00	21.40
N°200	27.50	17.02
<n°200< td=""><td>0.90</td><td></td></n°200<>	0.90	

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

Gráfico N° 5: Granulométrica Calicata 5

Fuente: Laboratorio de la Universidad Cesar Vallejo

Elaboración propia

INTERPRETACION: Según el estudio realizado en la calicata 5 dio a conocer por el % de partículas que el tipo de suelo es SP arena mal graduada según la clasificación SUCS.

3.1.4. Límite de Consistencia (ASTM - D4318)

a) Limite líquido y limite plástico

Al tratarse de arenas mal graduadas no presentan límite líquido ni plástico.

3.2. Topografía

Ver Anexo 2

3.2.1. Altimetría

Consiste en levantamiento topográfico fue realizado mediante la altimetría con ayuda de la Estación Total Topcon ES-105.

3.2.2. Fotogrametría

Es un método de topografía utilizando fotos recolectadas por un vehículo no tripulado "DRONE".

Foto N° 01 – ORTOFOTO

Se observa la foto completa del área de Estudio tomada con el Drone Phantom 4Pro, en la cual podemos apreciar parte de las dos bahías y de la zona vulnerable.

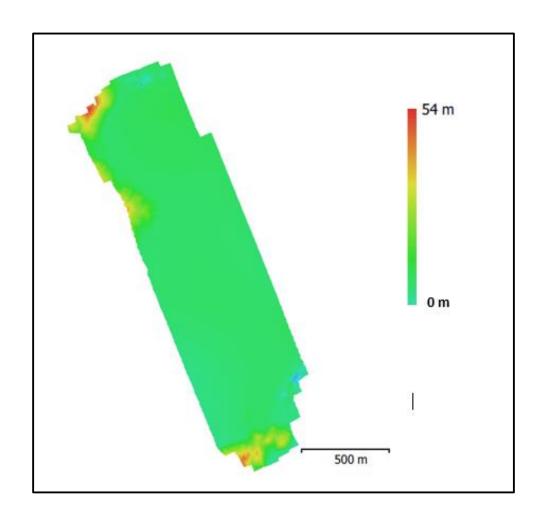


Foto N° 02 – ORTOFOTO – Color LIDAR ELEVACIONES

Se observa la foto completa del área de Estudio, en la cual presenta los relieves por colores la cual cada color tiene una elevación.

3.3. Oceanografía Geológica

3.3.1. Batimetría

Se determinó los niveles de las profundidades de las costas de la Bahía el Ferrol y la Bahía de Samanco

Foto N° 03 – FOTO SATELITAL

Muestra las áreas que se realizó el estudio de Batimetría en las distintas bahías. Bahía de Samanco: Área color Rojo

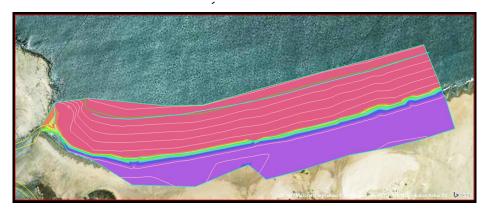


Foto N° 04 – BATIMETRÍA DE LA BAHÍA EL FERROL

Se observa la foto completa del área de Estudio, en la cual presenta los relieves por colores, la cual cada color tiene una elevación, también podemos observar las Curvas de Nivel.

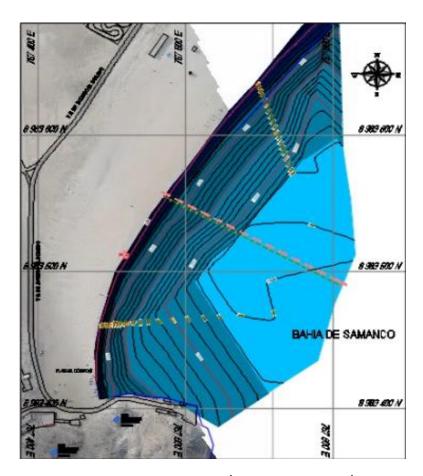


Foto N° 05 – BATIMETRÍA DE LA BAHÍA EL FERROL

Se observa la foto completa del área estudiada, en la cual presenta los relieves por colores, la cual cada color tiene una elevación, también podemos observar las Curvas de Nivel.

IV. DISCUSIÓN

La investigación determinó que las Causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía de Samanco es producto del desnivel presente en el área inundada respecto a la Bahía el Ferrol. Para esto se hicieron estudios, en primer lugar el área estudiada presenta una saturación alta, además se comprobó que existe un desnivel de la orilla de la Bahía el Ferrol respecto a la península el Ferrol generando un área propensa a inundaciones. En lo que respecta a la profundidad del mar no presenta cambios significativos, pero por seguridad se propone un plan de control de erosión. Los resultados obtenidos se basan en las normas establecidas por el ASTM (D420-69, D2216-71, D6913, D4318) e IGN (NTG N° 057 – 2016).

En primer lugar, acerca del estudio de suelos se comprobó mediante el uso de los procedimientos establecidos por el ASTM (D420-69, D2216-71, D6913, D4318), se llega a comprobar que el tipo de suelo presente es arenas mal graduadas presentando una saturación elevada, teniendo un nivel freático promedio de 0.60m. Estos resultados se asemejan, según el autor Barrigas y Pilamunga (2017), en su tesis "Velocidad de Infiltración del agua en el sub-suelo de las Comunidades Tiquibuzo y San Jose de la comuna, pertenecientes a la Parroquia Chillanes, Cantón Chillanes, provincia de Bolivar, asociado a la Granulometría y a la Textura De Sus Componentes", llegó a la conclusión que la velocidad de infiltración del suelo depende directamente de su textura y granulometría, siendo también importante los estratos presentes bajo el suelo. De la misma manera según Mendoza (2013), en su tesis titulada Influencia de la granulometría en la licuación de arenas llegó a la conclusión de que la arena de playas la cual tiene una clasificación de arena mal graduada son más propensas a sufrir la licuación de suelos.

Se determinó los niveles de la Bahía del Ferrol y la Bahía de Samanco utilizando equipo topográfico y un Drone. Siguiendo los parámetros según los autores Zelaya, Guevara y Pacas en su tesis Aplicación de Fotogrametría Aérea en levantamientos topográficos mediante el uso de Vehículos Aéreos No Tripulados. San Miguel: Ciudad Universitaria De Oriente, 2016. Se obtuvo como resultado los niveles existentes en la Península el Ferrol, comprobándose la existencia de un desnivel en el área propensa a inundaciones, estos resultados se asemejan a la investigación realizada por Guido, Ramírez, Godínez, Cruz y

Juárez, en su artículo científico titulado Estudio de la erosión costera en Cancún y la Riviera

Maya, México llegando a la conclusión que una de las causas de la erosión costera es generada por el escaso nivel topográfico presente en el terreno.

Respecto al estudio batimétrico se utilizó la metodología del autor Sopó G. *et al*. Obteniendo como resultado las profundidades del mar, siendo estos similares con los resultados obtenidos por La Marina de Guerra del Perú, Dirección de Hidrografía y Navegación (2015) en el plano cartográfico titulado Bahía el Ferrol, siendo ratificados los resultados obtenidos del estudio batimétrico con un promedio de profundidades de 0.00 a 3.00 metros cerca a las costas, por lo cual no se presenta una variación en las profundidades de las costas cercanas a las bahías.

V. CONCLUSIONES

- Se determinó las Causas de la invasión de las Aguas de la Bahía del Ferrol a la Bahía de Samanco, llegando a la conclusión que el principal motivo es el desnivel presente entre la orilla de la Bahía de Ferrol y la Península del Ferrol, generando que al subir la marea las aguas avancen hacia el interior de la península inundando las zonas a desnivel.
- 2. Se realizó el estudio de mecánica de suelos a lo largo de la Península el Ferrol siguiendo los parámetros establecidos por la norma ASTM (D420-69, D2216-71, D6913, D4318), llegando a la conclusión que el área presenta el tipo de suelo Arenas mal Graduadas, teniendo un promedio de 20% de contenido de humedad siendo estos suelos saturados viéndose afectados por su elevado nivel freático de la zona.
- 3. Se conoció la diferencia de cotas de Playa en la Península del Ferrol en donde se encuentra la marisma, se comprobó que se presenta un desnivel a lo largo de la península de aproximadamente 1.00 metro de altura.
- 4. Se realizó el estudio batimétrico en la costa de la Bahía del Ferrol y la Bahía de Samanco llegando a la conclusión que la profundidad promedio de las costas cercanas es de aproximadamente de entre 0.00 a 3.00 metros.
- 5. Se propuso un control de erosión costera, conservando los ecosistemas existentes sin generar un impacto negativo en la zona.

VI. RECOMENDACIONES

- Debido a la Erosión Costera se recomienda a la Marina de Guerra del Perú realizar un plan de control de erosión costera en la Bahía el Ferrol ya que esto podría significar un grave problema en el futuro afectando significativamente a la población.
- 2. Debido a la existencia de una amplia Biodiversidad en la marisma proveyendo de un ecosistema a gran variedad de crustáceos, aves, reptiles, insectos y plantas, se recomienda al Servicio Nacional de Áreas Naturales Protegidas por el Estado, crear un plan de Manejo de Recursos Naturales.
- 3. Se recomienda a la población tomar conciencia sobre la contaminación ambiental y la explotación de recursos ya que genera cambios climáticos que afectan a todo ser vivo que se encuentran en el planeta y a su generan cambios bruscos en el ecosistema afectando la vida tal y como la conocemos.
- 4. Se recomienda a los futuros investigadores tener en cuenta la protección y respeto del ecosistema existente, antes de realizar estudios en el área.

VII. PROPUESTA

Según los estudios realizados para hallar las causas de la invasión de la aguas de la Bahía el Ferrol a la Bahía de Samanco se descubrió que la inundación se generó debido al desnivel presente en la península el Ferrol, ya que no es viable intervenir directamente frente la marisma, ya que provee de hábitat para muchas especies de crustáceos, por lo que se optó por proponer un plan de control de erosión, para evitar de que aumente el volumen de agua que ingrese y evitar un problema mayor a futuro.

Como objetivo del plan de erosión es proponer una estrategia a corto, mediano y largo plazo.

Corto Plazo:

- Incentivar a grupos de investigación para que se interesen en realizar sus proyectos en la zona con el fin de mantener un control.
- Reconocer las áreas más vulnerables a la erosión.

Mediano Plazo:

- Tener un control de los estudios batimétricos y topográficos de la zona, y comparar respecto a estudios pasados para conocer los cambios que han surgido a lo largo del tiempo, así como generar nuevos estudios periódicamente.
- Estudios del comportamiento de las mareas en distintos fenómenos climáticos
 (Fenómeno del niño, mareas vivas, tsunamis, etc.).
- Controlar periódicamente los perfiles de playa.

Largo Plazo:

- Generar una base de datos.
- Implementar puntos de monitoreo de control de erosión.

Por el momento como propósito de la investigación se ha propuesto un control de erosión a corto y mediano plazo que sería la implementación de 400 metros lineales de geotubos

geosintético a lo largo de la costa de la bahía el Ferrol iniciando en el pequeño rio formado que alimenta la marisma, para así poder evitar un mayor ingreso de agua y un control temporal de la erosión, utilizando para ello geotubos geosintéticos, los cuales se rellenan con material de la zona y agua para formar una defensa a la erosión, siendo esta una alternativa más económica, siendo fabricados a tamaños solicitados logrando alcanzar alturas de hasta 1.50 metros. Siendo esto un comienzo para un control de erosión que puede ser utilizado en toda la costa de la Bahía el Ferrol. Ver Anexo N° 5

Foto N° 06 – CROQUIS DEL AREA A INTERVENIR

Muestra el área a intervenir como propuesta de control de Erosión Costera con geotubos geosintéticos a lo largo de 400 mts.

VIII. REFERENCIAS

1. ALLAM, M.M. "DTM application in topographic mapping". Photogrammetric

Engineering and Remote Sensing, Vol. 44 N°2, 1978.

2. APTUS Chile. Ciencias Naturales. Chile, 2007.

3. BARRIGAS, Z. y PILAMUNGA, A. Velocidad de infiltración del agua en el sub-suelo

de las comunidades Tiquibuzo y San Jose de la comuna, pertenecientes a la parroquia

Chillanes, Cantón Chillanes, Provincia de Bolivar, asociado a la granulometría y a la

textura de sus componentes, Ecuador, 2017.

4. BAHIA EL FERROL, Perú, Marina de Guerra del Perú, Dirección de Hidrografía y

Navegación, Escala 1:20000. Callao: Marina de Guerra del Perú, Dirección de

Hidrografía y Navegación, 2015. 1 plano, 594 x 841 mm.

5. BORTOLUS, A. Marismas Patagónicas: Las ultimas de Sudamérica. Vol. 19. Centro

Nacional Patagónico, Puerto Madryn, Argentina, 2009.

6. BOWLES, J. E. Propiedades geofísicas de los suelos. 1ª. Ed. en español. McGraw-Hill,

Bogotá, 1982.

ISBN: 968-451-118-3

7. BUCKMAN y BRADY. Naturaleza y Propiedades de los Suelos. MONTANER Y

SIMON, S.A., Barcelona, 1966.

ISBN: 978-968-1840-02-0

8. BURROUGH, P.A., Principles of Geographical Information Systems for land resources

assessment. Monographs on Soil and Resources Survey. No.12. Oxford University

Press. 1989.

ISBN: 978-019-8545-63-7

9. BURTON, R. The Seashore and its Wildlife. G. P. Putnam's Sons, Nueva York, 1977.

ISBN: 978-085-6132-39-1

38

10. CHÁVEZ G. ELEMENTOS DE OCEANOGRAFÍA. C.E.C.S.A., México, 1975.

ISBN: 978-843-0051-72-4

11. DAVIS A. Jr. Coastal sedimentary environments. ed. New York. Springer, 1985.

ISBN: 978-038-7960-97-5

12. DOMINGUEZ, F. Topografía General y aplicada (12° edición). MundiPrensa. Madrid, 1998.

ISBN: 978-847-1146-70-0

13. GRANT M. Oceanography. A view of the earth. 5° ed. Prentice Hall. Estados Unidos, 1991

ISBN: 978-013-0629-74-20

- 14. GUIDO P., *et al.* Estudio de la erosión costera en Cancún y la Riviera Maya, México. Universidad Nacional de Colombia, Medellín, 2009.
- 15. HERNÁNDEZ, R., *et al.* Metodología de la investigación. 5° ed. McGraw-Hill. México D.F., 2014.

ISBN: 978-145-6223-96-0

- 16. HIGGINS, A. L. Elementary Surveying. Longmans, Green and Co. London, 1947.
- 17. HILLEL, D. Environmental soil physics. Academic Press. San Diego. U.S.A. 1998.

ISBN: 978-012-3485-25-0

- 18. JARAMILLO, D.F., *et al.* El recurso suelo en Colombia: Distribución y evaluación. Universidad Nacional de Colombia. Medellín, 1994.
- LARA-LARA, J.R., et al. Los ecosistemas marinos, en Capital natural de México, vol.
 I: Conocimiento actual de la biodiversidad. Conabio, México, 2008.

ISBN: 978-607-7607-03

20. LAMBE, W., WHITMAN, R. Mecánica de suelos. Limusa. México, 1972

ISBN: 978-968-1818-94-4

21. LÓPEZ M.; MARTÍNEZ E. Y BLASCO J.J. Geodesia, Cartografía, Fotogra-Metria

(Instrumentos, Métodos Y Aplicaciones), Replanteo Y Seguridad Del Topógrafo (2ª

ED). Madrid, 2009.

ISBN: 978-849-6486-89-8

22. MENDOZA, J. Influencia de la granulometría en la licuación de arenas. Costa Rica,

2013.

23. MORELL, I. y FAGUNDO J.R. Contribuciones a la investigación y gestión del Agua

Subterránea. Universitat Jaume I, 1996.

24. Norma Técnica Geodésica N° 057, Especificaciones Técnicas Para Levantamientos

Geodésicos Verticales, Instituto Geográfico Nacional.

25. Normativa ASTM, American Society for testing and Materials, D420 Standard Guide

for Site Characterization for Engineering Design and Construction Purposes.

ISBN: 978-0-8031-8753-5

26. Normativa ASTM, American Society for testing and Materials, D2216-71 Standard

Method of Laboratory Determination Of Moisture Content Of Soil.

ISBN: 978-0-8031-8753-5

27. Normativa ASTM, American Society for testing and Materials, D4318 Standard Test

Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

ISBN: 978-0-8031-8753-5

28. Normativa ASTM, American Society for testing and Materials, D6913/D6913-17

Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve

Analysis.

ISBN: 978-1-6822-1434-3

40

29. PENTZ J. Principales accidentes de la superficie terrestre. The Open University. McGraw-Hill, Panamá, 1974

30. PERLOFF, W. Y BARON, W. Soil Mechanics Principles & Applications. John Wiley & Sons Inc, 1977.

ISBN: 978-089-4646-42-3

31. POULOS, G. S., *et al* Liquefaction evaluation procedure. Journal of Geotechnical Engineering, ASCE, 1985.

32. POWRIE, W. Soil Mechanics, Concepts & Applications. 2da. Ed., Spon Press, 2004.

ISBN: 978-0429-272-91-2

33. RUIZ, M. Manual de geodesia y topografía. Proyecto Sur: Armilla, Granada, 1991.

ISBN: 978-848-2549-81-1

34. SALAZAR, O. Estudio De infiltración En el Campo Experimental de Zonas Áridas y Semiáridas Noria De Guadalupe, Concepción Del Oro, Zacatecas. Buenavista, Mexico, 2008.

35. SOPÓ G. *et al.* METODOLOGÍA PARA REALIZAR TRABAJOS DE HIDROTOPOGRAFÍA. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, 2013.

36. SWEERS, K.B. Equilibrium Bays. A numerical study after the behaviour of equilibrium bays. Subfaculty of Civil Engineering Hydraulic Engineering Section, 1999.

ISBN: 978-008-0544-15-1

37. TERZAGHI, K. y PECK, R.B. Soil mechanics in engineering practice. New Jork: John Willey and Sons, 1948. pp. 239

ISBN: 978-812-6523-81-8

38. VALLES, E. *et al.* Estado Y Perspectivas De Las Ciencias Exactas, Físicas Y Naturales En La Argentina, *en:* Perillo, Gerardo. Oceanografía. Buenos Aires, 2015.

ISBN: 978-987-9831-39-7

- 39. VARGAS, W. Análisis granulométrico. Apuntes de clase Mecánica de Suelos II. Universidad de Costa Rica, 2010.
- 40. VETTER. C. Oceanografía. La última frontera. "El Ateneo", Buenos Aires. 1973.
- 41. WEIHAUPT, J. Exploration of the oceans. An Introduction to oceanography. New York, 1979.

ISBN: 0-02-425040-6

42. WHITE, R.E. Introduction to the principles and practice of Soil Science. Blackell Sci. Pub. Oxford. 1979

ISBN: 978-063-2064-55-7

43. ZELAYA, R., GUEVARA, A. y PACAS, N. Aplicación De Fotogrametría Aérea En Levantamientos Topográficos Mediante El Uso De Vehículos Aéreos No Tripulados. San Miguel: Ciudad Universitaria De Oriente, 2016.

ANEXOS

ANEXO N° 1

MATRIZ DE CONSISTENCIA

MATRIZ DE CONSISTENCIA

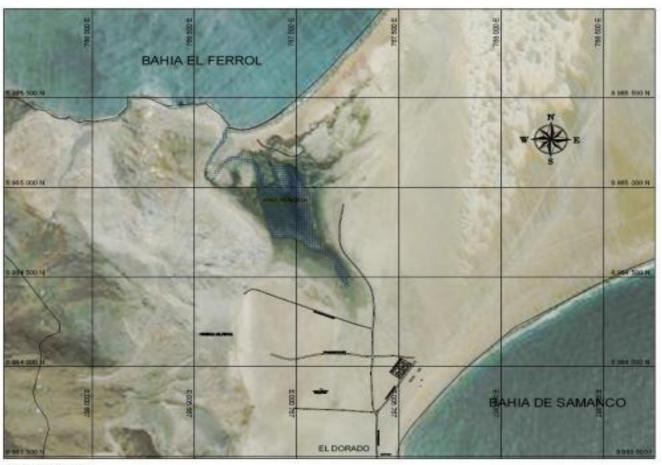
TÍTULO:

Causas de la invasión de las Aguas de la Bahía el Ferrol a la Bahía Samanco -Propuesta de Solución, Distrito de Nuevo Chimbote, Provincia del Santa, Ancash – 2019

LÍNEA DE INVESTIGACIÓN:

DISEÑO DE OBRAS HIDRAULICAS Y SANEAMIENTO

DESCRIPCIÓN DEL PROBLEMA:


El creciente problema de contaminación de la ciudad ha provocado que sea imposible el consumo de los peces atrapados cerca de la orilla de la Bahía el Ferrol ya que se encuentran en un entorno sumamente contaminado, por lo cual, la mayor actividad pesquera de la zona se ha trasladado a la Bahía de Samanco, siendo utilizada para la pesca artesanal y el criadero de especies marinas, pero en años posteriores se ha observado un avance en invasión de las aguas de la Bahía el Ferrol hacia la península que divide ambas bahías recorriendo aproximadamente 1 kilómetro, formando un pequeño lago creando un inminente problema de futura contaminación de las aguas de la Bahía Samanco, afectando la vida marina, y por lo tanto afectar la actividad pesquera de esa zona.

FORMULACIÓN DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	DIMENSIONES	INDICADORES	JUSTIFICACION	INSTRUMENTOS
¿Cuáles son las causas de la invasión de las aguas de la bahía el Ferrol a la Bahía de Samanco?	General: Determinar las causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía de Samanco.	le investigación es de tipo descriptiva de tal manera que no todos los estudios descriptivos tienen una formulación de hipótesis, solo se hace alusión que las hipótesis se aplican en	Topografia	Altimetria Fotogrametria	El siguiente proyecto de investigación tiene como finalidad determinar las causas de la invasión de las aguas de la Bahía el	- Fichas Técnicas.
	Especificos: -Definir los niveles entre la Bahía el Ferrol y la Bahía de SamancoRealizar un estudio		Oceanografía Geológica	Batimetria	Ferrol a la Bahia de Samanco realizando estudios previos para buscar una correcta solución,	- Fichas técnicas.
	batimétrico en las costas cercanas del área afectadaRealizar un estudio de suelosPresentar una propuesta de solución. estudios descriptivo para intenta pronosticar un dato valor el cual ser medido o investigado por lo cual nuestr tesis no present hipótesis.		Muestreo Contenido de Humedad Análisis granulométrico Limites de	Es de gran importancia ya que evitando la invasión de las aguas de la Bahía el Ferrol se evitaría un grave problema ambiental que no solo afectaría al ecosistema sino	- Fichas técnica del laboratorio	
		(Hernández, 2014).	8	consistencia	también a muchos pescadores,	

Fuente: Propia de Autores

ANEXO N° 2

PLANO DE UBICACIÓN Y LOCALIZACIÓN

PLANO DE UBICACION BIC UBIO

ANEXO N° 3 INFORME DE TOPOGRAFÍA Y BATIMETRÍA

2019

INFORME TOPOGRÁFICO Y BATIMÉTRICO "PENINSULA EL FERROL - ENTRE LA BAHIA EL FERROL Y LA BAHIA SAMANCO"

TOPOGRAFIA 19/04/2019

INFORME TOPOGRÁFICO – "PENINSULA EL FERROL - ENTRE LA BAHIA EL FERROL Y LA BAHIA SAMANCO"

"CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHÍA EL FERROL A LA BAHÍA SAMANCO - PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH – 2019" INDICE DE CONTENIDO

1. MEMORIA DESCRIPTIVA

	ANT	FOR		ITE (~
1.1.	- ADD I		6 11-1		۰.

- 1.2. GENERALIDADES
 - 1.2.1. Objetivo Del Estudio Topográfico
 - 1.2.2. Metodología
- 1.3. Ubicación y Descripción del Área de Estudio

2. LEVANTAMIENTO TOPOGRÁFICO

- 2.1. Introducción
- 2.2. Acceso al Área de Estudio
- Clima y Temperatura

3. TRABAJOS DE CAMPO

- 3.1. Equipo y Personal de Ingeniería empleado
- Recopilación y Evaluación de Puntos Existentes
- 3.3. Poligonales Básicas
- Medición de Ángulos Horizontales y Verticales
- Cálculo del Angulo Horizontal
- 3.6. Cálculo del Angulo Vertical
- 3.7. Medición Electrónica de Distancias
- 3.8. Corrección del Error de Refracción y Curvatura
- 3.9. Corrección Atmosférica

4. TRABAJOS DE GABINETE

- 4.1. Equipo Empleado
- Compensación de la Poligonal Básica
- Coordenadas UTM de las Poligonales Básicas

5. CONCLUSIONES

6. ANEXOS

**************************************		_
Anexo Nº 1	Panel Fotográfico	
Anexo N° 2	Coordenadas Topográficas, BM's y BM's Auxiliares	
Anexo N° 3	Certificado de calibración de Estación Total	
Anexo N° 4	Plano Topográfico	
	Anexo N° 2 Anexo N° 3	Anexo N° 2 Coordenadas Topográficas, BM's y BM's Auxiliares Anexo N° 3 Certificado de calibración de Estación Total

INFORME TOPOGRAFICO

PENINSULA EL FERROL - ENTRE LA BAHIA EL FERROL Y LA BAHIA SAMANCO

1. MEMORIA DESCRIPTIVA

1.1. ANTECEDENTES

Se viene elaborando estudios que hacen posible traducir estas intenciones en mejora y preservación de la península.

Para este fin, se ha previsto la elaboración del Proyecto de Tesis "CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHÍA EL FERROL A LA BAHÍA SAMANCO - PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH – 2019"

Con la finalidad de evaluar y mejorar lo existente, y así contribuir con el desarrollo, preservación de la zona a estudiada.

1.2. GENERALIDADES

1.2.1. Objetivo Del Estudio Topográfico

El objetivo principal es la obtención de planos veraces y fidedignos, mientras que el objetivo secundario es obtener Bench Mark ó Puntos de Control en un número suficiente como para desarrollar trabajos de verificación de cotas (principalmente estructuras existentes como reservorios, calles para las líneas proyectadas) y tener cotas de referencia para los trabajos a realizarse.

El objetivo de un levantamiento topográfico es la determinación, tanto en planimetría como en altimetría, de puntos del terreno necesarios para la representación fidedigna de un determinado sector del terreno a fin de:

- Elaborar planos topográficos a escalas adecuadas.
- Proporcionar información de base para los estudios de obras de ingeniería para el desarrollo del proyecto.

Tales como: Defensas costeras, Encauzamiento de lago y ríos.

1.2.2. Metodología

La metodología adoptada para el cumplimiento de los objetivos antes descritos es la siguiente:

Desplazamiento de la brigada de topografía a la zona en estudio coordinándose entre los tesistas encargados de la topografía, se procedió con el reconocimiento de la zona en campo, verificando el área de estudio, así como las zonas aledañas para su delimitación.

Para el levantamiento topográfico del área en estudio se estableció una (01) Poligonal Básica: que sirvió de apoyo para el levantamiento de los detalles propios del presente estudio.

Una vez reconocido la zona de trabajo se procedió a colocar los puntos de control de la poligonal de apoyo que servirá para el levantamiento del área lo cual está conformado por 04 vértices que se asignaron con códigos:

BM-A, BM-B, BM-C, BM-D y BM-E.

Finalmente, se establecieron las coordenadas UTM en el sistema WGS-84 de los vértices de la Poligonal Básica a partir de la georreferenciación con GPS.

Los Puntos de Control BM-C y BM-D, son puntos de la poligonal básica los cuales fueron marcados en el terreno la cual servirá como azimut de partida.

Para el levantamiento topográfico se empleó 01 Estación Total marca TOPCON ES-105, con precisión de 3 seg. En ángulo y de "1 mm +/- pmm" en distancia, 03 prismas, 04 wokitoki (Radios), además de otros accesorios, con el mismo equipo se realizó un levantamiento batimétrico en las costas cercanas de la bahía de Samanco y Ferrol utilizando un bote como transporte.

La automatización del trabajo de campo se efectuó en forma diaria y de la siguiente manera: se efectuó la toma de datos de campo durante el día, la transmisión de la información de campo a una computadora al caer la luz del sol, la verificación en la computadora de la información tomada en campo, el procesamiento de la información para obtener planos topográficos y batimétricos a escala conveniente.

Durante y una vez terminado el trabajo en campo de topografía y batimetría se procedió al procesamiento en gabinete de la información topográfica en el software AUTOCAD CIVIL 3D 2018, elaborando plano topográfico y batimétrico a escala 1/1000, entre otras escalas indicada en los planos, para los diseños respectivos.

Se incluye el presente Informe de Topografía y Batimetría, que contiene información general de los trabajos realizados para la elaboración de este informe, tal como, la descripción detallada de los procedimientos llevados a cabo tanto en campo como en gabinete, información técnica, panel de fotografías, planos topográficos, entre otros relativos al levantamiento topográfico.

1.3. Ubicación y Descripción del Área de Estudio

El proyecto se encuentra localizado en la Península el Ferrol del Distrito de Nuevo Chimbote, zona conocida con El Dorado, Su área de estudio tiene una topografía Ilana.

> UBICACIÓN POLITICA:

Distrito : Nuevo Chimbote

Provincia : Santa Departamento : Ancash

UBICACIÓN GEOGRAFICA:

En Coordenadas UTM Sistema WGS-84 Zona 17 sur

Este: 767159.43 m Norte: 8984589.71m

Área: 158 Ha.

2. LEVANTAMIENTO TOPOGRAFICO

2.1. Introducción

El Levantamiento Topográfico se refiere al establecimiento de puntos de control horizontal y vertical, los cuales tiene que ser enlazados a un sistema de referencia, en este caso al Sistema de control Horizontal y Vertical, y a la toma de una cantidad adecuada de puntos de levantamiento a fin de representar fidedignamente el terreno existente en planos topográficos.

2.2. Acceso al Área de Estudio

El acceso al área de estudio se utilizará la carretera Panamericana Norte, por el cruce de Urb. Las Brisas, para luego ingresar en el Desvió para la playa el Dorado. Los Tramos de acceso se encuentran asfaltado y afirmado

Ť,

2.3. Clima y Temperatura

El Distrito de Nuevo Chimbote, tiene un clima templado, presenta un clima desértico, de precipitaciones casi nulas. La temperatura oscila entre 27º en verano y 20º en invierno.

Temperatura : 23 C° / 81F°

Humedad : 65%

Viento : 11 km/hora Barómetro : Estable

3. TRABAJOS DE CAMPO

El control topográfico fue llevado a cabo el día 19 de abril del 2019, mediante el uso de:

Equipos e Instrumentos:

- 01 Estación Total TOPCON ES-105
- 03 Porta prismas
- 03 Prismas
- 01 Tripode
- 01 GPS (GARMIN ETREX 10)
- 01 Wincha metálica 5m.
- 04 wokitoki (Radios)

La automatización del trabajo se efectuó de la siguiente manera:

- · Monumentación de puntos BM's
- Toma de datos de campo durante el día
- Bajada de información de la estación al terminar el levantamiento
- Verificación en la computadora de la información tomada en campo
- Procesamiento de la información

3.1. Equipo y Personal de Ingeniería empleado

Brigada de Campo:

02 Tesistas de Ingeniería : - Gian Franco, Sarmiento Ahón

- Miguel Ángel Junior, Micher Simón

01 Topógrafo : - Gian Franco, Sarmiento Ahón

01 Asistente topográfico : - Edu Castillo Revelo

Adrit Trujillo Ramirez
 Marlin López Zegarra

3.2. Recopilación y Evaluación de Puntos Existentes

Se ha evaluado la siguiente información sobre los puntos de control establecidos por el GPS.

3.3. Poligonales Básicas

Para el levantamiento topográfico del área de estudio se estableció una (01) poligonal ABIERTA:

Poligonal "ABIERTA":

Poligonal Abierta de 17 Vértices (BM-A, BM-B, BM-C, BM-D y BM-E).

Establecida con la finalidad del levantamiento Topográfico de toda la Zona en estudio.

3.4. Medición de Ángulos Horizontales y Verticales

La medición de los ángulos horizontales se efectuó con una (01) Estación Total TOPCON ES-105, la cual elimina los errores del cálculo de ángulos horizontales y verticales que se producen normalmente en los teodolitos convencionales. El principio de lectura está basado en la lectura de una señal integrada sobre la superficie completa del dispositivo electrónico horizontal y vertical y la obtención de un valor angular medio. De esta manera, se elimina completamente la falta de precisión que se produce debido a la excentricidad y a la graduación, el sistema de medición de ángulos facilita la compensación automática en los siguientes casos:

- Corrección automática de errores del censor de ángulos.
- Corrección automática del error de colimación y de la inclinación del eje de muñones.
- Corrección automática de error de colimación del seguidor.
- Cálculo de la medida aritmética para la eliminación de los errores de puntería.

3.5. Cálculo del Angulo Horizontal

La fórmula que a continuación se explica, se emplea para calcular el ángulo horizontal.

$$AH = AH_S + E_H \cdot \frac{1}{\operatorname{sen} V} + Y_H \cdot \frac{1}{\operatorname{tan} V} + V \cdot \frac{1}{\operatorname{tan} V}$$

Donde:

AHS : Angulo Horizontal medido por el censor electrónico.

EH : Error de colimación horizontal

YH : Error de nivelado en ángulo recto al telescopio

V : Error de eje horizontal

3.6. Cálculo del Angulo Vertical

La fórmula que a continuación se explica, se emplea para calcular el ángulo vertical.

$$AV = AV_S + E_V + Y_V$$

Donde:

AVS : Angulo vertical medido por el círculo electrónico

EV : Error de colimación vertical

YV : Desviación en el vertical, medida por el compensador automático

del nivel.

3.7. Medición Electrónica de Distancias

La medición electrónica de distancias se ha ejecutado con el distanció metro incorporado de la Estación Total. El módulo de medición de distancia de Estación Total TOPCON ES-105, opera dentro del área de infrarroja del espectro electromagnético. Transmite un rayo de luz infrarroja, el rayo de luz reflejado es recibido por el instrumento y, con ayuda de un comparador, se puede medir el desfase entre la señal transmitida y recibida. Gracias a un microprocesador incorporado, la medida de tiempo del desfase se convierte en medida de distancia y se almacena en memoria como tal, con precisión de mm. El tiempo de medida para cada punto toma 3.5 segundos. La precisión de la medida de distancia es de ± (5mm + 3ppm). El factor PPM (partes por millón) puede ser considerado en términos de milímetros por kilómetro. Por ello, 3PPM significa 3 mm/Km.

3.8. Corrección del Error de Refracción y Curvatura

Ya que la proyección de las alturas y las distancias se calcula con sólo multiplicar la distancia medida geométricamente por el seno y el coseno, respectivamente del ángulo cenital medido, los errores de cálculo se pueden deber principalmente a la curvatura de la tierra, y la refracción.

A continuación, se muestran las dos fórmulas que la estación total TOPCON ES-105. Emplea para el cálculo automático de los errores de curvatura y refracción.

$$DH = DG \cdot senZ - \frac{DG^2 \cdot sen 2Z}{2 \cdot R_r} \cdot \left(1 - \frac{K}{2}\right)$$

$$DV = DG \cdot \cos Z + \frac{DG^2 \cdot sen^2 Z}{2 \cdot R_r} \cdot (1 - K)$$

Donde:

DH : Distancia horizontal
DZ : Diferencia de altura
DG : Distancia geométrica

RT : Valor medio del radio de la tierra en Km. = 6 372

K : Media de la constante de refracción = 0,142

3.9. Corrección Atmosférica

La velocidad de la luz varía levemente al ir atravesando diferentes presiones y temperaturas de aire, se debe aplicar un factor de corrección atmosférica para obtener la distancia correcta al final de los cálculos. Este factor de corrección atmosférica se calcula con la siguiente fórmula:

$$ppm = 275 - 79.55 \cdot \frac{p}{273 + t}$$

Donde

P : Presión en milibares

t : Temperatura del aire en grados Celsius

La Estación Total TOPCON ES-105 calcula y corrige esto automáticamente, la corrección cero se obtiene con una temperatura ambiente de 20 °C y a una presión atmosférica de 750 mmHg.

4. TRABAJOS EN GABINETE

Los trabajos de gabinete consistieron básicamente en:

- Procesamiento de la información topográfica tomada en campo.
- Elaboración de planos topográficos a escalas adecuadas.

Los datos correspondientes al levantamiento topográfico han sido procesados en sistemas computarizados, utilizando los siguiente:

Equipo de Cómputo

- 01 Computadora Core i7
- 01 Monitor Samsung-S20D300NH/PE 21"
- 01 Impresora Multifuncional Epson L355
- 01 Plotter HP Design T120
- 01 Disco HD 1000 Gb
- 01 Disco Duro Externo 1000 Gb

Equipo de Software Topográfico

- AutoCAD 3d Civil 2018
- Módulos: Básico y colector de datos

4.1. Equipo Empleado

Brigada de Gabinete:

01 Cadista: - Gian Franco, Sarmiento Ahón

4.2. Compensación de la Poligonal Básica

A continuación, se detalla la metodología adoptada para la compensación de la poligonal Básica:

- Se compensan los ángulos horizontales observados en campo para que cumplan la condición geométrica.
- Con un azimut de partida conocido y los ángulos horizontales compensados se calculan los azimutes de los lados de la poligonal.
- Con los azimutes calculados y las distancias observadas se calculan los incrementos en este y norte, los cuales son adicionados a las coordenadas de un vértice para obtener las coordenadas del siguiente, así hasta cerrar la poligonal.
- La diferencia entre las coordenadas calculadas y las coordenadas del punto de início se debe repartir proporcionalmente en toda la poligonal, obteniendo coordenadas topográficas.

Debido al Error de Cierre Lineal, las coordenadas calculadas deben corregirse mediante una compensación, que consiste en distribuir ese error proporcionalmente a la longitud de cada lado, se usó la siguiente fórmula:

$$C = \frac{d}{\sum d} \cdot (eN \circ eE)$$

Donde :

d : Distancia de un lado

Σd: Suma de las distancias o longitud de la poligonal

eN: Error en el Norte eE: Error en el Este

 Se realizó la compensación de las Poligonales Básicas obteniendo precisiones de primer orden.

4.3. Coordenadas UTM de las Poligonales Básicas

A continuación, se listan las coordenadas UTM en el sistema WGS-84 de los Vértices de Las Poligonales.

CUADRO DE COORDENADAS DE LA POLIGONAL

N°	NORTE	ESTE	ELEVACION	DESCRIPCION
BM-A	8983384.742	767506.7832	19.781	ВМ
ВМ-В	8983336.713	767422.205	25.856	ВМ
вм-с	8985245.399	766572.0227	23.02	ВМ
BM-D	8985231.617	766518.6397	32.598	ВМ
вм-е	8985271.58	766552.8944	28.001	BM

5. CONCLUSIONES

- El proyecto se encuentra localizado en la Península el Ferrol del Distrito de Nuevo Chimbote, zona conocida con El Dorado, Su área de estudio tiene una topografía llana.
- El control topográfico de campo fue llevado a cabo en forma diaria utilizando: Una Estación Total TOPCON ES-105, 04 wokitoki (Radios),el Software TOPCON, para transmitir toda la información tomada en el campo a un Colector de Datos, el software AutoCAD Civil 3D, versión 2018, para el procesamiento de los datos tomados en campo, el Software AutoCAD 2018, para la presentación en planos topográficos a escalas convenientes.
- Los trabajos referentes al levantamiento topográfico están referidos a coordenadas UTM con datum horizontal: WGS-84, zona 17 sur.
- Se ha elaborado planos topográficos del área de estudio a escala 1:1000, y otras escalas indicadas en los planos, con equidistancia de curvas de nível a 0.25 m, la topográfia procesada servirá de base para la elaboración de los Estudios definitivos de ingeniería.

6. ANEXOS

6.1. ANEXO N°01: Panel Fotográfico

Foto: 01- SE OBSERVA EL BM-A COORDENADAS UTM: 8983384.742 N 767506.7832 E 19.781 ELEV.

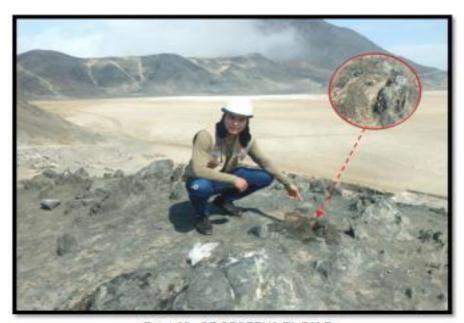


Foto: 02- SE OBSERVA EL BM-B COORDENADAS UTM: 8983336.713 N 767422.205 E 25.856 ELEV.

Foto: 03- SE OBSERVA A LA PRIMERA ESTACION E-01, ESTACIONADA EN LA PARTE ALTA DEL CERRO, DONDE SE LOGRO A LEVANTAR TODO EL AREA DE ESTUDIO.

Foto: 04- SE OBSERVA A UNO DE LOS ASITENTES UBICADO EN EL BM-D COORDENADAS UTM: 8985231.617 N 766518.6397E 32.598 ELEV.

Foto: 05- SE OBSERVA A UNO DE LOS ASITENTES UBICADO EN EL BM-C COORDENADAS UTM: 8985245.399 N 766572.0227E 23.02 ELEV.

Foto: 06- SE OBSERVA A LOS ASISTENTES EN EL PROCESO DEL LEVANTAMIENTO TOPOGRÁFICO

Foto: 07- SE OBSERVA A LOS TRES ASISTENTES EN EL PROCESO DEL LEVANTAMIENTO TOPOGRÁFICO

Foto: 08- SE OBSERVA A LOS TRES ASISTENTES EN EL PROCESO DEL LEVANTAMIENTO TOPOGRÁFICO, EN EL ÁREA INUNDADA

Foto: 08- SE OBSERVA A LOS TRES ASISTENTES EN EL PROCESO DEL LEVANTAMIENTO TOPOGRÁFICO, EN LA ORILLA DE LA BAHÍA EL FERROL

6.2. ANEXO N°02: Coordenadas Topográficas, Bm's Y Bm's Auxiliares

CUADRO DE COORDENADAS UTM DEL LEVANTAMIENTO TOPOGRAFICO

PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCION
1	8985385.72	766641.999	-0.338	CERRO
2	8985367.61	766653.862	-0.176	CERRO
3	8985360.12	766659.822	-0.131	CERRO
4	8985342.69	766669.303	-0.185	CERRO
5	8985347.03	766668.166	-0.178	CERRO
6	8985335.58	766665.431	-0.053	BORDE D
7	8985334.5	766674.329	-0.479	EJE RIO
8	8985335.59	766665.519	-0.054	BORDE D
9	8985328.81	766658.515	-0.175	BORDE D
10	8985340.37	766701.873	-0.496	ORILLA MAR
11	8985309.12	766656.156	0.263	BORDEI
12	8985314.16	766647.704	-0.169	BORDE D
13	8985312.48	766651.724	-0.74	EJE
14	8985300.41	766653.873	0.371	BORDE I
15	8985290.3	766656.216	0.099	BORDEI
16	8985278.46	766657.749	-0.061	BORDEI
17	8985286.04	766650.041	-0.148	EJE
18	8985296.42	766640.829	-0.042	BORDE D
19	8985269.07	766656.664	-0.16	BORDEI
20	8985270.74	766644.723	-0.215	EJE
21	8985268.22	766637.809	-0.037	BORDE D
22	8985264.55	766644.642	-0.137	EJE
23	8985260.25	766651.274	-0.205	BORDEI
24	8985245.65	766641.029	-0.383	BORDET
25	8985249.99	766634.347	-0.265	EJE
26	8985253.28	766628.61	-0.205	BORDE D
27	8985231.08	766630.334	-0.293	BORDE I
28	8985235.28	766624.994	-0.293	EJE
29	8985239.05	766620.113	-0.108	BORDE D
30	8985215.22	766614.135	-0.108	BORDEI
740			100000	
31	8985218.02	766610.572	-0.24 -0.13	BORDE D
100	8985220.73	766606.218	5,71,77	
33	8985197.41	766603.97	-0.249	BORDEI
34	8985199.58	766600.438	-0.133	EJE
35	8985202.75	766595.991	-0.175	BORDE D
36	8985180.98	766596.17	-0.216	BORDEI
37	8985183.36	766590.903	-0.074	EJE
38	8985187.39	766584.295	-0.14	BORDE D
39	8985163.96	766588.414	-0.187	BORDEI
40	8985165.93	766583.058	-0.268	EJE
41	8985146.4	766580.459	-0.214	BORDEI
42	8985148.25	766575.192	-0.071	EJE
43	8985150.32	766567.916	-0.023	BORDE D
44	8985130.98	766570.887	-0.277	BORDEI
45	8985133.59	766566.35	-0.079	EJE
46	8985136.21	766561.265	0.125	BORDE D

INFORME TOPOGRAFICO

PENINSULA EL FERROL - ENTRE LA BAHIA EL FERROL Y LA BAHIA SAMANCO

47	8985112.12	766562.922	-0.183	BORDE I
48	8985113.39	766558.893	-0.389	EJE
49	8985113.48	766558.838	-0.375	EJE
50	8985115.94	766554.835	-0.02	BORDE D
51	8985093.46	766558.508	-0.17	BORDEI
52	8985074.72	766558.398	-0.139	BORDEI
53	8985093.48	766554.896	-0.197	EJE
54	8985094.24	766550.346	-0.114	BORDE D
55	8985074.5	766554.756	-0.174	EJE
56	8985075.46	766551.147	-0.138	BORDE D
57	8985056.58	766562.759	-0.211	BORDE I
58	8985045.65	766572.345	-0.192	BORDE I
59	8985054.36	766559.292	-0.034	EJE
60	8985053.8	766552.745	-0.04	BORDE D
61	8985045.63	766572.388	-0.199	BORDEI
62	8985042.41	766570.98	-0.058	EJE
63	8985046.78	766588.276	-0.1	BORDE I
64	8985039.92	766565.209	0.062	BORDE D
65	8985043.13	766588.873	-0.092	EJE
66	8985036.64	766579.68	-0.056	BORDE D
67	8985066.6	766597.382	-0.14	BORDEI
68	8985034.93	766579.257	0.666	BORDE D
69	8985037.89	766565.153	0.72	BORDE D
70	8985043.61	766557.489	0.748	BORDE D
71	8985063.5	766550.516	0.583	BORDE D
72	8985095.55	766549.309	0.204	BORDE D
73	8985066.59	766597.447	-0.205	BORDE I
74	8985063.48	766603.337	0.022	EJE
75	8985063.44	766603.41	0.013	EJE
76	8985055.11	766609.584	0.327	BORDE D
77	8985056.04	766607.621	0.048	BORDE D
78	8985080.74	766609.592	-0.048	EJE
79	8985084.65	766601.843	0.051	BORDE I
80	8985073.7	766618.572	0.405	BORDE D
81	8985101.43	766611.108	0.259	BORDE I
82	8985098.62	766617.572	0.045	EJE
83	8985093.05	766626.2	0.283	BORDE D
84	8985119.17	766621.468	0.281	BORDE D
85	8985113.86	766627.438	0.009	EJE
86	8985105.98	766633.095	0.281	BORDE D
87	8985116.33	766624.846	-0.338	BORDE I
88	8985137.1	766642.243	0.177	BORDE I
89	8985135.75	766643.635	-0.218	BORDE I
90	8985133.56	766645.921	-0.157	EJE
91	8985129.26	766648,755	0.364	BORDE D

92	8985130.63	766647.712	0.203	BORDE D
93	8985152.4	766653.155	0.103	BORDE I
94	8985149.1	766655.797	-0.071	BORDE I
95	8985145.6	766658.551	-0.05	EJE
96	8985139.55	766661.417	0.273	BORDE D
97	8985140.52	766660.822	0.173	BORDE D
98	8985163.73	766668.32	0.052	BORDEI
99	8985155.81	766673.373	0.078	EJE
100	8985162.05	766669.501	-0.008	BORDE I
101	8985146.5	766677.724	0.273	BORDE D
102	8985170.36	766686.617	0.216	BORDE I
103	8985161.11	766688,253	0.039	EJE
104	8985167.82	766687.205	-0.123	BORDE I
105	8985151.41	766690.113	0.281	BORDE D
106	8985152.49	766689.929	0.136	BORDE D
107	8985167.48	766704.402	0.039	BORDE I
108	8985167.49	766704.369	0.027	BORDE I
109	8985160.69	766703.235	-0.102	EJE
110	8985165.99	766704.157	-0.123	BORDEI
111	8985152.5	766703.394	0.294	BORDE D
112	8985153.9	766703.384	0.231	BORDE D
113	8985165.98	766723.968	0.076	BORDEI
114	8985158.19	766722,434	-0.036	EJE
115	8985163.77	766723.321	-0.174	BORDEI
116	8985151.24	766720.555	0.182	BORDE D
117	8985160.85	766741.434	0.001	BORDE I
118	8985159.74	766741.03	-0.286	BORDE I
119	8985153.38	766738.109	-0.13	EJE
120	8985146.5	766738.619	0.072	BORDE D
121	8985145.65	766738.434	0.373	BORDE D
122	8985155.49	766756.687	0.199	BORDEI
123	8985154.31	766756.008	-0.468	BORDEI
124	8985148.29	766754.505	-0.136	EJE
125	8985140.91	766752.716	0.218	BORDE D
126	8985141.84	766753.144	0.193	BORDE D
127	8985156.74	766774.66	0.389	BORDEI
128	8985150.37	766773.604	0.315	BORDEI
129	8985155.12	766774.209	-0.115	BORDEI
130	8985134.82	766768.89	0.262	BORDE D
131	8985143.82	766772.088	0.026	EJE
132	8985154.28	766762.946	-0.015	BORDE I
133	8985130.72	766781.873	0.285	BORDE D
134	8985138.7	766787.044	0.197	EJE
135	8985147.92	766785.857	0.01	BORDE I
136	8985131.79	766782.962	0.215	BORDE D

137	8985129.73	766797.034	0.188	EJE
138	8985123.4	766787.926	0.272	BORDE D
139	8985124.13	766788.874	0.234	BORDE D
140	8985153.12	766789.917	0.008	BORDE I
141	8985120.63	766794.084	0.317	EJE
142	8985115.77	766786.169	0.259	BORDE D
143	8985115.72	766786.685	0.168	BORDE D
144	8985097.83	766794.231	0.199	BORDE D
145	8985101.61	766803.419	0.265	EJE
146	8985098.18	766794.555	0.198	BORDE D
147	8985103.96	766813.354	0.052	EJE
148	8985117.88	766817.346	-0.002	BORDEI
149	8985104.92	766786.261	0.406	BORDE D
150	8985098.74	766825.976	-0.118	BORDE I
151	8985083.89	766818.551	0.266	EJE
152	8985078.99	766799.232	0.226	BORDE D
153	8985075.03	766799.632	0.206	BORDE D
154	8985078.52	766809.506	0.309	EJE
155	8985088.04	766829.892	-0.107	BORDE I
156	8985078.51	766837.677	-0.076	BORDEI
157	8985042.32	766804.166	0.243	BORDE D
158	8985042.65	766804.997	0.149	BORDE D
159	8985050.28	766830.259	0.181	EJE
160	8985059.75	766839.839	-0.078	BORDEI
161	8985023.44	766812.195	0.25	BORDE D
162	8985041.14	766844.728	-0.058	BORDE I
163	8985023.83	766833.895	0.26	EJE
164	8985010.09	766822.615	0.244	BORDE D
165	8985024.64	766852.475	-0.035	BORDE I
166	8985015.07	766864.029	-0.052	ORILLA LAG
167	8985007.84	766844.685	0.368	ORILLA LAG
168	8984988.34	766805.063	0.275	ORILLA LAG
169	8985003.73	766835.684	0.139	ORILLA LAG
170	8985019.61	766880.203	0.024	ORILLA LAG
171	8984946.23	766813.941	0.313	ORILLA LAG
172	8985015.5	766886.172	-0.047	ORILLA LAG
173	8985003.17	766860.39	0.333	ORILLA LAG
174	8984882.24	766830.34	0.341	ORILLA LAG
175	8985050.56	766896.992	0.094	ORILLA LAG
176	8984983.26	766886.65	0.21	EJE
177	8984882.28	766830.292	0.288	ORILLA LAG
178	8985075.22	766884.016	0.003	ORILLA LAG
179	8984968.89	766897.54	0.203	EJE
180	8984845.87	766844.958	0.331	ORILLA LAG
181	8985109.41	766880.562	0.041	ORILLA LAG

182	8985134.06	766865.592	-0.002	ORILLA LAG
183	8984808.4	766855.431	0.324	ORILLA LAG
184	8985137.03	766873.279	0.092	ORILLA LAG
185	8985115.49	766896.078	0.16	ORILLA LAG
186	8984765.58	766871.945	0.242	ORILLA LAG
187	8985118.09	766912.722	0.035	ORILLA LAG
188	8984890.03	766795.628	0.417	TNU
189	8984723.5	766883.585	0.303	ORILLA LAG
190	8985124.02	766976.066	0.093	ORILLA LAG
191	8984844.7	766811.415	0.416	ORILLA LAG
192	8985084.68	767005.941	0.163	ORILLA LAG
193	8984807.26	766826.381	0.455	TNU
194	8985060.85	767035.758	0.136	ORILLA LAG
195	8984722.58	766969.1	0.279	ORILLA LAG
196	8984772.2	766847.069	0.493	TNU
197	8984722.55	766969.16	0.305	ORILLA LAG
198	8985021.71	767048.191	0.076	ORILLA LAG
199	8984996.92	767043.453	0.111	ORILLA LAG
200	8984739.6	766872.93	0.369	TNU
201	8984954.79	767069.946	0.083	TN ORILLA LAG
202	8984750.63	767006.956	0.28	EJE
203	8984909.28	767075.16	0.094	ORILLA LAG
204	8984704.4	766925.358	0.417	TNU
205	8984843.7	767063.904	-0.015	ORILLA LAG
206	8984678.24	767035.121	0.317	ORILLA LAG
207	8984792.93	767078.416	0.058	ORILLA LAG
208	8984647.94	767067.408	0.321	ORILLA LAG
209	8984641.7	766977.408	0.424	TNU
210	8984736.13	767085.594	-0.013	ORILLA LAG
211	8984632.17	767115.754	0.282	ORILLA LAG
212	8984704.71	767112.296	-0.067	ORILLA LAG
213	8984667.56	767122.556	0.075	ORILLA LAG
214	8984667.48	767122.523	0.117	ORILLA LAG
215	8984615.42	767152.971	0.423	ORILLA LAG
216	8984644.11	767164.834	0.028	ORILLA LAG
217	8984612.24	767156.458	0.385	ORILLA LAG
218	8984608.27	767190.391	0.148	ORILLA LAG
219	8984573.44	767064.598	0.487	TNU
220	8984608.28	767190.355	0.089	ORILLA LAG
221	8984575.99	767187.224	0.328	ORILLA LAG
222	8984576.75	767215.608	0.053	ORILLA LAG
223	8984541.57	767112.882	0.539	TNU
224	8984546	767238.134	0.16	ORILLA LAG
225	8984538.48	767187.653	0.381	ORILLA LAG
226	8984538.49	767187.647	0.368	ORILLA LAG

227	8984509.54	767255.635	0.077	ORILLA LAG
228	8984509.53	767255.644	0.106	ORILLA LAG
229	8984487.73	767246.879	0.184	ORILLA LAG
230	8984504.11	767213.856	0.527	ORILLA LAG
231	8984490.63	767182.664	0.46	TNU
232	8984487.63	767246.864	0.158	ORILLA LAG
233	8984460.03	767254.47	0.046	ORILLA LAG
234	8984454.84	767235.144	0.298	ORILLA LAG
235	8984421.67	767241.459	0.377	ORILLA LAG
236	8984416.68	767252.331	0.236	ORILLA LAG
237	8984435.12	767248.247	0.584	ORILLA LAG
238	8984504.43	767322.651	0.723	TN
239	8984545.67	767382.788	0.98	TN
240	8984585.21	767440.355	0.81	TN
241	8984575.33	767273.598	0.884	TN
242	8984605.56	767334.124	1.109	TN
243	8984658.73	767410.632	0.711	TN
244	8984649.5	767224.398	0.924	TN
245	8984681.45	767289.583	1.136	TN
246	8984736.02	767377.972	0.787	TN
247	8984773.55	767209.139	0.86	TN
248	8984797.81	767263.51	0.969	TN
249	8984842.93	767356.133	0.671	TN
250	8984934.93	767232.763	0.804	TN
251	8984940.29	767279.155	0.933	TN
252	8984970.8	767353.342	0.596	TN
253	8985067.4	767260.778	0.768	TN
254	8985093.41	767314.92	0.43	TN
255	8985060.88	767214.278	0.587	TN
256	8985187.01	767238.823	0.563	TN
257	8985225.91	767300.715	0.235	TN
258	8985102.76	767131.524	0.404	TN
259	8985336.8	767248.677	0.807	TN
260	8985281.97	767178.623	0.888	TN
261	8985193.7	767060.859	0.577	TN
262	8985251.45	767021.85	1.831	TN
263	8985443.83	767188.019	0.681	TN
264	8985363.34	767132.174	1.104	TN
265	8985549.04	767132.407	0.686	TN
266	8985333.12	766924.193	0.831	TN
267	8985423.3	767056.58	1.081	TN
268	8985365.43	766905.99	1.171	TN
269	8985373.05	766898.861	0.978	TN
270	8985460.68	767003.125	1.3	TN
271	8985596.83	767117.896	0.826	TN

272	8985388.27	766885.481	-0.173	ORILLA MAR
273	8985479.72	766988.892	0.008	ORILLA MAR
274	8985607.65	767108.084	-0.404	ORILLA MAR
275	8985604.22	767109.482	0.404	ORILLA MAR
276	8985593.75	767121.996	1.329	TN
277	8985544.56	767191.849	0.658	TN
278	8985544.7	767191.896	1.218	TN
279	8985664.25	767193.958	1.383	TN
280	8985623.61	767255.794	1.021	TN
281	8985678.61	767172.929	0.007	ORILLA MAR
282	8985760.12	767275.08	1.465	ORILLA MAR
283	8985760.19	767275.181	1.462	TN
284	8985721.02	767326.632	1.156	TN
285	8985779.66	767252.702	-0.069	ORILLA MAR
286	8985859.25	767319.076	0.393	ORILLA MAR
287	8985841.08	767338.239	1.407	TN
288	8985796	767397.814	0.922	TN
289	8985922.88	767366.372	0.369	ORILLA MAR
290	8985909.47	767390.277	1.444	TN
291	8985865.86	767455.024	0.972	TN
292	8985993.23	767417.482	0.293	ORILLA MAR
293	8985979.51	767442.542	1.438	TN
294	8985933.11	767503.702	1.219	TN
295	8986004.95	767402.495	-1.001	MAR
296	8985961.98	767370.796	-0.993	MAR
297	8985907.04	767333.013	-1.029	MAR
298	8985811.41	767260.468	-0.852	MAR
299	8985815.37	767257.486	-0.949	MAR
300	8985773.64	767232.149	-0.953	MAR
301	8985704.42	767170.387	-0.902	MAR
302	8985641.16	767123.136	-0.855	MAR
303	8985587.98	767062.532	-1.078	MAR
304	8985530.6	767015.071	-0.906	MAR
305	8985477	766960.071	-1.044	MAR
306	8985425.4	766906.813	-0.756	MAR
307	8985384.26	766848.864	-0.98	MAR
308	8985324.71	766810.307	1.363	TN
309	8985345.71	766791.054	-0.987	MAR
310	8985333.84	766797.189	0.14	ORILLA MAR
311	8985336.22	766722.818	-0.929	MAR
312	8985318.53	766737.478	0	ORILLA MAR
313	8985305.24	766738.506	0.974	TN
314	8985327.3	766697.5	0.007	ORILLA MAR
315	8985331.58	766683.66	-0.003	ORILLA MAR
316	8985397.96	766670.432	-1.09	MAR

317	8985330.5	766677.359	-0.176	ORILLA MAR
318	8985330.56	766677.329	-0.161	ORILLA MAR
319	8985391.81	766693.525	-0.837	MAR
320	8985361.42	766711.066	-1.051	MAR
321	8985400.19	766674.453	-0.976	MAR
322	8985398.41	766664.338	-1.051	MAR
323	8985387.97	766663.855	-0.518	MAR
324	8985375.56	766656.221	-0.324	MAR
325	8985231.37	766654.88	0.636	TN
326	8985204.24	766635.308	0.535	TN
327	8985162.39	766682.922	0.126	MAR
328	8985177	766602.87	0.409	TN
329	8985123.63	766629.656	0.174	TN
330	8985141.75	766596.683	0.49	TN
331	8985090.67	766585.826	0.488	TN
332	8985132.02	766571.177	-0.025	TN
333	8985057.73	766546.358	0.676	TN

PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCION
BM-A	8983384.74	767506.783	19.781	BM
ВМ-В	8983336.71	767422.205	25.856	BM
BM-C	8985245.4	766572.023	23.02	BM
BM-D	8985231.62	766518.64	32.598	BM
вм-е	8985271.58	766552.894	28,001	BM

CUADRO DE COORDENADAS UTM DE ESTACIONES

PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCION
E-1	8985247.09	766555.605	25.168	EST
E-2	8983625.33	767512.789	1.737	EST

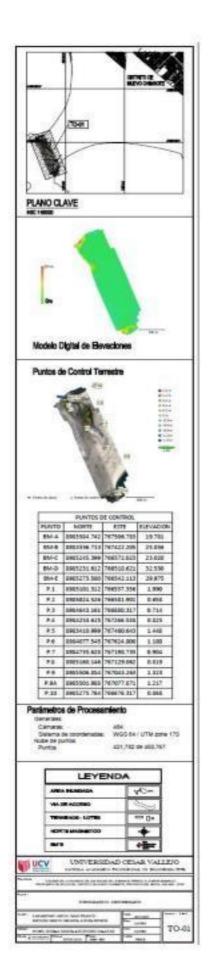
CUADRO DE COORDENADAS UTM DEL LEVANTAMIENTO BATIMETRICO - BAHIA DE SAMANCO

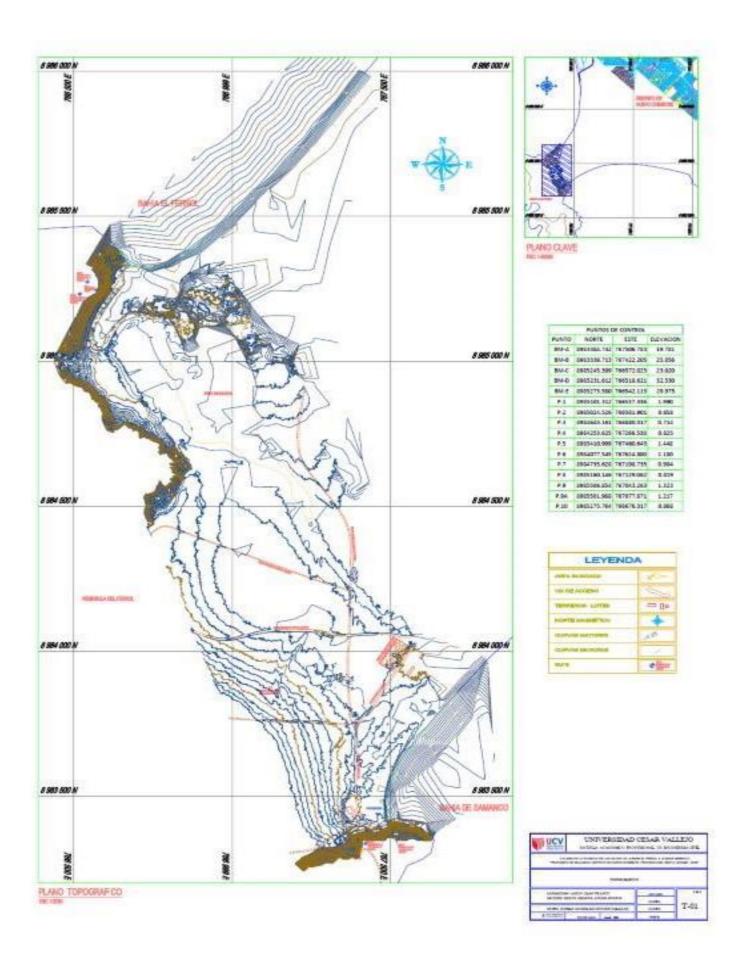
PUNTO	NORTE	ESTE	ELEVACION	DESCRIPCION
1	8983452.8	767524.548	-1.235	MAR
2	8983512.47	767515.359	-1.177	MAR
3	8983546.43	767568.415	-2.447	MAR
4	8983610.11	767641.502	-3.684	MAR
5	8983678.2	767688.681	-2.919	MAR
6	8983762.45	767759.729	-3.189	MAR
7	8983857.12	767775.2	-2.509	MAR
8	8983777.03	767812.605	-3.386	MAR
9	8983707.09	767823.94	-3.395	MAR
10	8983625.78	767830.054	-3.536	MAR
11	8983552.3	767801.806	-3.263	MAR
12	8983470.64	767778.59	-3.361	MAR
13	8983423.16	767712.008	-3.2	MAR
14	8983374.47	767644.288	-2.222	MAR
15	8983416.14	767495.811	0.173	ORI
16	8983414.26	767483.451	1.134	TN
17	8983440.3	767488.29	0.396	ORI
18	8983440.72	767479.385	1.25	TN
19	8983478.35	767486.435	0.403	ORI
20	8983480.03	767477.885	1.477	TN
21	8983483.38	767477.48	1.526	TN
22	8983516.82	767490.446	0.488	ORI
23	8983520.58	767482.916	1.435	TN
24	8983557.21	767499.583	0.589	TN
25	8983557.22	767499.586	0.589	ORI
26	8983556.43	767502.598	0.411	ORI
27	8983568.56	767495.827	1.488	TN
28	8983589.29	767514.381	0.481	ORI
29	8983600.32	767505.885	1.572	TN
30	8983678.86	767565.251	0.671	ORI
31	8983687.39	767555.344	1.566	TN
32	8983740.33	767614.043	0.335	ORI
33	8983749.31	767599.527	1.429	TN
34	8983785.21	767644.682	0.399	ORI
35	8983791.14	767630.095	1.255	TN
36	8983827.98	767672.533	0.672	ORI
37	8983836.19	767660.785	1.474	TN
38	8983859.52	767705.442	0.484	ORI
39	8983871.11	767690.885	1.421	TN
40	8983895	767737.429	0.448	ORI
41	8983910.18	767720.535	1.471	TN

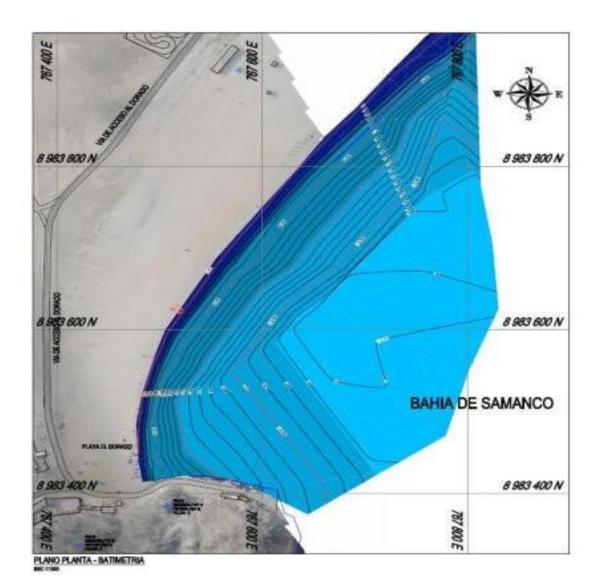
INFORME TOPOGRAFICO

PENINSULA EL FERROL - ENTRE LA BAHIA EL FERROL Y LA BAHIA SAMANCO

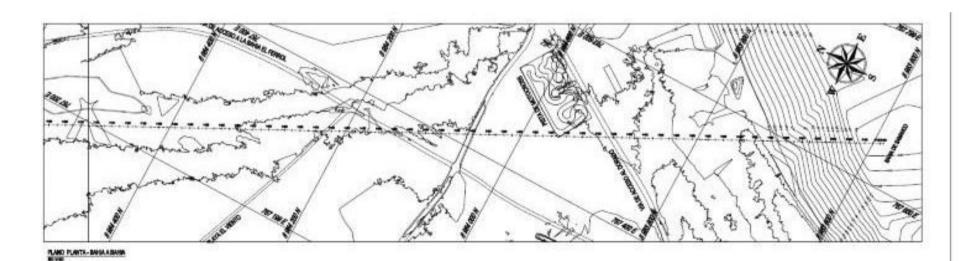

42	8983917.03	767757.628	0.429	ORI
43	8983931.27	767741.354	1.436	TN
44	8983939.47	767780.743	0.579	ORI
45	8983958.98	767759.029	1.631	TN
46	8983968.1	767807.708	0.464	ORI
47	8983986.82	767787.539	1.698	TN

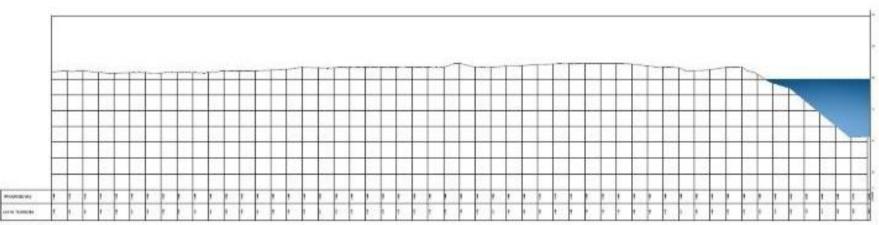

6.2. ANEXO N°03: Certificado de Calibración de Instrumentos


2	ieol	dop						O: 2018 Cert - 008287
	odesta y bop	ografia II			3	CERTIFICADO	DE CALIES	ACION
OTOBOLEDO.	a: MARCOS JI						200	
EQUIPO		riel Marce TOPO	ON Modelo Et	5-105			R.U.C: 325	10861
SERIE: GEOTOP SAG	G25612				SEGUN LOS ES	TANDARES IN		EMISION: 2018-07 LES ESTABLECED
		ESPECIFIC	ACIONES TÉC	WICAS DEL WIST	RUMENTO SEC	ON OL FADRIC	ANTE	
Predate de Sup		den a Cores						
Terrerore Severe Name policy (mape)								
Locus Weens 1								
Premius Arquier	e :							
				WHEN AND T	P1 B01-P0			
PANEL DE C	ONTRO		DASE	VERIFICACION D	CC EQUIPO	1 Inne	INCN .	
EDROCKINGS	A SK		CONCROON	FINDS ON			B VERTICAL OK	
MARGABORE TO PLINCEPHER DIS.			WHEEL CIK	1/1		2000	R HORIZONEAL OR	
internated bill	104/40/2015		TORNILLOS	10			ENDERARENCE	
						9/36	ACALAMATA	
MECANICA			PRECISIO	N N		-	RIENCIA VISII	LE TAN
ADMO-TIME			AMONED HO	RESERVAL OK		2340	H OK	
ACTIVIDAY YORK			WEITTLAB	RIGHT OK		(800)	SSA CIK	
CALIBRACIÓ	N	(F)						
VERTICAL DE								
		NES DEL INSTR			_	-		
ANDAD O	N DE MEDICIO	Various and the second	OWENIO EN	180°00'00"	AMOULONG	00.00.00	DNES DE PAT	HUN
ANGULO V		90°00'00" '9	No.	anonomore.	AMQULOV	80'00'00"	230,0300,	
Artica			W	Sworeliter*				De Vill
Atogo		120100007 1	Nº	300108/081	RESULTADO	VHOK HZHO	K	
111111111111111111111111111111111111111	O EN EL INSTI	2007 1000 1000		VALOR A CORRE		the second secon		PRUMENTO CALIB
VERTICAL	9000 MMU108	SEOUNDOS ON	vernos	09-00	DE TOURSON	VERTICAL	MACON MINUTE	a appearance
HORSONTAL	ME 00	61	HORIZONT			HOHIZONTAL	360 50	
	CALIBRACI	ON CEL DISTAN	CIOMETRIO	Lond	and the	RANGO	DE TOLERA	ICIA 1
5000	COMMEDICALOR	100		OFERENCE .	100	- DRICOS (MINUTOS SEO	UNDOS
MEDIDA RICEN.	NEGROAPHTRON DE MECHOA	MEDIEA PATRICIN	HEROMS	NEDIDAPATRON DE NEDIDA		+ 365 368	06 00 60 00	
(E)	DECRAL OVE	U77/	(m)	COMMISSION (w)		1	-	
80	9.00	100	86	.0.00		TITICAMOS QUE		
199	0.00	:150	190	0.00				COAJORTHOLAGO
200	0.00	200	390	0.00	YOA	LIBRADO, BESSIS	PROPINA DEN 10	725
		COMO	CIONES AME	HENTALES DE CA	ALIBRACIÓN Y	VERFICACIÓN		
Lagir		Taller de Santilo			O THE COUNTY		110000	E 5.005
Temperature		Promedio de 20 p	actos C rain yero	uson do 40 il 8 gradi	is C Humarian No	lativa do SATE.	704,77	
							The same	
							7	
3		Av. Doministra	- 150 - 64-	com Nephla	MIT NEW JOS	no compre	(H)	Fight



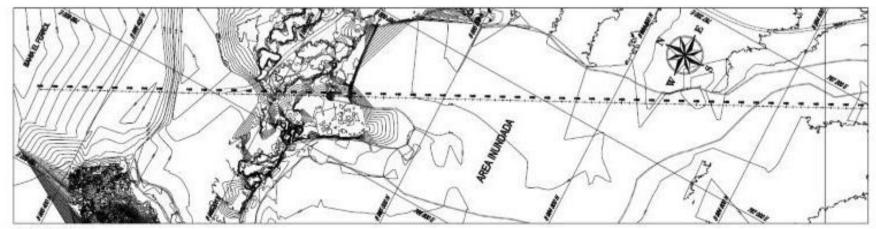
6.2. ANEXO N°04: Plano Topográfico

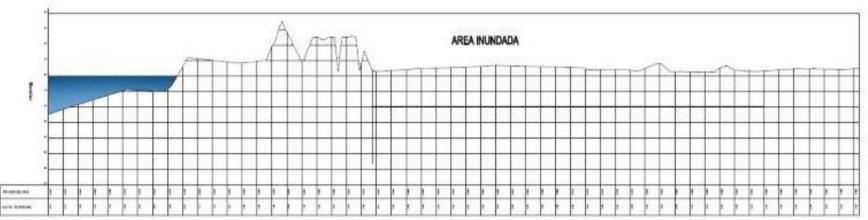



PLANO CLAVE

LEYENDA				
AREA SELECTION	160-			
YA DE ACCION	1900			
THE PARTY OF THE P	40.4			
HOST RANGHET TROO	+			
CLIMAN MACCORDIN	100			
CURROR HERETON	-			
	+800			

	PLINTER	OK COMPRES.	
BINTO	NORTE	657.6	BEVACEN
1004.0	8981184.762	20,7504,763	39.795
MIN.	#1813.50.733	263622,305	23.878
MMA-C	8991341.589	766572-029	28030
894.0	###251.632	7000333613	80.886
864-6	8985275380	796162-318	28979





THE PERSON NAMED IN

ANEXO Nº 4

INFORME DE ENSAYOS EN LABORATORIO

Universidad César Vallejo

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

INFORME TÉCNICO DE ENSAYOS REALIZADOS EN LABORATORIO

PROYECTO DE INVESTIGACIÓN

"CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

Autores:

Micher Simon Miguel Angel Junior

Sarmiento Ahon Gian Franco

MAYO DE 2019

INDICE

- I. GENERALIDADES
 - 1.1. OBJETIVOS
 - 1.2. UBICACIÓN
- II. ASPECTOS GEOMORFOLÓGICOS, GEOLÓGICOS Y SISMICIDAD
 - 2.1. GEOMORFOLOGÍA
 - 2.2. GEOLOGÍA LOCAL
 - 2.3. SISMICIDAD
- III. INVESTIGACIONES GEOTÉCNICAS DE CAMPO Y LABORATORIO.
 - 3.1. PROSPECCIONES DE CAMPO
 - 3.2. ENSAYOS DE LABORATORIO
 - 3.3. CLASIFICACION DE SUELOS
- IV. DESCRIPCIÓN DEL PERFIL ESTRATIGRÁFICO
- V. RESUMEN DE RESULTADOS
- VI. CONLUSIONES

ANEXO

ANEXO I: RESGISTRO ESTRATIGRÁFICO ANEXO II: ENSAYOS DE LABORATORIO

Somos la universidad de los que quieren salir adelante.

I. GENERALIDADES

1.1. OBJETIVOS

El presente informe tiene por objeto determinar las propiedades físico - mecànicas del subsuelo del área en estudio, con fines de investigación para el Proyecto "CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019", la evaluación fue realizado por medio de trabajos de exploración de campo y ensayos de laboratorio; necesarios para definir el perfil estratigráfico, clasificación de suelos y calidad de materiales.

Para alcanzar el objetivo principal, previamente se requiere lograr los siguientes objetivos secundarios:

- + Elaboración de un estudio geológico superficial de la zona, que sirva de marco para las investigaciones geotécnicas.
- Realización de los ensayos estándares de laboratorio de mecánica de suelos.
- Elaboración de los perfiles estratigráficos.
- Interpretación de los resultados de las investigaciones geotécnicas de campo y los ensayos de laboratorio.

1.2. UBICACIÓN

El proyecto de investigación se ubica en la zona marino costera entre la Bahía el Ferrol y la Bahía de Samanco; una pampa baja de arena, de forma triangular y lados curvilineos que se extienden hacia el SW. La parte más occidental termina en una cadena perpendicular de cerros de mediana altura que da al conjunto una configuración muy peculiar en forma de T, que la hace muy fácil de identificar.

II. ASPECTOS GEOMORFOLÓGICOS, GEOLÓGICOS Y SISMICIDAD DEL ÁREA DE ESTUDIO

2.1. GEOMORFOLOGÍA

La ciudad de Chimbote y sus alrededores está enmarcada dentro de las siguientes geomorfologias:

- Unidad de playas
- Unidad de humedales

Somos la universidad de los que quieren salir adelante.

- Unidad de colinas
- Unidad de dunas

a) Unidad de playas

Se ubica a lo largo de la costa de la bahía de Chimbote, con un ancho promedio de 5 a 30 m. Está constituido de arenas media a fina y conchas marinas, con intercalaciones de limos en los laterales.

b) Unidad de humedales

Cubiertas por las expansiones urbanas tales como A.H. La Balanza, A.H. Manuel Arévalo y A.H. Bolivar Alto, algunos humedales afloran en los terrenos de Sider Perú y Vivero Forestal de Chimbote, presentándose con un nivel freático casi superficial. La presencia de materia orgánica y turba provocan inestabilidades en las construcciones ubicadas en dichas áreas.

c) Unidad de colinas

Constituidas por elevaciones de rocas volcánicas e intrusivas, cubiertas parcialmente por arenas eólicas, formando colinas cuyas pendientes varian de 10° a 45°.

d) Unidad de dunas

Son depósitos eólicos ubicados en la Urb. Los Pinos, Urb. Laderas del Norte, A.H. San Pedro, A.H. El progreso y A.H. Bolivar Alto, con un espesor de 5m a 40m de profundidad aproximadamente.

2.2. GEOLOGÍA LOCAL

En base al reconocimiento y exploración de campo de la ciudad Chimbote y sus alrededores, se ha elaborado el siguiente mapeo geológico que indica:

a) Cretáceo Inferior

Grupo Casma: Formación la Zorra (Ki-Z)

Es una secuencia volcánica andesítica (Cerro Cruz de la Paz), conformada por lavas y brechas, de composición básicamente de andesita y porfiritica que presentan fenocristales de plagioclasas anfiboles y en menor proporción piroxenos.

b) Rocas Intrusivas

Se encuentra constituido por granodiorita y tonalitas, ubicados en los alrededores de Chimbote, cubiertas por depósitos eólicos. Estas rocas pertenecen al Batolito de la Costa y corresponden a

cuerpos igneos que gradan de granodioritas a tonalitas.

Somos la universidad de los que quieren salir adelante.

f | ♥ | ⊚ | ⊡ ucv.edu.pe

Las rocas son de color gris oscuro, de textura granular de grano medio a grueso, en las diaclasas tienen tonalidad rojiza y están meteorizadas. No obstante, existe la tendencia a disminuir el grado de meteorización y mejorar sus propiedades fisico-mecánicas en profundidad.

c) Cuatemario

Depósitos de arenas eólicas (Dunas)

Son los depósitos eólicos que cubren gran parte de las elevaciones rocosas de Chimbote, la formación de masas de arenas comienza desde el litoral de la costa y termina en los cerros de los primeros tramos de las estribaciones de la Cordillera Occidental Andina, desplazando en las laderas, hasta alcanzar una altura considerable como en la Urb. Laderas del Norte y A.H. San Pedro.

Depósitos marinos (Q-m)

Se encuentran distribuidas por el casco urbano de la ciudad de Chimbote e incluso llegan hasta el Estadio Manuel Gomes Arellano. Los depósitos marinos están constituidos por fragmentos de conchas con una matriz de arena mal graduada de grano medio a fino.

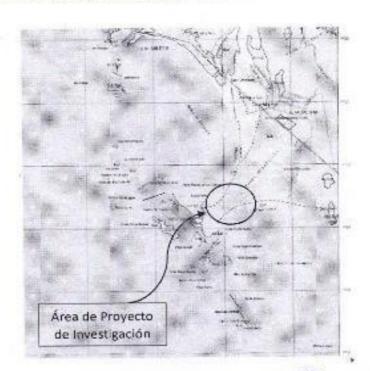


Figura N° 01: Mapa Geológico del Cuadrángulo de Chimbote: Ingente Carta Geológica 19f

Somos la universidad de los que quieren salir adelante.

Ing. Victor Henrera Lazaro

f | 🛩 | 💿 | 🖸

ŧρ	AD	UNICADES ESTRATIGRAFICAS	HUCAS SEDIMENTARIAS	HDCAS INTRUSIVAS
CUATERNAPRO	Residents	Depósica solicas Peposina illumina como o DISCORDALEM TORRAN	04-	
uusienneec.	Pidstecero	Terrapas Starkas Concentra (1880) SCANO (1880) Concentra	0-6	The That
TERCIARIO	Pietotoceno			
	Superior			/KTI-001/
CRETACEO	interior	Pri-Essera	foc.	
JUFASICO	Superior	Fri Origina	Js-obic	

Figura Nº 02: Leyenda Mapa Geológico

2.3. SISMICIDAD

De acuerdo al Mapa de Zonificación Sismica del Perú, el área del proyecto de investigación se ubica en la zona 4, zona de Sismicidad alta sismo activa en el presente siglo, con predominio de sismos intermedios a fuertes.

Antecedentes Sismicos

Los sismos en el área del proyecto de investigación presentan el mismo patrón general de distribución espacial que el resto del territorio peruano; caracterizado por la concentración de la actividad sismica en el litoral, paralelo a la costa, por la subducción de la Placa de Nazca. Los sismos de mayores intensidades registrados en el área de influencia del estudio son:

- Sismo del 24 de mayo de 1940, que afectó las localidades de la costa central, norte y sur del Perú, alcanzando intensidades máximas de VII y VIII en la escala de Mercalli Modificada (MM).
- Sismo del 10 de noviembre de 1946, que afectó al Departamento de Ancash, alcanzando una intensidad máxima de VII MM.
- Sismo del 18 de febrero de 1956, con intensidad promedio de VIII MM, afectando el Callejón de Huaylas.

- Sismo del 17 de octubre de 1966, con intensidades máximas entre VII y VIII MM, afectand

localidades de Lima, Casma y Chimbote.

Somos la universidad de los que quieren salir adelante.

- Sismo del 31 de mayo de 1970, que ha sido un terremoto catastrófico en las localidades de Chimbote y Huaraz, alcanzando intensidades máximas de VIII MM.
- Sismo del 21 de agosto de 1985, que afectó las ciudades de Chimbote y Chiclayo, alcanzando una intensidad promedio de V MM.
- Sismo del 10 de octubre de 1987, con intensidades máximas de IV y V MM, sertido en las ciudades de Chimbote y Santiago de Chuco.
- Sismo del 23 de Junio del 2001, con Intensidades máximas de VIII MM, sentido en las ciudades de Nazca, Ica. Arequipa y Tacna.
- Sismo del 15 de Agosto del 2007, con intensidades máximas de VII MM, sentido en las ciudades de Pisco, Nazca, Ica y Lima.

III. INVESTIGACIONES GEOTÉCNICAS DE CAMPO Y LABORATORIO

3.1. PROSPECCIONES DE CAMPO

3.1.1. CALICATAS

Con la finalidad de definir el perfil estratigráfico se realizaron cinco calicatas exploradas a cielo abierto, hasta 1.10m de profundidad.

3.1.2. MUESTREO DISTURBADO

Se tomaron muestras disturbadas de cada uno de los tipos de suelos encontrados, en cantidad suficiente como para realizar los ensayos de clasificación e identificación de suelos.

3.1.3. REGISTRO DE CALICATAS

Paralelamente al avance de las excavaciones de las calicatas, se realizó el registro de excavación vía clasificación manual visual según ASTM D-2488, descubriéndose las principales características de los suelos encontrados tales como: espesor, tipo de suelo, color, plasticidad, humedad, compacidad, etc.

3.2. ENSAYOS DE LABORATORIO

Los ensayos se realizaron según normas:

Ensayos estándares de laboratorio de mecánica de suelos:

05 Análisis Granulométrico SUCS (ASTM D-6913).

Somos la universidad de los que quieren salir adelante. 25000

rera Lazaro

f | ♥ | ◎ □ ucv.edu.pe

- 05 Limite liquido (ASTM D-4318)
- 05 Límite plástico (ASTM D-4318)
- 05 Contenido de humedad (ASTM D-2216)

3.3. CLASIFICACIÓN DE SUELOS

Los suelos han sido clasificados de acuerdo al Sistema Unificado de Clasificación de Suelos (SUCS – ASTM D-2487), para ello se hizo uso del programa Clas y Clasif.

IV. DESCRIPCIÓN DEL PERFIL ESTRATIGRÁFICO

El subsuelo del área del proyecto ha sido investigado por las calicatas (C-01, C-02, C-03, C-04 y C-05). De los trabajos de campo y ensayos de laboratorio se deduce lo siguiente:

CALICATA C-01

En la exploración de la Calicata C-01, se registró de 0.00 a 1.00m de profundidad, Arena Mal Graduada (SP) de condición insitu suelta a semicompacta, de estado saturado, de color gris claro y finos no plásticos. Se registro presencia de nivel freático a 0.65m. de profundidad.

CALICATA C-02

En la exploración de la Calicata C-02, se registró de 0.00 a 1.00m de profundidad, Arena Mal Graduada (SP) de condición insitu suelta a semicompacta, de estado saturado, de color gris claro y finos no plásticos. Se registro presencia de nivel freático a 0.68m. de profundidad.


CALICATA C-03

En la exploración de la Calicata C-03, se registró de 0.00 a 1.05m de profundidad, Arena Mal Graduada (SP) de condición insitu suelta a semicompacta, de estado saturado, de color gris claro y finos no plásticos. Se registro presencia de nivel freático a 0.65m. de profundidad.

CALICATA C-04

En la exploración de la Calicata C-04, se registró de 0.00 a 1.00m de profundidad, Arena Mal Graduada (SP) de condición insitu suelta a semicompacta, de estado saturado, de color gris claro y finos no plásticos. Se registro presencia de nivel freático a 0.60m. de profundidad.

Somos la universidad de los que quieren salir adelante.

CALICATA C-05

En la exploración de la Calicata C-05, se registró de 0.00 a 1.05m de profundidad, Arena Mai Graduada (SP) de condición insitu suelta a semicompacta, de estado saturado, de color gris claro y finos no plásticos. Se registro presencia de nivel freático a 0.65m. de profundidad.

V. RESUMEN DE RESULTADOS

De los ensayos realizados en laboratorio, obtenemos los siguientes resultados:

CUADRO Nº 01: Clasificación de Suelos

Calicata		C-01	C-02	C-03	C-04	C-05
Muestra		M-1	M-1	M-1	M-1	M-1
Profundidad	m.	0.00 a 1.00	0.00 a 1.10	0.00 a 1.05	0.00 a 1.00	0.00 a 1.05
Gravas	96	0.00	0.00	0.00	0.04	0.13
Arenas	96	99.81	99.92	99.90	99.92	99.70
Finos	96	0.19	0.08	0.10	0.04	0.17
L. Liquido	96	N.P.	N.P.	N.P.	N.P.	N.P.
L. Plástico	%	N.P.	N.P.	N.P.	N.P.	N.P.
I. Plasticidad	96	N.P.	N.P.	N.P.	N.P.	N.P.
Humedad	96	22.58	23.66	27.75	18.24	21.62
Clasificación SUCS		SP	SP	SP	SP	SP

VI. CONCLUSIONES

Basândose en los trabajos de campo, ensayos de laboratorio y el análisis correspondiente, se puede concluir lo siguiente:

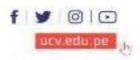
- El suelo está constituido de 0.00m a 1.05m, constituido por arena mal graduada (SP), con más del 50% de arenas que finos, de condición in situ suelta a semicompacta, de estado saturada, de color gris claro y de finos no plásticos a profundidad.
- Durante las exploraciones se registró presencia de nivel freático variable de 0.60m. y 0.65m. de profundidad.

El análisis de los resultados se basó en los reglamentos vigentes.

Manual de Ensayos de Materiales (MTC-2016)

Somos la universidad de los que quieren salir adelante.

Ing. Vibrer Herrera Lazaro


f | 🟏 | 💿 | 🖸

ANEXO I REGISTRO ESTRATIGRÁFICO

Somos la universidad de los que quieren salir adelante.

					REGISTRO ESTRATIGRÁFICO ASTIM D-2488		
PROYECTO: SOLICITA: UBICACIÓN: CALICATA:		CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCIÓN, DISTRITO DE MUEVO CHIMIDOTE PROVINCIA DEL BANTA, ANCASH - 2019 MICHER BINON MIQUEL ANGEL JUNIOR - SARMIENTO AHON GIAN FRANCO Distrito Nuevo Chimbole - Provincia: Santa - Departemento Ancash C-01 Fecha:					
MORTNO DAD	THO DE EXCAVACIÓN	MUSTRAS	PRITTIAS BY THE	SIMBOLO	DESCRIPCIÓN DEL WATERIAL	7.	GUSSITIONON (SUCS)
1.00	6 A L + G A T A	Met	22.55		Arena Mai Graduada (SP): 89.81% de arena grussas a lina y C. 19% de finos no plásticos. Gondición in eltu : Densidad suella a sem compacta, saturada y de co	er gra thire.	SP

Somos la universidad de los que quieren salir adelante.



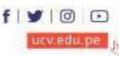
					REGISTRO ESTRATIGRÁFICO ASTIM D-24488		
ROYE OUEN BICAC SAUCA	A: IÓN:	CAUSAS PROPUE! MICHER I Distrio: N C-62	Registro N': Pegina N': Prof. Alcanzada (m): Nivel Prelitico (m): Fosha:	15-Res-00 01 de C1 1 00 0 68 19/04/2019			
MEDITAGE (NETROS)	THO DE EUCAVACIÓN	MUESTRAS	PROTESS INC.	SMBOLO	DESCRIPTION OF . MATERIAL	8	COMPENSACIÓN (SUES)
NF. 7	C A L T C A T A	34-5	23.85		Arenia Mai Graduada (SP): 99.82% de severe gruesa a fina y 0.08% de finos no piseticos. Condición in situ : Densigad suelta a sem compacia, saturada y de c	olor gris clare.	SP

Somos la universidad de los que quieren salir adelante.

Ing. Victor Her era Lazaro

					REGISTRO ESTRATIGRÁFICO ASTM D-2488			
ROYE: SOLICIT JOICAG SALICA	A: IÓN:	PROPIES MICHER	STA DE SOL SIMON MIGI	UCIÓN BISTY JEL ANGEL JU	AGUAS DE LA BAHIA EL FERRO, A LA BAHIA DE SAMANCO 10 DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH, 2019 INIOR: SARVIENTO AHON GIAN FRANCO Santa - Departamento, Ancash	Registro N*: Pagina N*: Prof. Alcanzada (m): Nivel Presisco (m): Peche:	: 01 de 51 : 1.05 : 0.65	
PROPUNITIONS	FAXAVACIÓN	METERS	PRUIDAS	SIMIGLO	DESCRIPCIÓN DO, MATERIAL		CLASSHCACIÓN (SUCS)	
106 106	C A 1 C A 1 A	M-1	27,75		Arena Mai Graduada ISPI; 98.90% de arena gruesa a fina y 0.10% de finos no plásticos Condición in situ : Densidad sueba a temicompacta, saturada y de oc	eker grita cliaro.	SP	

Somos la universidad de los que quieren salir adelante.



					REGISTRO ESTRATIGRÁFICO		
ROYEC SOLICIT JEICAC CALICA	A: KÓN:	PROPUE MICHER	STA DE SOL SIMON MICA	UCIÓN DISTR	ACUAS DE LA BAHA EL PERRO, A LA BAHA DE SAMANCO RTO DE NUEVO CLIMBOTT, PROVINCIA DEL SANTA, ANCABH - 2019 INICH - SARMENTO AHON SIAN FRANCO Santa - Departamento: Ancaso	Registro N° Pagina N° Prof. Alcanzada (m) : Navel Presitico (m) : Peche:	1:00 0:00
PROFINISHAD (VITTOS)	THO DE EXCAVACION	MUESTRAS OUTBAILAS	PRUFRAS PK N	8MHOL0	DESIGNACIÓN DEL MATERIAL	8	CLASIFICAÇIÓN (SINCS)
N.F.	5 A L + 5 X T	Mac	18.24		Arens Mai Craduada (SP): 0 C4% de gravas tinas, subredondes:bia 99.91% de arena grussa a fina y 0.64% de tinos no palaticos. Cendición in situ : Densidad suella a sem compacta, saturada y de ca	er grs clare.	SP

Somos la universidad de los que quieren salir adelante.

					REGISTRO ESTRATIGRÁFICO		
MOYER SOLICIT JBICAC SALICA	A: IÓN:	PROPUE MICHER	STAIDE SOU BIMON MIGU	UCIÓN, DISTR IEL ANGEL JU	AGUAS DE LA BAHIA E. FERROL A LA BAHIA DE SAMANCO NTO DE NUEVO CHIMBOTE PROVINCIA DEL SANTA, ANCASH - 1019 NIOR - SARMIENTO AHON GIAN FRANCO Sente - Ospertamento: Ancash	Rugistro N*: Pagins N* ; Prof. Alcancada (m) : Nivel Frestico (m) : Facha:	TS RES 00 01 de 01 1,05 0,65 19/04/2018
Pactivities on Contraction on Contra	TPO DE EXCAVACIÓN	MIESTRAS OBLEMIANS	INUERAS	SIMBOLO	DESCRIPCIÓN DEL MATERIAL	84	CLASIFICACIÓN SUCS
NF \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	C A .T .A	86-1	21 62		Arens Mail Graduada (SPS: 0.13% de gravas finse, autredouteadas 99.83% de arens gruesa a fins y 0.13% de finse no plásticos. Condición in aitu : Densidad sue la a semicompacta, caturada y de co	eor presideno.	SP

Somos la universidad de los que quieren salir adelante.

Ing. Victor Receira Lazaro

ANEXO II ENSAYOS DE LABORATORIO

Ing. Victor Herrera Lazaro

Somos la universidad de los que quieren salir adelante.

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO PROYECTO: CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO. REGISTRO: TS-GRA-01 PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019 PAGINA: 01 de 01 SOLICITA: MICHER S MON MIGUEL ANGEL JUNIOR - SARMIENTO AHON GIAN FRANCO UBICACIÓN: Departemento: Aricash; Provincia: Santa: Districo: Nuevo Chimbote CALICATA: C-01 (W-1) COORDENADAS UTM (17L) 766780 m. E. N. FREATICO: 0.65 m. MUESTRA: 0,00 a 1.00 m. : 8985306 m. N FECHA: 19/04/2019

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM - 6913)

Peso Inicial Sec	a. [gr]	539.00	
Peso Lavado y S	Seco. [gr]	538.00	
Mallas	Aberture (mm)	Peachwherdo (gra)	% case
3,	76,000	99900	
2*	50.600		
1 1/2	36,423		
1"	25,400	- 3	
3/4"	19,060		
1/2"	12,500		
3/8"	8.525		
N. 4	4.760	0.00	100.00
N* 10	3.500	1.00	99.81
N° 20	0.840	9.00	98.70
N° 40	0.420	34.00	92.39
Nº 60	0.250	284.00	39.70
N* 100	0.150	181.00	6.12
N° 200	0.074	32 00	0.19
< N° 200	2500	1.00	

LIMITES DE CONSISTENCIA (ASTM - D4318)

LIMITE LIQUIDO

Procedimiento		Tata No	
Proceduración			
1. No de Golpes			
2 Peso Tara, [gr]	- 4		
Poso Tara + Suelo Húmedo, [gr]	102		
4. Peso Tara + Suelo Seco. [gr]	NO	PRESENT	TA
5. Peso Agua, [gr]	10, 1000	COLUMN ETTE	7.4
6. Peso Suelo Seco, [gr]			
7. Contenido de Humaded, [5/]			

CONTENIDO DE HUMEDAD (ASTM - D2216)

Providence:	Tana No
Proced miento	. 5
1. Peso Tara, [gr]	12.50
2. Poso Tara + Suelo Húmedo, [gr]	254.60
3. Peso Tara + Suaro Seco. [gr]	210.00
4. Peao Ague, [gr]	44.60
5. Peso Suelo Seco, [gr]	197.50
5. Contenido de Humedad, [%]	22.58

Procedimiento	-	Tara Nº	_
1. Peso Tara, [gr]			-
2. Peso Tara + Suelo Hûmedo, (gr)			
3. Peso Tara + Suelo Seco, [gr]	F 400		
4. Peso Agua, [gr]	100	PRESEN	IA
5. Peso Suelo Seco, [gr]			
6. Contonido de Humeded, [%]			

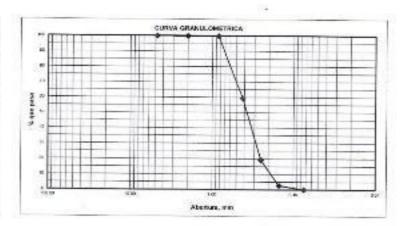
RESUMEN

Grave (No.4 = Diam < 37)	0.00%
Atena (No.200 < Dem < No.4)	99.81%
Parsza (Diarri < No 200)	0.19%
Clasificación SUCS	SP Arena Mai Graduada

Somos la universidad de los que quieren salir adelante.

CURVA DE FLUIDEZ

tor Herrera Lazaro


9 0 0

	AN	ÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM C-6913		
PROYECTO:	CAUSAS DE LA INVAS	ÓN DE LAS AGUAS DE LA BAHIA EL FERROL À LA BAHIA DE SAMANCO	REGISTRO:	TS-GRA-02
	PROPUESTA DE SOLU	CIÓN, DISTRITO DE NUEVO CHIVBOTE, PROVINCIA DEL SANTA, ANCASH - 2019	PAGINA:	01 de 01
BOLICITA:		L ANGEL JUNIOR - SARMIENTO AHON GIAN FRANCO	0.0000000	
UBICACIÓN:		Provincia: Santa; Distrito: Nuevo Crimbote		
CALICATA:	C-02 (M-1)	COORDENADAS UTM (17L) : 767285 m. E	N. FREATICO:	5 68 m.
MUESTRA:	0.00 a 1.10 m.	: 89858*0 m, N	FECHA:	19/04/2019

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM - 6913)

idal Seco	[gr]	646,00	
avado y S	aca [gr]	645.60	
star	Abertura jmmj	Paso referrido Ignali	% pase
3"	70.000	- No. 1	
2"	50,000		
102	38.130		
1.5	25 400		
164"	19.050		
2	12,500		
081	9.525		
*4	4.753	0.00	100.00
10	2.000	0.50	99.92
20	0.640	0.50	99.65
40	0.420	261.00	59,44
'60	0.250	259.50	19.27
100	0.190	107.00	2.71
200	1.174	17.00	0.08
200		0.50	3887

LIMITES DE CONSISTENCIA (ASTM - D4318)

LIMITE LIQUIDO

Procedimento	Tara Nº
1. No de Colpes	
2. Paso Tera, (gr)	
3. Peso Tara + Suelo Húmedo, [gr]	100000000000000000000000000000000000000
4. Peso Tara + Suelo Seco. [gr]	NO PRESENTA
5 Peso Agus, (gr)	
6 Peso Suelo Seco, [gr]	
7. Contenido de Humedad, [%]	

CONTENIDO DE HUMEDAD (ASTM - D2216)

Dronofinionto	Tara No
Proceedings	8
1. Peso Tara, (gr)	21,50
2 Peso Tara + Suelo Húmedo, (gr)	198.60
3. Peso Tara + Suelo Seco, [gr]	163.10
4. Peso Agua, [gr]	33.50
6. Peso Suelo Seco, [gr]	141.60
6. Contenido de Humedad, (%)	23.66

CURVA DE FLUIDEZ

NO PRESENTA

RESUMEN

Crave (No 4 < Diam < 3")	0.00%
Arene (No. 200 < Diam < No.4)	99.92%
Pinus (Diam < No.200)	0.08%
Castomin 5JCS	SP Arena Mai Graduada

Somos la universidad de los que quieren salir adelante.

Ing. Victor Hervera Lazaro

61)

24

10

Comtenido Humedad, [14]

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

PROYECTO: CAUSAS DE LA INVASIÓN DE LAS AQUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO.

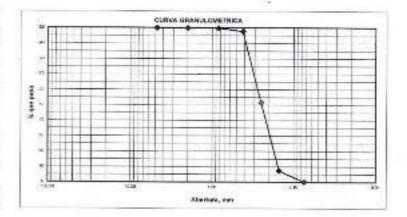
REGISTRO: TS-GRA-03

PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019

SOLICITA: MICHER SIMON MIGUEL ANGEL JUNIOR - SAMMIENTO AHON GIAN FRANCO

UBICACIÓN: Departamento Ancesh; Provincia: Santa, Distrito Nuevo Chimbote

CALICATA: C-03 (M-1)


COORDENADAS UTM (17L) 786825 m. E N. FREATICO: 0.55 m.

FECHA: 19/04/2019

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM - 6913)

Fesc Inicial Seco. [gr] Fesc Levado y Seco. [gr]		490.00	
		495.50	
Matas	Apertura (mm)	Poso reterado (gra)	% pass
3,	76,000	-33-270-3	
2'	50,800		
1 1/2"	S8.100		
1	25,400		
3.4"	19.050		
1/2*	12.500		
3/5"	9,525		
Nº 4	4,780	0.00	100.00
Nº 10	2.000	0.50	99.90
N* 20	0.840	0.50	99.80
N* 40	0.420	10.00	97.78
N* 60	0.290	228 50	51.71
Nº 100	0.150	219 00	7.56
N* 200	0.074	37 00	0.10
< N* 200		0.50	2003

0.00 a 1.05 m.

LIMITES DE CONSISTENCIA (ASTM - D4318)

LIMITE LIQUIDO

MUESTRA:

Procedimento	Tara N°
1. No de Galpes	
2. Peso Tara [gr]	
3. Peso Tara + Suelo Húmedo, (gr)	32 12 - 21
4. Pesc Tara + Suelo Secc, [gr]	NO PRESENT.
5. Pesc Agua [gr]	The state of the s
6. Peso Suelo Seco, [gr]	
7. Contenido de Humadas, (%)	

CONTENIDO DE HUMEDAD (ASTM - D2216)

Procedimients	Tara No
Procedification	e
1. Peso Tara [gr]	23.00
2 Pasc Tera + Suelo Húmedo, [gr]	186,50
3 Peso Tara + Suelo Seco, [gr]	150.20
4 Peso Agua, [gr]	35.30
5. Peso Suelo Seco. [gr]	127,20
6. Contenido de Humedad. [%]	27.75

LIMITE PLASTICO

Procedimiento	Tere N*	
1. Peso Tara, [gr] 2. Peso Tara + Suelo Húmado. [gr]		
3 Pesp Tara + Suelo Seco. [gr] 4 Pesp Ague, [gr]	NO PRESENTA	
5 Poso Suelo Seco, [gr]		
6 Correndo de Humedad, [%]	7- Table 211 (2)	

DECLIMEN

Grava (No. 4 < Diam < 37	0.00%
Arena (No.200 v Dam v No.4)	99.90%
Finos (Diam + No 200)	0.10%
Clasificación Bucs	SP Arena Mai Graduada

CURVA DE FLUIDEZ Contomide Humedad, [5] NO PRESENTA No Galges

Somos la universidad de los que quieren salir adelante.

Victor Herrera Lazaro

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ASTM C-6913

CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROYECTO:

REGISTRO: TS-GRA-04

PROPUESTA DE SOLUCIÓN, DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019

PAGINA: 01 de 01

BOLICITA:

MICHER SIMON MIGUEL ANGEL JUNIOR - SARMIENTO AHON GIAN FRANCO

UBICACIÓN:

Departamento: Ancash. Provincia: Santa; Cistrilo: Nuevo Chimbote

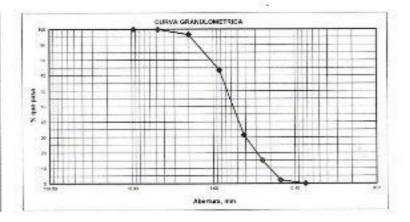
CALICATA:

COORDENADAS UTM (17L): 767088 m. E.

N. FREATICO:

0.60 m.

MUESTRA


0.00 a 1.00 m.

: 6965038 m. N

FECHA: 18/04/2019

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM - 6913)

Pesc Inicial Seco. [gr] Pesc Levado y Seco. [gr]		445.00	
		444.80	
Malas	Abertura [mm]	Peac reterrido (graf)	% passe
3*	76.003	1000	
2"	50.800		
1.1/2"	39.100		
1*	25.400		
3.4"	12,050		
1/2"	12,500		
3/8"	9.525	0.00	100.00
N' 4	6.763	6.20	99.96
Nº 10	2.000	16.00	96.68
N° 20	0.840	102.30	73.60
N° 40	0.405	187.00	31.57
N. 60	0.254	73.00	15.17
N° 100	0.150	57.00	2.36
N* 200	0.274	10:30	0.04
< N° 200	- Alexander	0.20	

LIMITES DE CONSISTENCIA (ASTM - D4318)

Procedimento	Tare N°	_
Proceedings.		-
1. No de Golpes	3	
2. Pese Tara, [gr]		
3. Pese Tara + Suele Húmedo, [gr]		1
4. Pesc Tare + Suelo Seco, [gr]	NO PRESS	NTA
d. Pesc Agua. [gr]	200000000000000000000000000000000000000	200
6. Peso Suelo Seco, [gr]		
7. Contenido de Humedad, [%]		

CONTENIDO	DE	HUMEDAD	(ASTM -	D2216)
-----------	----	---------	---------	--------

7225000000	Tare No
Procedmento	- 6
1. Fesc Tara, [gr]	12.40
2. Fesc Tara + Suelo Húmedo, [gr].	198.50
3. Pesc Tara + Suelo Seco, [gr]	168.10
4. Pesc Agua, [g/]	28.40
5. Pesc Suelo Seco. [gr]	155.70
5. Contenido de Humedad, [%]	18.24

Procedimiento	-	Tate N°	
1. Peso Tara, (gr)			
2. Peso Tara + Suelo Húmedo, [gr]			
3. Peso Tare + Suelo Seco, [gr]	NO PRESENTA	ITA	
4. Peso Ague, [gr]	- NO	FRESEN	VV.A.
5. Peso Suelo Seco, [gr]	1		
6. Contenido de Humedad, [16]	(B) (2)		

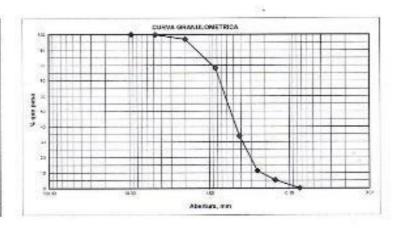
RESUMEN

REGUMEN	T-10000011
Grave (No.4 < Diam < 3")	0.04%
Arena (145.200 × Dam × No.4)	99.92%
Fires (Diam 4 No 200)	0.04%
Caseficacion SUCS	SP Amma Mai Graduada

CURVA DE FLUIDEZ Z Humedad, NO PRESENTA Commented No Galpes

Somos la universidad de los que quieren salir adelante.

Herrera Lazaro


ANÁLISIS GRANULOMÉTRICO POR TAMIZADO ASTM C-6913 PROYECTO: CAUSAS DE LA INVASIÓN DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCIÓN. DISTRITO DE NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019 PAGINA: 01 de 01 SOLICITA: MICHER SIMON MIGUEL ANGEL JUNIOR - SARMIENTO AHON GIAN FRANCO UBICACIÓN: Decartamento: Ancash; Provincia: Santa; Distrito; Nuevo Crámbole CALICATA: C-05 (M-1) COORDENADAS UTM (17L) : 756856 m. E N. FREÁTICO: 0.65 m.

8084752 m. N

ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (ASTM - 6913)

Peso Inipiai Seco, [gr]		522.00	
Poso Lavado y 8	Lavado y Seco [gr] 5		
Modes	Abertura (mm)	Peaciretericki (gra)	At been
3"	78,000	8160 6	
2	50.800		
1.1/2"	38,100		
1"	25.400		
3.4*	11,060		
1/2"	12.906		
3/5"	9.525	0.00	100.00
N* 4	4.763	0.70	99.87
N° 10	2,000	15.00	96.99
N° 20	1941	97.60	78.30
N* 40	0.420	232.10	33.83
N° 60	0.260	117.20	11.38
N* 100	0.164	31.00	5.44
N° 200	3,074	27.50	0.17
< N° 200	10000	0.90	- 00000

0.00 a 1.05 m.

LIMITES DE CONSISTENCIA (ASTM - D4318)

LIMITE LIQUIDO

MUESTRA:

Proceditionic	Tere N*
1. No de Golpes	
2. Peso Tare, (gr)	
3. Peso Tara + Suelo Húmedo, [gr]	
4. Peso Tara + Suelo Seco, [gr]	NO PRESENT
5. Peso Agua. [g/]	=15 15VX =150 (5.05)
8. Peso Suelo Seco, [gr]	
7. Contenido de Humedad. [N]	

CONTENIDO DE HUMEDAD (ASTM - D2216)

	Tare No
Proteciments	11
1. Peso Tara, [gr]	10.80
2. Poso Tara + Suelo Húmedo, [gr]	211.10
3. Peso Tara + Suelo Seco, [gr]	175.50
4. Pesc Agua, (cr)	36.60
5. Pesc Suelo Seco, [gr]	164.70
5. Contenido de Humedad, [%]	21.62

LIMITE PLASTICO

Propedin erro	Talatif
1. Peso Tara, [gr]	
2. Peso Tara + Suelo Húmedo. [gr].	S S S S S S S S S S S S S S S S S S S
3. Peso Tara + Suelo Seco, [gr]	NO PRESENTA
4. Peso Ague, [gr]	NO PRESENTA
5 Peac Suelo Seco. [gr]	
5. Contenido de Humedad, [%]	

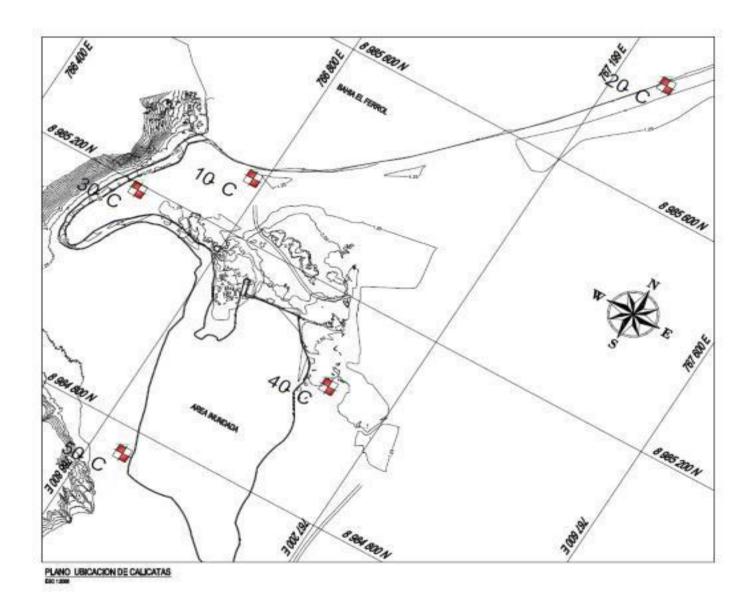
RESUME

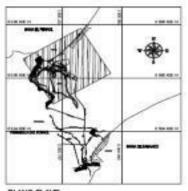
RESUMEN	C 1000 UV
Grava (No.4 < Diam < 3°)	0.13%
Arene (No 200 < Diam < No 4)	99.70%
Finos (Diam v No.200)	0.17%
Classicación SUCS	SP Arena Mai Graduada

CURVA DE FLUIDEZ

CONTRA DE FLUI

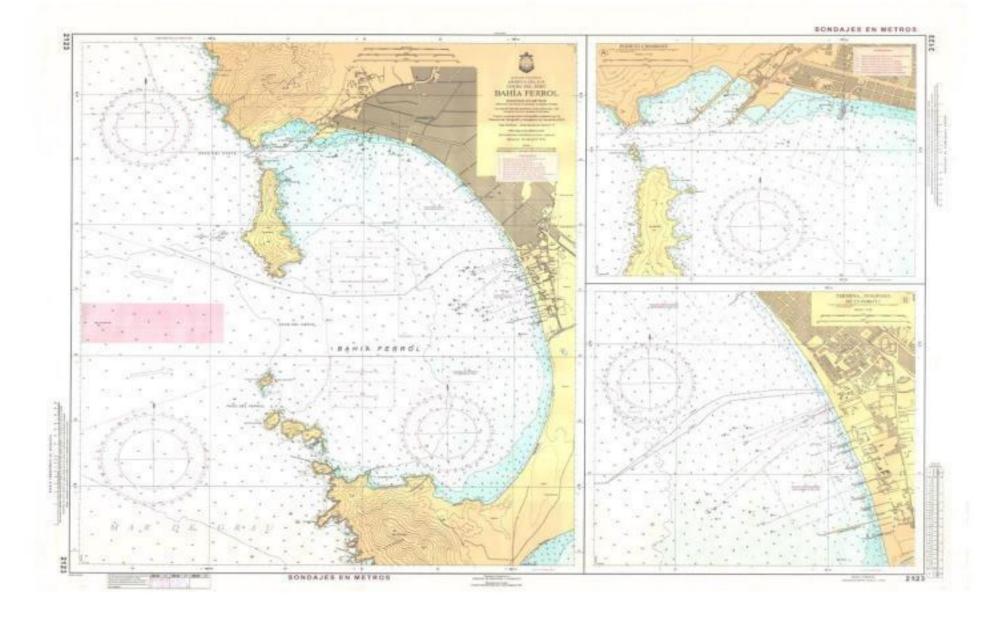
Somos la universidad de los que quieren salir adelante.




Ing. Wester Herrera Lazaro Cir 216267 Jap de Laturalorio

FECHA: 19/04/2019

PLANO DE CALICATAS


PLANO CLAVE

LEYEN	DA
APRIA HUROSOA	VC~
WAN DE ADDRESS	S
TECHNOLOGY LOTTER	□ I•
NORTH MADERNOO	+
GALKINTS.	

ORNORA	-	N. HEATER	minima.	CUANTENUES THE	- HOM
840	186	Before:	-	. 10	0.85
160	1804	684	**	-	Daries.
140	100	000 a	(0.40		11794
	181	400.0	-	- 60	19244
140	100	1000	He		111.40%

ANEXO N° 5 PLANO REFERENCIAL DE BATIMETRÍA

ANEXO N° 6 PROPUESTA DE SOLUCIÓN

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

MEMORIA DESCRIPTIVA

PROYECTO: "CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL

FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA

DEL SANTA, ANCASH - 2019"

UBICACIÓN : Bahía el Ferrol - Nuevo Chimbote

FECHA : Nuevo Chimbote, Julio del 2019

I. GENERALIDADES.

1.- UBICACIÓN:

La siguiente proyecto se da como propuesta en Bahía el Ferrol en el tramo que comprende desde el punto donde empieza el rio formado que alimenta la marisma siguiendo una extensión de 400 metros, Nuevo Chimbote Provincia del Santa, Región Ancash.

2.- ANTECEDENTES:

A lo largo del tiempo el mar ha ido ganando territorio erosionando las playas, un claro ejemplo ocurre en la ciudad de Chimbote donde para evitar la erosión se construyó enrocado a lo largo de la bahía.

De acuerdo a con estudios recientes el nivel del mar aumentara debido al derretimiento de los polos por lo que el mar empezara a ganar más territorio, por lo tanto, se debe tener un plan de control para evitar así la erosión costera que se presentara

Esta propuesta surge luego de realizar la investigación de las Causas de la invasión de las aguas de la Bahía el Ferrol a la Bahía de Samanco Propuesta de Solución, Distrito Nuevo Chimbote, Provincia del Santa, Ancash - 201; donde se puedo comprobar el desnivel presente de la península el Ferrol respecto a la orilla de la Bahía el Ferrol, teniendo en consideración el hábitat natural de muchas especies de aves y crustáceos de la zona, buscando evitar la destrucción de este.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

Por esta se presenta la propuesta que permita evitar el aumento de la cantidad de agua que ingresa a la península sin dañar el ecosistema.

II. OBJETIVOS.

- Evitar la erosión en la costa de la Bahía el Ferrol.
- Evitar da
 ñar el ecosistema existente de la zona.

III. JUSTIFICACION TECNICA DEL PROYECTO.

Siendo de mucha importancia evitar la erosión costera para nuestra ciudad. El proyecto se justifica por la importancia que tiene evitar la erosión costera en nuestra localidad, a su vez evitar intervenir directamente sobra la marisma formada ya que es un habitad natural.

Para ello se optará por dar esta propuesta con el fin de beneficiar a la población, y a los seres vivos que habitan nuestras costas y al sector pesquero.

IV. DESCRIPCION DEL PROYECTO.

4.01.- ESTUDIO DE LA ZONA

Área de Influencia:

El proyecto en general tiene un área de influencia en la península el Ferrol área que se encuentra ente la playa El Dorado y La Fría, localizados en la ciudad de Nuevo Chimbote

Localización:

El Proyecto se ejecutará en la ciudad de Nuevo Chimbote, en la costa de la Bahía el Ferrol desde el punto que alimenta la marisma teniendo una extensión de 400 metros.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

Clima:

Es caluroso típico de la zona norte del país de tipo Sub tropical con sol durante todo el año con un promedio de temperatura anual de 24°C.

Vias de acceso y Comunicación:

La principal Vía de Acceso es la trocha ubicada en la playa el Dorado.

Precipitación:

Conforme a los indicadores climatológicos tomados durante los años 1980 y 2005 se estima la cifra de 2.00 mm como precipitación fluvial con una humedad relativa de 78%.

RELIEVE DEL TERRENO

Topografia:

La topografia del terreno en la zona presenta un gran desnivel en el área de la marisma.

Suelo:

En base al Estudio de Mecánica de Suelos, se ha verificado que el sub suelo está conformado por arenas mal Graduadas según el Sistema Unificado de Clasificación de Suelos (SUCS)

Napa Freática:

El nivel de la napa freática a la profundidad de excavación para el muestreo es en promedio de 0.60 metros.

4.2.- SITUACION ACTUAL.

Actualmente el área a intervenir presenta un punto de ingreso de agua, que alimenta a la marisma a lo largo del tiempo este punto ha ido aumentando su tamaño.

Bajo esta consideración, es necesario evitar que aumente las dimensiones para evitar que el área pueda quedar sumergida en un futuro.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

4.3.- DESCRIPCION DEL PROYECTO.

IMAGEN OBJETIVO

El objetivo es desarrollar una propuesta para control la erosión de la zona ya que estas zonas son destinadas a la pesca artesanal.

DESCRIPCION DE LO PROYECTADO

El proyecto contempla la ejecución de una defensa contera utilizando geotubo geosintetico en este caso geotubos, los cuales son utilizados como alternativa de control de erosión por su costo más reducido.

Describiremos a continuación los trabajos a desarrollar:

1.- GEOTUBOS:

Usos del Geotubo geosintetico:

Los geotubos confeccionados con telas tejidas son muy resistentes, de unas 34 toneladas/m2, de poliéster o polipropileno. Estas telas para manga permiten ejecutar geotubos geosintetico en forma de elipse, de dimensiones variables, con un perimetro de 4.60 m y de 9 m, logrando alturas de la manga de 0.80 m, 1 m, 1.50 m.

El geotubo geosintetico así planteado es altamente permeable, se llena con una mezcla de tierra, limo, arena y agua, donde queda retenida la parte granular sólida y se drena el agua, así el relleno se va compactando por peso propio, dando así un peso del geotubo geosintetico relleno compacto de 2.2 toneladas/m3, siempre será función del tipo de material de relleno empleado.

Los geotubos geosinteticos industrializados pueden tener longitudes de 5 m, 15 m y hasta 30 m, vienen ya cosidos, pero los geotubos de obra, formados in situ, pueden ejecutarse de largos de hasta 150 y 200 m, según el largo del rollo de tela, su limitación sólo la da la complejidad de la obra y la portabilidad y peso del rollo.

Los geotubos geosinteticos usados como escolleras y espigones, si el clima lo favorece, permiten el crecimiento de la vegetación, aérea, marina y fluvial.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

Cuando se forman costaleras de varios metros de longitud pueden obtenerse, aplicando mangas geotubos, obras muy nobles y cada vez más importantes.

Los geotubos tuvieron su origen en países del Mar del Norte, para diques que posteriormente se rellenaban hidráulicamente, con dragas de succión, disminuyendo con ello el acarreo de material tan costoso.

Los geotubos atrapan en forma permanente el material de relleno, tanto en construcción seca como bajo el agua; en el caso de los geotubos de obra se cierran y cosen en el lugar, en el diseño se tiene en cuenta:

Permeabilidad: del suelo y de la tela geotubo, que permita de manera adecuada aliviar las presiones de poro al momento de llenarse.

Abertura aparente de la tela: el AOS, que vaya de acuerdo con la granulometría del suelo por dragar o de tierra y arena usadas para rellenar.

Resistencia de la costura.

Resistencia a las fuerzas erosivas durante las operaciones de llenado.

Operaciones de colocación y llenado.

Resistencia al punzonamiento y al rasgado.

Resistencia a los rayos ultravioleta.

Altura máxima de ola o crecida del río a contener.

Dirección y velocidad máxima de la corriente.

Profundidad de socavación calculada.

Una vez llenado el geotubo se deberá dejar desaguar y bajará aproximadamente del 20% al 30% de la altura, imputable al agua en su interior, y en el caso de mangas rellenas con retroexcavadora in situ, ese descenso en altura será función de la cohesión del material de relleno y se producirá luego que el geotubo sea mojado por la corriente.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

Habrá que atender, en el diseño, la conveniencia de colocar un zampeado o tapete antierosivo en la base del primer geotubo, una especie de colchón conformado por una geomanta para prevenir la erosión debajo del primer geotubo, convengamos que cuando se desea proteger en altura algunos metros, los geotubos pueden apilarse, y será el primer geotubo, el de abajo, el que pueda estar sometido a erosión en el pie.

El tamaño del zampeado base dependerá de la importancia de la socavación calculada.

Los geotubos hechos a base de geomantas son estructuras muy versátiles, económicas y fáciles de instalar en las obras hidráulicas, marítimas, portuarias y fluviales. En algunos casos pueden sustituir con éxito al enrocado, sobre todo en sitios en donde su acarreo representa un costo importante o donde no existe.

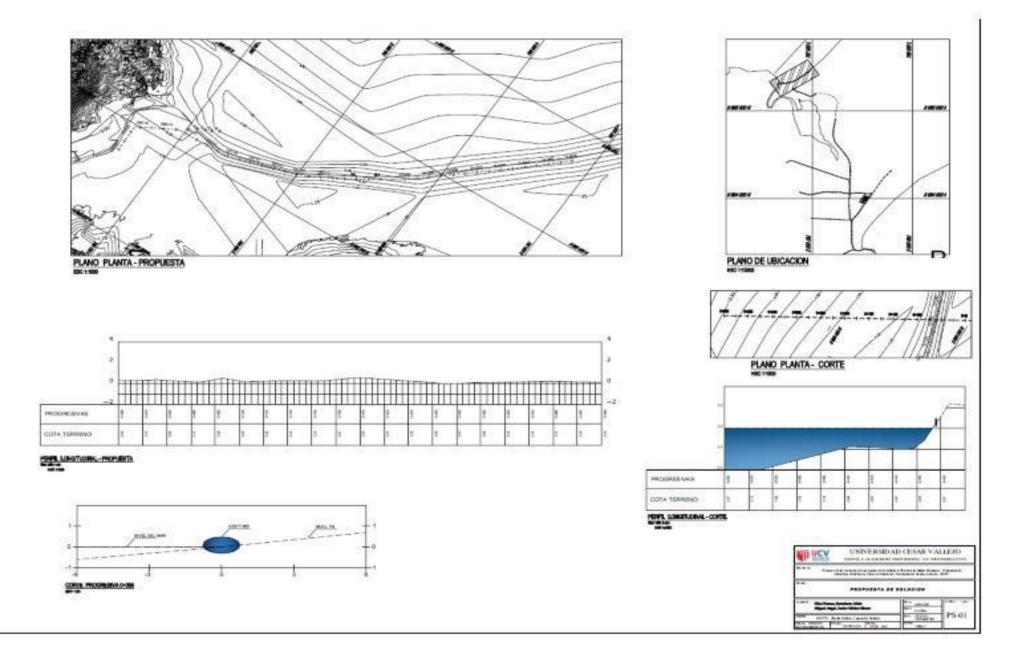
ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

PRESUPUESTO

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"


	Presupuesto				
		38 8			
apucido	PROPUESTA DE SOLUCION - SISTEMA DE DEFENSA FLEXIBLE CON GEOTUBOS				
minus	Miguel Angel Junior Micher Simon, Gian Franco Sarmiento Abón				
versidad	UNIVERSIDAD CESAR VALLEJO - ESCUELA DE INGENIERIA CIVIL			Cesto al	01/07/201
ar .	ANCASH - SANTA - NUEVO CHIMBOTE	10 30	1	9	
Item	Descripción	Und.	Metrado	Precio (S/.)	Parcial (S/.)
1	TRABAJOS PRELIMINARES				9,168.
1.01	CASETA DE GUARDIANIA Y ALMACEN	glb	1.00	1,500.00	1,500.0
1.02	CARTEL DE IDENTIFICACIÓN DE LA ACTIVIDAD	und	1.00	500.00	500.0
1.03	MOVILIZACION Y DESMOVILIZACION DE MAQUINARÍA PESADA	glb	1.00	3,000.00	3,000.0
1.04	HABILITACION CAMINOS DE ACCESO	km	0.50	4,737.45	2,368.
1.05	REPLANTEO DEL TRAZO	M	400.00	2.00	800.
1.06	CONTROL TOPOGRAFICO	M	400.00	2.50	1,000.6
2	MOVIMIENTO DE TIERRAS	10 10			1,387.
2.01	CORTE SUPERFICIAL CON MAQ. PARA ASENTAMIENTO DE GEOTUBO E-20CM	m3	240.00	5.78	1,387.2
2.02	CORTE SUPERFICIAL DE ARENA DE PLAYA E-20CM	M3	466.87	5.78	2,698.
2.03	RELLENO PARA GEOTUBOS CÁMATERIAL PROPIO	M3	706.86	18.50	13,076.
3	SUMINISTRO E INSTALACION DE GEOTUBO				48,000.
3.01	SUMINISTRO DE GEOTUBO Diametro= 1.5M	ML.	400,00	100.00	40,000
3.02	INSTALACION DE GEOTUBO Diametro= 1.5M	ML	400.00	20.00	8,000.
	COSTO DIRECTO	1 1			58,555.5
	GASTOS GENERALES (8%)				4,684.4
	UTILIDAD (10%)				5,855.5
3 :	SUB TOTAL,	38 38			69,095.
	IGV (18%)	3 3			12,437.
3 3	COSTO TOTAL				81,533.

ESCUELA DE INGENIERIA CIVIL PROPUESTA DE CONTROL DE EROSION

"CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA DE SAMANCO PROPUESTA DE SOLUCION, DISTRITO NUEVO CHIMBOTE, PROVINCIA DEL SANTA, ANCASH - 2019"

PLANO

ANEXO N° 7 PANEL FOTOGRÁFICO

MUESTREO

Foto 1 - Recolección de muestra con Barreno

Foto 2 - Recolección de muestra con Barreno

Foto 3 - Nivel Freático observado

Foto 4 – Recolección de muestra con barreno.

Foto 5 – Recolección de muestra

Estudio de Suelo Laboratorio

Foto 6 - Secado de muestra

Foto 7 - Muestra seca

Foto 8 - Peso de muestra.

Foto 10 - Tamizado de

Foto 9 – Secado de muestra.

Foto 11 - Tamizado de muestra.

TOPOGRAFIA

Foto 12 – Estación del equipo topográfico

Foto 14 - Radiación Topográfica

Foto 13 - Colocación de BMS

Foto 15 – Radiación Topográfica

Foto 16 – Vehículo aéreo no tripulable para topografía

Foto 17 – Preparación del plan de vuelo del drone

Foto 18 – Drone a punto de despegar

BATIMETRIA

Foto 19 - Estación del equipo.

Foto 20 – Transporte en bote para realizar la batimetría.

Foto 21 – Medida con soga mar adentro.

Foto 22 – Soga utilizada para medir la profundidad del mar

Foto 22 – Batimetria realizada con ayuda del prisma.

Foto 23 – Finalización de los estudios topográficos y

Foto 24 - Área estudiada

ANEXO N°8 ACTA DE ORIGINALIDAD DE LA TESIS

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código : F06-PP-PR-02.02

Versión : 10

Fecha : 10-06-2019

Página : 1 de 1

Yo, Mgtr. José Pepe Muñoz Arana docente de la Focultad de Ingenieria y Escuela Profesional de Ingenieria Civil de la Universidad César Vallejo Chimbote, revisor (a) de la tesis filutada ""Causas de la invasión de las Aguas de la Bahía el Ferrol a la Bahía Samanco - Propuesta de Solución. Distrito de Nuevo Chimbote, Provincia del Santa, Ancash – 2019"", de los estudiantes Micher Simon Miguel Angel Junior, Sarmiento Ahan Gian Franco, constato que la investigación tiene un índice de similitud de 25% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias defectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Chimbote, 12 de Julio del 2019

Mair Tosé Pepe Muñoz Arana DNI: 32960000

Peveló Vicerecrospado de Investigación (DEVIAC/ Responsable del SGC Aprobó Recrosado

ANEXO N° 9 FORMULARIO PARA LA PUBLICACIÓN DE LA TESIS

Centro de Recursos para el Aprendizaje y la Investigación (CRAI) "César Acuña Peralta"

FORMULARIO DE AUTORIZACIÓN PARA LA PUBLICACIÓN ELECTRÓNICA DE LAS TESIS

1.	DATOS PERSONALES Apellidos y Nombres: (solo los datos del que autoriza) MICHER SIMON MIGUEL ANGEL JUNIOR D.N.I
2.	IDENTIFICACIÓN DE LA TESIS Modalidad: ☑ Tesis de Pregrado Facultad :
	Tesis de Post Grado Maestría Grado Mención:
3.	DATOS DE LA TESIS Autor (es) Apellidos y Nombres: MICHER SIMON MIGUEL ANGEL JUNIOR SARMIENTO AHON GIAN FRANCO
	Título de la tesis: CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA SAMANCO - PROPUESTA DE SOLUCION, DISTRITO DE NUEVO CHIMBOTE, SANTA, A NCASH - 2019
	Año de publicación :2019
4.	AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN VERSIÓN ELECTRÓNICA: A través del presente documento, Si autorizo a publicar en texto completo mi tesis. No autorizo a publicar en texto completo mi tesis.
	Firma: Fecha: 12-07-19

Centro de Recursos para el Aprendizaje y la Investigación (CRAI) "César Acuña Peralta"

FORMULARIO DE AUTORIZACIÓN PARA LA PUBLICACIÓN ELECTRÓNICA DE LAS TESIS

1.	DATOS PERSONALES Apellidos y Nombres: (solo los datos del que autoriza) \$ARMIENTO AHON ELAN FRANCO D.N.I. 73742251 Domicilio \$\frac{\text{tilla 5an Lbi5}}{\text{T} \text{ETAPA Mz H Lote: 43}}\$ Teléfono \$\text{Fijo} \$\text{Movil 1929.896.795}\$ E-mail \$\text{Feancoahon@gmail.com}\$
2.	IDENTIFICACIÓN DE LA TESIS Modalidad: ☑ Tesis de Pregrado Facultad: /NG€NI€RIA Escuela: /NG€NI€RIA CIVIL Carrera: /NG€NI€RIA CIVIL Título: /NG€NI€RIA CIVIL
	Tesis de Post Grado Maestría Doctorado Grado Mención:
3.	DATOS DE LA TESIS Autor (es) Apellidos y Nombres: MICHER SIMON MIGUEL ANGEL SUNIOR SARMIENTO AHON GIAN FRANCO
	Título de la tesis: CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA SAMANEO - PROPUESTA DE SOLUCION, DISTRITO DE NUEVO CHIMBOTE, SANTA, ANCASH-2019 Año de publicación: 2019.
4.	AUTORIZACIÓN DE PUBLICACIÓN DE LA TESIS EN VERSIÓN ELECTRÓNICA: A través del presente documento, Si autorizo a publicar en texto completo mi tesis. No autorizo a publicar en texto completo mi tesis.
	Firma: Fecha: 12:09:20/9

ANEXO N° 10 AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

ESCUELA PRI	OFESIONAL DE INGENIERÍA CIVIL
A LA VERSIÓN	FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:
MICHER SIM	ÓN, MIGUEL ANGEL JUNIOR
INFORME TÎT	ULADO:
	LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA SAMANCO DE SOLUCION , DISTRITO DE NUEVO CHIMBOTE, SANTA, ANCASH - 2019
PARA OBTEN	ER EL TÍTULO O GRADO DE:
INGENIERO C	ML

ME. GONZALO H. BIAZ GARCÍA CO DE PIVESTIGACIÓN DE E.P. INCENIENTA CIVIL

NOTA O MENCIÓN: 17

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIÓN DE
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
À LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:
SARMIENTO AHON, GIAN FRANCO
INFORME TÍTULADO:
CAUSAS DE LA INVASION DE LAS AGUAS DE LA BAHIA EL FERROL A LA BAHIA SAMANCO - PROPUESTA DE SOLUCION , DISTRITO DE NUEVO CHIMBOTE, SANTA, ANCASH - 2019
PARA OBTENER EL TÍTULO O GRADO DE:
PARA OBTENER EL TÍTULO O GRADO DE:

CANGAGO DE INVESTIGACIÓN DE E P. INGENHADA CIVIL

SUSTENTADO EN FECHA: 12/07/2019

NOTA O MENCIÓN: 17