FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Alternativas de diseño para evitar el deslizamiento de rocas en el sector "Balcón de Judas", Ancash-2018"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

Autora:

Olivera García Karen Maitte

Asesor:

Mgtr. Marin Cubas Percy Lethelier

Línea de Investigación:

Diseño de Infraestructura Vial

HUARAZ-PERÚ

2018

PÁGINA DEL JURADO

DEDICATORIA

A mi madre, ella que siempre fue el sustento para no decaer en esta etapa universitaria y ahora solo estamos a un paso de cumplir la meta trazada, de ser una profesional, también a mi abuelo que guía mis pasos desde el cielo.

AGRADECIMIENTO

En primer lugar a Dios por darme la vida y poseer las facultades necesarias, tanto físicas como mentales, para emprender un camino profesional; a mis asesores que con tanta dedicación me trasmiten los conocimientos necesarios para poder elaborar un buen trabajo de investigación, a la Universidad que me brinda los alcances para ser una buena profesional; a mis padres y hermano que son el mayor sustento y motivación para seguir adelante.

DECLARACIÓN DE AUTENTICIDAD

Yo, Karen Maitte Olivera Garcia con N° DNI: 73016501, a efecto de cumplir con las disposiciones vigentes consideradas en el Reglamento de Grados y Títulos de la Universidad César Vallejo, Facultad de Ingeniería, Escuela Académico Profesional de Ingeniería Civil, declaro bajo juramento que toda la documentación que acompaño es veraz y auténtica.

Así mismo, declaro también bajo juramento que todos los datos e información que se presenta en la tesis son auténticos y veraces.

En tal sentido asumo la responsabilidad que corresponde ante cualquier falsedad, ocultamiento u omisión, tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas de la Universidad Cesar Vallejo.

Huaraz, Diciembre del 2018.

Karen Maitte Olivera Garcia

DNI N° 73016501

PRESENTACIÓN

Señores miembros del jurado:

Cumpliendo con las disposiciones vigentes establecidas por el Reglamento de Grado y Títulos de la Universidad Cesar Vallejo, Facultad de Ingeniería, Escuela de Ingeniería Civil, someto a vuestro criterio profesional la evaluación del presente trabajo de investigación titulado: "Alternativas de diseño para evitar el deslizamiento de rocas en el sector "Balcón de Judas", Ancash-2018", con el objetivo de determinar las alternativas de diseño para evitar el deslizamiento en la zona mencionada, que en la actualidad es un peligro latente e inminente para los habitantes del sector, para lo cual se realizará la observación del estado actual del talud en mención. Tomando como muestra unos 150 metros, y a la vez sectorizándolo por zonas críticas para un mejor trabajo, iniciando así con la metodología de mecánica de rocas, con el método de Bienawski, para poder obtener la calidad de la roca, a través de las diferentes características que presenten, también se calcularán los parámetros que se necesitan para el diseño; como el ángulo de inclinación, la cohesión, el ángulo de fricción. Finalmente se considerará el levantamiento topográfico para modelar las alternativas de diseño con los datos obtenidos en el trabajo de campo, en el software llamado PLAXIS.

En el primer capítulo se desarrolla la introducción, que abarca la realidad problemática, antecedentes, teorías relacionadas al tema, formulación del problema, justificación y objetivos de la presente tesis de investigación. En el segundo capítulo se describe la metodológica de la investigación, es decir el diseño de la investigación, variables y su operacionalización, población y muestra, técnicas e instrumentos de recolección de datos que se empleó y su validez y confiabilidad realizada por tres jueces expertos en la materia. En el tercer capítulo se expondrán los resultados obtenidos de la evaluación realizada en el proyecto, la propuesta de mejora dada por el tesista para dar solución al problema presentado. En el cuarto capítulo, se discutirán los resultados llegando a conclusiones objetivas y recomendaciones para las futuras investigaciones. Asimismo, el presente estudio es elaborado con el propósito de obtener el título profesional de Ingeniería Civil y determinar las alternativas de diseño para evitar el deslizamiento de rocas. Con la convicción que se me otorgara el valor justo y mostrando apertura a sus observaciones, agradezco por anticipado las sugerencias a apreciaciones que se brinde a la presente investigación.

ÍNDICE

PÁGINA DEL JURADO	ii
DEDICATORIA	iii
AGRADECIMIENTO	iv
DECLARACIÓN DE AUTENTICIDAD	v
PRESENTACIÓN	
RESUMEN	
ABSTRACT	
I. INTRODUCCIÓN	13
1.1. Realidad Problemática	13
1.2. Trabajos previos	14
1.3. Teorías relacionadas al tema	17
1.3.1. Geotecnia	
1.3.2. Rocas	
1.3.3. Macizo rocoso	
1.3.4. Talud	
1.3.5. Deslizamientos	
1.3.6. Factores que intervienen en el deslizamiento de un talud de roc	
1.3.6.1. Precipitaciones	
1.3.6.2. Movimientos Telúricos	
1.3.6.3. Deficientes mantenimientos	
1.3.7. Características físicas de las rocas	
1.3.8. Características mecánicas de las rocas1.3.9. Estudios aplicados para evaluar la estabilidad de un talud de ro	
1.3.9.1. Estudios apricados para evaluar la establidad de un talud de lo 1.3.9.1.	
1.3.9.2. Metodologías para el análisis de mecánica de rocas	
1.3.10. Estabilidad de un talud	
1.3.11. Tecnologías aplicadas para la protección de taludes rocosos	
1.3.11.1. Sistemas Activos	
1.3.11.2. Malla de triple torsión	20
1.3.11.3. Malla triple torsión reforzada	20
1.3.11.3.1. Red de cables de Acero	
1.3.11.3.2. Red de anillos	20
1.3.11.3.3. Pernos de anclaje	20
1.3.11.4. Sistemas Pasivos	21
1.3.11.4.1. Pantallas dinámicas	21
1.3.12. Tipos de Falla en un macizo rocoso	
1.3.12.1. Falla Plana	
1.3.12.2. Falla en Cuña	
1.3.12.3. Volcamiento	
1.3.13. Softwares de utilización para la estabilidad de macizos rocosos	
1.3.13.1. Geo 5	
1.3.13.2. Rocfall	22
1.4. Formulación del Problema	22
1.4.1. Problema General	22
1.4.2. Problemas Específicos	
1.5. Justificación del estudio	23

1.6.	. Hipá	ótesis	_24
1.7.	Obie	etivos	24
	J	Objetivo general	
	.7.2.	Objetivos Específicos	24
II. N		00	 25
2.1.		ño de Investigación	- 25
2.2.		ables, operacionalización.	
2.3.		ación y muestra	
2.4.		nicas e instrumentos de recolección de datos, validez y confiabilidad	
2		Técnicas	20
	2.4.1.1.		
	2.4.1.2.		
	2.4.1.3.	Clasificación de Hoek & Brown. (Ver tabla 46 y 47)	
	2.4.1.4.	Levantamiento topográfico	30
2	.4.2.	Instrumentos	31
2.5.	Méta	odos de análisis de datos	31
2.6.			
		ectos éticos	
III.		LTADOS	
3.1.		cripción del lugar de estudio	
		Ubicación	
		Límites	
		Clima	
		Topografía	33
3		Geología	
3.2.		ıltados de la evaluación geo mecánica de rocas	_34
_		Estación 1	34
_		Estación 2	
		Estación 3	
		Estación 4	37
		Estación 5	38
_		Estación 5.1.	
		Estación 5.2.	
		Estación 6	
3	.2.9.	Estación 7	42
3.3.		ıltados de la evaluación de diseño en el Software Geo5 y Rocfall para la	
esta		del talud de rocas	_43
_	.3.1.	Estación 1	43
		Estación 2	
_		Estación 3	
_		Estación 4	
_		Estación 5	
		Estación 5.1	
		Estación 5.2	
	.3.8.	Estación 6	67
3		Estación 7	
IV.	DISCU	USIÓN	_ 79
V. (CONCL	USIONES	81
VI	RECO	OMENDACIONES	83

VII. PROPUESTA	_ 84
VIII. REFERENCIAS BIBLIOGRÁFICAS	_ 85
ANEXOS	_ 87
Captura de pantalla Turnitin	87
Panel fotográfico de trabajos en campo y sectorización de estaciones en evaluación.	87
Planos del levantamiento topográfico (en planta y perfil, por las estaciones	
evaluadas)	112

ÍNDICE DE TABLAS

Tabla 32: Clasificación Bienawski, RQD Tabla 33: Clasificación Bienawski, Separación de diaclasas Tabla 34: Clasificación Bienawski, Estado de las Discontinuidades Tabla35: Clasificación Bienawski, Agua Subterránea o freática Tabla 36: Clasificación Bienawski, Corrección por la orientación de las discontinuidades Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Características geotécnicas. Tabla 39: Clasificación de Barton, Lien y Lunde, RQD Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	
Tabla 33: Clasificación Bienawski, Separación de diaclasas	95
Tabla 34: Clasificación Bienawski, Estado de las Discontinuidades Tabla35: Clasificación Bienawski, Agua Subterránea o freática Tabla 36: Clasificación Bienawski, Corrección por la orientación de las discontinuidades Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Características geotécnicas. Tabla 39: Clasificación de Barton, Lien y Lunde, RQD Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	
Tabla 36: Clasificación Bienawski, Corrección por la orientación de las discontinuidades Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Características geotécnicas. Tabla 39: Clasificación de Barton, Lien y Lunde, RQD Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	95
Tabla 36: Clasificación Bienawski, Corrección por la orientación de las discontinuidades Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Características geotécnicas. Tabla 39: Clasificación de Barton, Lien y Lunde, RQD Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	95
Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR Tabla 37: Clasificación Bienawski, Características geotécnicas. Tabla 39: Clasificación de Barton, Lien y Lunde, RQD Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	96
RMR	97
Tabla 39: Clasificación de Barton, Lien y Lunde, RQD	97
Tabla 40: Clasificación de Barton, Lien y Lunde, Jn Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	98
Tabla 41: Clasificación de Barton, Lien y Lunde, Jr Tabla 42: Clasificación de Barton, Lien y Lunde, Jw Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.	98
Tabla 42: Clasificación de Barton, Lien y Lunde, Jw 1 Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF. 1	99
Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF1	99
, , , , , ,	100
	100
Tabla 45: Clasificación de Barton, Lien y Lunde, SRF1	101
Tabla 46: Clasificación de Barton, Lien y Lunde, Indice Q1	101
Tabla 47: Clasificación de Hoke y Brown, GSI1	102
Tabla 48: Resistencia a la compresión simple (Mpa)	102
Tabla 49: Resultados de trabajo en campo E2 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)	
Tabla 50: Resultados de trabajo en campo E2 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)1	de 104
Tabla 51: Resultados de trabajo en campo E3 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)1	
Tabla 52: Resultados de trabajo en campo E4 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)	de
Tabla 53: Resultados de trabajo en campo E5 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)	de 107
Tabla 54: Resultados de trabajo en campo E5.1. (RQD de Deere, RMR de Bienawski, de Barton y GSI de Hoke y Brown)1	Q 108
Tabla 55: Resultados de trabajo en campo E5.2. (RQD de Deere, RMR de Bienawski,	Q 109
Tabla 56: Resultados de trabajo en campo E6 (RQD de Deere, RMR de Bienawski, Q Barton y GSI de Hoke y Brown)1	
Tabla 57: Resultados de trabajo en campo E7 (RQD de Deere, RMR de Bienawski, Q	

RESUMEN

La presente tesis se basa en la necesidad de disminuir o atenuar la caída de rocas por desprendimiento y/o deslizamiento, pues a lo largo de los años ha llevado a estudiar diferentes tipos de soluciones tecnológicas dentro del campo de la ingeniería. Estas soluciones están orientadas a prevenir la ruptura de los bloques de roca que están en la pared del macizo rocoso o ayudan a controlar la caída de los mismos, desviar y/o interceptar la caída de los fragmentos de rocas, que constituyen un eminente riesgo para la zona urbana y que afectan a la vía pública, infraestructura y transeúntes.

Se debe tener presente que la investigación, el análisis y aplicación de las soluciones a estabilidad de macizos rocosos mediante sistemas flexibles, está restringido a fabricantes y distribuidores de los mismos, es relativamente un campo nuevo. La investigación en mecánica de rocas en escarpas, es un trabajo de investigación descriptiva importante, porque está orientado a lograr estabilizar el talud inestable del tramo conocido como cerro Balcón de Judas, de la carretera Huaraz Casma, mediante técnicas de avanzada tecnología desarrolladas por la empresa privada.

Finalmente, el tramo en estudio es un área de peligro inminente y presenta permanentemente desprendimiento de material inestable a la vía pública, exponiendo al riesgo a los peatones y vehículos que circulan por esta vía que es de alto transito tanto peatonal, vehicular y de una densidad poblacional elevada construida muy cerca al cerro balcón de judas y la exposición al riesgo en una vía de alto transito no se debe permitir porque el daño es mayor.

Palabras clave: Deslizamiento, rocas, geo mecánica de rocas, estabilidad, macizo rocoso, talud, anclajes, protección, vulnerabilidad y factor de seguridad.

ABSTRACT

The present thesis is based on the need to reduce or attenuate the fall of rocks by detachment and / or slippage, because over the years has led to study different types of technological solutions within the field of engineering. These solutions are aimed at preventing the rupture of the rock blocks that are in the wall of the rock mass or help control the fall of them, divert and / or intercept the fall of the rock fragments, which constitute an eminent risk to the urban neighborhood and affecting public roads, infrastructure and bystanders.

It must be borne in mind that the research, analysis and application of rock mass stability solutions by means of flexible systems, is restricted to manufacturers and distributors thereof, it is a relatively new field. Research in rock mechanics in escarpments, is an important descriptive research work, because it is aimed at stabilizing the unstable slope of the section known as Cerro Balcón de Judas, Huaraz Casma road. Through advanced technology techniques developed by private companies.

Finally, the section under study is an area of imminent danger and permanently presents detachment of unstable stony material to the public road, exposing the risk to pedestrians and vehicles that circulate along this road that is high traffic both pedestrian, vehicular and a high population density built very close to the hill balcony of judas and exposure to risk in a high traffic road should not be allowed because the damage is greater.

Keywords: Sliding, rocks, rock geo mechanics, stability, rock mass, slope, anchors, protection, vulnerabity and safety factor.

I. INTRODUCCIÓN

1.1. Realidad Problemática

Los impactos por el cambio climático en el Perú están asociados a las inadecuadas prácticas socioculturales y a las configuraciones particulares del relieve como la presencia de la Cordillera de los Andes, que genera en el territorio una diversidad de climas y microclimas. (Servicio Nacional de Meteorología e hidrología del Perú - SENAMHI, Clima 2018).

Las altas e inusuales precipitaciones son unas de las mayores consecuencias del calentamiento global en todas las regiones del Perú, adicionalmente los movimientos telúricos que se han ido evidenciando en el país, generan el deslizamiento de taludes en las principales carreteras por la inestabilidad que causan los factores mencionados, es en la zona sierra donde se presentan las incesantes lluvias, el mayor peligro sísmico y las menores acciones civiles para prevenir las consecuencias como el bloqueo de las carreteras, los accidentes de tránsito y en el peor de los casos, la pérdida de vidas humanas.

Por ende el presente proyecto de investigación se desarrolló en la zona Sierra, Departamento de Ancash, Provincia de Huaraz, en el tramo denominado "Balcón de Judas" entre la Av. Los olivos y la progresiva 147.85 km hasta 157.85 km de la carretera Huaraz-Casma, presentando los siguientes antecedentes, debido al uso de explosivos para el corte del terreno y movimiento de tierras para la pavimentación; desde el año 1985, estas acciones han causado la inestabilidad del terreno, pues no hubo un adecuado mantenimiento del talud cuando la zona era rural, y en la actualidad por combatir apresuradamente el problema de deslizamiento de rocas se desarrolló una alternativa como es el desquinche de rocas mediante herramientas manuales y otra alternativa de riesgo como el uso de explosivos, siendo este tramo una zona urbana.

Es por ello que el principal objetivo del presente proyecto fue determinar las alternativas de diseño para evitar el deslizamiento de rocas en dicho tramo, y así mostrar una solución viable.

1.2. Trabajos previos

Los antecedentes del presente proyecto de investigación son: A nivel internacional (Hernández, 2014) en la tesis titulada "Mecanismo de acuñamiento inducido térmicamente" en la Universidad de Chile, para optar el título de ingeniero civil con mención en estructuras, construcción y geotecnia, en su investigación el autor dio a conocer un modelo experimental de un sistema bloque-cuña de acrílico que reaccionó ante un marco rígido de aluminio. Se describió que los cambios cíclicos de temperatura también son causas a mediano plazo de los deslizamientos y volcamientos de rocas a través de los desplazamientos acumulados que estos presentan, es así que la investigación tuvo como objetivo principal validar experimentalmente lo que expuso Pasten; estudiando, cuantificando, determinando y analizando la estabilidad del sistema ante volcaduras de rocas, acumulaciones inducidas por cambios cíclicos en el sistema, condiciones geométricas y efectos generados por el desplazo de amplitud y periodo de cambio térmicos, respectivamente. Como conclusión se validó el mecanismo de acuñamiento a través de la alta relación la amplitud de temperatura y el periodo cíclico en el modelo experimental expuesto, por último se afirmó que el sistema acumuló los desplazamientos en la inducción térmica.

(Melentijevic, 2015) en la tesis titulada "Estabilidad de taludes en macizos rocosos con criterios de rotura no lineales y leyes de fluencia no asociada" en la Universidad Politécnica de Madrid, para optar el grado de doctor, en su tesis doctoral expuso como medios comprobantes, para la estabilidad de taludes, diferentes métodos de cálculo, como los métodos completos que son los elementos finitos y de diferencias finitas; métodos incompletos, métodos de equilibrio límites, métodos empíricos,, por lo que el objetivo fue idear una forma sencilla de llevar a cabo un proceso de cálculo sumando factores que subordinan la rotura en una característica rocosa. Mediante la aplicación de la teoría propuesta y métodos existentes se generó la explicación y análisis en casos reales estudiados. Concluyendo que los factores de seguridad aumentan en cuanto al criterio utilizado que proponen Serrano & Olaya tanto en un ángulo de inclinación del talud y su altura.

A nivel nacional, (Pozo, 2014) en la tesis titulada "Análisis numérico del mecanismo de falla en macizos rocosos fracturados considerando el efecto escala" en la Universidad Nacional de Ingeniería, para optar el grado de maestro en ciencias con mención en ingeniería geotecnia, expuso que lo trabajos de análisis para la estabilización de taludes generalmente se evalúan por métodos empíricos siendo en su minoría evaluados por métodos numéricos para su verificación in situ y la etapa de diseño que corresponde a un análisis completo. El autor tuvo como objetivos, comparar y validar el método finito con el método discreto, discutió la utilización de la técnica. Teniendo como conclusión que el factor de seguridad es más confiable y eficaz con los métodos numéricos.

(Rengifo, 2015) en la tesis titulada "Muros anclados en arenas, análisis y comparación de técnicas de anclajes" en la Pontificia Universidad Católica del Perú, para optar el título de ingeniero civil, el autor de la tesis se basó en la idea de que el Perú tiene un crecimiento absoluto en el tema de edificaciones por lo que es recomendable trabajar con sistemas de control de calidad de las técnicas que serán aplicadas para su proceso constructivo primario como lo es el movimiento de tierras, donde en la fase de excavación se debe de cuidar las zonas aledañas y en este caso se hizo referencia al material arenoso que se tuvo que controlar en las paredes de sostenimiento de los proyectados sótanos. Es por ello que el autor tuvo como objetivo comparar las diferentes técnicas de anclaje; como los anclajes temporales pos tensados, anclajes auto perforantes y suelos enclavados para realizar los muros pantallas en el proceso constructivo de edificios unifamiliares y multifamiliares y alguna de ellas también siendo aplicadas en taludes rocosos, adicionalmente se hizo un análisis de costos, tiempos de ejecución y la seguridad de la realización del trabajo de cada técnica, el autor concluyó que los sistemas de anclaje pos tensado son más utilizados y eficaces en el tema de costos a nivel nacional, y también presenta mayor seguridad debido a que las empresas se han ido especializando en este tema por ser el más cotidiano y aplicar nuevas técnicas sería riesgoso por el tema de capacitación en los servicios, es por ello que para todo proceso de estabilización de talud se debe de hacer un previo estudio de mecánica de suelos y/o rocas, para luego elaborar un diseño que garantice seguridad y confiabilidad.

(Copello, 2015) en la tesis titulada "Propuesta de remediación del talud de la Costa Verde, (Tramo Barranco) mediante la técnica de hidrosiembra" en la Universidad Peruana de Ciencias Aplicadas-Lima, para optar el título de ingeniero civil, la tesis evidenció una situación deplorable de derrumbes y deslizamientos del material suelto del talud, afectando a la calzada por ende generando consecuencias como accidentes de tránsito y pérdida de vidas humanas. Por ello que el autor tuvo como objetivo realizar la remediación del tramo Barranco de la Costa verde aplicando la técnica de la hidrosiembra que consistió en cubrir el talud con una malla biodegradable insertada con grapas para luego aplicar los germinantes a través de una hidrosiembradora que es una especie de bomba, adicionando a ello un análisis y diseño geotécnico. Se concluyó que el tramo estudiado se encuentra inestable en mucho de sus sectores pues se hizo un estudio de costos y ratios donde fue accesible para aplicar el método de la hidrosiembra pues el autor mencionó que generaría beneficios a todos los usuarios y adicionando a ello que esta técnica debería de ser aplicada en todos los proyectos que se realicen el movimiento de tierras o una alteración de suelos naturales.

(Muñoz, 2017) en la tesis titulada "Evaluación de soluciones de estabilidad para deslizamientos en tres tramos críticos de la carretera Ilabaya-Cambaya-Camilaca, Distrito de Ilabaya-Jorge Basadre-Tacna" en la Universidad Peruana de Ciencias Aplicadas-Lima, para optar el título de ingeniero civil, el autor analizó tres tramos críticos, donde buscó la comparación entre factores económicos y técnicos de estabilidad a través de muros gaviones, muros de concreto y muros de suelo reforzado, se emplearon programas de diseño como el SLIDE 6.0, software como GAWACWIN. Adicionalmente se evaluó los factores de seguridad estáticos y pseudoestáticos, con todo ello se concluyó que la técnica más factible para todos los tramos críticos fue la del suelo reforzado pues con esta se obtuvieron mayores factores de seguridad también un menor precio de instalación pues esta es 35% menor a los muros de concreto y respecto a los muros gaviones, estos tienen limitación con el tema de la altura y no son aplicables para sectores críticos.

Por último, (García, 2017) en la tesis "La estabilidad de Taludes y la transitabilidad en la carretera longitudinal de la sierra, Provincia de Chota-Cajamarca 2017" en la Universidad César Vallejo-Lima, para optar el título de ingeniero civil, el objetivo principal de la estabilización del talud con muros

gavión y generar el tránsito en la carretera longitudinal de la sierra, provincia de chota, dentro de ellos desarrolló la mecánica de suelos del talud, la estabilización del talud y el diseño de los muros gavión. Se concluyó que las alternativas propuestas por el uso de piedra de canto que proporcionaba el rio Chotano resulto con un costo bajo, el diseño de muros gaviones fue factible para la seguridad vial.

1.3. Teorías relacionadas al tema

1.3.1. Geotecnia

Rama de la ingeniería civil y geológica encargada de estudiar las propiedades mecánica e hidráulicas de los materiales provenientes de la tierra, tales como las rocas y suelos. Además se debe conocer bajo qué condiciones los suelos fueron creados o depositados. Se deben de conocer todo tipo de condiciones y sus propiedades para poder diseñar el tipo de cimentación para determinado proyecto (Sánchez, 2013, pág.2).

1.3.2. Rocas

Es un material generado por la presencia de procesos geológicos como la meteorización, sedimentación, transporte y erosión que ocurre en la superficie terrestre y tiene diversos componentes como los minerales (Ciencias de la Naturaleza, 2018, "Rocas", párr.1).

1.3.3. Macizo rocoso

Conjunto de matriz rocosa y discontinuidades. Presenta carácter heterogéneo, comportamiento discontinuo y normalmente anisótropo, consecuencia de la naturaleza, frecuencia y orientación de los planos de discontinuidad, que condicionan su comportamiento geo mecánico e hidráulico (Mamani, 2016, "Macizo Rocoso", párr. 2).

1.3.4. Talud

Talud o ladera es una masa de tierra o roca que no es plana sino que posee pendiente o cambios de altura significativos (Yparraguirre, 2007, pág.3)

1.3.5. Deslizamientos

"Los deslizamientos son uno de los procesos geológicos más destructivos que pueden afectar a las obras de infraestructura y las poblaciones aledañas. Este fenómeno se genera a partir de una falla de un talud

inestable que al sufrir una rotura genera un desplazamiento del suelo situado debajo de dicho talud. Este desplazamiento genera movimientos de masas de tierra, roca u otro material perteneciente al suelo que esta abajo del talud" (De Matteis, 2003, p.5).

1.3.6. Factores que intervienen en el deslizamiento de un talud de rocas

Los factores perjudiciales que hacen efecto en los taludes se van incrementando a medida que el calentamiento global y el cambio climático avance es por ello que se han considerado dos de los efectos en gran magnitud a través de los últimos años, también una característica primordial que engloba tanto al cambio climático como a la falla en taludes, como lo es la intervención de la mano del hombre.

1.3.6.1. Precipitaciones

La precipitación es un fenómeno atmosférico que se da por el efecto de la condensación de las nubes, estas varían según su magnitud pudiendo ser, lloviznas, granizos, y en su mayor magnitud la nieve (García, 2018, "Precipitaciones", párr.1).

1.3.6.2. Movimientos Telúricos

Conocidos también como sismos, temblores, y en su mayor magnitud en terremotos, esto se da a causa de la liberación brusca de energía, en movimiento de las placas tectónicas y vibraciones generadas por la corteza terrestre (Ayala, 2016, p.1).

1.3.6.3. Deficientes mantenimientos

El mantenimiento inadecuado de los taludes genera en el los constantes deslizamientos, estas pueden ser técnicas aplicadas como el desquinche o eliminación de rocas sueltas con herramientas manuales y en algunos casos con maquinarias, ello afecta a la inestabilidad de capas inferiores (Alberti, 2006, p.40).

1.3.7. Características físicas de las rocas

Las características físicas de la rocas se definen como el resultado de su composición mineralógica, estructura e historia geológica, deformacional y ambiental de presenta (Calla, 2014, p.3).

1.3.8. Características mecánicas de las rocas

Las características mecánicas de las rocas se van a definir como los procesos de deformación y falla que se presenten por las alteraciones de las características físicas de las rocas, teniendo así una reacción a la compresión, torsión y flexibilidad (Calla, 2014, p.7).

1.3.9. Estudios aplicados para evaluar la estabilidad de un talud de rocas

1.3.9.1. Ensayos de laboratorio

Para la mecánica de rocas se aplican los ensayos a la compresión triaxial, pues según Calderón (2014) "este ensayo determina la resistencia a la compresión de un testigo cilíndrico de roca en estado no drenado bajo una presión de confinamiento" (p.3.). El siguiente ensayo mencionado por Calderón (2014) es el ensayo de constantes plásticas (módulo de Young y relación de Poisson), este estima el comportamiento de los esfuerzos y deformaciones en el macizo rocoso (p.6.). Y demás ensayos que se aplican como el ensayo de corte directo, por flexión, por compresión simple, de tracción indirecta y por último el ensayo de carga puntual.

1.3.9.2. Metodologías para el análisis de mecánica de rocas

Las metodologías se basan en aplicar las teorías expuestas como la de Hoke&Brown, los métodos empíricos donde se denotan la clasificación del SMR Y RMR según Bieniawski y por últimos los métodos numéricos (Melentijevic, 2015, p.47).

1.3.10. Estabilidad de un talud

"Se define por estabilidad de un talud a la resistencia de una masa de suelo contra alguna falla o movimiento, es decir la resistencia al esfuerzo cortante al cual está sometido un determinado talud" (De Matteis, 2003, p.4).

1.3.11. Tecnologías aplicadas para la protección de taludes rocosos

1.3.11.1.Sistemas Activos

Estos sistemas son aquellos que tiene como objetivo inmovilizar las rocas a través de sistemas fijos (Greco, Martínez, 2015, "Sistemas Activos", párr.2).

1.3.11.2. Malla de triple torsión

Este tipo de tecnología genera resistencia y estabilidad a través de los tejidos de triple torsión que proporcionan los alambres de acero galvanizado que están compuestas por aluminio y zinc fijos (Greco, Martínez, 2015, "Sistemas Activos", párr.3).

1.3.11.3. Malla triple torsión reforzada

Adicionando a la característica de malla triple torsión los refuerzos de tornillos relativamente medianos y cortos que se fijan en el sistema en puntos estratégicos para estabilizar y evitar el desplazamiento de rocas (Greco, Martínez, 2015, "Sistemas Activos", párr.4).

1.3.11.3.1. Red de cables de Acero

Estas mallas están compuestas por redes de cables de acero galvanizado y en ellas se incorporan grapas en nudos cerrados a presión que forman una especie de romboide que generan en su diseño una protección garantizada por el amarre y entrelazado que se compone en la malla (Greco, Martínez, 2015, "Sistemas Activos", párr.5).

1.3.11.3.2. Red de anillos

Formada por una red de anillos de acero galvanizado entrelazados entre sí, y su diseño genera un gran acoplo con la forma del talud en laderas irregulares, adicionalmente a los anillos se adhiere una red triple torsión que garantiza el soporte a altas cargas e impactos de alta energía, ya sea en forma concentrada o distribuida (Greco, Martínez, 2015, "Sistemas Activos", párr.5).

1.3.11.3.3. Pernos de anclaje

La utilización de los pernos de anclaje es una manera efectiva realizar el sostenimiento adecuado, previa determinación y análisis adecuados del terreno donde se está trabajando y también la utilización de otros métodos complementarios (Greco, Martínez, 2015, "Sistemas Activos", párr.5).

1.3.11.4. Sistemas Pasivos

El objetivo del sistema pasivo es evitar que los bloques rocosos lleguen a interferir en la calzada, por lo que permitirá la interceptación de rocas en algún punto de su trayectoria mediante las siguientes tecnologías (Greco, Martínez, 2015, "Sistemas Pasivos", párr.6).

1.3.11.4.1. Pantallas dinámicas

Las pantallas son una especie de cercos que son diseñados para interferir la trayectoria del bloque de rocas, el diseño variará según la pendiente que presente el talud (Greco, Martínez, 2015, "Sistemas Pasivos", párr.7).

1.3.12. Tipos de Falla en un macizo rocoso

1.3.12.1.Falla Plana

Deslizamiento a lo largo de un plano de cizalle constituido por una discontinuidad geológica (diaclasa, contacto entre dos estratos, etc.) (Estabilidad de laderas en roca, 2013, "Falla plana", pág. 15).

1.3.12.2.Falla en Cuña

Deslizamiento por dos planos de cizalle, generados por discontinuidades. Usualmente un tercer plano libera al bloque por atrás (Estabilidad de laderas en roca, 2013, "Falla en cuña", pág. 24).

1.3.12.3. Volcamiento

Volcamiento de bloques en taludes con discontinuidades que mantean fuerte hacia dentro del talud, espaciamientos pequeños (Estabilidad de laderas en roca, 2013, "Falla en cuña", pág. 24).

1.3.13. Softwares de utilización para la estabilidad de macizos rocosos

1.3.13.1. Geo 5

Es un conjunto de software creado en Praga-Republica Checa en 1989 por la empresa Fine, este provee soluciones para la mayoría de las tareas geotécnicas. Los diferentes programas tienen la misma interfaz de usuario y se comunican entre sí, siendo que cada uno de ellos verifica un tipo de estructura, desarrol diferente (Fine civil engineering software, 2018, párr.1)

1.3.13.2. Rocfall

Es un programa de simulación de caída de rocas en dos dimensiones para la predicción del comportamiento de caída de rocas en pendientes y el diseño de barreras de caída de rocas, teniendo una validación desde el año 1993 (Rocscience, 2018, párr.1).

1.4. Formulación del Problema

1.4.1. Problema General

• ¿Cuáles son las alternativas de diseño, para evitar el deslizamiento de rocas en el tramo denominado "Balcón de Judas" de la carretera Huaraz-Casma, Ancash-2018?

1.4.2. Problemas Específicos

- ¿En qué medida el sistema de estabilización de taludes mediante pernos de anclaje permitirá controlar y/o evitar el deslizamiento de rocas en el tramo denominado "Balcón de Judas" de la carretera Huaraz-Casma, Ancash 2018?
- ¿En qué medida el sistema de estabilización de taludes mediante el enmallado metálico flexible anclado a la roca permitirá controlar y/o evitar el deslizamiento de rocas en el tramo denominado "Balcón de Judas" de la carretera Huaraz-Casma, Ancash 2018?
- ¿En qué medida el sistema de estabilización de taludes mediante la elusión de la amenaza permitirá controlar y/o evitar el deslizamiento de rocas en el tramo denominado "Balcón de Judas" de la carretera Huaraz-Casma, Ancash 2018?

• ¿En qué medida el sistema de estabilización de taludes mediante un sistema de control a pie del talud permitirá controlar y/o evitar el deslizamiento de rocas en el tramo denominado "Balcón de Judas" de la carretera Huaraz-Casma, Ancash 2018?

1.5. Justificación del estudio

Para su justificación el presente proyecto de investigación se basó en describir ideas englobando las características científicas, tecnológicas y socioculturales que se puedan aportar por el respectivo medio.

La justificación científica se basó en el material bibliográfico como aporte para futuras investigaciones, ya que en la experiencia para la obtención de datos a nivel nacional fue escasa, teniendo así un mayor alcance bibliográfico a nivel internacional, pues en el Perú generalmente no se toman en cuenta los estudios de mecánica de rocas para la protección de taludes que no responden a un material manejable como es el macizo rocoso,

La justificación en el ámbito tecnológico, los sistemas flexibles constituyen una técnica para logra estabilizar superficialmente los problemas geodinámicos presentes en las laderas o escarpas rocosas, este sistema compuesto por mallas, pernos de anclaje, membranas y cables anclados al terreno han sido ampliamente utilizados en el campo de la estabilización de macizos rocosos, por su versatilidad, bajo costo y a su mínima influencia sobre el tráfico durante su instalación.

Y por último la justificación del proyecto a nivel socio cultural, se expuso un tema de sensibilización social, por ser una zona urbana, y el manejo para futuros proyectos es limitado, se debe de tener en cuenta que en la ejecución de proyectos se trabaja adicionalmente para salvaguardar las vidas humanas, y en cuanto lo cultural, se debe de tener en cuenta que la zona es arqueológica por lo que también limita el trabajo por tener el respaldo del Ministerio de Cultura, pues en el año 2012, la Municipalidad Distrital de Independencia, a cargo del burgomaestre Alfredo Vera Arana, menciona que en el cerro balcón de Judas se ha encontrado algunos restos arqueológicos que corresponden aproximadamente al año 2500 a.c.

1.6. Hipótesis

La hipótesis de la investigación fue implícita, quiere decir que no llevó hipótesis, por las siguientes razones: solo presentó una sola variable, es cuantitativo y descriptivo (Hernández, Fernández y Baptista, 2010, pag.60).

1.7. Objetivos

1.7.1. Objetivo general

 Determinar las alternativas de diseño adecuadas de estabilización de taludes rocosos, para evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma, Ancash-2018.

1.7.2. Objetivos Específicos

- Evaluar el sistema de estabilización de taludes mediante pernos de anclaje como alternativa de solución para controlar y/o evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma Ancash 2018.
- Evaluar el sistema de estabilización de taludes mediante enmallado metálico flexible anclado a la roca, como alternativa de solución para controlar y/o evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma Ancash 2018.
- Evaluar el sistema de estabilización de taludes mediante la elusión de la amenaza, como alternativa de solución para controlar y/o evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma Ancash 2018.
- Evaluar el sistema de estabilización de taludes mediante un sistema de control a pie del talud, como alternativa de solución para controlar y/o evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma Ancash 2018.

II. MÉTODO

2.1. Diseño de Investigación

El enfoque del presente proyecto de investigación es cuantitativo, para lo cual el autor Hernández (2014) menciona que: "El enfoque cuantitativo es secuencial y probatorio. Cada etapa precede a la siguiente y no podemos "brincar" o eludir pasos. El orden es riguroso, aunque desde luego, se puede redefinir alguna fase. Parte de una idea que va acotándose y, una vez delimitada, se derivan objetivos y preguntas de investigación, se revisa la literatura y se construye un marco o una perspectiva teórica. De las preguntas se establecen hipótesis y determinan variables; se traza un plan para probarlas (diseño); se miden las variables en un determinado contexto; se analizan las mediciones obtenidas utilizando métodos estadísticos, y se extrae una serie de conclusiones" (p.4).

Entonces (Hernández, 2014, p.4) da a conocer que el enfoque cuantitativo se basa en un conjunto pasos, así como se definió en el presente trabajo, pues se partió de un conjunto de problemas generales y específicos para luego plantear un determinado objetivo que fue de la mano con la hipótesis y por último se llega a una conclusión definida mediante bases teóricas, recolección de datos estadísticos y mediciones numéricas con el fin de probar lo planteado.

El tipo de estudio en la investigación se describió como aplicada siguiendo la idea que (Carrasco, 2003, p.8), este tipo de investigación también se conoce como práctico o empírico, pues se aplica la información brindada y adquirida previa a realizar una investigación y adicionalmente tiene un vínculo muy relacionado con la investigación básica, como se sabe se genera ideas a través de esta y de ella surgen los avances y resultados de la presente investigación.

El alcance de investigación fue descriptivo, por lo que los autores, Hernández, Fernández y Baptista (2010) mencionan: "El alcance descriptivo considera al fenómeno estudiado y sus componentes, mide conceptos y defines variables" (p.77).

(Tamayo, 2011, p.110) menciona que el alcance descriptivo es útil para mostrar con precisión las dimensiones que determinaremos a través de las variables y también brinda una serie de características como la descripción, registro, análisis e interpretación de la naturaleza.

El Diseño fue no experimental, para el autor Tamayo (2011) "El diseño es la estructura a seguir en una investigación, ejerciendo el control de la misma a fin de encontrar resultados confiables y su relación con los interrogantes surgidos de los supuestos e hipótesis o el problema"(p.112). Por otro lado, la investigación no experimental o expost-facto es cualquier investigación en la que resulta imposible manipular variables o asignar aleatoriamente a los sujetos o a las condiciones". De hecho, no hay condiciones o estímulos a los cuales se expongan los sujetos del estudio. Los sujetos son observados en su ambiente natural, en su realidad (Kerlinger, 1979, p.116).

2.2. Variables, operacionalización.

VARIABLE DEFINICIÓN DEFINICIÓN OPERACIONAL DIMENS		DIMENSIONES	INDICADORES	ESCALA		
DIENTE	FOS DE ROCAS	"Se le denomina así a todo corte de talud estable, sin deslizamientos de rocas, para ello existen	Los deslizamientos de rocas se ven evaluados por las	PERNOS DE ANCLAJE	Caracterización geotécnica de los bloques del macizo rocoso Metodología de análisis para la estabilidad del talud en roca: - Falla Planar, falla en cuña, falla por volcamiento. Estabilidad de bloques deslizante, factor de seguridad adecuado	
VARIABLE DEPENDIENTE	TALUD SIN DESLIZAMIENTOS	sistemas de estabilización, tanto activos como pasivos que intervienen de manera favorable para el libre tránsito y prevención de accidentes"	alternativas de diseño siguientes: Pernos de anclaje, enmallado metálico flexible anclado a la roca, elusión de la amenaza y sistema de control al pie del talud.	ENMALLADO METALICO FLEXIBLE ANCLADO A LA ROCA	Caracterización del macizo rocoso basado en la geometría y propiedades geotécnicas del macizo rocoso. Metodología de nálisis para la estabilidad del talud en roca con malla metálica flexible convenientemente anclada a la roca; método puntual y método unidireccional. Estabilidad de la masa deslizante, factor de seguridad adecuado Estabilidad entre anclajes	NOMINAL
TA		(Suarez, 2009, p.12)		ELUSIÓN DE LA AMENAZA	Caracterización geotécnica del macizo rocoso Metodología de análisis para la estabilidad del talud en roca mediante la elusión de la amenaza, método de remoción parcial o total	

Fuente: Elaboración del autor.

			Estabilidad de la masa rocosa que pueda deslizar, factor de seguridad adecuado	
			Valoración del impacto	
			Abatimiento de la pendiente	
			Caracterización geotécnica del macizo rocoso	
		GIGTEN (A. D.E.	Metodología de análisis para la estabilidad del talud en roca mediante un sistema de control a pie del talud	
CONTROL	SISTEMA DE CONTROL AL	Estabilidad de la bloques deslizante, factor de seguridad adecuado		
	PIE DEL 12	PIE DEL TALUD	Análisis de las vallas estáticas, muros de gaviones, pantallas metálicas, vallas	
			dinámicas Metodología de análisis para la estabilidad del	
		talud en roca para el sistema de control a pie del talud.		

2.3. Población y muestra

Según Tamayo y Tamayo, (1997), "La población se define como la totalidad del fenómeno a estudiar donde las unidades de población posee una característica común la cual se estudia y da origen a los datos de la investigación"(p.114).

La población del presente proyecto de investigación fue el cerro "Balcón de Judas", pues este es el objeto de estudio donde se evidenció las características, el tiempo, espacio y cantidad que presenta el talud de rocas en mención.

Por otro lado, Según Tamayo, T. Y Tamayo, M (1997), afirma que la muestra " es el grupo de individuos que se toma de la población, para estudiar un fenómeno estadístico" (p.38).

La muestra fue de 125 metros del perímetro del talud del cerro "Balcón de Judas", entre la intersección de la vía del Barrio los Olivos y la Carretera Huaraz- Casma (Av. Cordillera Negra), que fue una sección crítica para aplicar el estudio, este fue un muestreo estratificado, se dividió en sectores por grado de peligro y vulnerabilidad crítica.

2.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad

2.4.1. Técnicas

Según Cuauro (2014) "La técnica es un conjunto de saberes prácticos o procedimientos para obtener el resultado deseado" (pag.10).

Para la presente investigación la técnica fue la observación, que para Sabino (1992, p. 21) define como el uso sistemático de nuestros sentidos en la búsqueda de los datos que necesitamos para resolver el problema de investigación.

A continuación se describen las técnicas de recolección de datos que se desarrolló en la presente tesis, las siguientes metodologías existentes para la evaluación de mecánica de rocas mediante modelos estudiados y validados a lo largo de los años, entre ellos se tiene:

2.4.1.1. Clasificación RMR de Bieniawski. (Ver tabla 37 y 38)

Su desarrollo tiene un inicio en el año 1973, para luego ser mejorada y actualizada, a medida que el autor analizaba datos más exactos, en 1979 y 1989, esta clasificación geo mecánica tiene como objeto de estudio a los macizos rocosos, evalúa la relación entre los índices de calidad y los parámetros geotécnicos, los criterios sostenimiento del macizo rocoso (Ingeniería Geológica, 2018,"Clasificación geo mecánica RMR", párr.1).

2.4.1.2. Clasificación de Barton, Lien y Lunde (Índice Q). (Ver tabla 45) Esta clasificación también se basa en parámetros para obtener un índice de calidad del macizo rocoso, y ellos son: el RQD o índice de calidad de la roca (Ver tabla 39), Jn número de familias de diaclasas (Ver tabla 40), Jr rugosidad de las superficies de las discontinuidades (Ver tabla 41), Ja alteración de las diaclasas (Ver tabla 42), Jw coeficiente reductor por presencia del agua (Ver tabla 43) y por último SRF factor reductor del esfuerzo (Ver tabla 44), (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág1).

2.4.1.3. Clasificación de Hoek & Brown. (Ver tabla 46 y 47)

Bongiorno (2001), menciona: "Hoek et al, (1995) han propuesto un índice geológico de resistencia este evalúa la calidad del macizo rocoso en función del grado y las características de la fracturación, estructura geológica, tamaño de los bloques y alteración de las discontinuidades" (pag.16).

2.4.1.4. Levantamiento topográfico

"El topógrafo realiza un escrutinio de la superficie del terreno y procede a la toma de datos, generalmente con un teodolito o estación total. Con los datos obtenidos en el levantamiento topográfico se realizano planos específicos de un lugar, describiendo particularmente las características del terreno, como los relieves o diferencias de altura que pueda haber" (Pymet, 2018, "Levantamiento Topográfico", párr. 1.).

En este caso se dará su utilización para fines de proyectos ingenieriles.

2.4.2. Instrumentos

Cuauro (2014) menciona que "El Instrumento para la recolección de la información es un conjunto de medios tangibles que permite registrar, conservar y plasmar todo lo investigado a través de las técnicas utilizada que permite la recolección de información" (pag.14).

Los instrumentos que se utilizaron para poder aplicar las técnicas fueron: la estación total que servirá para el levantamiento topográfico, jalón y miras topográficas y personal de ayuda, serán clave para elaborar el diseño; instrumentos de oficina para los apuntes y recolección de datos.

Utilización de tablas validadas y establecidas, resistencia de la matriz rocosa (Ver tabla 31), parámetro RQD (Ver tabla 32), Separación entre diaclasas (Ver tabla 33), estado de las discontinuidades (Ver tabla 34), el parámetro de Agua Subterránea o freática (Ver tabla 35), y por último se evaluará el factor de corrección por la orientación de discontinuidades (Ver tabla 36), para determinar la calidad del macizo rocoso y ubicando al macizo en una de las 5 clases (Ingeniería Geológica, 2018, "Clasificación geo mecánica RMR", párr.3).

2.5.Métodos de análisis de datos

Los datos obtenidos en campo, como los puntos del levantamiento topográfico y la evaluación geo mecánica del macizo rocoso se procesaron mediante softwares especializados y validados a lo largo de los años, estos fueron el Autocad, Geo5 (1989) y Rocfall (1996), utilizando en ellos el método par estabilidad de taludes rocosos.

2.6. Aspectos éticos

El presente proyecto de investigación se caracteriza por su autenticidad, cumpliendo los parámetros establecidos por la norma ISO 069 de la Universidad César Vallejo nombrando las citas y referencias de cada trabajo utilizado. Por último se corroboró dicha autenticidad mediante el programa Turnitin (Ver anexos).

III. RESULTADOS

3.1. Descripción del lugar de estudio

3.1.1. Ubicación

El ámbito del proyecto está ubicado en la intersección entre la Av. Cordillera Negra y la Av. Los Olivos en el distrito de Independencia, provincia de Huaraz, departamento de Ancash.

Las coordenadas UTM (datum WGS 84) son:

• E: 221,564.53

• N: 8'945,894.85

• Z: 3,038.00

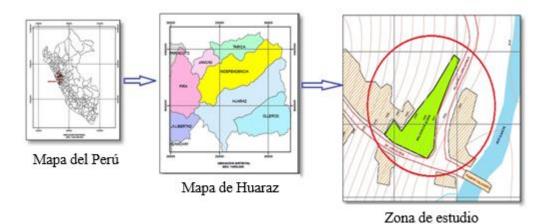


Figura 01: Ubicación y localización del tramo en estudio, fuente: Web.

3.1.2. Límites

• Norte: Zona arqueológica.

• Sur : Av. Los Olivos.

• Este : Av. Cordillera Negra

• Oeste: Propiedad privada (viviendas).

Figura 02: Ubicación satelital de la zona de estudio, fuente: Google Earth.

3.1.3. Clima

La zona se encuentra ubicada a una altitud de 3036 msnm aproximadamente, encontrándose en la región natural quechua que se caracteriza por presentar clima templado y seco y también lluvias de verano, durante los meses de Setiembre a Abril, este se torna frío con precipitaciones pluviales y el periodo de estiaje que está comprendido entre los meses de Mayo a Agosto el clima se torna menos frio y más soleado. La temperatura varía entre 9°C a 24°C.

3.1.4. Topografía

La configuracion topografica de la zona es irregular y agreste podemos establecer que los cortes de suelos y rocas realizados en el proceso constructivo de las carreteras a generado una topografia con taludes empinados que varias de 45°a 90°. Que condiciona la geodinamica de desprendimientos de rocas del sector superior de los taludes. Que se presentan como bloques colgantes de gran dimensión y que constituyen un peligro, para el sector que forman parte la base del talud como la carretera, viviendas y el riesgo es permanente.

3.1.5. Geología

El mirador "Balcón de Judas" es una zona de rocas empinadas situadas al Oeste de la ciudad de Huaraz. Se ubica a escasos metros del puente Cal y Canto (puente San Jerónimo), sobre el Rio Santa, Ubicado en el valle de Urpay, con una vista panorámica de la ciudad de Huaraz y la Cordillera blanca.

En Huaraz se cuenta con grandes unidades geológicas: El batolito de la Cordillera Negra conformado por rocas de composición granodiorita, El volcánico terciario de la Cordillera Negra conformado por (Andesita, lavas, tufos) es en esta formación geológica donde se emplaza El balcón de Judas, se debe indicar que la ciudad de Huaraz está asentada sobre potentes depósitos fluvio aluvionales y aluviales en forma de abanicos, se observan depósitos morrenicos, formando terrazas de diferentes edades, montañas provistas de farallones, valles glaciares en forma de "U", vasos naturales de origen glaciar que representan significativos volúmenes de agua.

3.2. Resultados de la evaluación geo mecánica de rocas

La recolección de datos se llevó a cabo a través de las técnicas e instrumentos validados, como primer paso se tuvo el análisis en campo, dónde se obtuvo factores de calidad de la roca que se presenta a continuación:

3.2.1. Estación 1

Descripción de Sector: Av. Los Olivos - Lado Sur

Altura del Talud : 28 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de Falla : Volcamiento

Tabla 1: Clasificación geo mecánica del talud, estación 1.

E1	Designación de la Calidad de la Roca (RQD %)	la masa de la Roca (RMR%)		Indice Q	Indice Geológico de Resistencia (GSI)
Valor	92.4	RMR Básico	55		
		RMR	50	3.85	55
		Corregido	30	3.03	33
		RMR en C.S.	60		
Parámetro	Buena (75-	Regular o Medio		Malo o Pobre	BC/M
rarametro	90)	(41-60)		(1-4)	BC/IVI

fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: En la primera estación se pudo confirmar que el talud, como roca es buena, así lo evidenció el resultado de 92.4% de la designación de la calidad de roca y también el resultado fue efecto de los recientes trabajos que se han realizado en dicho tramo pues se expuso a la superficie a la roca sana por el uso de explosivos y cemento expansivo, pero como macizo rocoso el porcentaje disminuye a un 50% y está en el rango regular, el índice Q con un valor de 3.. El valor de 55 del GSI, da como resultado en el ábaco (tabla 17) a bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación.

3.2.2. Estación 2

Descripción de Sector: Av. Los Olivos - Lado Sur

Altura del Talud : 30.00 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : Volcamiento

Tabla 2: Clasificación geo mecánica del talud, estación 2.

E2	Designación de la Calidad de la Roca (RQD %)	Clasificación de la masa de la Roca (RMR%)		Indice Q	Indice Geológico de Resistencia (GSI)
Valor	67.6	RMR Básico RMR Corregido RMR en C.S.	53 48 58	2.82	53
Parámetro	Regular (50- 75)	Regular o Medio (41-60)		Malo o Pobre (1-4)	FI/P

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: La calidad de la roca se encontró en un porcentaje regular de 67.6%, este resultado da razón al tipo de roca por el que está compuesto el talud, la clasificación de andesita,. La calidad como macizo rocoso disminuyó en su porcentaje a 48% por lo que se encontró en un parámetro regular, pero el Índice Q referido al sostenimiento tuvo un parámetro malo y bajo de 2.82 y además en campo se constató una falla por volcamiento siendo una de las zonas más críticas a intervenir. El valor de 53 del GSI, dio como resultado en el ábaco (tabla 17) a fracturación intensa (FI) que se describe macizo rocoso muy fracturado formado por bloques angulosos y redondeados, también a una condición del frente con un parámetro pobre, son superficies de cizalla muy alteradas con rellenos compactos conteniendo fragmentos rocosos.

La gran altura del talud representa un gran peligro para la zona urbana, donde también se identificó fallas por volcamiento, más aún en las estaciones de precipitaciones altas, ya que el agua es un ente perjudicial para el macizo rocoso.

3.2.3. Estación 3

Descripción de Sector: Av. Los Olivos - Lado Sur

Altura del Talud : 31 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de Falla : Plana

Tabla 3: Clasificación geo mecánica del talud, estación 3.

Е3	Designación de la Calidad de la Roca (RQD %)	Clasificación de la masa de la Roca (RMR%)		Indice Q	Indice Geológico de Resistencia (GSI)
Valor	99.3	RMR Básico	61		
		RMR Corregido	49	2.07	61
		RMR en C.S.	66		
Parámetro	Excelente (90-100)	Regular o Medio (41-60)		Malo o Pobre (1-4)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: La calidad de la roca se encontró en un parámetro excelente de 99.3%, también fue uno de los sectores críticos intervenidos en trabajos anteriores de desquinche con técnicas de explosivos y cemento expansivo, por ello en la superficie quedó la roca sana, sin embargo la calidad del macizo rocoso fue menor, en un parámetro regular de 49%, y con un índice Q de 2.07 en campo se evidenció una falla planar, por último el índice geológico de resistencia con el valor de 61 evidenció (tabla 17) bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación.

3.2.4. Estación 4

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 31 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : Cuña

Tabla 4: Clasificación geo mecánica del talud, estación 4.

E4	Designación de la Calidad de la Roca (RQD %)	Clasificación de la masa de la Roca (RMR%)		Indice Q	Indice Geológico de Resistencia (GSI)
		RMR Básico	56		
Valor	79.8	RMR Corregido	51	3.85	55
		RMR en C.S.	61		
Parámetro	Buena (75- 90)	Regular o Medio (41-60)		Malo o Pobre (1-4)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un parámetro bueno de 79.8%, con un índice de calidad del macizo rocoso de 51% en estado regular, el índice Q fue pobre con un 3.85 de valor y en campo se evidenció una falla tipo cuña, por último el índice geológico de resistencia con el valor de 55 evidencia (tabla 17) bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación.

3.2.5. Estación 5

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 22 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : No presenta falla.

Tabla 5: Clasificación geo mecánica del talud, estación 5.

E5	Designación de la Calidad de la Roca (RQD %)	Clasificación la masa de l Roca (RMR	la	Indice Q	Indice Geológico de Resistencia (GSI)
		RMR Básico	59		
Valor	90	RMR Corregido	57	9	59
		RMR en C.S.	64		
Parámetro	Buena (75- 90)	Regular o Me (41-60)	dio	Media o Regular (4- 10)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un nivel bueno de 90%, sin embargo se sigue observando que los índices de calidad del macizo rocoso fueron regulares como en este caso de 57%, el índice Q presenta un valor 9 que según los rangos establecido se encontró clasificado como regular o medio, puesto que su sostenimiento es regularmente favorable, como también se tuvo un índice geológico de resistencia que se describió de la siguiente manera: con el valor de 59 evidencia (tabla 17) bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación, pero en la evaluación de campo no se identificó falla alguna, y ello se constata con el ángulo de la dirección del buzamiento en un rango de 20° a 45°, con índice favorable para así descartar el modelamiento para un diseño de sistema activo.

3.2.6. Estación 5.1.

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 22 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : No presenta

Tabla 6: Clasificación geo mecánica del talud, estación 5.1.

E 5.1.	Designación de la Calidad de la Roca (RQD %)	Clasificación la masa de l Roca (RMR ^o	a	Indice Q	Indice Geológico de Resistencia (GSI)
Valor	88.7	RMR Básico RMR Corregido RMR en C.S.	59 59 64	8.87	59
Parámetro	Buena (75- 90)	Regular o Med (41-60)	dio	Media o Regular (4- 10)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un nivel bueno de 88.7%, sin embargo se sigue observando que los índices de calidad del macizo rocoso fueron regulares como en este caso de 59%, el índice Q presenta un valor 8.87 que según los rangos establecido se encontró clasificado como regular o medio, puesto que su sostenimiento fue regularmente, como también se tuvo un índice geológico de resistencia favorable, que se describió de la siguiente manera: con el valor de 59 evidencia (tabla 17) bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación. En la estación no se identificó algún tipo de falla para su tratamiento mediante un sistema activo, Bz=45°-90°.

3.2.7. Estación 5.2.

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 21 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : No presenta

Tabla 7: Clasificación geo mecánica del talud, estación 5.2.

E 5.2.	Designación de la Calidad de la Roca (RQD %)	Clasificación la masa de l Roca (RMRº	a	Indice Q	Indice Geológico de Resistencia (GSI)
		RMR Básico	55		
Valor	80.2	RMR Corregido	53	10.02	55
		RMR en C.S.	60		
Parámetro	Buena (75- 90)	Regular o Medio (41-60)		Buena (10- 40)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un nivel bueno de 80.2%, sin embargo se siguió observando que los índices de calidad del macizo rocoso fueron regulares como en este caso de 53%, el índice Q presentó un valor 10.02 que según los rangos establecido se encontró clasificado como bueno, , por último se tiene un índice geológico de resistencia favorable, que se describió a continuación: con el valor de 55 evidenció (tabla 17) bloques y capas (BC) que se describe como un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación. No se evidenció falla alguna y esto se constata por el valor de sostenimiento expuesto y el Bz=20°-45°, un índice favorable para descartar el tratamiento de algún tipo de diseño para el deslizamiento de rocas.

3.2.8. Estación 6

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 22.00 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : Volcamiento

Tabla 8: Clasificación geo mecánica del talud, estación 6.

E6	Designación de la Calidad de la Roca (RQD %)	Clasificación la masa de l Roca (RMRº	a	Indice Q	Indice Geológico de Resistencia (GSI)
Valor	87.4	RMR Básico RMR Corregido	57 47	6.55	57
Parámetro	Buena (75- 90)	RMR en C.S. Regular o Med (41-60)	dio	Media o Regular (4- 10)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un rango bueno con un valor de 87.4 %, la calidad del macizo rocoso presentó un valor de 47% siendo uno de los más bajos de todos los sectores pero con un índice Q de sostenimiento de 6.55, y por último el índice geológico de resistencia es de 57 se describe como bloques y capas (BC) es un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación.

3.2.9. Estación 7

Descripción de Sector: Av. Cordillera Negra - Lado Este

Altura del Talud : 21.00 metros

Litología : Andesita (Promedio)

Resistencia : 128 Mpa (Ver tabla 18)

Tipo de falla : Volcamiento

Tabla 9: Clasificación geo mecánica del talud, estación 7.

E7	Designación de la Calidad de la Roca (RQD %)	Clasificación de la masa de la Roca (RMR%)		Indice Q	Indice Geológico de Resistencia (GSI)
		RMR Básico	55		
Valor	86.5	RMR Corregido	50	7.21	55
		RMR en C.S.	60		
Parámetro	Buena (75- 90)	Regular o Medio (41-60)		Media o Regular (4- 10)	BC/M

Fuente: (Deere (1967), Bienawski (1989), Barton, Lien y Lunde (1993), Hoke y Brown (1995)).

Descripción y análisis: la calidad de la roca se encontró en un rango bueno con un valor de 86.5 %, la calidad del macizo rocoso presentó un valor de 50% siendo uno de los más bajos de todos los sectores pero con un índice Q de sostenimiento de 7.21, y por último el índice geológico de resistencia fue de 55 se describe como bloques y capas (BC) es un macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos, también a una condición del frente con un parámetro medio, son superficies rugosas ligeramente con patinas de oxidación.

3.3. Resultados de la evaluación de diseño en el Software Geo5 y Rocfall para la estabilidad del talud de rocas.

3.3.1. Estación 1

a) En condiciones normales

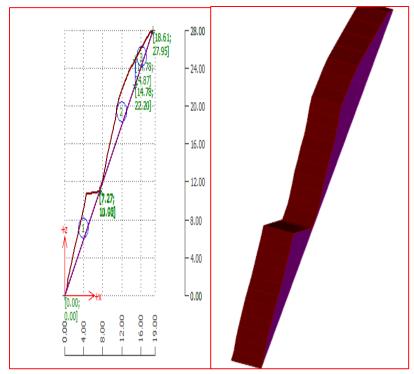


Figura 3: Perfil en 2D y 3D en C.N E1, fuente: Geo5 2018.

Tabla 10: Análisis y Resultados de falla por Volcamiento en C.N. E1

Resultados				
Bloques	1	2	3	
Peso (G)	291.35 Kn/m	362.2 Kn/m	117.37 Kn/m	
Fuerza en la superficie de deslizamiento interna	52.26 Kn	0 Kn	-	
Ángulo de fuerza interna	30°	24.8°	-	

Análisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	211.53 Kn/m	299.70 Kn/m

Factor de Seguridad (Fs)	0.73<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

Fuente: Geo5 2018

b) Con filtración

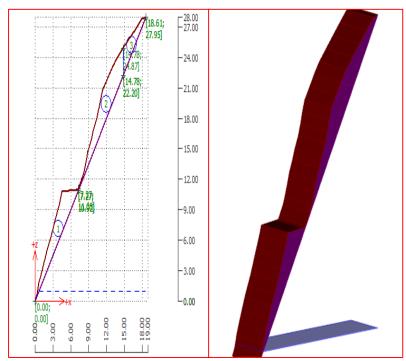


Figura 4: Perfil en 2D y 3D con filtración E1, fuente: Geo5 2018.

Tabla 11: Análisis y Resultados de falla por Volcamiento con presencia de agua, E1

Resultados					
Bloques	1	2	3		
Peso (G)	291.35 Kn/m	362.2 Kn/m	117.37 Kn/m		
Fuerza en la superficie de deslizamiento interna	52.26 Kn	0 Kn	-		
Àngulo de fuerza interna	30°	24.8°	-		
Presión en la superficie de deslizamiento externa (U)	1.46 Kn/m	-	-		

Análisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	210.68 Kn/m	299.70 Kn/m

Factor de Seguridad (Fs)	0.72<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

Fuente: Geo5 2018

c) Con movimiento sísmico y filtración

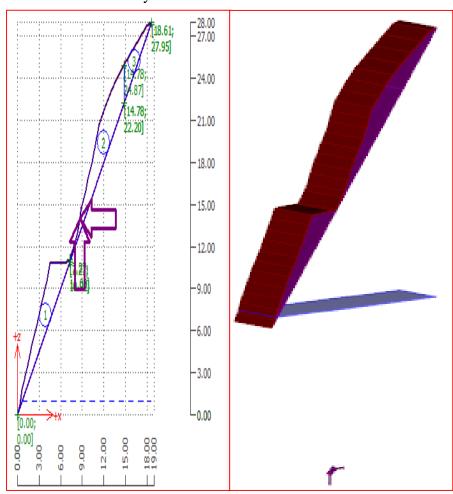


Figura 5: Perfil en 2D y 3D por falla de volcamiento con presencia de agua y sismo E1, fuente: Geo5 2018.

Tabla 12: Análisis y Resultados de falla por Volcamiento con presencia de agua y movimiento sísmico, E1.

Resultados			
Bloques	1	2	3
Peso (G)	291.35	362.2 Kn/m	117.37
1 cso (G)	Kn/m	302.2 Km/m	Kn/m
Fuerza en la			
superficie de	111.47 Kn	0 Kn	_
deslizamiento	111. 4 / Kii	O KII	-
interna			
Àngulo de fuerza	30°	29.65°	_
interna	30	27.03	-
Presión en la			
superficie de	1.46 Kn/m	_	_
deslizamiento	1.40 Km/m	-	_
externa (U)			
Fuerzas debidas	-58.27 Kn/m	-72.44	-23.47 Kn/m
al sismo Kx	50.27 Kii/iii	Kn/m	23.7/ IXII/III
Fuerzas debidas	14.57 Kn/m	18.11 Kn/m	5.87 Kn/m
al sismo Kz	17.57 111/111	10.11 111/111	3.07 KH/III

Análisis de la superficie de	Fuerza Resistente (T res)	Fuerza motriz (T act)
deslizamiento (falla por volcamiento)	162.85 Kn/m	363.92 Kn/m

Factor de Seguridad (Fs)	0.45<1.50	
Estabilidad del Talud de Roca	No es satisfactoria	Geo5 2018

Fuente:

d) Con deslizamiento de roca

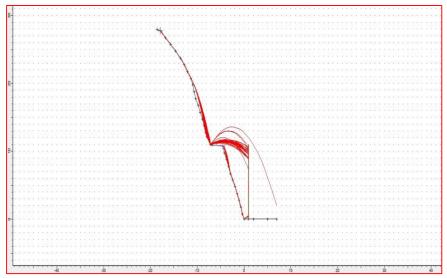


Figura 6: Modelamiento de caída de rocas en la E1 en el Software Rocfall.

e) Con anclajes

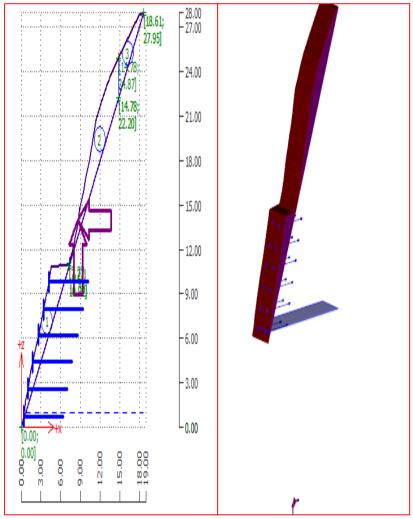


Figura 7: Perfil en 2D y 3D con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento E1, fuente: Geo5 2018.

Tabla 13: Análisis y Resultados con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento, E1.

Resultados				
Bloques	1		2	3
Peso (G)	291.35 Kn/m	362	.2 Kn/m	117.37 Kn/m
Fuerza en la superficie de deslizamiento interna	111.47 Kn	-	0 Kn	-
Àngulo de fuerza interna	30°	2	29.65°	-
Presión en la superficie de deslizamiento externa (U)	1.46 Kn/m		-	-
Fuerzas debidas al sismo Kx	-58.27 Kn/m		72.44 Kn/m	-23.47 Kn/m
Fuerzas debidas al sismo Kz	14.57 Kn/m	18.	11 Kn/m	5.87 Kn/m
Fuerzas debidas a los anclajes Fx	525.00 Kn/m		-	-
Anàlisis de la superficie de deslizamiento	Fuerza Resist (T res)	Fuerza motriz (T ad		motriz (T act)
(falla por volcamiento)	415.16 Kn/	m	72.9	97 Kn/m

Factor de Seguridad (Fs)	5.69<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

Fuente: Geo5 2018

f) Resultados generales de diseño a aplicar

Según los resultados obtenidos el bloque 1 necesita un diseño de pernos de anclaje tal como lo muestra en la figura 7, para el bloque 2 y 3 un diseño de enmallado como sistema pasivo, este último para prevenir la trayectoria de algún desprendimiento a futuro, tal como lo muestra la figura 6. La alternativas de diseño mencionadas controlarán

y evitarán el deslizamiento de rocas en la E1, este sustentando con el factor de seguridad satisfactorio y excelente obtenido de Fs=5.69, que según Kockelman, 1986 es favorable pues el menciona que el Fs=1.7 ya es un factor máximo de seguridad pues es el que mide la pérdida de vidas humanas al fallar el talud (Capítulo 12, "prevención, estabilización y diseño", pág 391).

3.3.2. Estación 2

a) En condiciones normales

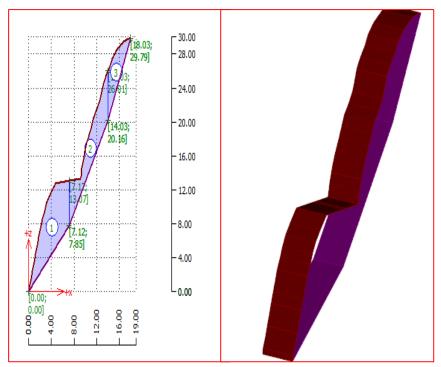


Figura 8: Perfil en 2D y 3D en C.N con falla por volcamiento E2, fuente: Geo5 2018.

Tabla 14: Análisis y Resultados en condiciones normales por falla de volcamiento, E2.

Resultados			
Bloques	1	2	3
Peso (G)	780.65 Kn/m	588.63Kn/m	286.96 Kn/m
Fuerza de deslizamiento interna	230.44 Kn	48.99 Kn	-
Àngulo de fuerza interna	30°	30°	-

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	388.37 Kn/m	836.31 Kn/m

Factor de Seguridad (Fs)	0.46<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

b) Con filtración

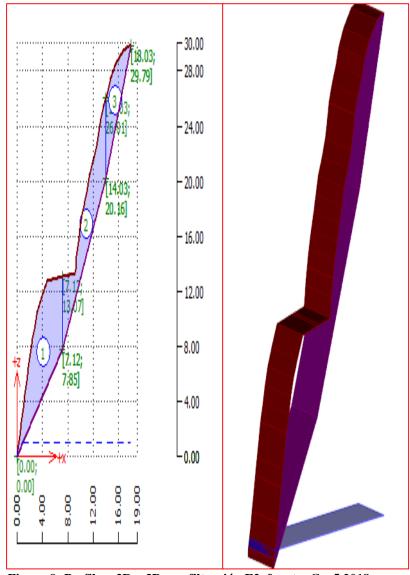


Figura 9: Perfil en 2D y 3D con filtración E2, fuente: Geo5 2018

Tabla 14: Análisis y Resultados en condiciones normales por falla de volcamiento, E2.

Resultados			
Bloques	1	2	3
Peso (G)	780.65 Kn/m	588.63Kn/m	286.96 Kn/m
Fuerza en la superficie de deslizamiento interna	230.44 Kn	48.99 Kn	-
Àngulo de fuerza interna	30°	30°	-
Presión en la superficie de deslizamiento externa (U)	5.52 Kn/m	-	-

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	385.18 Kn/m	836.31 Kn/m

Factor de Seguridad (Fs)	0.46<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

Fuente: Geo5 2018

c) Con movimiento sísmico y filtración

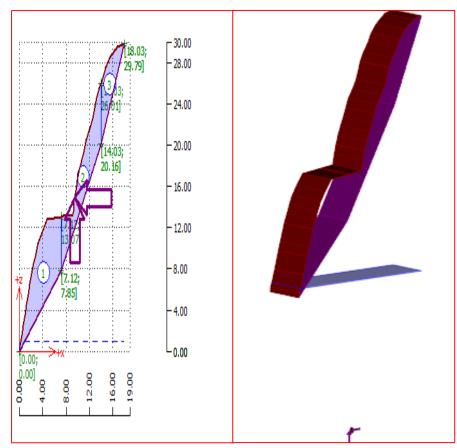


Figura 10: Perfil en 2D y 3D con filtración y sismo E2, fuente: Geo5 2018.

Tabla 15: Análisis y Resultados por falla de volcamiento con filtración y sismo, E2.

Resultados			
Bloques	1	2	3
Peso (G)	780.65 Kn/m	588.63Kn/m	286.96 Kn/m
Fuerza en la superficie de deslizamiento interna	353.81 Kn	86.15 Kn	-
Àngulo de fuerza interna	30°	30°	-
Presión en la superficie de deslizamiento externa (U)	5.52 Kn/m	-	-
Fuerzas debidas al sismo Kx	- 156.13Kn/m	-117.73 Kn/m	-57.39 Kn/m

Fuerzas debidas al sismo Kz	39.03 Kn/m	29.43 Kn/m	14.35 Kn/m	
--------------------------------	------------	------------	------------	--

Análisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	281.51 Kn/m	1029.77 Kn/m

Factor de Seguridad (Fs)	0.27<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

d) Con deslizamiento de roca

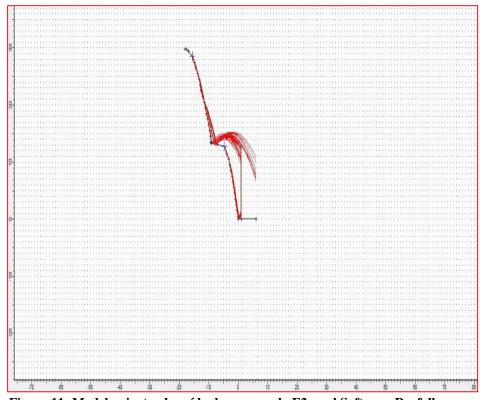


Figura 11: Modelamiento de caída de rocas en la E2 en el Software Rocfall.

e) Con anclajes

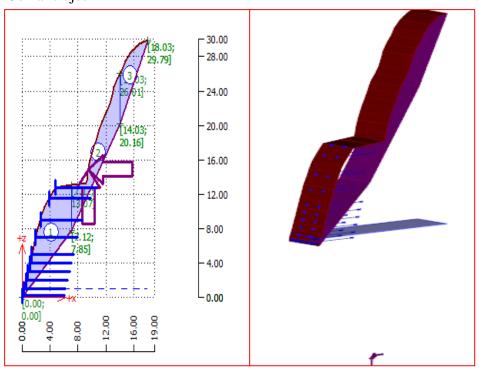


Figura 12: Perfil en 2D y 3D con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento E2, fuente: Geo5 2018.

Tabla 16: Análisis y Resultados con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento, E2.

Resultados			
Bloques	1	2	3
Peso (G)	780.65 Kn/m	588.63Kn/m	286.96 Kn/m
Fuerza en la superficie de deslizamiento interna	353.81 Kn	86.15 Kn	-
Àngulo de fuerza interna	30°	30°	-
Presión en la superficie de deslizamiento externa (U)	5.52 Kn/m	-	-
Fuerzas debidas al sismo Kx	- 156.13Kn/m	-117.73 Kn/m	-57.39 Kn/m
Fuerzas debidas al sismo Kz	39.03 Kn/m	29.43 Kn/m	14.35 Kn/m
Fuerzas debidas a los anclajes Fx	1000.00 Kn/m	-	-

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	709.16 Kn/m	357.94 Kn/m

Factor de Seguridad (Fs)	1.98<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

f) Resultados generales del diseño a aplicar

De los resultados obtenidos, el diseño a aplicar en el bloque 1 es un enmallado flexible anclado a la roca, como se muestra en la figura 12, debido a la trayectoria que tendría la roca ante algún evento climatológico o sísmico, como se muestra en la figura 11. En la superficie (bloque2 y3) un diseño enmallado de sistema pasivo todo ello sustentado en el factor de seguridad admisible relativamente satisfactorio fs=1.98, que según Kockelman, 1986 es favorable pues el menciona que el Fs=1.7 ya es un factor máximo de seguridad pues es el que mide la pérdida de vidas humanas al fallar el talud, en este caso (1.98>1.7), (Capítulo 12, "prevención, estabilización y diseño", pág 391).

3.3.3. Estación 3

a) En condiciones normales

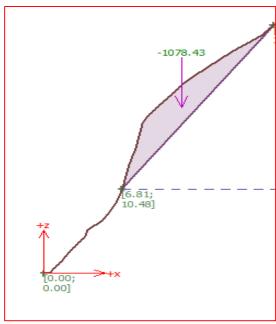


Figura 13: Perfil en 2D evaluada por falla planar en C.N E3, fuente: Geo5 2018.

Tabla 17: Análisis y Resultados de falla por falla planar en C.N. E3

Resultados		
Longitud de la superficie de deslizamiento (l)	24.33 m	
Buzamiento	57°	
Fuerza de gravedad	1078.43 Kn/m	
Fuera normal	587.35 Kn/m	
Tensión de corte	649.23 Kpa	

Anàlisis de la superficie de	Fuerza Resistente (T res)	Fuerza motriz (T act)
deslizamiento (falla planar)	15793.17 Kn/m	904.45 Kn/m

	Factor de Seguridad (Fs)	17.46<1.50	
e: Geo5 2018.	Estabilidad del Talud de Roca	Es satisfactoria	sísmico

b) Con

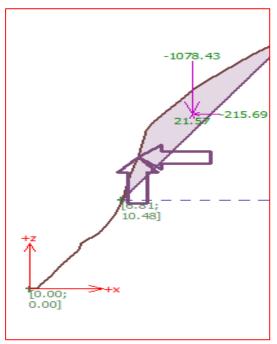


Figura 14: Perfil en 2D por falla planar con movimiento sísmico E3, fuente: Geo5 2018.

Tabla 18: Análisis y Resultados de falla por falla planar con movimiento sísmico E3.

Resultados		
Longitud de la superficie de deslizamiento (l)	24.33 m	
Buzamiento	57°	
Fuerza de gravedad	1078.43 Kn/m	
Fuera normal (N)	394.72 Kn/m	
Tensiòn de corte	635.02 Kpa	
Influencia del sismo Kx	-215.69 Kn/m	
Influencia del sismo Ky	-21.57 Kn/m	

Anàlisis de la superficie de deslizamiento (falla	Fuerza Resistente (T res)	Fuerza motriz (T act)
planar)	15447.61 Kn/m	1003.83 Kn/m

Factor de Seguridad (Fs)	15.39<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

c) Con movimiento sísmico y filtración

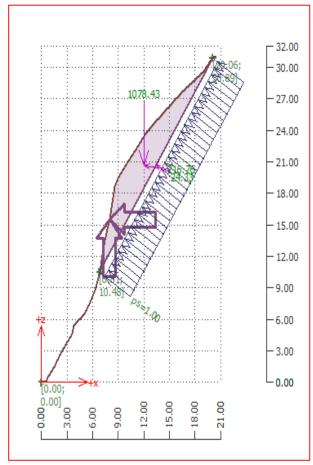


Figura 15: Perfil en 2D por falla planar con movimiento sísmico y filtración E3, fuente: Geo5 2018.

Tabla 19: Análisis y Resultados de falla por falla planar con movimiento sísmico y filtración E3.

Resultados		
Longitud de la superficie de deslizamiento (l)	24.33 m	
Buzamiento	57°	
Fuerza de gravedad	1078.43 Kn/m	
Fuera normal (N)	370.39 Kn/m	
Tensiòn de corte	633.23 Kpa	
Influencia del sismo Kx	-215.69 Kn/m	
Influencia del sismo Ky	-21.57 Kn/m	
Fuerza debida al agua en la superficie de deslizamiento (U)	24.33 Kn/m	

Anàlisis de la superficie de	Fuerza Resistente (T res)	Fuerza motriz (T act)
deslizamiento (falla planar)	15403.97 Kn/m	1003.83 Kn/m

Factor de Seguridad (Fs)	15.35<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

d) Con deslizamiento de roca

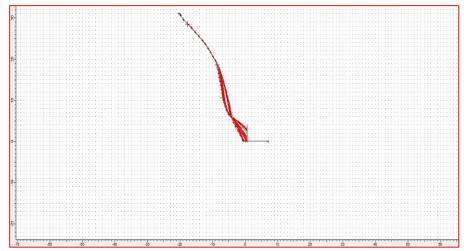


Figura 16: Modelamiento de caída de rocas en la E3 en el Software Rocfall.

e) Resultados generales del diseño a aplicar

El diseño que se aplicará en la E3 depende del factor muy favorable que se obtuvo como resultado fs=15.35, aún ante eventos sísmicos y filtraciones de agua como se puede notar en la figura 15, por ende se da como alternativa de diseño al sistema de control a pie del talud pasivo, con una valla de medidas, ancho=0.5m, altura=4m, como se muestra en la figura 16, a pesar que el talud es estable de por sí, se toma esta medida de diseño para evitar posibles desprendimientos que afecten al tránsito de la calzada.

3.3.4. Estación 4

a) En condiciones normales

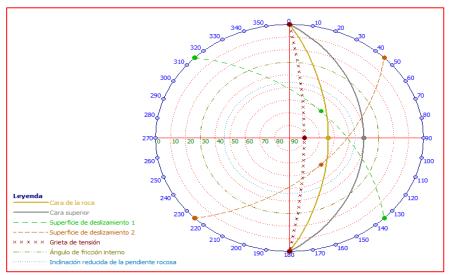


Figura 17: Perfil en 2D por falla tipo cuña en condiciones normales E4, fuente: Geo5 2018.

Tabla 20: Análisis y Resultados de falla por falla tipo cuña en condiciones normales E4.

Resultados		
Fuerza de gravedad (Wz)	32.60 Kn	
Resultante de fuerza normal (N1)	13.04 Kn	
Resultante de fuerza normal (N2)	13.04 Kn	
Fuerza resistente (Tres 1)	43.62 Kn	
Fuerza resistente (Tres 2)	43.62 Kn	

Anàlisis de la superficie de deslizamiento		Fuerza motriz (T act)
(falla planar)	87.23 Kn/m	25.25 Kn/m

Factor de Seguridad (Fs)	3.45<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

b) Con movimiento sísmico

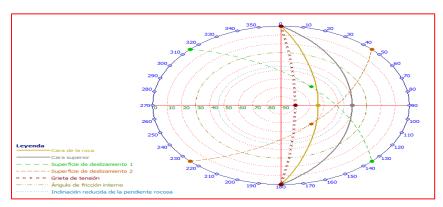


Figura 18: Perfil en 2D por falla tipo cuña y con movimiento sísmico E4, fuente: Geo5 2018.

Tabla 21: Análisis y Resultados de falla por falla tipo cuña en movimiento sísmico E4.

Resultados			
Fuerza de gravedad (Wz)		32.60 Kn	
Resultante de fuerza normal (N1)		9.58 Kn	
Resultante de fuerza normal (N2)		9.58 Kn	
Fuerza resistente (Tres 1)		43.62 Kn	
Fuerza resistente (Tres 2)		43.62 Kn	
Influencia del sismo K act		3.62 Kn/m	
Influencia del sismo Kn1		-3.45 Kn/m	
Influencia del sismo Kn2		-3.45 Kn/m	
Fuerza resistente (Tres 1)		41.62 Kn	
Fuerza resistente (Tres 2)		41.62 Kn	
Anàlisis de la superficie de deslizamiento (falla planar)	Fuerza Resistente (T res)	Fuerza motriz (T act)	
	83.24 Kn/m	28.87 Kn/m	

Factor de Seguridad (Fs)	2.88<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

c) Con movimiento sísmico y filtración



Figura 19: Perfil en 2D por falla tipo cuña, con movimiento sísmico y filtraciónE4, fuente: Geo5 2018.

Tabla 22: Análisis y Resultados de falla por falla tipo cuña en movimiento sísmico y con filtración E4.

Resultados		
Fuerza de gravedad (Wz)	32.60 Kn	
Resultante de fuerza normal (N1)	8.69 Kn	
Resultante de fuerza normal (N2)	8.69 Kn	
Fuerza resistente (Tres 1)	41.11 Kn	
Fuerza resistente (Tres 2)	41.11 Kn	
Influencia del sismo K act	3.62 Kn/m	
Influencia del sismo Kn1	-3.45 Kn/m	
Influencia del sismo Kn2	-3.45 Kn/m	
Fuerza resistente (Tres 1)	41.62 Kn	
Fuerza resistente (Tres 2)	41.62 Kn	
Fuerza normal debida al agua (Un1)	-0.89 Kn	
Fuerza normal debida al agua (Un2)	-0.89 Kn	

Análisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla tipo cuña)	28.87 Kn/m	82.21 Kn/m

Factor de Seguridad (Fs)	2.85<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

d) Con deslizamiento de roca

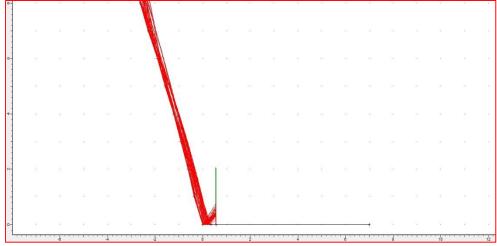


Figura 20: Modelamiento de caída de rocas en la E4 en el Software Rocfall.

e) Resultados generales del diseño a aplicar

El diseño que se aplicará en la E4 depende del factor de estabilidad favorable que se obtuvo como resultado fs=2.85, aún ante eventos sísmicos y filtraciones de agua como se puede notar en la figura 19, por ende se da como alternativa de diseño al sistema de control a pie del talud pasivo, con una valla de medidas, ancho=0.5m, altura=2m, como se muestra en la figura 20, a pesar que el talud es estable de por sí, se toma esta medida de diseño para evitar posibles desprendimientos que afecten al tránsito de la calzada.

3.3.5. Estación 5

a) Con deslizamiento de roca

Figura 21: Modelamiento de caída de rocas en la E5 en el Software Rocfall.

b) Resultados generales del diseño a aplicar

Según la evaluación geo mecánica, el tramo E5 del talud necesita un sistema de diseño pasivo como lo es la protección al pie del talud, debido a la dirección del buzamiento con un valor de -2 (ver anexos), siendo así en su clasificación con un índice favorable. Pues ya no fue necesario aplicar sistemas de diseño activos por no ser una zona de riesgo como las demás estaciones.

La valla de protección tendrá un ancho de 1m en la dirección de la calzada y un alto de 2m para evitar la obstrucción de la vía para el tránsito vehicular y así mismo de peatonal.

3.3.6. Estación 5.1

a) Con deslizamiento de roca

Figura 22: Modelamiento de caída de rocas en la E5.1 en el Software Rocfall.

b) Resultados generales del diseño a aplicar

Según la evaluación geo mecánica, el tramo E5.1. del talud necesita un sistema de diseño pasivo como lo es la protección al pie del talud, debido a la dirección del buzamiento con un valor de 0(ver anexos), siendo así en su clasificación con un índice muy favorable con un ángulo de 90°. Pues ya no fue necesario aplicar sistemas de diseño activos por no ser una zona de riesgo como las demás estaciones y así proponer alternativas de menos costos y a la vez que garanticen seguridad.

La valla de protección tendrá un ancho de0.5 m en la dirección de la calzada y un alto de 2m para evitar la obstrucción de la vía para el tránsito vehicular y así mismo de peatonal.

3.3.7. Estación 5.2

a) Con deslizamiento de roca

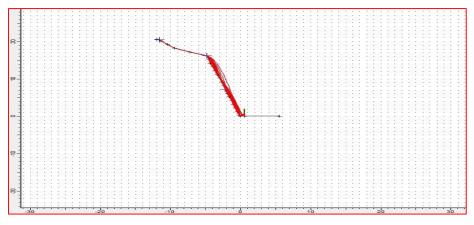


Figura 23: Modelamiento de caída de rocas en la E5.2 en el Software Rocfall.

b) Resultados generales del diseño a aplicar.

Según la evaluación geo mecánica, el tramo E5.2. del talud necesita un sistema de diseño pasivo como lo es la protección al pie del talud, debido a la dirección del buzamiento con un valor de -2 (ver anexos), siendo así en su clasificación con un índice favorable. Pues ya no fue necesario aplicar sistemas de diseño activos por no ser una zona de riesgo como las demás estaciones.

La valla de protección tendrá un ancho de 0.5m en la dirección de la calzada y un alto de 2m para evitar la obstrucción de la vía para el tránsito vehicular y así mismo de peatonal.

3.3.8. Estación 6

a) En condiciones normales

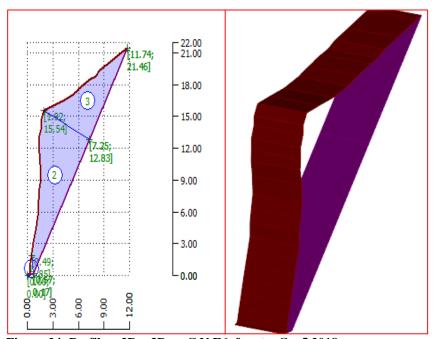


Figura 24: Perfil en 2D y 3D en C.N E6, fuente: Geo5 2018.

Tabla 23: Análisis y Resultados de falla por Volcamiento en C.N. E6

Resultados			
Bloques	1	2	3
Peso (G)	8.78 Kn/m	880.26Kn/m	530.57Kn/m
Fuerza en la superficie de deslizamiento interna	557.30 Kn	434.52 Kn	-
Àngulo de fuerza interna	36°	89.07°	-

Anàlisis de la superficie de deslizamiento (falla por	Fuerza Resistente (T res)	Fuerza motriz (T act)
volcamiento)	140.80 Kn/m	522.17 Kn/m

Factor de Seguridad (Fs)	0.27<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

b) Con filtración

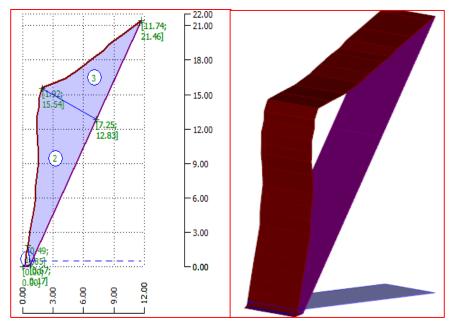


Figura 25: Perfil en 2D y 3D con filtración E6, fuente: Geo5 2018.

Tabla 24: Análisis y Resultados de falla por Volcamiento con presencia de agua, E6.

Resultados			
Bloques	1	2	3
Peso (G)	8.78 Kn/m	880.26Kn/m	530.57Kn/m
Fuerza en la superficie de deslizamiento interna	557.30 Kn	434.52 Kn	-
Àngulo de fuerza interna	36°	89.07°	-
Presión en la superficie de deslizamiento externa (U)	1.92 Kn/m	0.61 Kn/m	-

Presión de agua en la superficie de deslizamiento interna (Fv)	0.55 Kn/m	-	-
---	-----------	---	---

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	139.60 Kn/m	522.54 Kn/m

Factor de Seguridad (Fs)	0.27<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

c) Con movimiento sísmico y filtración

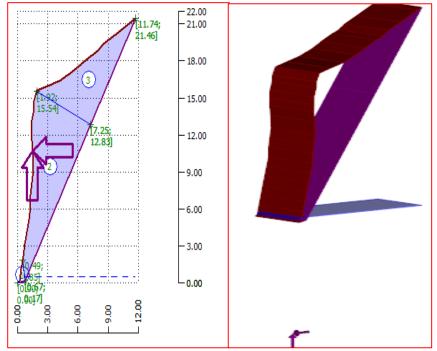


Figura 26: Perfil en 2D y 3D por falla de volcamiento con presencia de agua y sismo E6, fuente: Geo5 2018.

Tabla 25: Análisis y Resultados de falla por Volcamiento con presencia de agua, E6.

Resultados			
Bloques	1	2	3
Peso (G)	8.78 Kn/m	880.26Kn/m	530.57Kn/m
Fuerza en la superficie de deslizamiento interna	793.82 Kn	469.80 Kn	-
Àngulo de fuerza interna	36°	76.51°	-
Presión en la superficie de deslizamiento (U)	1.92 Kn/m	0.61 Kn/m	-
Presión de agua en la superficie de deslizamiento interna (Fv)	0.55 Kn/m	-	-
Fuerzas debidas al sismo Kx	-1.76 Kn/m	-176.05 Kn/m	-106.11 Kn/m
Fuerzas debidas al sismo Kz	0.44 Kn/m	44.01 Kn/m	26.53 Kn/m

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	189.78 Kn/m	743.96 Kn/m

Factor de Seguridad (Fs)	0.26<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

d) Con anclajes

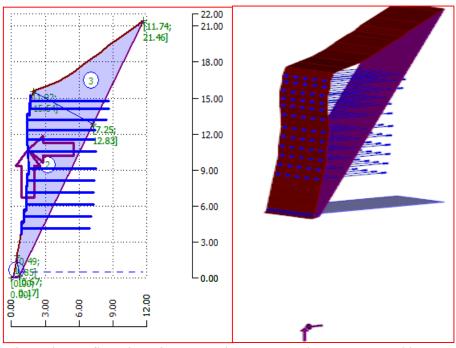


Figura 27: Perfil en 2D y 3D con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento E6, fuente: Geo5 2018.

Tabla 26: Análisis y Resultados con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento, E6.

Resultados			
Bloques	1	2	3
Peso (G)	8.78 Kn/m	880.26Kn/m	530.57Kn/m
Fuerza en la superficie de deslizamiento interna	0 Kn	469.80 Kn	-
Àngulo de fuerza interna	13.07°	76.51°	-
Presión en la superficie de deslizamiento externa (U)	1.92 Kn/m	0.61 Kn/m	-
Presión de agua en la superficie de deslizamiento interna (Fv)	0.55 Kn/m	-	-
Fuerzas debidas al sismo Kx	-1.76 Kn/m	-176.05 Kn/m	-106.11 Kn/m

Fuerzas debidas al sismo Kz	0.44 Kn/m	44.01 Kn/m	26.53 Kn/m
Fuerzas debidas a los anclajes Fx	-	2100.00 Kn/m	-

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	12.26 Kn/m	4.82 Kn/m

Factor de Seguridad (Fs)	2.54<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

e) Resultados generales del diseño a aplicar

De los resultados obtenidos, el diseño a aplicar en el bloque 1 y 2 es la perforación con pernos de anclaje, como se muestra en la figura 27. En la superficie (bloque 3) un diseño enmallado de sistema pasivo todo ello sustentado en el factor de seguridad satisfactorio fs=2.54, que según Kockelman, 1986 es favorable, pues el menciona que el Fs=1.7 ya es un factor máximo de seguridad pues es el que mide la pérdida de vidas humanas al fallar el talud, en este caso (2.54>1.7), (Capítulo 12, "prevención, estabilización y diseño", pág 391).

3.3.9. Estación 7

a) En condiciones normales

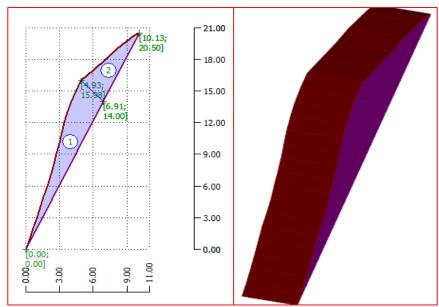


Figura 28: Perfil en 2D y 3D en C.N E7, fuente: Geo5 2018.

Tabla 27: Análisis y Resultados de falla por Volcamiento en C.N. E7.

Resultados		
Bloques	1	2
Peso (G)	437.61 Kn/m	207.53Kn/m
Fuerza en la superficie de deslizamiento interna	76.84 Kn	-
Àngulo de fuerza interna	75°	-

Anàlisis de la superficie de deslizamiento (falla por	Fuerza Resistente (T res)	Fuerza motriz (T act)
volcamiento)	291.93 Kn/m	476.76 Kn/m

Factor de Seguridad (Fs)	0.61<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

b) Con filtración

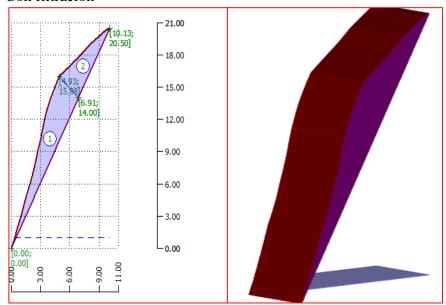


Figura 29: Perfil en 2D y 3D con filtración E7, fuente: Geo5 2018.

Tabla 28: Análisis y Resultados de falla por Volcamiento con presencia de agua, E7.

Resultados		
Bloques	1	2
Peso (G)	437.61 Kn/m	207.53Kn/m
Fuerza en la superficie de deslizamiento interna	76.84 Kn	-
Àngulo de fuerza interna	75°	-
Presión en la superficie de deslizamiento externa (U)	1.51 Kn/m	-

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	291.06 Kn/m	476.76 Kn/m

Factor de Seguridad (Fs)	0.61<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

c) Con movimiento sísmico y filtración

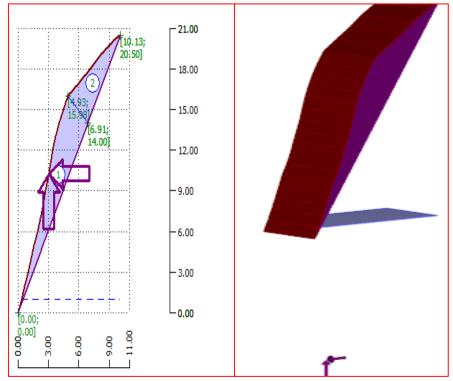


Figura 30: Perfil en 2D y 3D por falla de volcamiento con presencia de agua y sismo E7, fuente: Geo5 2018.

Tabla 29: Análisis y Resultados de falla por Volcamiento con presencia de agua, E7.

Resultados		
Bloques	1	2
Peso (G)	437.61 Kn/m	207.53Kn/m
Fuerza en la superficie de deslizamiento interna	115.21 Kn	-
Àngulo de fuerza interna	75°	-
Presión en la superficie de deslizamiento externa (U)	1.51 Kn/m	-
Fuerzas debidas al sismo Kx	-87.52 Kn/m	21.88 Kn/m
Fuerzas debidas al sismo Kz	-41.51 Kn/m	10.38 Kn/m

Anàlisis de la superficie de deslizamiento	Fuerza Resistente (T res)	Fuerza motriz (T act)
(falla por volcamiento)	244.48 Kn/m	533.51 Kn/m

Factor de Seguridad (Fs)	0.46<1.50
Estabilidad del	No es
Talud de Roca	satisfactoria

d) Con anclajes

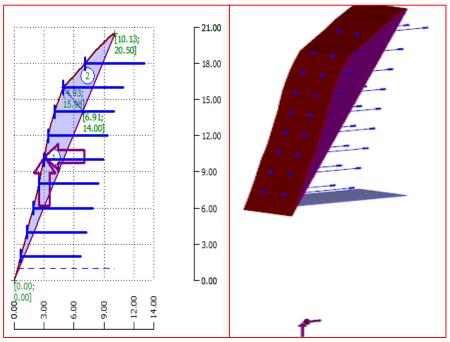


Figura 31: Perfil en 2D y 3D con el diseño de anclajes para la estabilidad del talud evaluada por falla de volcamiento E7, fuente: Geo5 2018.

Tabla 30: Análisis y Resultados de falla por Volcamiento con presencia de agua, E7.

Resultados		
Bloques	1	2
Peso (G)	437.61 Kn/m	207.53Kn/m
Fuerza en la superficie de deslizamiento interna	0 Kn	-
Àngulo de fuerza interna	64.47°	-
Presión en la superficie de deslizamiento externa (U)	1.51 Kn/m	-
Fuerzas debidas al sismo Kx	-87.52 Kn/m	21.88 Kn/m
Fuerzas debidas al sismo Kz	-41.51 Kn/m	10.38 Kn/m
Fuerzas debidas a los anclajes Fx	612.5 Kn/m	175.00 Kn/m

Anàlisis de la superficie de deslizamiento (falla por	Fuerza Resistente (T res)	Fuerza motriz (T act)
volcamiento)	542.65 Kn/m	145.94 Kn/m

Factor de Seguridad (Fs)	3.72<1.50
Estabilidad del	Es
Talud de Roca	satisfactoria

e) Resultados generales del diseño a aplicar.

De los resultados obtenidos, el diseño a aplicar en el bloque total del talud 1y2) es una alternativa netamente de diseño con pernos de anclaje, como se muestra en la figura 31. Pues el factor de seguridad fs= 3.72 nos garantiza la seguridad total ante el deslizamiento de rocas en el tramo, y es avalado por lo que menciona Kockelman, ,que el Fs=1.7 ya es un factor máximo de seguridad pues es el que mide la pérdida de vidas humanas al fallar el talud, en este caso (3.72>1.7), (Capítulo 12, "prevención, estabilización y diseño", pág 391).

IV. DISCUSIÓN

A continuación se procedió a realizar la discusión de los resultados obtenidos en la tesis con los resultados y marco teórico de los antecedentes, que son las investigaciones expuestas al inicio de la tesis.

Habiendo evaluado las condiciones geo mecánicas del macizo rocoso con los factores climatológicos, en este caso en condiciones de precipitaciones y movimientos telúricos que dan como consecuencia las diaclasas y fracturaciones en el talud, (Hernández, 2014) aporta a la siguiente tesis para tener en cuenta que aquellas consecuencias también son resultados de que la temperatura, en máximos y mínimos grados, es un factor que altera el desplazamiento de los bloques en un talud.

Y Según lo que concluye (Melentijevic, 2015), que los factores de seguridad aumentan en cuanto al criterio utilizado que proponen Serrano & Olaya tanto en un ángulo de inclinación del talud y su altura, se tiene compatibilidad de alguna manera, pero en este caso se utilizó la clasificación de Bienawski, Hoke y Brown pues la evaluación según la dirección del buzamiento e inclinación de la pendiente fue favorable y muy favorable por lo que ello nos dio la opción de evidenciar un factor de seguridad favorable y poder clasificar los tramos según las fallas que se presentaban y no fue necesaria la aplicación de una alternativa de diseño activo, pero si un sistema pasivo, tal como lo evidencian las estaciones 5, 5.1 y 5.2.

Ahora bien, en la tesis se utilizó el modelamiento de diseño en el Software Geo5 y Rockfall puesto que son Softwares validados durante los años 1989 y 193, reconocidos a nivel mundial utilizadas por una de las empresas más reconocidas y destacadas para contrarrestar el desprendimiento de material en los taludes como lo es Mccaferri, respectivamente, por lo que no se concuerda con lo que concluye (Pozo, 2014), que el factor de seguridad es más confiable y eficaz con los métodos numéricos, pues la tecnología hace que métodos como ellos se vayan desfasando pues en la presente tesis no fue necesaria su aplicación para obtener factores de seguridad satisfactorios.

Por otro lado con el diseño de pernos de anclaje se obtuvieron factores de seguridad satisfactorios por lo que se debe de tener cuenta para futuros trabajos con lo que concluye (Rengifo, 2015) en la tesis titulada "Muros anclados en arenas, análisis y comparación de técnicas de anclajes", que los sistemas de anclaje pos tensado son más utilizados y eficaces en el tema de costos a nivel nacional, y también presenta mayor seguridad debido

a que las empresas se han ido especializando en este tema por ser el más cotidiano y aplicar nuevas técnicas sería riesgoso por el tema de capacitación en los servicios.

También habiendo evaluado el talud en condiciones de vegetación, como se expone en la fotografías, la vegetación en taludes rocosos es perjudicial pues esta aumenta el grado de fracturación de la roca, y el riesgo de deslizamiento, con ello damos a conocer lo que aplicó (Copello, 2015) en la tesis titulada "Propuesta de remediación del talud de la Costa Verde, (Tramo Barranco) mediante la técnica de hidrosiembra", todo ello fue aplicado en un talud de material suelto para la estabilización del talud, con ello podemos demostrar que no todos los taludes necesitan el mismo tratamiento, para ello siempre debemos de tener en cuenta las características físicas y mecánicas del objeto de estudio.

Teniendo en cuenta lo que expone (Muñoz, 2017) en la tesis titulada "Evaluación de soluciones de estabilidad para deslizamientos en tres tramos críticos de la carretera Ilabaya-Cambaya-Camilaca, Distrito de Ilabaya-Jorge Basadre-Tacna", donde usó Softwares como el SLIDE Y GAWACWIN, para obtener los factores de seguridad al igual que la presente tesis, ya que es una manera factible de buscar soluciones a corto plazo para tener como base un proyecto que puede beneficiar a la sociedad.

Y por último se menciona que las alternativas de diseño propuestas en la presente tesis, como los son: el sistema de diseño mediante pernos de anclaje y el enmallado flexible anclado a la roca, son factibles, de menor trabajo, y no interfieren en su totalidad en cuanto a su instalación, pues el libre tránsito puede ser parcial y su trabajo se da por sectores, con lo que el sistema de muros gaviones según lo que expone (García, 2017) en la tesis "La estabilidad de Taludes y la transitabilidad en la carretera longitudinal de la sierra, Provincia de Chota-Cajamarca 2017", es cuestión de alargar tiempos, pues se tiene que realizar un trabajo de acopiamiento y espaciamiento de canteras, por lo que generaría la interferencia del libre tránsito y un grado de peligro en su instalación.

V. CONCLUSIONES

Las alternativas de diseño que se determinaron para evitar el deslizamiento de rocas en el tramo "Balcón de Judas" de la carretera Huaraz-Casma, Ancash-2018, son las siguientes: el diseño con pernos de anclaje y enmallado flexible anclado a la roca, según la teoría expuesta estos son sistemas de diseño activos, que impiden la trayectoria del desprendimiento de rocas, esto se sustenta en el rango de factores de seguridad que se obtuvieron en su modelamiento de diseño mediante el Software GEO5, en su aplicativo de estabilidad de rocas, mediante el análisis de falla por volcamiento, falla plana y falla tipo cuña, fs>1.70 como se evidencian en los resultados expuestos. Y de alguna manera para generar un mayor índice en el factor de seguridad, en algunas estaciones de evaluación se tomaron en cuenta el diseño de sistemas pasivos, como lo es un sistema de control al pie del talud mediante vallas, en una especie de cerco perimétrico para evitar el daño e interferencia en la calzada.

En la evaluación del sistema de estabilización de taludes mediante pernos de anclaje, se determinó que el diseño evitará el deslizamiento de las rocas en las estaciones E1, E6 Y E7, pues se tuvo como primer paso el reconocimiento en campo y el estudio geo mecánico de rocas, en el proceso se fue identificando el tipo de falla en cada una de las estaciones, pues se obtuvieron índices de sostenimiento en un rango malo y regular pero con falla por volcamiento (Q=3.35,6.55 y 7.21), y con los resultados previos se ingresaron los datos para el modelamiento (Software Geo 5) de diseño mediante pernos de anclaje y se obtuvieron factores de seguridad satisfactorios, en este caso Fs,E1=5.69, Fs,E6=2.54 y Fs,E7=3.72, ellos garantizan la estabilidad y desprendimiento de rocas en el talud.

En la evaluación del sistema de estabilización de taludes mediante el enmallado metálico flexible anclado a la roca, se determinó que el diseño evitará el deslizamiento de rocas en la estación E2, fue una de las estaciones identificadas como una de las zonas más vulnerables y propensas al desprendimiento de rocas, pues se obtuvo un índice de sostenimiento muy pobre (Q=2.82), y también el valor de 53 del GSI, dio como resultado en el ábaco a fracturación intensa (FI) que se describe macizo rocoso muy fracturado formado por bloques angulosos y redondeados, también a una condición del frente con un parámetro pobre, son superficies de cizalla muy alteradas con rellenos compactos conteniendo fragmentos rocosos. Con los resultados de la evaluación geo mecánica y perfil se hizo su modelamiento de diseño en el software GEO5, obteniendo un factor de seguridad Fs=1.98 con el diseño de pernos de anclajes, pero ello evaluado para una de la

secciones, pues también se hizo su modelamiento con el perfil en el Software Rocfall, obteniendo asi el desprendimiento de rocas en el bloque dos y tres para lo cual una valla de 1m en el ancho de la calzada no sería una solución pues el ancho de la vía es de 6m, puesto a que también la zona es una curva, y esto podría generar accidentes, por lo que la alternativa planteada del sistema de diseño activo sería la satisfactoria para que el talud pueda cumplir la función de estabilidad ante cualquier evento de la naturaleza.

La evaluación del sistema de elusión de la amenaza, como alternativa de diseño se descartó en la tesis, puesto que recopilando información de trabajos anteriores como lo es el expediente técnico de la obra llamada "Creación Del Servicio De Protección Contra Deslizamiento Entre La Av. Cordillera Negra Y La Av. Los Olivos, Distrito De Independencia – Huaraz – Ancash" generó la evacuación total del alto tránsito, también un grado de peligro constante y latente en la población aledaña al sector de peligro, pues en el expediente técnico fue contemplado el uso del cemento expansivo para la fracturación de la roca, pero ello no hizo efecto pues no se tuvo en cuenta el estudio geo mecánico básico del talud, puesto que la resistencia de la roca no contempla la utilización de aquel agregado y en la tesis se obtuvo como resultado que el tipo de roca del talud en estudio es una de las más resistentes dentro de las familias (roca andesita con una resistencia de 128 mpa en su grado regular), por ello se tuvo como segunda alternativa en el proyecto mencionado el uso de explosivos, generando mayor peligro, por lo que en la actualidad se evidencia que el grado de vulnerabilidad del talud no ha cesado, puesto que cuando se presentan las lluvias altas, se siguen generando el deslizamiento de rocas del sector.

En la evaluación del sistema de control al pie del talud, se determinó que el diseño controlará el deslizamiento de rocas en las estaciones E3, E4, E5, E5.1 Y E5.2, y se sustenta en el estudio geo mecánico que se realizó, fue necesario el análisis en el software Rockfall, puesto a que las estaciones E5, E5.1. Y E5.2 tienen un índice de sostenimiento (Q=9, 8.87 y 10.02) y un buzamiento favorable de 45° y 90°, y las estaciones E3 y E4, fueron analizadas en el Software Geo5 presentando falla planar y falla tipo cuña, obteniéndose factores de seguridad en condiciones normales de Fs,E3=17.46 Fs,E4=3.45, puesto que las fallas son contrarias y se acomodan contra el ángulo de la pendiente y su caída no es propensa en bloques, por lo que todas las estaciones en mención solo necesitan vallas de control al pie de la calzada a 0.5 m y 1 m con un ancho de calzada de 8m, y no hay presencia de curvas, el tramo es continuo.

VI. RECOMENDACIONES

Se recomienda a la Municipalidad Distrital de Independencia, que empiecen con una segunda etapa del proyecto, pero esta vez haciendo un estudio a nivel de perfil y expediente técnico adecuado, pues en la primera etapa no se previno el problema en su totalidad, porque aún presenta un riesgo latente, y a la vez que realice un plan de contingencia y proyecto de envergadura para evitar posibles deslizamientos en las épocas de altas precipitaciones, pues en este periodo se tiene altos riesgos de que ocurran accidentes por el comportamiento del talud, y de alguna manera la presente tesis pueda aportar como alternativas de solución.

Se recomienda a la Municipalidad Distrital de Independencia utilizar sistemas de estabilización con menos costos y que cumplan con la función de estabilizar o evitar el deslizamiento de rocas en el tramo de estudio, así como se expuso en la tesis, pues se comprobó que hay algunos tramos que no necesitan un estudio a fondo para obtener el grado de vulnerabilidad y tratamiento correspondiente.

A los futuros investigadores en la rama de geotecnia, capacitarse en los programas actuales para estabilidad de taludes y/o proyecto de túneles, pues es una gran dificultad desconocer del tema cuando el propósito de un tesista es centrarse en la necesidad de su entorno, pues eso va mucho más allá de los cursos en que uno pudo dominar en la Universidad.

Se recomienda a los futuros ingenieros civiles desenvolverse en todas las ramas de la carrera, pues es interesante innovar y adquirir nuevos conocimientos, con la experiencia en contacto con el campo de trabajo, el profesional se desenvuelve y se sensibiliza con el medio, conoce las necesidades de su entorno, y trabaja con ahínco para poder solucionar los problemas de su sociedad, el descubrir e investigar es una sed de poder encontrar las alternativas precisas que llevarán al desarrollo a su nación, pues de las pequeñas ideas nacen grandes proyectos.

VII. PROPUESTA

La propuesta de la tesis se centra en la aplicación de las alternativas de solución para evitar el deslizamiento de rocas en el tramo de estudio, para tenerlos en consideración en futuros proyectos de la municipalidad o región, ello generará un grado de seguridad para los transeúntes y medios vehiculares.

VIII. REFERENCIAS BIBLIOGRÁFICAS

CASTILLO Delgado, Linda y BEHN Theune, Bruno. Estudio de control de talud en fase 4 de división andina. Tesis (para optar al grado de Ingeniero de Minas). Santiago de Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería de Minas, 2014. 82 pp.

GARCIA Tapia, Jhonatan. La estabilidad de taludes y las transitabilidad en la carretera longitudinal de la sierra, provincia de Chota-Cajamarca. Tesis (para obtener el título de Ingeniero Civil). Lima: Universidad César Vallejo, Facultad de Ingeniería, Escuela Profesional de Ingeniería Civil, 2017. 106 pp.

MUÑOZ Ramírez, Maykool. Evaluación de soluciones de estabilidad para deslizamientos en tres tramos críticos de la carretera Ilabaya-Cambaya-Camilaca-Distrito de Ilabaya- Jorge Basadre-Tacana. Tesis (para optar el título de Ingeniero Civil). Lima: Universidad de Ciencias Aplicadas, Facultad de Ingeniería, Carrera de Ingeniería Civil, 2017.146 pp.

COPELLO Muñante, Victor. Propuesta de remediación del talud de la Costa Verde (tramo Barranco) mediante la técnica de hidrosiembra. Tesis (para optar el título de Ingeniero Civil). Lima: Universidad de Ciencias Aplicadas, Facultad de Ingeniería, Carrera de Ingeniería Civil 2015. 78 pp.

RENGIFO Reategui, José. Muros Anclados en Arena, análisis y comparación de técnicas de anclajes. Tesis (para obtener el título de Ingeniero Civil). Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería, 2015. 70 pp.

GRANADOS López, Alan. Estabilización del talud de la Costa Verde en la zona del Distrito de Barranco. Tesis (para obtener el título de Ingeniero Civil). Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería, 2006. 87 pp.

HERNÁNDEZ Iraira, Antonio. Mecanismo de acuñamiento inducido térmicamente. Tesis (para obtener el título de Ingeniero Civil con mención en estructuras, construcción y geotecnia). Santiago de Chile: Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería Civil, 2014. 75 pp.

POZO García, Raúl. Análisis numérico de mecanismos de falla en macizos rocosos fracturados considerando el efecto escala. Tesis (Magíster en Ingeniería Geotécnica). Lima: Universidad Nacional de Ingeniería, Facultad de Ingeniería Civil, 2014. 90 pp. MELENTIJEVIJ, Esvletana. Estabilidad de macizos rocosos con criterios de rotura no lineales y leyes de fluencia no asociada. Tesis (Magíster en Ingeniería). Madrid:

Universidad Politécnica de Madrid, E.T.S. de Ingenieros de caminos, canales y puertos, Departamento de Ingeniería y morfología del terreno, 2015. 446 pp.

VALERIANO Nina, Fredy. Métodos para el análisis de estabilidad de taludes en roca y su interacción en el cerro espinal Juliaca. Tesis (Ingeniero Geólogo).). Puno: Universidad Nacional del Altiplano, Facultad de Ingeniería Geológica y metalúrgica, Escuela profesional de Ingeniería Geológica, 125. 90 pp.

REVISTA vial [en línea] Lima: Vial, 2014 [fecha de consulta: 15 de Mayo de 2018] Disponible en http://revistavial.com/sistemas-de-proteccion-de-taludes/

REVISTA vial [en línea] Lima: Vial, 2014 [fecha de consulta: 15 de Mayo de 2018]

Disponible https://es.slideshare.net/alexa842003/geobrugg-1-estabilizacion-taludes

REVISTA vial [en línea] Lima: Vial, 2014 [fecha de consulta: 15 de Mayo de 2018]

Disponible https://es.slideshare.net/Evargs1992/ensayos-en-mecnica-de-rocas

REVISTA vial [en línea] Lima: Vial, 2014 [fecha de consulta: 15 de Mayo de 2018]

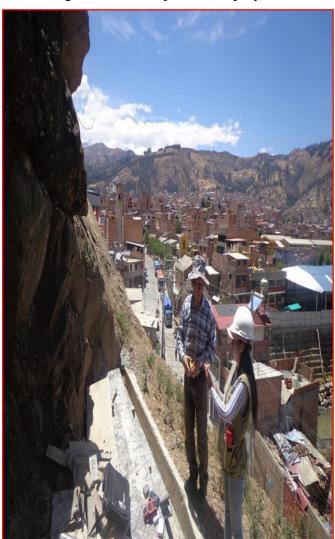
Disponible https://es.slideshare.net/MIRIANASCUAQUIROGA/propiedades-fisicas-y-mecde-rocas

REVISTA Monorg [en línea] Lima: Vial, 2011[fecha de consulta: 20 de Mayo de 2018] Disponible http://www.doslourdes.net/monogr%C3%A1ficos-la-lluvia.pdf
REVISTA vial [en línea] Lima: Vial, 2009 [fecha de consulta: 13 de Junio de 2018] Disponible http://revistavial.com/sistemas-de-proteccion-de-taludes/

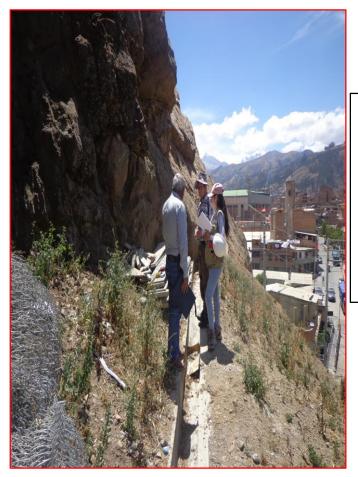
REVISTA Pymet [en línea] Lima: Vial, 2006 [fecha de consulta: 02 de Julio de 2018] Disponible https://www.pymet.es/levantamiento-topografico/

SFRISO, Alejo. Mecanica de Suelos y Geología, Estabilidad de taludes de rocos, Lima, 2007.

SUAREZ, Jaime. Control de Caídos y Deslizamientos en Roca [s.l.], 2006, 48 pp.

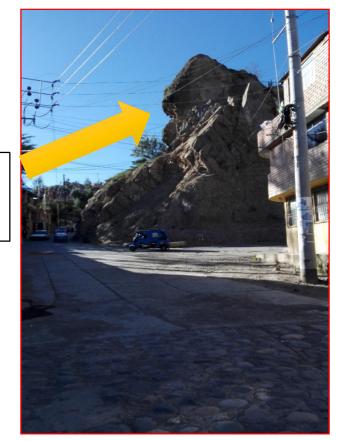

ANEXOS

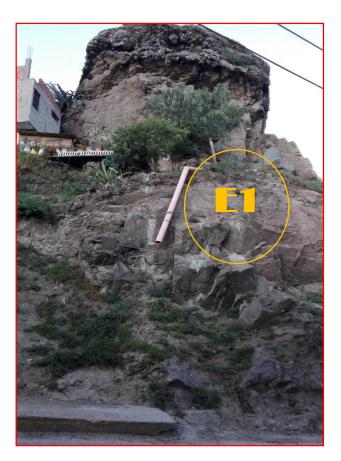
Captura de pantalla Turnitin

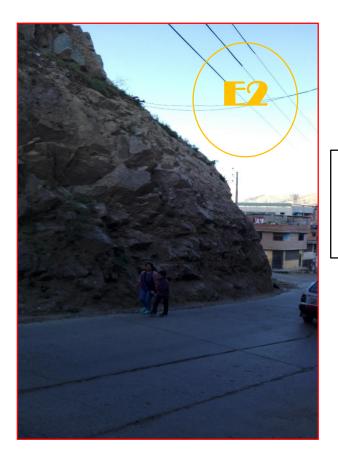


Fuente: (Turnitin, 2018)

Panel fotográfico de trabajos en campo y sectorización de estaciones en evaluación.

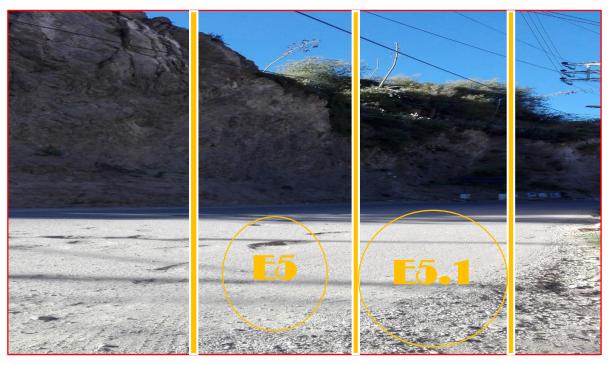

Fotografía 01: evaluación de mecánica de roca en la superficie de la estación E1 y E2, recolección de datos en las plantillas validadas con el apoyo del Ing. Gliden Murphy.


Fotografía 02: en campo con los ingenieros, Nicanor Burnes y Glidden Murphy, especialistas en el tema, en esta toma se da la explicación del tipo de roca madre que abarca la mayoría de sectores en evaluación, que es la roca andesita, con este dato se trabajará para obtener la resistencia de la roca.


Fotografía 03: midiendo el buzamiento y el rumbo del talud, a la izquierda la brújula y a la derecha el eclímetro.

Fotografía 04: vista completa de la roca cumbre el cerro "Balcón de Judas", intersección de la Av. Los Olivos con la Av. Cordillera Negra.

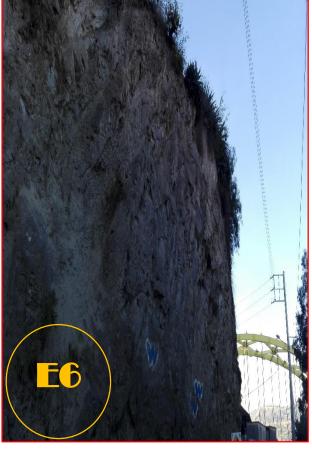
Fotografía 05: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E1, identificada con una falla por volcamiento.

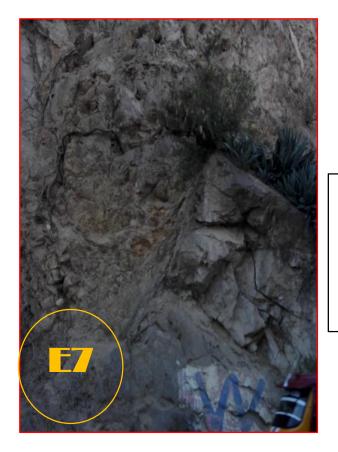

Fotografía 06: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E2, identificada con una falla por volcamiento.

Fotografía 07: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E3, identificada con una falla planar.



Fotografía 08: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E3, identificada con una falla tipo cuña.




Fotografía 09: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E5 y E5.1, en la evaluación correspondiente no se identificó falla alguna para su evaluación de diseño, como se constata en campo presenta una dirección del buzamiento favorable de 45° a 90°.

Fotografía 10: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E5.2, no se identificó falla alguna, pues la dirección del buzamiento es favorable.

Fotografía 11: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E6, se visualiza el macizo rocoso disgregado por diaclasas continuas y con una falla por volcamiento.

Fotografía 12: Sectorización por niveles de vulnerabilidad, características físicas y mecánicas del macizo rocoso, se visualiza la estación E7, se visualiza el macizo rocoso disgregado por diaclasas continuas y con una falla por volcamiento.

Fotografía 13: fotografía tomada el 22 de octubre del año en curso, temporada de precipitaciones altas en la ciudad de Huaraz, donde la fotografía evidencia la filtración de agua*, por las raíces incrustadas en el macizo rocoso, esta genera el desprendimiento de rocas *.

Fotografía 14: fotografía tomada el 22 de octubre del año en curso, temporada de precipitaciones altas en la ciudad de Huaraz, donde la fotografía evidencia el deslizamiento de rocas entre la estación E6 y E7.

Fotografía 14: fotografía tomada el 22 de octubre del año en curso, temporada de precipitaciones altas en la ciudad de Huaraz, donde la fotografía evidencia que deslizamiento de rocas dañó a la infraestructura vial y al poste de luz.

Tablas

Tabla 31: Clasificación Bienawski, Resistencia de la matriz rocosa

Parámetro: Resistencia de la matriz rocosa (MPa)								
Ensayos de carga puntual	>10	10-4	4-2	2-1	-	resión sin (MPa)	nple	
Compresión simple	>250	250- 100	100- 50		25-5	5-1	1<	
Puntuación	15	12	7	4	2	1	0	

Fuente: (Ingeniería Geológica, 2018,"Tabla de la Clasificación RMR").

Tabla 32: Clasificación Bienawski, RQD

		Parámetro:	RQD		
RQD	90%-100%	75%-90%	50%-75%	25%-50%	<25%
Puntuación	20	17	13	6	3

Fuente: (Ingeniería Geológica, 2018," Tabla de la Clasificación RMR").

Tabla 33: Clasificación Bienawski, Separación de diaclasas

Parámetro: Separación entre diaclasas							
Separación entre diaclasas	>2m	0.6-2m	0.2-0.6m	0.06-0.2m	<0.06m		
Puntuación	20	15	10	8	5		

Fuente: (Ingeniería Geológica, 2018," Tabla de la Clasificación RMR").

Tabla 34: Clasificación Bienawski, Estado de las Discontinuidades

Parámetro: estado de las discontinuidades						
Longitud de la discontinuidad	<1m	1-3m	3-10m	10-20m	>20m	
Puntuación	6	4	2	1	0	

Parámetro: estado de las discontinuidades							
Abertura	Nada	<0.1mm	0.1-1mm	1-5mm	>5mm		
Puntuación	6	5	3	1	0		
Rugosidad	Muy rugosa	Rugosa	Ligeramente rugosa	Ondulada	Suave		
Puntuación	6	5	3	1	0		
Relleno	Ninguno	Relleno duro <5mm	Relleno duro >5mm	Relleno blando <5mm	Relleno blando >5mm		
Puntuación	6	4	2	2	0		
Alteración	Inalterada	Ligeramente alterada	Moderadamente alterada	Muy alterada	Descompuesta		
Puntuación	6	5	3	1	0		

Fuente: (Ingeniería Geológica, 2018,"Tabla de la Clasificación RMR").

Tabla35: Clasificación Bienawski, Agua Subterránea o freática

Parámetro: agua subterránea o freática							
Caudal por 10m del tunel	Nulo	10 litros/minuto	10-25 litros/minuto	25-125 litros/minuto	>125 litros/minuto		
Relación: Presión de agua/tensión principal mayor	0	0-0.1	0.1-0.2	0.2-0.5	>0.5		
Estado general	Seco	Ligeramente seco	Húmedo	Goteando	Agua fluyendo		
Puntuación			7	4	0		

Fuente: (Ingeniería Geológica, 2018, "Tabla de la Clasificación RMR")

Tabla 36: Clasificación Bienawski, Corrección por la orientación de las discontinuidades

Corrección por la orientación de las discontinuidades							
Dirección	y buzamiento	Muy	Favorable	Media	Desfavorable	Muy	
		favorable	S	S	S	desfavorable	
		S				S	
Puntuació	Túneles	0	-2	-5	-10	-12	
n	Cimentacione s	0	-2	-7	-15	-25	
	Taludes	0	-5	-25	-50	-60	

Fuente: (Ingeniería Geológica, 2018,"Tabla de la Clasificación RMR").

Tabla 37: Clasificación Bienawski, Calidad de macizos rocosos en relación al índice RMR

Índice RMR: calidad de macizos rocosos en relación al índice RMR							
Clase	Calidad	Valoración RMR	Cohesión	Ángulo de rozamiento			
Ι	Muy buena	100-81	> 4 kg/cm2	>45°			
II	Buena	80-61	3-4 kg/cm2	35°-45°			
III	Media	60-41	2-3 kg/cm2	25°-35°			
IV	Mala	40-21	1-2 kg/cm2	15°-25°			
V	Muy mala	< 20	< 1 kg/cm2	< 15°			

Fuente: (Ingeniería Geológica, 2018,"Tabla de la Clasificación RMR").

Tabla 37: Clasificación Bienawski, Características geotécnicas.

Características geotécnicas							
Clase	I	II	III	IV	V		
Tiempo de mantenimiento y longitud	10 años con 15 metros de vano	6 meses con 8 metros de vano	1 semana con 5 metros de vano	10 horas con 2.5 metros de vano	30 minutos con 1 metro de vano		
Cohesión	>4 Kp/cm2	3-4 Kp/cm2	2-3 Kp/cm2	1-2 Kp/cm2	< 1 Kp/cm2		
Ángulo de rozamiento	>45°	35°-45°	25°-35°	15°-25°	<15°		

Fuente: (Ingeniería Geológica, 2018,"Tabla de la Clasificación RMR").

Tabla 39: Clasificación de Barton, Lien y Lunde, RQD

1^{er} Parámetro, calculo del R.Q.D.

Descripción de la calidad del macizo rocoso	R.Q.D.%	Observaciones.
Muy mala	0-25	
Mala	25-50	Para R.Q.D < 10 se puede
Mediana	50-75	tomar R.Q.D.= 10 en la
Buena	75-90	ecuación de Q.
Excelente	90-100	

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.3).

Tabla 40: Clasificación de Barton, Lien y Lunde, Jn

2^{do} Parámetro, calculo de la Familia de diaclasas Jn.

Descripción	Jn
Roca masiva	0.5-1
Una familia de diaclasas.	2
Una familia de diaclasas y algunas Diaclasas ocasionales.	3
Dos familias de diaclasas.	4
Dos familias de diaclasas y algunas Diaclasas ocasionales	6
Tres Familias.	9
Tres familias de diaclasas y algunas Diaclasas ocasionales.	12
Cuatro o más familias de Diaclasas, roca muy fracturada.	15
Roca triturada terrosa.	20
En boquillas, se utiliza 2 Jun y en Túneles 3 Jun	

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.3).

Tabla 41: Clasificación de Barton, Lien y Lunde, Jr

3^{er} Parámetro Rugosidad de las Diaclasas Jr.

Esta tabla esta basada por la relación o el contacto entre las 2 caras de la Junta.

de la julità.	
 Contacto entre las 2 caras de las diaclasas con poco 	Jn
desplazamiento lateral de menos de 10 cm.	
 Juntas discontinuas. 	4
 Juntas Rugosa o irregular ondulada. 	3
 Suave ondulada. 	2
 Espejo de falla, ondulada, 	1.5
 Rugosa o irregular, plana. 	1.5
 Suave plana. 	1
 Espejo de Falla, plano. 	0.5
No existe contacto entre las 2 caras de las diaclasas cuando ambas se desplazan lateralmente.	Jn
 Zona de contenido de minerales arcillosos, suficientemente gruesa para impedir el contacto entre las caras de las Diaclasas. 	1
 Arenas, gravas o zona fallada suficientemente gruesa para impedir el contacto entre las 2 caras de las 	1

Nota: si el espaciado de la familia de las diaclasas es mayor de 3 m hay que aumentar el Jn en una unidad.

Para diaclasas con espejos de falla provisto de lineaciones, si están orientadas favorablemente, se puede usar Jr=0.5

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.4).

Tabla 42: Clasificación de Barton, Lien y Lunde, Jw

4º Parámetro Aguas en las Diaclasas Jw.

Turumetro Aguno en mo Ducanon	9	
	Jw	Presión del agua Kg/cm²
 Excavaciones secas o de influencia poco importante. 	1	<1
 Fluencia o presión medias. Ocasional lavado de los rellenos de las Diaclasas. 	0.66	1-2.5
 Fluencia grande o presión alta, considerable lavado de los rellenos de las Diaclasas. 	0.33*	2.5-10
 Fluencia o presión de agua excepcionalmente altas, decayendo con el tiempo. 	0.1-0.2*	>10
 Fluencia o presión de aguas excepcionalmente altas y continúas, sin disminución. 	0.0501*	>10
Los valores presentados con el Signo * son solo valo instalan elementos de drenaje, hay que aumentar Jw	res estimad	os. Si se

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.4).

Tabla 43 Y 44: Clasificación de Barton, Lien y Lunde, Ja y SRF.

5[™] Parámetro Meteorización de

las Diaclasas.		
Descripción	Ja	ذ
Contacto entre las 2 caras de las Diaclasas.		
Junta sellada, dura, sin reblandecimiento impermeable como por ejemplo cuarzo en paredes sanas.	0.75	25-30
Caras de la junta únicamente manchadas.	1	25-30
Las caras de la junta están alteradas ligeramente y contienen minerales no blandos partículas de arena, roca desintegrada libre de arcilla.	2	25-30
Recubrimiento de limo o arena arcillosa, pequeña fricción arcillosa no reblandecible.	3	20-25
Recubrimiento de minerales arcillosos blandos o de baja fricción como caolinita, clorita, talco yeso, grafito y pequeñas cantidades de arcillas expansivas. Los recubrimientos son discontinuos con espesores máximos de 1 o 2 mm.	4	8-16
Contactos entre 2 caras de		
la Diaclasa con < de 10 cm	l	
desplazamiento lateral.		
Partículas de Arena, roca desintegrada libre de arcilla.	4	25-30
Fuertemente sobreconsolidados rellenos de minerales arcillosos no blandos. Los recubrimientos son continuos de menos de 5 mm de esp.	6	16-24
Sobreconsolidación media a baja, blandos, rellenos de minerales arcillosos. Los recubrimientos son continuos de < de 5 mm de espesor.	8	12-16
Rellenos de arcilla expansiva, de espesor continúo de 5 mm. El valor Ja dependerá del porcentaje de partículas del tamaño de la arcilla expansiva.	8-12	6-12
No existe contacto entre las		
2 caras de la diaclasa cuando esta cizallada.	l	
Zonas o bandas de roca desintegrada o manchada y arcilla.	6-8-12	6-24
Zonas blandas de arcilla limosa o arenosa con pequeña fricción de		
arcilla no blandas.	5	6-24
Granos arcillosos entesos	12-20	6-24

6[™] Parámetro tensiones en las excavaciones S.R.F.

 Zona débil que le excavación y pueden ca bloques. 			S.R.F									
A. Varias zonas débiles con roca desintegrada química suelta alrededor.			10									
B. Solo una zona débil conteniendo arcilla o roca desintegrada químicamente (profundidad de excavación < 50 m.).												
	C. Solo una zona débil conteniendo arcilla o roca desintegrada químicamente. (Profundidad de											
D. Varias zonas de fractura e libre de arcilla, roca (Cualquier profundidad).	n roca co suelta a	mpetente drededor.	7.5									
E. Sólo una zona fracturada el libre de arcilla (Profundida 50 m.)			5									
F. Sólo una zona fracturada en libre de arcilla. (Profundida G. Diaclasas abiertas sueltas, Cualquier profundidad.	d > 50 m)	L	2.5									
Cualquier prorundidad.			5									
2Rocas competentes												
con problemas tensionales en las rocas	σ./σ,	σ,/σ,	N.H.F									
tensionales en las	σ√σ₁ > 200	σ,/σ, >13	2.5									
tensionales en las rocas H. Tensiones pequeñas cerca												
tensionales en las rocas H. Tensiones pequeñas cerca de la superficie.	> 200	>13	2.5									
tensionales en las rocas H. Tensiones pequeñas cerea de la superficie. I. Tensiones medias. J. Tensiones altas estructura muy compasta, fiavorable para la estabilidad, puede ser desfavorable para la	> 200 200-10	>13	2.5									
tensionales en las rocas H. Tensiones pequeñas cerca de la superficie. I. Tensiones medias. J. Tensiones altas estructura muy compacta, favorable desfavorable para la estabilidad de los hastiales. K. Explosión de roca suave (roca Masiva). L. Explosión de roca fuerte (roca mesiva)	> 200 200-10 10-5 5-2.5	>13 13-0.33 0.66-0.33 0.33-0.16	2.5 1.0 0.5-2.0 5-10									
tensionales en las rocas H. Tensiones pequeñas cerca de la superficie. I. Tensiones medias. J. Tensiones altas estructura muy compacta, favorable para la estabilidad de los hastiales. K. Explosión de roca suave (roca Masiva). L. Explosión de roca fuerte (roca masiva.) σ, y σ, son las resistencias a respectivamente de la roca, σ, reca de la suave (roca de la compacta de la	> 200 200-10 10-5 5-2.5 <2.5	>13 13-0.33 0.66-0.33 0.33-0.16 <0.16 essión y tr.	2.5 1.0 0.5-2.0 5-10 10-20									
tensionales en las rocas H. Tensiones pequeñas cerca de la superficie. I. Tensiones medias. J. Tensiones altas estructura muy compacta, favorable para la estabilidad, puede ser desfavorable para la la cstabilidad de los hastiales. K. Explosión de roca suave (roca Masiva). L. Explosión de roca fuerte (roca masiva.) g. y g., son las resistencias a	> 200 200-10 10-5 5-2.5 <	>13 13-0.33 0.66-0.33 0.33-0.16 <0.16 coión y tra fuerzo pri	2.5 1.0 0.5-2.0 5-10 10-20									
tensionales en las rocas H. Tensiones pequeñas cerca de la superficie. J. Tensiones medias. J. Tensiones medias. J. Tensiones altas estructura muy compacta, favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastiales. K. Explosión de roca suave (roca Masiva). L. Explosión de roca fuerte (roca masiva.) G. y G., son las resistencias a respectivamente de la roca. Gnáximo que actúa en la roca. 3Roca fluyente, flujo roca incompetente bajo	> 200 200-10 10-5 5-2.5 <	>13 13-0.33 0.33-0.16 <0.16 esión y tr. fuerzo pri fuerzo pri	2.5 1.0 0.5-2.0 5-10 10-20 acción neipal									

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.5).

Tabla 45: Clasificación de Barton, Lien y Lunde, SRF

 Roca expansiva, actividad expansiva química dependiendo de la presencia del agua. 	S.R.F								
O. Presión Expansiva suave.	5-10								
P. Presión expansiva intensa.	10-15								
Observaciones al SRF:									
Reducir los valores del SRF en un 25 a 50% si las zonas de rotura solo influyen pero no interceptan a la excavación.									
En los casos que la profundidad de las clave e sea inferior a la altura del mismo se sugiere au SRF de 2.5 a 5.									
Para campos de tensiones muy anisótropos $5 <= \sigma_y \sigma_3 <= 10$, reducir el $\sigma_c y \sigma_t = 0.8 \sigma_c y = 0.8 \sigma_t$.	cuando								

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.6)

Tabla 46: Clasificación de Barton, Lien y Lunde, Indice Q

CLASIFICACIÓN DE BARTON DE LOS MACIZOS ROCOSOS. ÍNDICE DE CALIDAD Q.

TIPO DE ROCA	VALOR DE Q
Excepcionalmente mala.	$10^{-3} - 10^{-2}$
Extremadamente mala.	$10^{-2} - 10^{-1}$
Muy mala.	10 ⁻¹ – 1
Mala.	1-4
Media.	4-10
Buena.	10 - 40
Muy buena.	40 – 100
Extremadamente Buena.	100 – 400
Excepcionalmente Buena.	400 - 1000

$$\mathrm{Q} \! = \; \frac{R.O.D}{J_{n}} \; \; x \quad \frac{J_{r}}{J_{a}} \; \; x \quad \frac{J_{w}}{SRF} \label{eq:Q}$$

Fuente: (Bongiorno, 2001, "Clasificación de Barton, Lien y Lunde", pág.6)

Tabla 47: Clasificación de Hoke y Brown, GSI.

Estimación del GSI, en base a descripciones geologicas.

A partir de la Figura 3.94 sa	DICE GEOLÓGICO DE IA GSI (geological strength index) clasificación obtenida en la eleccionar el cuadro correspondiente o y obtener el valor medio del indice	MUY BUENA (MB) Superficies may rugoses sin elterar	BUENA (B) Superficies rugosas ligeramente alteradas, con pátnas de ciclación	MEDIA (M) Superficies suaves moderariamente alteradas	POBRE (P) Superficies de cizaila muy alteradas con railanos compactos conteniendo fragmentos rocesos	MUY POBRE (MP) Superficies de cizala muy alteradas con rellenos arcifosos
	BLOQUES REGULARES (BR) Macizo rocoso sin alterar. Bloques en contacto de forma cúbica formados por tres familias de discontinuidades ortogonales, sin relieno.	50/70				
	BLOQUES IRREGULARES (BI) Macizo rocoso parcialmente alterado, Bloques en contacto de forma angular formados por cuatro o más familias de discontinuidades con relienos con baja proporción de finos.		96/20			
	BLOQUES Y CAPAS (BC) Macizo alterado, plegado y fracturado con múltiples discontinuidades que forman bloques angulosos y con baja proporción de finos.			16/	<i>*</i>	
	FRACTURACIÓN INTENSA (FI) Macizo roccoso muy fracturado formado por bloques anguliosos y redondeados, con alto contenido de finos.					

Fuente: (Bongiorno, 2001, "Clasificación de Hoek y Brown", pág.17).

Tabla 48: Resistencia a la compresión simple (Mpa)

Resistencia de algunas rocas sanas en (Mpa)

Tipo de roca	Resistencia a la compresión simple (MPa)											
	Minimo	Máximo	Medio									
Creta	1	2	1.5									
Sal	15	29	22									
Carbón	13	41	31									
Limonita	25	38	32									
Esquisto	31	70	43									
Pizarra	33	150	70									
Arcillita	36	172	95									
Arenisca	40	179	95									

Marga	52	152	99
Mármol	60	140	112
Caliza	69	180	121
Dolomia	83	165	127
Andesita	127	138	128
Granito	153	233	188
Gneis	159	256	195
Basalto	168	359	252
Cuarcita	200	304	252
Dolerita	227	319	280
Gabro	290	326	298
Taconita	425	475	450
Silice	587	683	635

Fuente: (Bongiorno, 2001, pág.9)

Tabla 49: Resultados de trabajo en campo E2 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

									FOT	101	1								
FORMATO	DE MAA	DEC	CEC	MEC	NIICO		0	COL	ESTAC	ION		DOD # **							1
FORMATO		APEU	GEOR	VIECA	VIAICO	KIVIK	, પ	y GSI		4	# Fract/ml	RQD (%)	PARAMETROS		S1	S2	S3	S4	l
								l	E'		1 2	100	NUMERO DE FRACTURAS		7	5	4	3	1
Nombre del Proyecto:	TEGIC ESTABLE	DAD DEL CERRO	D BALCO DE JUDAS		Litologia			l	ANDESITA		3	98	CONTADAS EN (m): ESPACIAMIENTO MEDIO(m)	×	1.20	1.00	1.00	0.33333	1
Nombre del Proyecto:	TESIS ESTABILI	0	DALCO DE JUDAS		Altura litosta	ation (b)			31.6		4	96	FRACTURAS / METRO		0.17 5.8	0.20 5.0	0.25 4.0	0.33333	4.5
Labor:		-			Rc/Sv	itica (n)			150.02		5	94	N° DE FRACT./m3	λ Jv	3	3.0	2	2	4.5
Ejecutado por:	Olive	era Garcia Karer	n Maitte		RC/SV				150.02		6	91	INDICE DE CALIDAD DE LA ROCA	RQD (%)					92.4
Fecha:	0	05/10/2018	· munce								7	84	DONDE:	KQD (%)	88.4	91.0	93.8	96.3	PROMEDIO
T CONTAIN		03/10/2010									8	81	λ = 1/ X RQD :	- 100 -	-0.1(2	·) (0 43	+ 1\		1 KOMEDIO
SISTEMA RMR											9	77	- WA ROD.	- 100 x		(0.17	(+ 1)		
PARÁMETROS			VALOR	1		RA	NGO			VALOR	10	74							
Resistencia a la compresión un	iaxial (MPa)		128	>250	(15) X 100-250	(12) 50-100		25-50 (4)	<25(2) <5(1) <1(0)	12	11	70							
RQD (%)			92.40		(20) X 75-90	(17) 50-75	(13)	25-50 (8)	<25 (3)	17	12	66							
Espaciamiento de discontinuid	ades (cm)		0.01 m		20) 0,6-2 m	(15) 0.2-0.6	im (10)		X < 0.06m (5)	5	13	63	-						
CONDICION DE DISCONTINUIE					- 1 1						14	59	-						
Familia Buz.	/D. Buz	f/m	Persistencia	<1m long.	(6) 1-3 m Long.	(4) X 3-10m	(2)	10-20 m (1)	> 20 m (0)	2	15	56	1						
D1 90	180	3	Abertura	Cerrada	(6) <0.1mm apert			1 - 5 mm (1)	X > 5 mm (0)	0	16	53	1						
D2 28	175	5	Rugosidad	Muy rugosa	(6) Rugosa	(5) X Lig.rug	osa (3)	Lisa (1)	Espejo de falla (0)	3	17	49	1						
D3 85	180	3	Relleno	Limpia	(6) X Duro < 5mm	(4) Duros	5mm (2)	Suave < 5 mm (1)	Suave > 5 mm (0)	4	18	46	1						
55 55	100		Alteración	Sana	(6) Lig. Intempe.	(5) Mod.Int	tempe. (3)	X Muy Intempe. (2)	Descompuesta (0)	2	19	43							
Agua subterránea			•	Seco	(15) X Humedo	(10) Mojado	(7)	Goteo (4)	Flujo (0)	10	20	41	1						
Orientación				Rumbo pe	rpendicular al eje d	e le excevecion	Run	nbo paralelo al eje de	tes .		21	38	1						
				buzan	iento	buzemiento		WIII A	Buzamiento 0°-20° independient	_	22	35	1						
				Bz 45°-90°		2 Bz		hay B.	e del rumbo	-5	23	33	1						
				Muy Favorabl	20°-45° 45° Favorable Reg	-90° 20°-45 jular Desfavor 5 -10	able Muy I	Bz Bz 45°-90° 20°- Desfevorable Regularity	dar Desfavorable		24	31							
					RMR ₈₉	(Basico) =	•			55	25	29							
					RMR ₈₉	(Corregid	lo) =			50	26	27							
Condiciones secas					RMR'89	(Condicio	ones Se	cas)=		60	27	25							
JRC			RMR	100	81 80 -	- 61	60 - 41	40 - 21	20 - 0	III R	28	23							
(BARTON BANDIS)			DESCRIPCION	I MUY	BUENA II BU	ENA III	REGULAR	IV MALA	V MUY MALA		29	21							
											30	20							
SISTEMA DE CLASIFICAC	ION Q																		
PARAMETROS								RANGO		VALOR									
RQD %					RQD			92	%	92									
Número de discontinuidades					Jn			4 D		12									
Número de rugosidad					Jr			Lisa		2	4								
Número de alteración					Ja			ligero		2	4								
Número de agua subterránea					Jw			seco		1	4								
Factor de reducción de esfuerz		al)			SRF			tension elevada		2	4								
$Q = (RQD/J_n) \times (J_r / J_a) \times$	(J _w /SRF)								Q =	3.85									
]								
											1								
Q 1000-400	400-100	100-40	40-10	10-4,0	4-1,0	1-4	0,1	0,1-0,01	0,01-0,001		-								
DESCRIPCION EXCEPCIONALMENTE BUENA	EXTREMENADAMENT E BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY F		EXTREMENADAMENT POBRE	E EXCEPCIONALM EMTE POBRE	POBRE									
BUENA	E BUENA	1	1	1	-			POBRE	EMIE POBRE		1								
INDICE DE RESISTENCIA GEO	LÓGICA				GSI - F	RMR'89 - 5				55	1								
11 241000	-				307 = 1	89 5				•	1								
TABLA GEOMECÁNICA (GSI),						-	SI	VALORES RMR	Q	SIMBOLO	-								
TABLE GEOMECANICA (GSI),							i5	50 - III R	3.85	BC/M	1								
OBSERVACIONES						1 3		30 - III K	3.03	BC/W	4								
NINGUNA																			
											1								
	·										1								

Tabla 50: Resultados de trabajo en campo E2 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

									FOTAG	1011									
FOI	RMATO	DE MA	DEO	GEO	AECAP		MP O	v GSI	ESTAC	ION	# Fract/ml	RQD (%)	PARAMETROS		S1	S2	S3	S4	1
	KIVIAIC		AF E C	GLO	VILCAI	AICO K	IVIT, Q	y GSI	E		1	100	NUMERO DE FRACTURAS		8	12	15	- 04	
											2	98	CONTADAS EN (m):		1.00	1.00	1.00		
Nombre del	I Provecto:	TESIS ESTABILL	DAD DEL CERPO	D BALCO DE JUDAS		Litologia			ANDESITA		3	96	ESPACIAMIENTO MEDIO(m)	×	0.13	0.08	0.07		
Nivel:		TEGIO ESTABIEI	0	DALGO DE GODAO		Altura litostatica	(b)		31.6		4	94	FRACTURAS / METRO	a a	8.0	12.0	15.0		11.7
Labor:						Rc/Sv	(-7		150.02		5	91	N° DE FRACT./m3	Jv	5	6	7		
Ejecutado p	nor:	Olive	era Garcia Kares	n Maitte							6	88	INDICE DE CALIDAD DE LA ROCA	RQD (%)	80.9	66.3	55.8		67.6
Fecha:			05/10/2018								7	84	DONDE:	1145 (70)	80.9	66.3	55.8		PROMEDIO
r cona.		1									8	81	λ = 1/ × RQD =	- 100 v	-0.1(2	·) (0 43	± 1\		TROMEDIO
SISTEMA	DMD										9	77	*-1/* KQD.	- 100 x		(0.17	· + 1)		
PARÁMETE				VALOR	1		RANGO			VALOR	10	74							
_	a a la compresión u	niaxial (MPa)		128	>250 (15)	X 100-250 (12		25-50 (4)	<25(2) <5(1) <1(0)	12	11	70							
RQD (%)				67.60	90-100 (20)		r) X 50-75 (13)		<25 (3)	13	12	66							
	ento de discontinuio	lades (cm)	Ì	0.01	>2m (20)	0,6-2 m (15	+ +		X < 0.06m (5)	5	13	63	_						
	N DE DISCONTINUI			0.01	(-0)	0.00	, , , , , , , , , , , , , , , , , , , ,	(4)	A (-/		14	59	_						
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4	X 3-10m (2)	10-20 m (1)	> 20 m (0)	2	15	56							
		1	-	Abertura	Cerrada (6)	<0.1mm apert. (5)			X > 5 mm (0)	0	16	53	-						
D1 D2	78 78	120 120	6	Rugosidad	Muy rugosa (6)		X Lig.rugosa (3)	Lisa (1)	Espejo de falla (0)	3	17	49	=						
D2 D3	78	120	8	Relleno	X Limpia (6)	Duro < 5mm (4		Suave < 5 mm (1)	Suave > 5 mm (0)	6	18	46	+						
D3	/8	120	8	Alteración	Sana (6)	Lig. Intempe. (5		X Muy Intempe. (2)	Descompuesta (0)	2	19	43	=						
Agua subte	rránea	1		PARCITUOION	Seco (15)	X Humedo (10		Goteo (4)	Fluio (0)	10	20	41							
Orientación					Rumbo perpe	ndicular al eje de la e	excevecion				21	38	1						
O I C I I L I C I C I C I C I C I C I C I	•				Direccion co	n el Direce	ion contra el	imbo paralelo al eje de excavacion	Buzamiento 0°-20°		22	35							
							-		e del rumbo	-5	23	33							
					45°-90° Muy Favorable F	Bz Bz 20°-45° 45°-90° avorable Regular	Bz 20°-45° Desfavorable Muy	Bz B 45°-90° 20°- 7 Desfevorable Reg	45° ular Desfavorable		24	31							
					0	RMR ₈₉ (B	-10	-12 -	-10	53	25	29							
							orregido) =			48	26	27							
Condicione	25 50025						Condiciones S	ecae)-		58	27	25							
Condicione				RMR	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	- 50	28	23							
	JRC (BARTON BANDIS)			DESCRIPCION			III REGULA		V MUY MALA	III R	29	21	_						
		I .	J								30	20	1						
SISTEMA	DE CLASIFICAC	CION O																	
PARAMETE						I	1	RANGO		VALOR									
RQD %						RQD		68	%	68									
	discontinuidades					Jn					ł								
Número de						Jr		4 D		12 3	1								
Número de						Ja		rugosa apas superf. Mat. L	more	3	1								
	agua subterránea					Jw	Co	seco	moso	1	-								
	educción de esfuera	os (estado tension	al)			SRF		tension elevada		2	-								
	D/J _n) x (J _r / J _a) :							terision elevada	Q =	2.82									
Q = (11Q2	Jon) X (Or / Oa) /	(Ow/ Oiti)							<u> </u>	2.02									
Q	1000-400	400-100	100-40	40-10	10-4,0	4-1,0	1-0,1	0,1-0,01	0,01-0,001										
DESCRIPCION	EXCEPCIONALMEMTE BUENA	EXTREMENADAMENT E BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	EXTREMENADAMEN POBRE	TE EXCEPCIONALM EMTE POBRE	POBRE									
INDICE DE	RESISTENCIA GEO	LÓGICA				GSI = RMR	1'89 - 5			53									
			_		-		<u> </u>	VALORES	•	L CIMPOL C	1								
TABLA GEO	OMECÁNICA (GSI)						GSI	RMR	Q	GSI	1								
							53	48 - III R	2.82	FI/P	1								
OBSERVAC	CIONES				-				•										
NINGUNA											-								
											ł								

Tabla 51: Resultados de trabajo en campo E3 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

EODMAI	O DE M	A DEC	CEO	ЛЕ	- C A B		00							ESTAC	ION	# Fract/ml	RQD (%)		METROS		- 04	S2		S4	1
FORMAT	O DE INI	APEU	GEON	VI E	ECAI	VI.	CO	KIN	VIR	i, u	уν	531					. ()			1	S1		S3		-
														E:	5	1	100	NUMERO DE FRA		1	2	2	2	1	-
Nombre del Proyecto:	TERIR FOTANI	IDAD DEL CERRO	O BALCO DE JUDAS			ı is	ologia			1	ı —			NDESITA		3	98 96	CONTADAS EN		×	1.50	1.50	1.50	1.5	4
	TESIS ESTABIL		D BALCO DE JUDAS			_												FRACTURAS / M	, ,		0.75	0.75	0.75	1.50	-
Nivel:		#¡VALOR!					ura litosta / Sv	iica (n))					31.6 150.02		4	94	N° DE FRACT./m		λ	1.3	1.3	1.3	0.7	1.2
Labor:						Rc	/Sv							150.02		5	91		LIDAD DE LA ROCA	Jv	2	2	2	2	
Ejecutado por:	Oliv	vera Garcia Kare	n Maitte													6	88		LIDAD DE LA ROCA	RQD (%)	99.2	99.2	99.2	99.8	99.3
Fecha:		05/10/2018														7	84	DONDE:	POD	= 100 ×	-0.1(7	·) (0 12	1 1 1		PROMEDIO
																8	81	λ = 1/ X	וועט	- 100 /		(0.17	· · · /		
SISTEMA RMR																9	77	1							
PARÁMETROS			VALOR	<u> </u>						ANGO					VALOR	10	74	1							
Resistencia a la compres	on uniaxial (MPa)		128	-	>250 (15)	x	100-250	(12)	50-10	00 (7)			(4)	<25(2) <5(1) <1(0)	12	11	70	1							
RQD (%)			99.30	х	90-100 (20)		75-90	(17)	50-75	5 (13)	25-	-50	(8)	<25 (3)	20	12	66]							
Espaciamiento de discon			0.01		>2m (20)		0,6-2 m	(15)	0.2-0	.6m (10)	0.0	06-0.2m	(8) X	< 0.06m (5)	5	13	63								
CONDICION DE DISCONT	INUIDADES															14	59								
Familia Buz.	/D. Buz	f/m	Persistencia		<1m long. (6)		1-3 m Long.	(4) X	X 3-10n	n (2)	10-	-20 m	(1)	> 20 m (0)	4	15	56	_							
D1 60	120	6	Abertura		Cerrada (6)		<0.1mm apert.	(5)	0.1-1	.0mm (4)	x 1-	5 mm	(1)	> 5 mm (0)	1	16	53	1							
D2 56	95	9	Rugosidad		Muy rugosa (6)	T	Rugosa	(5) X	X Lig.ru	ugosa (3)	Lisa	а	(1)	Espejo de falla (0)	3	17	49	1							
D3 60	125	6	Relleno	\Box	Limpia (6)	×	Duro < 5mm	(4)	Duro:	> 5mm (2)	Sus	ave < 5 mm	(1)	Suave > 5 mm (0)	4	18	46	1							
			Alteración		Sana (6)		Lig. Intempe.	(5)	Mod.l	Intempe. (3)	X Mu	y Intempe.	(2)	Descompuesta (0)	2	19	43								
Agua subterránea	•	•	•		Seco (15)	х	Humedo	(10)	Mojac	do (7)	Got	teo	(4)	Flujo (0)	10	20	41	1							
Orientación					Rumbo perper	ndici	ılar al eje de	la exce	avacion	n Run	mbo pa	ralelo al e	je de le	. 1		21	38	1							
				-	Direccion co buzamient	0	_	buzami	niento	_	erri	eavacion	7_	Buzamiento 0°-20°		22	35	1							
				- [) ÷					But		<u> </u>	independient e del rumbo	-12	23	33	1							
				Muy	45°-90° / Favorable F	20°	A5° A5°-	90°	20°-4 20°-4 20sfavo	orable Muy	45°-90 Desfev	yorable	Bz 20°-45 Regula	r Desfavorable		24	31	1							
					0	-2	RMR ₈₉				-12		-6	-10	61	25	29	-							
							RMR ₈₉	•							49	26	27	+							
Condiciones secas								•	_	_					66	27		1							
ı	1	1	DMD		100 01				naici	iones Se	ecas)				96		25	1							
JRC (BARTON BAN	315)		RMR DESCRIPCION		100 - 81 I MUY BUEN		80 -		+.	60 - 41 III REGULAR		40 - 2		20 - 0	IIIR	28	23	4							
(,		DESCRIPCION		I MOY BUEN	VA.	II BUE	:NA		III REGULAR	ĸ	IV MA	ALA	V MUY MALA		29	21	+							
0.075114 DE 0. 4015																30	20]							
SISTEMA DE CLASIF	CACION Q					Т					_														
PARAMEROS						<u> </u>					F	RANGO			VALOR	4									
RQD %							RQD					99		%	99	4									
Número de discontinuida	les						Jn					4 D			12										
Número de rugosidad							Jr		rug	josa e irreg	gular, p	planares			1.5										
Número de alteración						<u> </u>	Ja			ca	ipas su	uperf. Ma	at. Lim	oso	3										
Número de agua subterrá							Jw					seco			1										
Factor de reducción de e	fuerzos (estado tensio	nal)					SRF				ten	sion elev	vada		2										
$Q = (RQD/J_n) \times (J_r / I_r)$	J _a) x (J _w / SRF)													Q =	2.07										
$Q' = (RQD/J_0) \times (J_r/J_0)$														Q' =	4.14										
RMR = 9 Ln Q + 44	5	1													4.14	1									
RMR' = 9 Ln Q' + 44	5																								
Q 1000-400	400-100	100-40	40-10		10-4,0		4-1,0		1	1-0,1		0,1-0,01		0,01-0,001											
DESCRIPCION EXCEPCIONALI BUENA	EMTE EXTREMENADAMEN E BUENA	MUY BUENA	BUENA		REGULAR		POBRE		MUY	POBRE	EXTRE	POBRE	MENTE	EXCEPCIONALN EMTE POBRE	POBRE										
	anai Aaia i						1									-									
INDICE DE RESISTENCIA	GEULOGICA						GSI = R	MR'89	- 5						61	-									
											V	ALORES			SIMBOLO	†									
TABLA GEOMECÁNICA (SSI) _v									SSI		RMR		Q	GSI										
										61	4	9 - III R		2.07	BC/M	4									
OBSERVACIONES NINGUNA																									
THEODIA																1									
																1									

Tabla 52: Resultados de trabajo en campo E4 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

									FOTAG	1011										
FORMATO	DE MA	DEO	CEON	IECAN	IICO E	D N A D			ESTAC	ION		RQD (%)	DADAM	IETROS		S1	S2	S3	S4	1
FORMATO	DE MA	IPEU	GEON	IECAP	NICO F	KIVIK	t, u y	/ GSI		4	# Fract/ml				1					-
									E	+	1	100	NUMERO DE FRACT			12	8	5	8	4
Nombre del Proyecto:		DEL OF	D BALCO DE JUDAS	- 1	Litologia		- T		ANDESITA		3	98 96	CONTADAS EN (m		×	1.00	1.00	1.00	1	1
	TESIS ESTABILIO	DAD DEL CERRO	D BALCO DE JUDAS	_		- 4 5							FRACTURAS / MET	.,,		0.08	0.13	0.20	0.13	1
Nivel:		-		_	Altura litostatica	a (n)			31.6		4	94		КО	λ	12.0	8.0	5.0	8.0	8.3
Labor:					Rc/Sv				150.02		5	91	N° DE FRACT /m3		Jv	2	2	2	2	
Ejecutado por:	Olive	ra Garcia Karei 05/10/2018	n Maitte								6	88		OAD DE LA ROCA	RQD (%)	66.3	80.9	91.0	80.9	79.8
Fecha:		05/10/2018									7	84	DONDE:	RQD :	= 100 x	e -0.1(λ	·) (0.1)	(+ 1)		PROMEDIO
											8	81	λ = 1/ X				(,		
SISTEMA RMR											9	77	1							
PARÁMETROS			VALOR	_			ANGO	_		VALOR	10	74								
Resistencia a la compresión un	iaxial (MPa)		128	>250 (15)	X 100-250 (1	1 1		25-50 (4)	<25(2) <5(1) <1(0)	12	11	70								
RQD (%)			79.80	90-100 (20)	X 75-90 (25-50 (8)	<25 (3)	17	12	66								
Espaciamiento de discontinuida			0.01	>2m (20)	0,6-2 m (1	15) 0.2-0.).6m (10)	0.06-0.2m (8)	X < 0.06m (5)	5	13	63								
CONDICION DE DISCONTINUID			, ,	-1					1 1	1	14	59	4							
Familia Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	X 1-3 m Long. (,	(4)	10-20 m (1)	> 20 m (0)	4	15	56								
D1 50	180	4	Abertura	Cerrada (6)	<0.1mm apert. (1 - 5 mm (1)		0	16	53	1							
D2 85	90	6	Rugosidad	Muy rugosa (6)	X Rugosa (ugosa (3)	Lisa (1)	Espejo de falla (0)	5	17	49								
D3 48	95	4	Relleno	Limpia (6)	Duro < 5mm (> 5mm (2)		Suave > 5 mm (0)	1	18	46								
			Alteración	Sana (6)	Lig. Intempe. (5) Mod.lr	Intempe. (3)	Muy Intempe. (2)	Descompuesta (0)	2	19	43								
Agua subterránea				Seco (15)	X Humedo (1	.,		Goteo (4)	Flujo (0)	10	20	41								
Orientación				Rumbo perpen Direccion cor buzamiento	dicular al eje de la n el Direcci	excavacion cion contra izamiento	n Rumb	oo paralelo al eje o excavacion	te la Buzamiento		21	38	_							
							//		Buzamiente 0°-20° independient e del rumbo	-5	22	35								
			-	Bz 45°-90°	Bz Bz 20°-45° 45°-90° ivorable Regular			8× 5°-90° 20	Bz 2-45°	_	23	33								
			E	Muy Favorable Fr	-2 -5	Desfavo -10	orable Muy De	esfavorable Re -12	gular Desfavorable -5 -10		24	31								
					RMR ₈₉ (B					56	25	29								
					RMR ₈₉ (0	Corregio	do) =			51	26	27								
Condiciones secas							iones Sec			61	27	25								
JRC			RMR	100 - 81	80 - 61		60 - 41	40 - 21	20 - 0	III R	28	23								
(BARTON BANDIS)			DESCRIPCION	I MUY BUEN	IA II BUENA	Α Ι	III REGULAR	IV MALA	V MUY MALA		29	21								
											30	20								
SISTEMA DE CLASIFICAC	ION Q																			
PARAMETROS								RANGO		VALOR	1									
RQD %					RQD			80	%	80										
Número de discontinuidades					Jn			4 D+		15	1									
Número de rugosidad					Jr	rug	gosa e irregu	ılar, planares		1.5										
Número de alteración					Ja		сара	as superf. Mat.	Limoso	3										
Número de agua subterránea					Jw			seco		1	1									
Factor de reducción de esfuerz	os (estado tensiona	al)			SRF			tension elevad	la	2										
$Q = (RQD/J_n) \times (J_r / J_a) \times$	(J _w /SRF)								Q =	1.33										
											1									
										1										
Q 1000-400	400-100	100-40	40-10	10-4,0	4-1,0	_	1-0,1	0,1-0,01	0,01-0,001	POBRE	1									
DESCRIPCION EXCEPCIONALMEMTE BUENA	EXTREMENADAMENT E BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY	POBRE	EXTREMENADAME POBRE	NTE EXCEPCIONALM EMTE POBRE	PUBRE										
											1									
INDICE DE RESISTENCIA GEOI	LÓGICA				GSI = RMI	R' ₈₉ - 5				56	1									
								VALORES		SIMBOLO	1									
TABLA GEOMECÁNICA (GSI)						G	GSI	RMR	Q	GSI	1									
							56	51 - III R	1.33	BC/M]									
OBSERVACIONES																				
NINGUNA											1									
											1									

Tabla 53: Resultados de trabajo en campo E5 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

														L	ESTACIO		ON											_
FORMATO		DE MA	ME	ECA	NIC	VICO RI		MR. O	O.	v (GSI					# Fract/ml	RQD (%)	PARAMETROS				S1	S2	S3	S4			
				J_J						,		,			F	E5	ľ	1	100	NUMERO DE FRA	ACTURAS			6	4	8	4	1
																		2	98	CONTADAS EN	(m):		1	1.00	1.20	1.20	0.8	
ombre del	Proyecto:	TESIS ESTABILI	DAD DEL CERRO	D BALCO DE JUDAS	.s		Litolo	gia						ΙA	NDESITA			3	96	ESPACIAMIENT	O MEDIO(m)	х	-	0.17	0.30	0.15	0.20	7
livel:			0				Altura	litostatic	a (h)						21.3			4	94	FRACTURAS / N	METRO	λ		6.0	3.3	6.7	5.0	
abor:			-				Rc/S	v							222.57			5	91	N° DE FRACT/m	13	J۱	,	5	4	5	4	
jecutado p	or:	Oliv	era Garcia Karen	n Maitte														6	88	INDICE DE CA	LIDAD DE LA R	oca RQD	(%)	37.8	95.5	85.6	91.0	9
echa:			05/10/2018															7	84	DONDE:								PRO
																		8	81	λ = 1/ X	RQ	D = 10	0 x e	-0.1(λ) (0.1λ	+ 1)		
SISTEMA	RMR																	9	77				- / -		(-,		
PARÁMETR				VALOR	$\overline{}$					RAN	IGO					,	VALOR	10	74									
	a la compresión un	iaxial (MPa)		128	—	-250 (15) X 100	0-250 ((12)	50-100	(7)	25-	-50	(4)	<25(2) <5(1)		12	11	70	-								
RQD (%)				90.00	-	00-100 (20)	X 75-	-90 ((17)	50-75	(13)	25-	50	(8)	<25	(3)	17	12	66	7								
	nto de discontinuida	ades (cm)		0.01		-2m (20)	0,6	-2 m ((15)	0.2-0.6m	(10)	0.0	6-0.2m	(8) X	< 0.06m	(5)	5	13	63	1								
	DE DISCONTINUID											_						14	59	-								
Familia	Buz.	/D. Buz	f/m	Persistencia	\top	:1m long. (6)	X 1-3	3 m Long.	(4)	3-10m	(2)	10-	20 m	(1)	> 20 m	(0)	4	15	56	_								
D1	85	183	6	Abertura	++	Cerrada (6)			(5)	0.1-1.0mn	n (4)	1	5 mm	(1) X	> 5 mm	(0)	0	16	53	-								
D1 D2	85 45	188	4	Rugosidad	_	Muy rugosa (6)				Lig.rugos		Lisa		(1)	Espejo de falla		3	17	49									
D3	48		5	Relleno	ΧL				(4)	Duros 5m		_	ave < 5 mm		Suave > 5 mm		6	18	46	-								
D3	48	185		Alteración		Bana (6)				Mod.Interr		_		(2)	Descompuesta		2	19	43									
Agua subte	rránea	l	1		\rightarrow	Seco (15				Mojado	(7)	Got	teo	(4)	Flujo	(0)	10	20	41									
Orientación						Rumbo perpe	ndicular	al eje de le	a excave	acion		nbo par	ralelo al e	oje de la	Ť			21	38	-								
J. 10111401011						Direccion o buzamier		Direc	cion co	nto el		өж	eavacion	7	Buzamie 0°-20° independ	nte	ŀ	22	35	-								
					- [1		But			e del run	nbo	-2	23	33	-								
					Muy	Bz 15°-90° Favorable	Bz 20°-45° Favorable	45°-90 e Regula	ye g	Bz 20°-45° sfavorat	de Muy	Bz 45°-90' Desfev	orable	Bz 20°-45° Regular	Desfavore	able		24	31	-								
						0	-2 P	MR ₈₉ (E	Basic	-10		-12		-5	-10	_	59	25	29	-								
								MR ₈₉ (57	26	27	-								
Condicione	e encae							MR'89 () () () () () ()					64	27	25	-								
Jonaicione			1	RMR	$\overline{}$	100 - 81		80 - 61	_		60 - 41	cas	40 - :	21	20 - 0	_	04	28	23	-								
	JRC (BARTON BANDIS)			DESCRIPCIO	JN.	I MUY BUE		II BUEN			REGULAR		IV M		V MUY M		III R	29	21									
			J		ــــــــــــــــــــــــــــــــــــــ										V MO1 M	ALA		30	20	-								
SISTEMA	DE CLASIFICAC	IONO																										
PARAMETR		ion q										F	RANGO			Τ,	VALOR											
RQD %	03							RQD	_						%													
	discontinuidades							Jn					90		76	-	90											
								Jr		rugos	a o irroa	uular o	4 D+	lac.			15											
Número de Número de							+	Ja	-	ugos	a e irreg						3											
	agua subterránea						+	Jw	+			ligerar	nente a		5	-	2											
		os (ostado tor-i-	nal)				+	SRF	-				seco.			-	1 .											
Factor de reducción de esfuerzos (estado tensional)								JAF				tensi	ion moc	derada			1											
ı = (RQE	//J _n) x (J _r / J _a) x	(J _w / SRF)													Q	=	9.00											
Q	1000-400	400-100	100-40	40-10	\top	10-4,0	1	4-1,0		1-0,1	1		0,1-0,01		0,01-0,00													
DESCRIPCION	EXCEPCIONALMEMTE BUENA	EXTREMENADAMENT E BUENA	MUY BUENA	BUENA		REGULAR		POBRE	N.	MUY PO	BRE	EXTRE	MENADA	MENTE	EXCEPCION EMTE POR		EGULAR											
							•	-							,													
NDICE DE	RESISTENCIA GEOI	LÓGICA						SSI = RM	IR'80 -	5							59											
									-																			
	MECÁNICA (GS"								-				ALORES	-	Q	S	GSI											
TABLA CEC	TABLA GEOMECÁNICA (GSI) _v								-	GS 59			7 - III R	_	9.00	_	BC/M											
TABLA GEO																												
OBSERVAC	IONES								- 1																			

Tabla 54: Resultados de trabajo en campo E5.1. (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

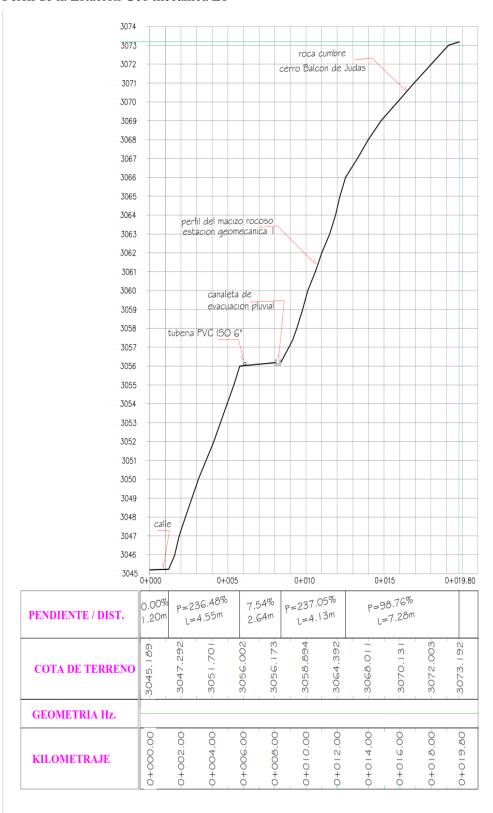
FORMATO		OF MA	DEO	CEOM	ECAN	IICO P	MP O	V CSI	ESTAC	ION	# Fract/ml	000 (01)	PARAMETROS			S1	S2	63	S4	1
		J DE IVIA	APEU	GEOW	ECA	NICO R	IVIK, Q	y GSI	E5.1		# Fract/ml	1 RQD (%)	PARAMETROS NUMERO DE FRACTURAS			8	6	S3	3	
									E3		2	98	CONTADAS EN (m):	A.0		1.00	0.90	1.00	0.8	
Nombre del	Brovocto:	TESIS ESTABILI	DAD DEL CERRO	D BALCO DE JUDAS	7	Litologia			ANDESITA		3	96	ESPACIAMIENTO MED	MO(m)	×	0.13	0.15	0.25	0.27	
Nivel:	i Fioyecio.	TEGIO EGIABIEI	0	D DALGO DE GODAG		Altura litostatica ((b)		24		4	94	FRACTURAS / METRO	ao()	a a	8.0	6.7	4.0	3.8	5.6
Labor:						Rc / Sv	··· <i>y</i>		197.53		5	91	N° DE FRACT/m3		Jv	6	4	3	3.0	5.0
Ejecutado p	or:	Olive	era Garcia Kare	n Maitte	-	KC73V			197.55		6	88	INDICE DE CALIDAD	DELAROCA	RQD (%)					88.7
Fecha:	JOI .	Olive	13/10/2018	ii maitte	-						7	84	DONDE:	DE LA ROCA	KQD (%)	80.9	85.6	93.8	94.5	PROMED
reciia.			15,10,2010								8	81	λ = 1/ X	RQD =	= 100 ×	(e ^{-0.1(λ}	·) (0.1)	· + 1)		FROWED
SISTEMA	DMD										9	77	~ - 1/ ^				•			
PARÁMETR			1	VALOR			RANGO			VALOR	10	74								
	a la compresión	uniaxial (MPa)		128	>250 (15)	X 100-250 (12)		25-50 (4)	<25(2) <5(1) <1(0)	12	11	70								
RQD (%)				88.70	90-100 (20)	X 75-90 (17)				17	12	66								
	nto de discontinu	idados (cm)		0.01	>2m (20)	0,6-2 m (15)			X < 0.06m (5)	5	13	63								
	DE DISCONTINU			0.01		(1.5)		(0)	X (-/	,	14	59								
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	X 1-3 m Long. (4)	3-10m (2	10-20 m (1)	> 20 m (0)	4	15	56								
	-			Abertura	Cerrada (6)	<0.1mm apert. (5)			X > 5 mm (0)	0	16	53								
D1	55	175	8	Rugosidad	Muy rugosa (6)	,	X Lig.rugosa (3	Lisa (1)		3	17	49	1							
D2	15	175	2		Limpia (6)	Duro < 5mm (4)			Suave > 5 mm (0)	6	18	46								
D3	60	170	2	Alteración	Sana (6)	Lig. Intempe. (5)		X Muy Intempe. (2)	Descompuesta (0)	2	19	43	1							
Agua subter	rránca		1	Alteración	Seco (15)			Goteo (4)	Elizio (0)	10	20	41								
Orientación					Rumbo perpen	dicular al eje de la e	xcavacion		_ i.ap		21	38	-							
Orientacion					Direccion cor buzamiento	n el Direccio	on contre el amiento	imbo paralelo al eje d excavacion	Buzamiento 0°-20°		22	35								
)	<u></u>	But	e del rumbo	0	23	33	-							
					45°-90°	Bz Bz 20°-45° 45°-90° avorable Regular	Bz 20°-45° Desfavorable Mu:	A5°-90° 20° y Desfavorable Reg	3z -46° gular Desfavorable		24	33								
					0	-2 -5		-12	-5 -10	59	25	29								
						RMR ₈₉ (Ba	orregido) =			59 59	26	29								
Candiniana							ondiciones S			64	27	25								
Condiciones	Condiciones secas				100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	64	28	23								
	JRC (BARTON BANDIS)			DESCRIPCION	I MUY BUEN		III REGULA		V MUY MALA	III REGULAF	29	21								
DESCRIPCION					1 MOT BOEN	II BOEIWA	III REGOL	IV WALA	V MOY MALA		30	20								
CICTEMA	DE CLASIFICA	ACION O									50	20	l							
PARAMETR		ACION Q				1	1	RANGO		VALOR										
RQD %	.03					RQD			%		1									
	discontinuidades					Jn		89	70	89										
Número de i		•				Jr	rugosa o irro	4 D+		15										
Número de a						Ja	ragood a line			3	-									
	agua subterránea					Jw	1	ligeramente altera	auas	-	1									
		erzos (estado tension	nal)			SRF		seco		1	1									
			,			J	l	tension modera	Q =		1									
Q = (RQD	$(J_n) \times (J_r / J_a)$	X (J _w / SRF)							Q =	8.87										
Q	1000-400	400-100	100-40	40-10	10-4,0	4-1,0	1-0,1	0,1-0,01	0.01-0.001		-									
DESCRIPCION			MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	EXTREMENADAMEN		REGULAR										
	BUENA	E BUENA					1	POBRE	EMTE POBRE											
INDICE DE F	RESISTENCIA GE	OLÓGICA				GSI = RMR'	'an = 5			59	1									
						GGI = RWR	89 3				1									
TABLA CEC	MECÁNICA (SS						001	VALORES		SIMBOLO	1									
I ABLA GEO	OMECÁNICA (GSI	Uv					GSI 59	RMR 59 - III REGULAR	Q 8.87	GSI BC/M	1									
OBSERVAC	CIONES							,			1									
NINGUNA											1									
											-									
											1									

Tabla 55: Resultados de trabajo en campo E5.2. (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

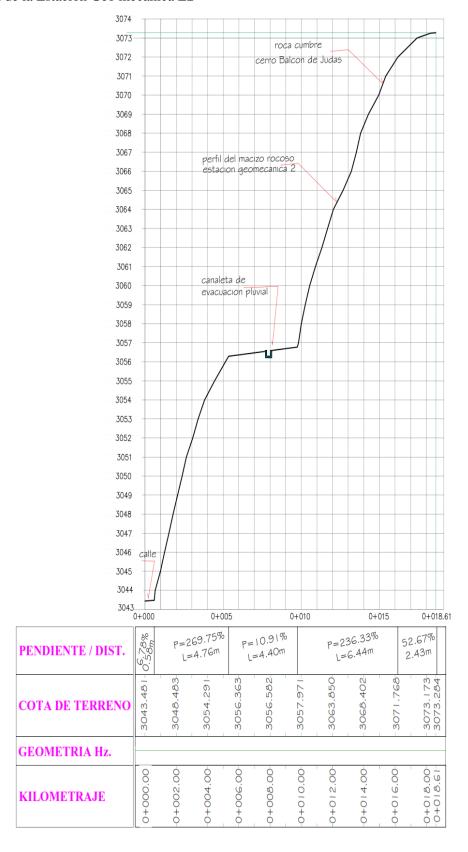
										FOTTO	1011	1								
FO		DE M	NDEC	CEON		IICO B	N/ID	0 11	CEL	ESTAC	ION	# Fract/ml	RQD (%)	DAD AMETERS			S2		S4	1
FUI	RIVIAIC	DE MA	APEU	GEUN	IECAI	NICO R	IVI IX,	Q y	GSI	E5	2			PARAMETROS NUMERO DE FRACTURAS	<u> </u>	S1 6		S3		
										E3		1 2	100 98	CONTADAS EN (m):		1.00	0.90	1.00	5 0.8	ł
Nombre del	Brovesto:	TERIR FREADILI	DAD DEL CERRO	O BALCO DE JUDAS		Litologia				ANDESITA		3	96	ESPACIAMIENTO MEDIO(m)	×	1.00			1.00	-
Nivel:	Proyecto:	TESIS ESTABILI	DAD DEL CERRO	O BALCO DE JUDAS		Altura litostatica	(I-)			23.5		4	96	FRACTURAS / METRO	λ	6.0	13.3	7.0	6.3	
Labor:						Rc/Sv	(n)			201.73		5	91	N° DE FRACT/m3	JV		4			8.1
		-	era Garcia Kare		_	RC/SV				201.73		6	91	INDICE DE CALIDAD DE LA ROCA		6	<u> </u>	3	3	20.0
Ejecutado p	oor:	Olive		n Maitte											RQD (%)	87.8	61.5	84.4	87.0	80.2
Fecha:			13/10/2018									7 8	84 81	DONDE:	400	-0.1(2	.) (0.40			PROMEDIO
												9	77	λ=1/X RQD	= 100 ×	(e,	(0.1)	(+1)		
SISTEMA				I I							V/41.00	10								
PARÁMETR	a la compresión	minuial (MDa)		VALOR 128	>250 (15)	X 100-250 (12	50-100		25-50 (4)	<25(2) <5(1) <1(0)	VALOR	10	74 70							
	a la compresion	iniaxiai (MPa)		128 80.20	>250 (15) 90-100 (20)		1	(7)		.,, .,, ,,,	12	+								
RQD (%)							50-75	(13)		(0)	17	12	66							
	nto de discontinu			0.01	>2m (20)	0,6-2 m (15	0.2-0.6m	(10)	0.06-0.2m (8)	X < 0.06m (5)	5	13	63							
	1			Ia	1	I I	X 3-10m			1		14	59	+						
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4)		(2)	10-20 m (1)	> 20 m (0)	2	15	56	4						
D1	85	180	8	Abertura	Cerrada (6)	<0.1mm apert. (5)	0.1-1.0mm	(4) X	1 - 5 mm (1)	> 5 mm (0)	1	16	53	+						
D2	30	170	2	Rugosidad	Muy rugosa (6)	X Rugosa (5) Lig.rugosa		Lisa (1)	Espejo de falla (0)	5	17	49	4						
D3	83	340	2	Relleno	Limpia (6)	Duro < 5mm (4)	Duro> 5mm	.,	Suave < 5 mm (1)	Suave > 5 mm (0)	1	18	46	4						
				Alteración	Sana (6)	Lig. Intempe. (5)	Mod.Intemp	_	Muy Intempe. (2)		2	19	43							
Agua subte					Seco (15)	X Humedo (10) Mojado	(7)	Goteo (4)	Flujo (0)	10	20	41							
Orientación					Direccion co buzamient	n el Direcci	on contra el amiento	Rumbo	paralelo al eje de l excavacion			21	38							
							1	KV	/ <u> </u>	0°-20° independient e del rumbo	-2	22	35							
					8z 45°-90°	Bz Bz 20°-45° 45°-90° avorable Regular	Bz 20°-45° Desfavorable	B 45° e Muy Des	90° 20°-4! favorable Regula	5.0		23	33							
				E	Muy Favorable F		-10	e Muy Des	favorable Regula 2 -5	ar Desfavorable		24	31							
						RMR ₈₉ (Ba					55	25	29							
						RMR ₈₉ (C					53	26	27							
Condicione	s secas	1				RMR' ₈₉ (C				_	60	27	25							
	JRC (BARTON BANDIS)			RMR	100 - 81	80 - 61		0 - 41	40 - 21	20 - 0	III REGULAF	28	23							
	(BARTON BANDIS)		<u>J</u>	DESCRIPCION	I MUY BUEN	II BUENA	III R	EGULAR	IV MALA	V MUY MALA		29	21							
												30	20							
	DE CLASIFICA	CION Q				ı														
PARAMETR	tos								RANGO		VALOR									
RQD %						RQD			80	%	80									
	discontinuidades					Jn			4 D+		12									
Número de						Jr	rugosa	e irregula	r, onduladas		3									
Número de						Ja		lige	ramente alterad	as	2									
	agua subterránea					Jw			seco		1									
		zos (estado tension	nal)			SRF		te	nsion moderada		1									
Q = (RQE	J/J_n) x (J_r / J_a)	x (J _w / SRF)								Q =	10.02									
												1								
Q	1000-400	400-100	100-40	40-10	10-4,0	4-1,0	1-0,1		0,1-0,01	0,01-0,001										
DESCRIPCION	EVOCEDOIONIALIMENT		MUY BUENA	BUENA	REGULAR	POBRE	MUY POE	BRE EX	TREMENADAMENTE		BUENA									
	BUENA	E BUENA							POBRE	EMTE POBRE										
INDICE DE	RESISTENCIA GE	OLÓGICA				GSI = RMR					55	1								
						GSI = RMR	89 - 5					1								
									VALORES		SIMBOLO	1								
TABLA GEO	OMECÁNICA (GSI	v					GSI 55		RMR - III REGULAR	Q 10.02	GSI BC7M	4								
OBSERVAC	CIONES						35	93 -	III REGULAR	10.02	BC/W	1								
NINGUNA	· - 																			
												1								

Tabla 56: Resultados de trabajo en campo E6 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

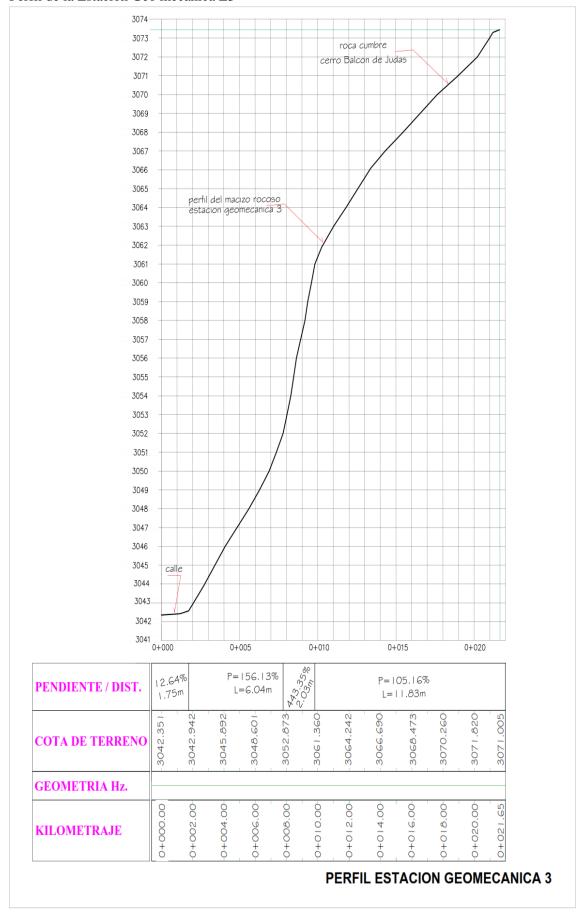
									ESTAC	ION										
FOR	SMATC	DE MA	APFO	GEO	JECAL	VICO F	MR (O V GSL			# Fract/ml	RQD (%)	PARAME	ETROS		S1	S2	S3	S4	1
		O DE MAPEO GEOMECANI						- y - COI	E	2	1	100	NUMERO DE FRACTI			8	4	5	10	Ť
										•	2	98	CONTADAS EN (m):			1.00	1.40	1.10	1.2	1
Nombre del	Provecto:	TESIS ESTABIL	IDAD DEL CERRO	D BALCO DE JUDAS		Litologia			ANDESITA		3	96	ESPACIAMIENTO M	FDIO(m)	×	1.00	0.20	1.00	1.00	1
Nivel:	,		0			Altura litostatica	a (b)		21		4	94	FRACTURAS/METR		a a	8.0	2.9	4.5	8.3	5.9
Labor:						Rc/Sv	u ()		225.75		5	91	N° DE FRACT./m 3	-	Jv	6	4	3	3	5.5
Ejecutado p		Oliv	era Garcia Kare	- Maine		KC/3V			223.73		6	88	INDICE DE CALIDA		RQD (%)	<u> </u>				87.4
Fecha:	or:	Oliv		ii Maitte							7			O DE LA ROCA	KQD (%)	80.9	96.6	92.3	79.7	PROMEDIO
recna:			13/10/2018									84	DONDE:		= 100 >	-0.10	.)			PROMEDIO
0.075											8	81	λ = 1/×	RQD :	= 100 >	(e ""	" (0.1)	(+1)		
SISTEMA				1								77								
PARÁMETR				VALOR			RANGO			VALOR	10	74								
	a la compresión u	niaxial (MPa)		128	>250 (15)		12) 50-100		4) <25(2) <5(1) <1(0)	12	11	70								
RQD (%)				87.40	X 90-100 (20)		17) 50-75		8) <25 (3)	20	12	66								
	nto de discontinuio			0.01	>2m (20)	0,6-2 m (1	15) 0.2-0.6m	(10) 0.06-0.2m (8	X < 0.06m (5)	5	13	63	1							
	DE DISCONTINUI	1	1	1						1	14	59	1							
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)		(4) X 3-10m		1) > 20 m (0)	2	15	56	1							
D1	85	185	3	Abertura	Cerrada (6)	<0.1mm apert. (5) 0.1-1.0mm	(4) 1 - 5 mm (1) X > 5 mm (0)	0	16	53								
D2	45	180	2	Rugosidad	Muy rugosa (6)	X Rugosa ((5) Lig.rugosa	(3) Lisa (1) Espejo de falla (0)	5	17	49								
D3	80	105	2	Relleno	Limpia (6)	Duro < 5mm ((4) Duro> 5mm	(2) X Suave < 5 mm (Suave > 5 mm (0)	1	18	46								
				Alteración	Sana (6)	Lig. Intempe. ((5) Mod.Intempe.	(3) X Muy Intempe. (2) Descompuesta (0)	2	19	43								
Agua subter	rránea		•	•	Seco (15)	X Humedo (1	10) Mojado	(7) Goteo (-	4) Flujo (0)	10	20	41								
Orientación					Rumbo perpe	ndicular al eje de la	excavacion cion contra el	Rumbo paralelo al eje	de la		21	38								
					buzamient		uzamiento	atti	Buzamiente 0°-20° independient		22	35								
								and /	e del rumbo	-10	23	33								
					45°-90° Muy Favorable F	Bz Bz 20°-45° 45°-90° avorable Regula	Postavorable	Bz 45°-90° 2 Muy Desfavorable R	Bz 0°-45° egular Desfavorable		24	31								
						RMR ₈₉ (B		-12	-5 -10	57	25	29								
							Corregido) =			47	26	27								
Condicione	e socas						Condiciones			62	27	25								
Condicione			1	RMR	100 - 81	89 - 61			20 - 0	02	28	23								
	JRC (BARTON BANDIS)			DESCRIPCION						III REGULAR	29	21	-							
				DEGOTAL CION	1 1001 000	ex II BOLIV		ODAR IV WAL	V MIOT MIALA		30	20								
CICTEMA	DE CLASIFICA	CIONIO									30	20	1							
PARAMETR		CION Q					1	RANGO		VALOR										
RQD %	OS					RQD	_		%											
								87	%	87										
	discontinuidades					Jn		roca tritura		20										
Número de i						Jr	rugosa e	irregular, onduladas	3	3										
Número de a						Ja	_	ligeramente alte	radas	2										
	agua subterránea					Jw		seco		1										
		zos (estado tensior	nal)			SRF		tension mode		1										
Q = (RQD	/J _n) x (J _r / J _a) :	x (J _w / SRF)							Q =	6.55										
											i									
Q	1000-400	400-100 E EXTREMENADAMENT	100-40	40-10	10-4,0	4-1,0	1-0,1	0,1-0,01 EXTREMENADAM	0,01-0,001	REGULAR										
DESCRIPCION	BUENA	E BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	POBRE	EMTE POBRE	LOOLAR										
INDICE DE I	RESISTENCIA GEO	DLÓGICA				GSI = RM	R' ₈₉ - 5			57										
								VALORES		SIMBOLO										
TABLA GEO	MECÁNICA (GSI)	,					GSI	RMR	Q	GSI	i									
							57	47 - III REGULA	R 6.55	BC/M	1									
OBSERVAC	IONES																			
NINGUNA											1									
											1									
											•									

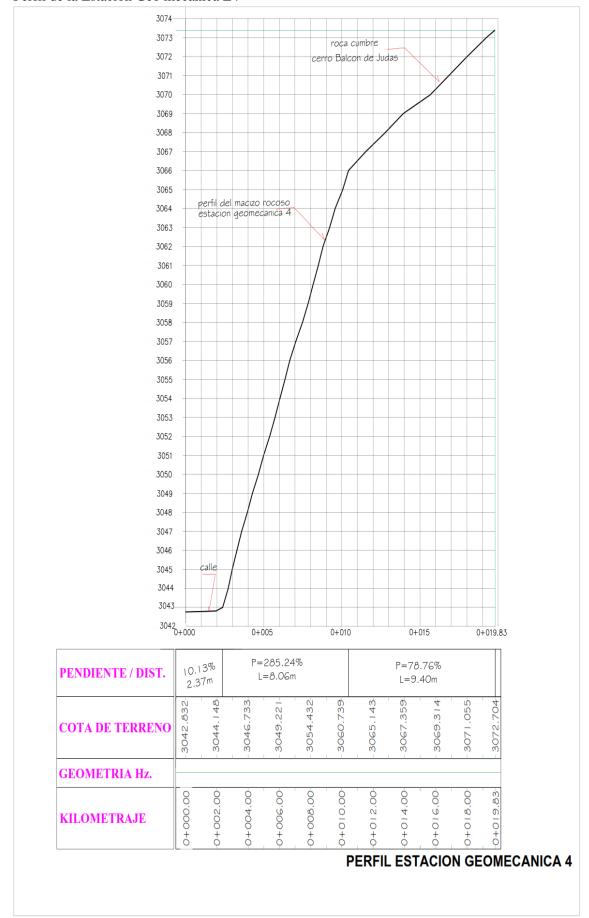

Tabla 57: Resultados de trabajo en campo E7 (RQD de Deere, RMR de Bienawski, Q de Barton y GSI de Hoke y Brown)

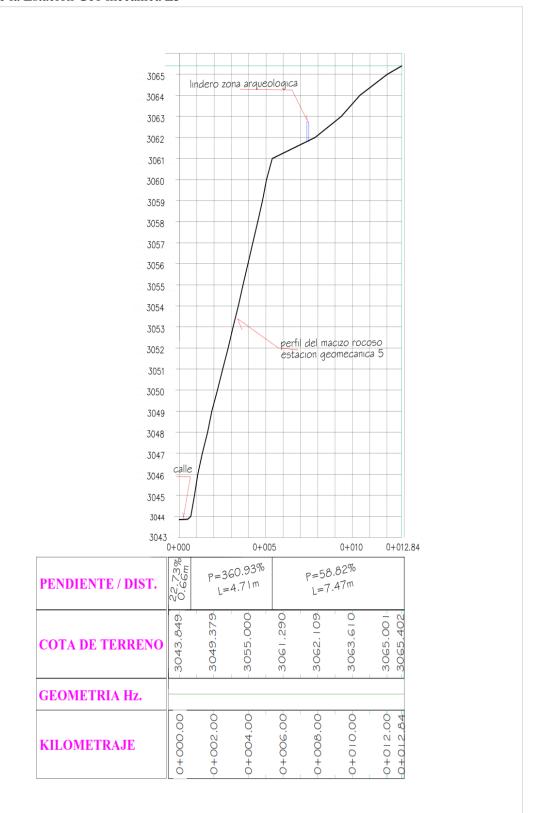
									ESTAC	ION										
FO	RMATO	DE MA	NPFO	GEON	/ECAN	JICO R	MR O	v GSL	ESTAC	IOI	# Fract/ml	RQD (%)	PARAM	FTROS		S1	S2	S3	S4	1
• •	KIVIAIO		VI LO	GLON	"LCA	iico ix	wiit, Q	y GSI	E	7	1	100	NUMERO DE FRACT		Π	6	10	8	6	
										/	2	98	CONTADAS EN (m)			1.00	1.40	1.10	1.2	ł
Nombre de	l Provecto:	TESIS ESTARII II	DAD DEL CERRO	D BALCO DE JUDAS		Litologia			ANDESITA		3	96	ESPACIAMIENTO N		×	1.00	1.00	1.20	1.10	1
Nivel:	oycoto.	TEGIO EGTABLES		DALOO DE GODAG		Altura litostatica	(b)		20		4	94	FRACTURAS / METI		a a	6.0	7.1	7.3	5.0	6.4
Labor:						Rc/Sv	·- <i>y</i>		237.04		5	91	N° DE FRACT./m3		.lv	6	4	3	3	
Ejecutado p	nor:	Olive	era Garcia Karer	n Maitte		110701		1	207.04		6	88	INDICE DE CALID	AD DE LA POCA	RQD (%)	87.8	83.9	83.5	91.0	86.5
Fecha:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		13/10/2018								7	84	DONDE:		1140 (70)	87.8	83.9	83.5	91.0	PROMEDIO
r conu.											8	81	λ = 1/ X	RQD =	- 100 -	-0.1(λ) (0.43	± 1\		1 ItOMEDIO
SISTEMA	RMR										9	77	~ - 1/ ^	NQD -	- 100 x	. •	(0.17	· + 1)		
PARÁMETE				VALOR			RANGO			VALOR	10	74								
Resistencia	a a la compresión un	iaxial (MPa)		128	>250 (15)	X 100-250 (12)	50-100 (7)) 25-50 (4)	<25(2) <5(1) <1(0)	12	11	70								
RQD (%)				86.50	90-100 (20)	X 75-90 (17)			<25 (3)	17	12	66								
	ento de discontinuida	ades (cm)		0.01	>2m (20)	0,6-2 m (15)			X < 0.06m (5)	5	13	63	1							
	N DE DISCONTINUID								- 1		14	59	1							
Familia	Buz.	/D. Buz	f/m	Persistencia	<1m long. (6)	1-3 m Long. (4)	X 3-10m (2)) 10-20 m (1)	> 20 m (0)	2	15	56	1							
D1	86	120	3	Abertura	Cerrada (6)	<0.1mm apert. (5)		X 1-5 mm (1)	> 5 mm (0)	1	16	53	1							
D2	38	180	2	Rugosidad	Muy rugosa (6)	X Rugosa (5)	Lig.rugosa (3)		Espejo de falla (0)	5	17	49	1							
D3	85	325	3	Relleno	Limpia (6)	Duro < 5mm (4)	Duro> 5mm (2)	X Suave < 5 mm (1)	Suave > 5 mm (0)	1	18	46	1							
- 53	- 55	323	,	Alteración	Sana (6)	Lig. Intempe. (5)	Mod.Intempe. (3)		Descompuesta (0)	2	19	43	1							
Agua subte	erránea	L	1		Seco (15)	X Humedo (10)			Flujo (0)	10	20	41	1							
Orientación				[Rumbo perpen	dicular al eje de la e	xcavacion	imbo paralelo al eje de	te l		21	38	1							
O I C I LUCIO I	•				Direction cor buzamiento	buz	on contre el amiento	excavacion	Buzamiento 0°-20°		22	35								
							- C	Sir D	e del rumbo	-5	23	33								
					45°-90° S Muy Favorable Fr	Bz Bz 20°-45° 45°-90° svorable Regular	20°-45° Desfavorable Muy	Bz B. 45°-90° 20°- y Desfevorable Regi	45° der Desfevorable		24	31								
				ı		RMR ₈₉ (Ba		-12 -5	-10	55	25	29								
							orregido) =			50	26	27								
Condicione	s secas						ondiciones S	ecas)=		60	27	25								
	JRC			RMR	100 - 81	80 - 61	60 - 41	40 - 21	20 - 0	- 55	28	23	1							
	(BARTON BANDIS)			DESCRIPCION	I MUY BUEN		III REGULA		V MUY MALA	III REGULAR	29	21	1							
		<u>l</u>	1								30	20	1							
SISTEMA	DE CLASIFICAC	ION Q											1							
PARAMETE								RANGO		VALOR										
RQD %						RQD		87	%	87										
	discontinuidades					Jn		4D		12										
Número de						Jr	rugosa e irre	gular, onduladas		3										
Número de						Ja		capas sup. Mat. Lin	1050	3										
	agua subterránea					Jw	·	seco	.000	1										
	educción de esfuerz	os (estado tension	ial)			SRF		tension moderac	la	1										
	D/J _n) x (J _r / J _a) x		•			1		Chalon moderat	Q =	7.21										
w = (11w2	Jon) X (Or / Oa) X	(ow/ Oiti)								7.21										
Q	1000-400	400-100	100-40	40-10	10-4,0	4-1,0	1-0,1	0,1-0,01	0,01-0,001	DE0111 (-										
DESCRIPCION	EXCEPCIONALMEMTE BUENA	EXTREMENADAMENT E BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	EXTREMENADAMEN' POBRE	EXCEPCIONALM EMTE POBRE	REGULAR										
INDICE DE	RESISTENCIA GEOI	ÓGICA				081 5:55				55										
INDICE DE	RESISTENCIA GEOL	LUGICA				GSI = RMR	89 - 5			55										
								VALORES		SIMBOLO										
TABLA GEO	OMECÁNICA (GSI)						GSI 55	RMR 50 - III REGULAR	Q 7.21	GSI BC/M										
OBSERVA	CIONES																			
NINGUNA																				

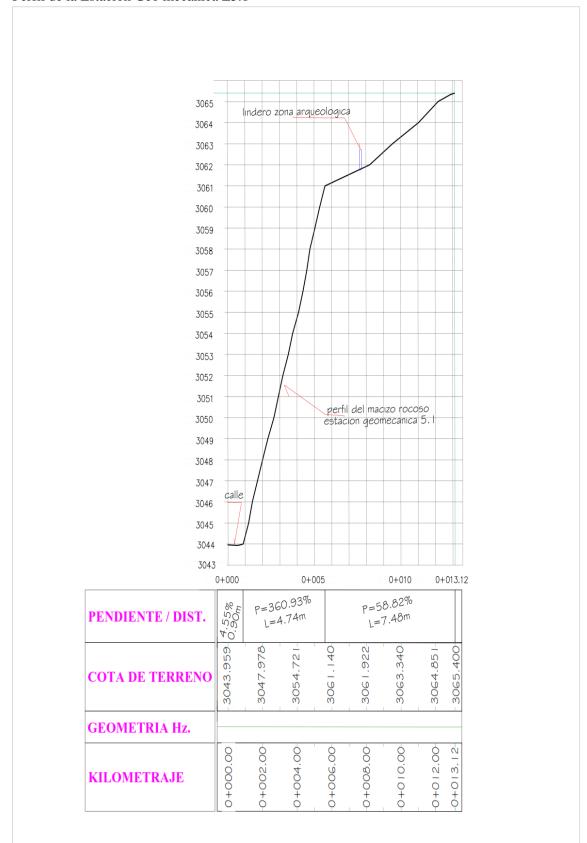

Planos del levantamiento topográfico (en planta y perfil, por las estaciones evaluadas).

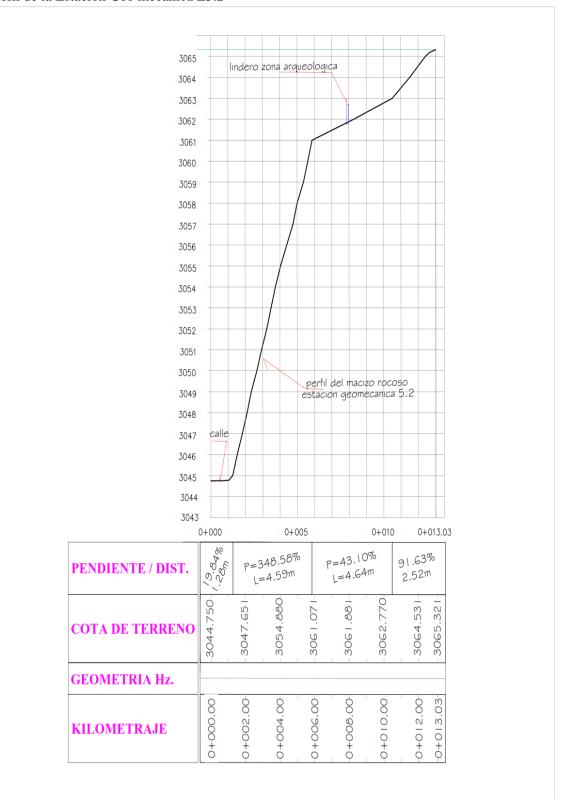
a. Plano General del Levantamiento Topográfico E 7 X=221572.08 Y=8945967.76 zona arqueologida 221576.62 8945926.78 E 5.1 ×=221576.90 Y=8945923.40 E 5 ×=221577.15 =8945920.25 zond cerro Balcon de Judas E 4 X=221578.75 Y=8945893.59 X=221576.04 Y=8945877.11 E 1 X-221546.79 Y-8945877.16 PUENTE TOIL
221583.88 E
8049809.00
8049809.00
8M1 UBICADO EN BORDE DE VEREDA
A 197.5 m DE LA PROGRESIVA 147.85 KM
DE LA CARRETTERA CASMA HUARAZ UNIVERSIDAD CÉSAR VALLEJO

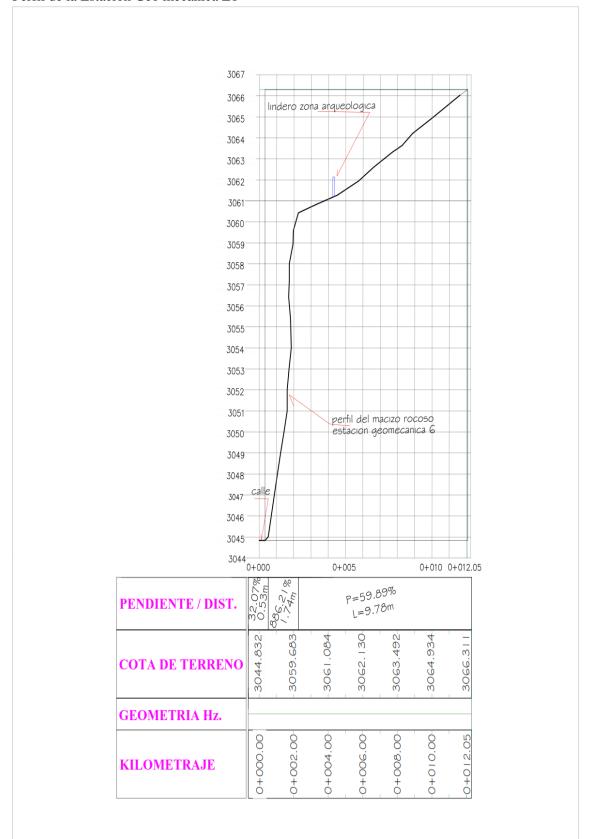

b. Perfil de la Estación Geo mecánica E1

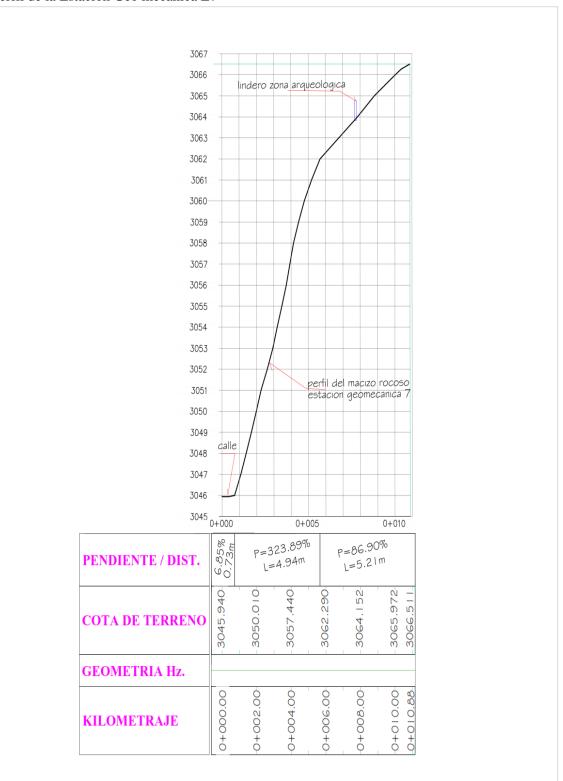

c. Perfil de la Estación Geo mecánica E2


d. Perfil de la Estación Geo mecánica E3


e. Perfil de la Estación Geo mecánica E4


f. Perfil de la Estación Geo mecánica E5


g. Perfil de la Estación Geo mecánica E5.1


h. Perfil de la Estación Geo mecánica E5.2

i. Perfil de la Estación Geo mecánica E6

j. Perfil de la Estación Geo mecánica E7

ACTA DE APROBACIÓN DE ORIGINALIDAD DE TESIS

Código: F06-PP-PR-02.02

Versión: 08

Fecha : 23-03-2018 Página : 1 de 1

Yo, Mgtr. ERIKA MAGALY MOZO CASTAÑEDA docente de la Facultad de Ingeniería y Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo Huaraz, revisor (a) de la tesis titulada "ALTERNATIVAS DE DISEÑO PARA EVITAR EL DESLIZAMIENTO DE ROCAS EN EL SECTOR "BALCÓN DE JUDAS", ANCASH-2018", del (de la) estudiante OLIVERA GARCIA, KAREN MAITTE, constato que la investigación tiene un índice de similitud de 13% verificable en el reporte de originalidad del programa Turnitin.

El/la suscrito (a) analizó dicho reporte y concluyó que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

Huaraz, 10 de Diciembre del 2018

Mgtr. ERIKA MAGALY MOZO CASTAÑEDA

DNI: 40711879

AUTORIZACIÓN DE PUBLICACIÓN DE TESIS EN REPOSITORIO INSTITUCIONAL UCV

Código: F08-PP-PR-02.02

Versión : 07

Fecha: 23-03-2018

Página : 1 de 1

Yo, Olivera García Karen Maltte, identificado con DNI Nº 73016501, egresado de la Escuela Profesional de Ingeniería Civil de la Universidad César Vallejo, autorizo (x), No autorizo () la divulgación y comunicación pública de mi trabajo de investigación titulado "Alternativas de diseño para evitar el deslizamiento de rocas en el sector "Balcón de Judas", Ancash-2018"; en el Repositorio Institucional de la UCV (http://repositorio.ucv.edu.pe/), según lo estipulado en el Decreto Legislativo 822, Ley sobre Derecho de Autor, Art. 23 y Art. 33

Fundamentación en caso d	e no autorización:	

FIRMA

DNI: 73016501

FECHA: 11 de Diciembre del 2018

Elaboró	Dirección de Investigación	Revisó	Representante de la Dirección / Vicerrectorado de Investigación y Calidad	Aprobó	Rectorado	
---------	-------------------------------	--------	---	--------	-----------	--

AUTORIZACIÓN DE LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN

CONSTE POR EL PRESENTE EL VISTO BUENO QUE OTORGA EL ENCARGADO DE INVESTIGACIÓN DE
E. P. Ingeniería Civil
<u> </u>
A LA VERSIÓN FINAL DEL TRABAJO DE INVESTIGACIÓN QUE PRESENTA:
OLIVERA GARCIA KAREN MAITTE
INFORME TÍTULADO:
"ALTERNATIVAS DE DISEÑO PARA EVITAR EL DESLIZAMIENTO DE ROCAS EN EL SECTOR "BALCÓN DE JUDAS", ANCASH-2018"
PARA OBTENER EL TÍTULO O GRADO DE:
INGENIERA CIVIL
SUSTENTADO EN FECHA: Martes, 11 de Diciembre del 2018
NOTA O MENCIÓN: Dieciséis (16)
FIRMA DEL ENCARGADO DE INVESTIGACIÓN