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Abstract

This paper introduces a new self-tuning mechanism to the local search heuristic for solving of combinatorial 
optimization problems. Parameter tuning of heuristics makes them difficult to apply, as parameter tuning itself is an 
optimization problem. For this purpose, a modified local search algorithm free from parameter tuning, called Self-
Adaptive Local Search (SALS), is proposed for obtaining qualified solutions to combinatorial problems within 
reasonable amount of computer times. SALS is applied to several combinatorial optimization problems, namely, 
classical vehicle routing, permutation flow-shop scheduling, quadratic assignment, and topological design of 
networks. It is observed that self-adaptive structure of SALS provides implementation simplicity and flexibility to 
the considered combinatorial optimization problems. Detailed computational studies confirm the performance of 
SALS on the suit of test problems for each considered problem type especially in terms of solution quality.
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1. Introduction

Due to the practical and the theoretical importance of 
combinatorial optimization problems, interest in 
research to develop exact and heuristic algorithms has 
been evolved consistently. The run time of exact 
algorithms often increases exponentially with the 
instance size and only small or moderate-sized problems 
can be solved. Therefore, the use of heuristics to solve 
larger instances has been unavoidable. Particularly, the 
literature has been increasingly enlarged by 
metaheuristic approaches since the late 1980s. The 
survey carried out by Blum and Roli1 and the book by 
Glover and Kochenberger2 give the most popular 
metaheuristics from a conceptual point of view and 
outlines the details of different components and 
concepts.

Metaheuristics are controlled by a set of parameters.
This set has a significant impact on the solving progress 
since parameters drive exploitation and exploration rate 
of search space. Thus, through the search process a 
solution is obtained with high quality. Parameters are 
the re-configurable parts of a metaheuristic algorithm 
that can be manipulated to alter the performance of the 
heuristic. Therefore, the best combination of parameter 
values is a crucial task. This task is generally called 
parameter optimization, parameter tuning or parameter 
setting. A careful selection of the best parameter set 
requires either a deep knowledge of the problem 
structure or a lengthy trial-and-error process. Tuning a 
set of parameters to achieve robust and high 
performance of the metaheuristic is a tedious and time 
consuming process. Adenso-Diaz and Laguna3 state that 
about 10% of the total time dedicated to designing and 
testing of a new heuristic is spent for development, and 
the remaining 90% is consumed by fine-tuning of 
parameters. Today the operational research literature 
includes the large number of sophisticated 
metaheuristics which are considerably effective and 
efficient for the most combinatorial problems. 
Nevertheless, the most of them still are influenced by 
tediousness of parameter optimization. 

Silberhorz and Golden55 state that metaheuristics 
with a low degree of complexity have a number of 
advantages such as being simple to implement in an 
industrial setting, being simple to re-implement by 
researchers, and being simpler to explain and analyze. 
Meanwhile, as the heuristics get complicated, the 

number of parameters increases in general. Therefore a 
meaningful metric to measure complexity of the 
heuristics becomes the number of parameters used in the 
algorithm. 

The best parameter set is usually re-determined 
before the run considering application area, size or input 
data of each individual instance. Many researchers tune 
the parameters applying different reasonable values and 
then select the combination which generates the best 
performance of the algorithm. There have been a 
number of studies which propose systematic methods to 
find the best parameter set for considered algorithm. 
While Barr et al.4 use experimental design technique, 
Adenso-Diaz and Laguna3 combine factorial 
experimental design with a local search mechanism. 

An alternative way to tuning parameters beforehand 
is by controlling them throughout the run. Heuristics 
which are managed by this way are generally called 
adaptive, reactive or self-tuning heuristics. This kind of 
heuristics utilize differing forms of feedback 
information to perform a learning process of the 
parameter combination during the search. Self-tuning 
heuristics are achieved for evolutionary algorithms 
earlier than local search based algorithms. Eiben et al.5

present a comprehensive study to classify parameter 
control methods for evolutionary algorithms and survey 
various forms of control methods. The pioneering 
attempt to develop a self-tuning mechanism for the local 
search based metaheuristics is the reactive tabu search 
by Battiti and Tecchiolli6. Today, numerous studies 
describing different dynamic parameter structures can 
be cited. For instance, scatter search by Russell and 
Chiang7, threshold accepting by Tarantilis et al.8, 9,
record-to-record travel by Li et al.10, and reactive tabu 
search by Osman and Wassan11 are among the recent 
metaheuristics with dynamic parameters proposed for 
the vehicle routing problems. 

In this study, a self-adaptive local search method, 
named SALS, is proposed. SALS algorithm has only 
one parameter notated acceptance 
parameter dynamically 
throughout the search process. Thus, the effectiveness 
of the algorithm is improved using the response surface 
information of the problem instance and the 
performance measure of the algorithm. The most 
important advantage of SALS is that the algorithm does 
not need additional time and specialization to manage 
parameter optimization. Therefore, SALS is suggested 
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as a heuristic with a low degree of complexity. We aim 
to show that SALS is able to generate very good 
solutions to combinatorial optimization problems 
without any tuning effort by applying it to problems 
selected from different application areas, namely, the 
classical vehicle routing (VRP), permutation flow shop 
scheduling (PFSP), quadratic assignment (QAP), and 
topological design of computer networks (TDP), 
problems.

Remainder of this paper is organized as follows. The 
structure of SALS algorithm is explained in Section 2. 
Implementations of SALS and tabu search (TS), 
simulated annealing (SA), record-to-record-travel 
algorithms (RRT) on the selected problems are given in 
Section 3. Section 4 contains comparison of SALS with 
TS, SA, and RRT algorithms on the test problems. 
Section 4 also includes another comparative study to 
demonstrate the effectiveness of SALS with respect to 
the some heuristic algorithms proposed in the VRP, 
PFSP, QAP, and TDP literatures. Finally, the last 
section presents the conclusions of this study.

2. Description of the Self-Adaptive Local Search 
Algorithm 

SALS is a local search algorithm. The algorithm starts 
with any initial solution zX as a current solution and 
searches the solution space iteratively. Vector of X = 
[x1, x2, …, xn] represents decision variables of 
considered problem. At iteration i, a neighbor solution 
X' is selected randomly from the neighborhood of the 
current solution X. X' is recorded as the new current 
solution if the following condition is satisfied for a 
minimization problem:

If f(X') f(X) then X X'

Here, f(X) is the objective function value of the 
solution X at iteration i -adaptive 
parameter of SALS. The search process around the 
current solution, X, is repeated until obtaining of an 
acceptable neighbor solution, X'. The algorithm is 
progressed to the next iteration whenever a new current 
solution is recorded ( . If the total number of 
rejected neighbors reaches the neighborhood size of the 
current solution, N(X) , at any iteration i

1 2” only for the 

based on two criteria: Quality of the best solution and 

number of improved solutions obtained during the 
1 2, given by equations 1-

2, are introduced to measure the quality and the count of 
the searched solutions, respectively. Where, )(i

bX is the 
best solution observed until iteration i, zX is the initial 
solution, C(L(i)) is the number of improved solutions 
obtained until iteration i:

)(
)( )(

1
z

i
b

f
f

X
X

(1)

i

i )L(C )(

2 (2)

1 2 (3)

The number of improved solutions until iteration i,
is counted by C(L(i)) C(L(i) )()( )(i

bff XX for 
an accepted neighbor solution X'. SALS assumes that 
f(X) 0, for the whole solution space. Decreasing 

1 represent that solution quality of the best 
solution is improved comparing to the initial solution. 

2

indicate flat regions of the solution space, while 
fluctuating values of that may indicate the regions with

1 and 2 calculated 
through the search process adaptively as given in 

search region in terms of objective function value 
surrounding the current solution X. During the iterations 

1 and 2 are updated by 
equations 1 and 2, re
re
to take smaller values (approaching to 1) during the last 
part of the search. It is exp
approaches to 1, the search is forced to find better 
solutions. Figure 1 depicts the decrease of relative 
deviation from the reference solution accompanied by 

QAP, and TDP. Furthermore, changing of 
with respect to the number of iterations for these 
problems is shown in Figure 2 (in this figure initial 
iterations of the search process are ignored to provide 
clear visibility of the remainder iterations). As 
seen from the figures, the self-adaptive structure 
provides that the 

decreases as the number of iterations increases for all
problem types.
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An experimental study is carried out to show the 
effectiveness of the self-
three fixed levels, such as 1.0015, 1.0025, and 1.0035, 
so that they produce reasonably good results in the 
preliminary experiments. The VRP, PFSP, QAP, and 
TDP benchmark problem sets taken from Christofides 
and Elion12, Taillard13, Skorin-Kapov14 and 
Altiparmak15, respectively, are used for the 
experimental analysis. Problem instances are selected 
randomly for each size to be able to get a representative 
subset of the associated benchmarking set and classified 
as small, moderate, and large size problems. SALS is 
r
algorithm is allowed to run until a pre-determined 
number of solutions met. Table 1 shows the average 
deviations from the best known solutions (abbreviated 
as ARD) and also the standard deviation of the
deviations obtained over the 10 runs. Totally 30 runs are 

. When 
equal 1.0015 the SALS algorithm generally yields better 

results (marked by italic fonts) than other fixed levels. 
However, it is easily seen that it is not robust against
problem type and problem size. On the other hand, the 
SALS algorithm with self-
better results for all problem types and sizes. This 

value needs parameter tuning for each problem type,
there is no need to spend more effort for the tuning of

dynamically using self 
adaptive structure. As a result we can say that self-

superior results (marked by 
bolt fonts) than those with all fixed levels except only 
three cases. Self-
fixed levels in terms of average results over the problem 
sizes. As seen from the Table 1, self-
generates the smallest standard deviation of ARD for 

Signed Rank Test is applied to data gathered from the 
experimentation of SALS with diffe
each problem type under consideration. The Wilcoxon 
Signed Ranks test is designed to test a hypothesis about 
the mean of a population distribution. This test does not 
require the assumption that the population is normally 
distributed. It often involves the use of matched pairs, 
here self-adaptiv , in 
which case it tests for a mean difference of zero. 
Hypothese given in equation 4 is designed to test to 
compare ARD obtained by the replications of self-
adaptiv
fixed levels, seperately, since we expect ARD of self-

veSelfAdaptiARD , is less than 
)( iFixedARD , where 

)( iFixedARD is ARD value obtained 
from the fixed level i for i = 1.0015, 1.0025, 1.0035. 
Table 2 gives the result of the statistical analysis and p-

values which are close to zero indicating
veSelfAdaptiARD

is statistically different from each 
)( iFixedARD at 

significant level of .005.

1H : 0
)( iFixedveSelfAdapti ARDARD (4)

elative deviation from the 
best solution

Fig. 2
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Table 1. Average deviation from the best known using fixed and self-adaptive 

Application area Problem Size 1.0015 1.0025 1.0035 Self-adaptive

VRP

Small 0.0115 0.0063 0.0012 0.0
Moderate 0.0102 0.0047 0.0253 0.0048

Large 0.0162 0.0434 0.1347 0.0158
Average 0.0126 0.0181 0.0537 0.0069
Std. Dev. 0.0059 0.0191 0.0592 0.0076

PFSP

Small 0.0095 0.0276 0.0374 0.0101
Moderate 0.0254 0.0371 0.0427 0.0016

Large 0.0328 0.0387 0.0425 0.0018
Average 0.0226 0.0345 0.0409 0.0045
Std. Dev. 0.0101 0.0052 0.0029 0.0051

QAP

Small 0.0004 0.0132 0.0293 0.0004
Moderate 0.0319 0.0499 0.0563 0.0013

Large 0.0492 0.0537 0.0589 0.0009
Average 0.0272 0.0389 0.0482 0.0008
Std. Dev. 0.0205 0.0187 0.0137 0.0007

TDP

Small 0.1795 0.1373 0.1243 0.0129
Moderate 0.3068 0.1780 0.0288 0.0508

Large 0.0421 0.0264 0.0438 0.0083
Average 0.1761 0.1139 0.0656 0.0240
Std. Dev. 0.2194 0.1503 0.0568 0.0303

Table 2. Results of statistical analysis for comparing of self-

Test 
Hypothesis Comparison Mean Difference p-value

1H : 0)0015.1(FixedveSelfAdapti ARDARD -.0505 .000a

0)0025.1(FixedveSelfAdapti ARDARD -.0423 .000 a

0)0035.1(FixedveSelfAdapti ARDARD -.0430 .000 a

a Statistically significant different at level of 0.05
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3. Implementation

SALS algorithm is compared with some widely used 
local search based metaheuristics: TS (Glover16), SA 
(Kirkpatrick et al.17), and RRT (Dueck18). Details of 
these metaheuristics can be found in the last mentioned 
references. The aim of this comparative study is to 
examine the effectiveness and efficiency of SALS 
relative to the basic versions of TS, SA and RRT 
metaheuristics on the considered problems, since SALS 
also is simple algorithm. In this study, TS, SA, and RRT 
algorithms are coded sticking to the basic principles 
proposed by the pioneers employing the same neighbor 
generation mechanism with SALS. Thus, they run under 
the same base line. Although VRP, PFSP, QAP, and 
TDP are well-known problems having rather rich and 
broader literatures, the short descriptions of these 
problems are given in subsection 3.1, 3.2, 3.3, and 3.4., 
respectively, to provide a better explanation of neighbor 
generation mechanism of SALS . Basic structures and 
acceptance conditions of SALS, TS, SA, and RRT 
algorithms are defined in subsection 3.6, while 
neighbor generation mechanisms are introduced in 
subsection 3.5.

3.1. Vehicle Routing Problem

The Classical VRP can be described as the problem of 
designing optimal delivery routes from one depot to a 
number of customers under the limitations of side 
constraints to minimize the total traveling cost. Graph 
theoretic definition of the problem is as follows: Let G =
(V, A) be a complete graph, where V = {1, ...., n+1} is 
the vertex set and A is the arc set. Vertices i = 2, ..., n+1
correspond to the customers, whereas vertex 1 
corresponds to the depot. A nonnegative cost, cij,
associated with each arc (i, j) A represents the travel 
cost between vertexes i and j. Each customer i is 
associated with a known nonnegative demand, di, to be 
delivered. The total demand assigned to any route may 
not exceed the vehicle capacity, Q. A fleet of m
identical vehicles is located at the depot. Another 
constraint which is sometimes included in VRP is that 
the total duration of each route does not exceed a 
distance limit, L. In the capacity and/or distance 
constrained VRP, each of the m routes starts and 
terminates at the depot and each customer is served 
exactly once by exactly one vehicle. VRP is an NP-hard 
combinatorial problem and only small-sized problems 
can be solved optimally. Heuristic methods are 

commonly used for approximate solutions to VRP in 
practice.

3.2. Permutation Flow Shop Scheduling Problem

PFSP is a production planning problem. There are n
jobs to be processed in the same sequence on m
machines. Processing time of job i on machine j is given 
by tij 0. It is assumed that machines can execute at 
most one job at a time and the operating sequences of 
the jobs are the same on every machine. The objective is 
to find the permutation of jobs which will minimize the 
time between the beginning time of the first job on the 
first machine and the completion time of the last job on 
the last machine. PFSP is known to be NP-complete for 
more than two machines and most of the literature in the 
last 40 years recommends the heuristic procedures in 
order to obtain near-optimal solutions to PFSP.

3.3. Quadratic Assignment Problem

QAP has remained one of the great challenges in OR. 
Many practical problems like backboard wiring, facility 
layout, scheduling, manufacturing and many others can 
be formulated as QAP. QAP can be described as the 
problem of assigning a set of facilities to a set of 
locations with given distances between the locations and 
given flows between the facilities to minimize the sum 
of the product between flows and distances. 
Mathematically, the problem can be formulated by a 
flow matrix F whose fij element represents the flow 
between facilities i and j and a distance matrix D whose 
dij element represents the distance between locations i
and j. The goal is the minimization of

n

i

n

j
jxixij

1 1
)()(df

over the set of all assignments, where the vector X 
represents an assignment. QAP is an NP-hard problem. 
Heuristic methods ranging from simple improvement 
algorithms to complex metaheuristic algorithms have 
been proposed for approximate solutions.

3.4. Topological Design of Computer Networks 
Problem

An important stage of the topological design of 
computer networks is to find the best layout of reliable 
communication paths among the computers. The 
problem considered in this study is the backbone 
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network design of computers under the overall network 
reliability (all-terminal reliability) constraint. Overall 
network reliability is defined as the probability that 
every pair of computers can communicate with each 
other. 2-connectiveness, at least 2 different paths 
between each pair of nodes, is regarded as a second 
constraint to increase the reliability of the networks. 
This topological design problem is NP-hard and has a 
further complication in that the calculation of overall 
network reliability is also NP-hard. A backbone network 
can be modeled by a probabilistic graph G = (N, L, p) 
where N and L are the set of nodes and edges that 
correspond to the computers and communication links, 
respectively, and p is the link reliability. The problem 
can be modeled as a 0-1 integer programming problem 
where xij decision variable takes value 1 if a link exists 
between nodes i and j, else 0. Thus, the problem is to 
find the vector, X, of the decision variables which 
minimizes the total cost of the network and satisfies 
predetermined desired reliability constraint, R0.

3.5. Neighbor Generation Mechanisms 

SALS algorithm uses permutation solution 
representation for VRP, PFSP, and QAP and network 
solution representation for the TDP. Moving 
mechanisms to generate neighborhoods for the 
permutation solution representation of VRP, PFSP, and 
QAP and the network solution representation of TDP 
are illustrated in the following subsections.

3.5.1. Permutation Solution Representation

According to the permutation solution representation, a 
solution point X is represented as a vector (x1, x2, …, xD)
with dimension D (D = n m n is the number 
of customers and m is the number of vehicles for VRP, 
D = n where n is the number of jobs for PFSP and n is 
the number of facilities for QAP). Neighborhood of a 
solution point X is created using five different moving 
types: Adjacent swap (MAS), general swap (MGS), single 
insertion (MSI), block insertion (MBI) and reverse 
location (MRL). These moving types are the most 
commonly used types of perturbation schemes. Detailed
analysis of them can be found in Tian et al.19 for SA 
algorithm. Solution representation examples for VRP, 
PFSP, and QAP are given in Table 3. Definitions and
neighborhood sizes of each move type are given in 
Table 4. Some examples of moving types are also 

illustrated in Figure 3 for a small (15-customer, 1-depo, 
4-vehicle) VRP instance. 

3.5.2. Network Solution Representation

Solution X is represented using binary coding on a 
matrix with nxn size. The definitions of the moves are 
given in Table 5 where n is the number of nodes and 

)(id is the degree of node. Figure 4 represents a
solution candidate network and its neighbors generated 
by each moving type.
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Table 3. Solution point representation examples for VRP, PFSP, and QAP

Solution example Explanation 

X = [ 1 12 4 10 7 1 8 9 6 1 5 11 3 2 1 ]

First vehicle starts its route from the depot 1, then visits 
customers 12, 4, 10, 7 successively and returns the depot; 
second vehicle visits customers 8, 9, 6 and third vehicle visits 
customers 5, 11, 3, 2 successively

X = [ 3 5 10 15 1 7 8 11 12 14 13 2 4 6 9 ] The jobs are processed in the sequence “3 5 10 15 1 7 8 11 12 
14 13 2 4 6 9” on each m machine

X = [ 10 1 7 8 3 4 5 12 2 6 9 11 ]
Facility 10 is assigned to location 1, facility 1 to location 2, 
facility 7 to location 3 and so on

Table 4. Moving types and neighborhood sizes for permutation representation
Type Definition Neighborhood size
MAS Nodes xi and xj are interchanged for i, j = 1, …, n and abs(i-j) = 1. NAS(X) = )1(n

MGS Nodes xi and xj are interchanged, for i, j = 1, …, n and abs(i-j)>1. NGS(X) = 
2

)2)(1( nn

MSI
Node xi is inserted between nodes xj and x , for i = 1, …, n, j = 1, …, n-1
and abs(i-j)>1.

NSI(X) = )2)(1( nn

MBI
A subsequence of nodes from xi to x is inserted between nodes xj and 
x , for i = 1, …, n-1-b, j = i n-1 and b = 1, …, n-2.

MRL
A subsequence of nodes from xi to xj is sequenced in the reverse order for 
i, j = 1, …, n and       abs(i-j)>1.

NRL(X) = 
2

)2)(1( nn

,oddisnif
1

)2(

even isn
1

,)2(

)(N
2/)3( 2

2/)2( 2

BI n

n

i

i
in

if

in

X

Table 5. Moving types and neighborhood sizes for the network solution representation
Type Definition Neighborhood size

MA Link xi,j takes value 1 for xi,j = 0 and i, j = 1 ,…, n(n-1)/2

1

1 1

)1()(
n

i

n

ij
ijM xN

A
X for

0ijx

MD Link xi,j takes value 0 for xi,j = 1 and i, j = 1 ,…, n(n-1)/2
1

1
( ) ( )

D

n

M
i

N d iX for d(i) 2

MAD
Link xi,j takes value 1 and xk,l takes value 0 for xi,j = 0, xk,l

= 1 and i, j, k, l = 1 ,…, n(n-1)/2
( ) ( )

A DM MN NX X
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Fig. 3 (a): Current solution X (b): MSI(X: x5/x7 – x8) (c): MAS(X: x16/x17) (d): MBI(X: x2 – x3/x19 – x20) (e): 
MGS(X: x5/x7)                (f): MRL(X: x7 – x9)
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3.6. Steps of the Algorithms

The steps of SALS algorithm are given in Figure 5. At 
each iteration of the algorithm, a subset N (X: X(s) , s
=1, …, S) is generated from X (current solution) by 
applying S moving types. While in the case of VRP, 
PFSP, and QAP S is five (explained in Subsection 
3.5.1), for TDP S is three (explained in Subsection
3.5.2). The best one, X', among obtained neighbors with 
best objective value is then selected as a new current 
solution if it satisfies the acceptance condition “f(X')

f(X)”, otherwise a new subset N (X) is generated 
randomly.

The steps of TS are listed in Figure 6. TS algorithm 
uses a short-term memory with size tt. If a current 
solution has been created by adjoining pth and rth

elements of X, moves which disarrange this successive 
subsequence of the p and r are classified as tabu during 
next tt iterations. At each iteration, the subset N (X: X(s)

, s =1, …, S) is obtained depending on the problem 
handled and the best solution in the subset which 
created using a non-tabu move, X', is added to a 

sampling list, SL, with size ss. If the N entirely contains 
tabu moves, then a new N is generated until SL is filled 
with ss solutions. However, the aspiration criterion 
removes the tabu condition when any move yields a 
better solution than the best solution obtained so far. 
The best solution, X'', in the sampling list is accepted as 
the new current solution.

SA algorithm is given in Figure 7. The best solution, 
X', in the N (X) is recorded as the current solution, if 

f(X') < f(X) or U(0,1) < 
T

XfXf
e

)()(

is satisfied, 
where U(0,1) represents a uniformly generated number 
between 0 and 1. T is a control parameter. The 
algorithm proceeds by attempting a certain number of 
neighborhood moves, M, at each temperature, while T is 
gradually dropped in the ratio of .

Figure 8 represents the steps of RRT algorithm. At 
each iteration of RRT, the subset N (X) is generated and 
the best, X', is then selected as the new current solution 
if it satisfies the acceptance condition “f(X') < ))(( i

bf X
D”, otherwise a new subset N (X) is generated 

randomly. 

Fig. 4 (a) Current solution X (b) Binary coding of X (c) MA(X: x1,6 = 1) (d) 
MD(X: x2,5 = 0)  (e) MAD(X: x1,6 = 1, x2,5 = 0)
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Fig. 8 Steps of RRT
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Fig. 7 Steps of SA
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Fig. 6 Steps of TS
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Fig. 5  Steps of SALS
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4. Computational Study

SALS algorithm is first compared with TS, SA, and 
RRT algorithms on a suit of selected benchmarking 
problems and then compared with the other 
metaheuristics proposed in the related literatures. Since 
TS, SA, and RRT require an additional process related 
with parameter tuning, parameter selection studies for 
these algorithms are given in the next subsection.

4.1. Parameter Selection

The basic TS, SA, and RRT algorithms have a set of
parameters which shown in Table 6. These parameter 
sets must be tuned before their run. 3k factorial 
experiments are designed individually for this purpose, 
where k is the number of parameters (k is equal to 2, 3, 
and 1 for TS, SA, and RRT, respectively). Table 6 also 
shows the selected parameter levels based on pre-
experimentations. While parameter levels of TS and SA 
are the same for all problem types, the parameter of 
RRT, D, has been changed for each problem type.
Twelve separate factorial designs were carried out for 
each algorithm and each application area. Each
algorithm was run 5 times with each parameter 
combinations and then the analysis of variance was 
performed at 95% level. Statistical analysis results show 
that the parameters are statistically significant and 
solution quality of related algorithm is influenced by
parameter levels. Consequently, selected parameter sets 
which reveal the best solution quality are given in Table 
7.

On the other hand, SALS algorithm has a single 

throughout its run as explained previous sections.
Significant difference of SALS from other algorithms is 

that it does not require parameter optimization (tuning)
effort. 

4.2. Comparison with TS, SA, and RRT 
algorithms

SALS, TS, SA, and RRT algorithms were executed 20 
times on a Pentium IV/1000-512 RAM computer. All 
runs were terminated when the number of solution 
search reaches pre-determined level. Considered test 
instances are followed for each problem type:

VRP: 7 instances with 50 - 199 customers 
(Christofides and Elion12).

PFSP: 30 instances of 3 different sizes from the 
whole benchmark set of Taillard13. A sample of 10 
instances is provided for each of 50 x 20, 100 x 20, and 
200 x 20 (n x m) sizes.

QAP: 13 instances with 42 – 100 locations (Skorin-
Kapov14)

TDP: 75 instances of 5 different sizes. A sample of 
15 instances is given with known optima for each of 6 –
10 nodes. 3 instances with 15, 20, and 25 nodes with 
unknown optima are given (Altiparmak15).

Performance measures in equation 5-9 were 
obtained for each algorithm using above defined 
problem sets separately.

Table 6. Parameters and selected levels for TS, SA and RRT

Levels
TS SA RRT

tt ss T M
D

VRP PFSP QAP TDP

-1 n n 0.5n 5n 0.90 5 15 5 20

0 n5.1 2n N 10n 0.93 10 20 7 30

1 n2 4n 2n 20n 0.96 15 25 9 40
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Relative Deviation percentage: 

20,,1100 jBO

BOA
jO

jRD (5)

Where, A
jO is the objective value of considered 

algorithm obtained from replication j. BO is reference 
value (best known or optimum objective value).

Best Relative Deviation: BRD = jRD
j

min (6)

Average Relative Deviation: ARD =
20

j jRD
(7)

Coefficient of Variation: CV =

ARD

ARDRD
j j 20

1

2

(8)

Average Run Time in Minutes: ART =
20

j jRuntime
(9)

Performance comparisons of the algorithms in terms 
of defined measures are given in Table 8 for VRP. As 
shown in this table SALS algorithm outperforms others 
in terms of ARD and BRD for all problem sizes. 
Meanwhile SALS has minimum variability according to 
CV. SA has run time advantage comparing to other 
algorithms. Similar performance results of SALS are 
shown in Table 9 for PFSP. SALS is more effective 
than SA, TS, and RRT algorithms as seen from average 
results. CV of SALS, TS, and RRT are close to each 
others. TS has the worst effectiveness and efficiency 

Table 7. Selected parameters for TS, SA and RRT

TS SA RRT
Application 

area tt ss T M D

VRP n5.1 4n 2.0n 5n 0.93 10

PFSP n5.1 4n 0.5n 20n 0.96 15

QAP n5.1 4n 0.5n 5n 0.90 5

TDP n 2n n 5n 0.90 20

Table 8. Performance comparison of the algorithms on VRP

Problem SALS
customer size ARD CV BRD ART

50 1.42 1.25 0.00 1.1483
75 1.41 0.81 0.00 3.1150

100 0.68 0.29 0.15 3.9508
100 0.00 0.00 0.00 4.1258
120 0.14 0.19 0.00 5.5717
150 1.21 0.57 0.26 8.7982
199 2.87 0.95 1.15 16.3203

Average 1.10 0.06 0.22 6.1472
TS

ARD CV BRD ART
50 2.13 0.0111 0.04 1.1375
75 5.75 0.0066 4.45 2.4258

100 3.85 0.0075 2.46 3.8333
100 1.28 0.0054 0.27 3.7633
120 6.70 0.0287 2.45 5.1725
150 7.18 0.0085 5.85 8.6792
199 9.19 0.0091 6.62 16.3175

Average 5.15 0.0110 3.16 5.9042
SA

ARD CV BRD ART
50 4.87 0.0225 0.00 0.0092
75 9.51 0.0295 3.92 0.0200

100 5.12 0.0148 2.25 0.0317
100 3.65 0.0276 0.48 0.0317
120 9.52 0.0587 2.34 0.0442
150 13.50 0.0209 9.91 0.0683
199 16.96 0.0290 12.69 0.1242

Average 9.02 0.029 4.51 0.0470
RRT

ARD CV BRD ART
50 1.69 0.00928 0.00 1.3133
75 2.44 0.0141 0.832 2.6500

100 1.14 0.00251 0.74 4.3400
100 0.57 0.0015 0.30 4.7707
120 2.72 0.0194 0.22 6.4960
150 2.57 0.0032 2.24 9.7661
199 3.53 0.0076 2.58 16.9201

Average 2.09 0.0082 0.99 6.6080
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performance for PFSP while again SA is the fastest 
algorithm. Table 10 displays the results experienced on 
QAP. SALS algorithm precisely surpasses other 
algorithms with respect to average BRD and ARD.
Average ART results of SALS and RRT are similar,
while the results of TS and SA are better where ART
reported by SA is the best. For QAP, the worst solution 
quality performance is belong to RRT algorithm. 
Finally, Table 11 exhibits performance comparison of 
the algorithms on TDP. Although, TS has the best ARD,
the best BRD are reported by SALS. SALS algorithm 
also has shortest ART for TDP. RRT algorithm, again, 
gives the worst solutions to TDP. 

The results given in Tables 8-11 are descriptive 
statistics related with performance metrics of ARD,
BRD, ART and CV obtained by SALS, TS, SA, and RRT 
algorithms for all considered problem types. These 
results especially are encouraging about the solution 
quality of SALS in terms of ARD and BRD. A statistical 
analysis study is also fulfilled to confirm statistically 
meaningful differences between SALS and other 

algorithms in terms of effectiveness and efficiency for 
each problem types. Therefore, the statistical analysis 
on ARD, BRD (treated as measures about effectiveness) 
and ART (taken as a measure about efficiency) is
performed to test several hypotheses for significance.

Table 10. Performance comparison of the algorithms on QAP

Problem SALS
location ARD CV BRD ART

42 0.17 0.0014 0.00 5.1702

49 0.15 0.0012 0.07 5.8909

56 0.23 0.0018 0.00 29.4834

64 0.07 0.0005 0.00 39.4208

72 0.18 0.0011 0.00 52.1500

81 0.08 0.0006 0.01 49.6594

90 0.14 0.0009 0.00692 90.3967

100 0.07 0.0002 0.05 210.1782

100 0.06 0.0007 0.02 151.7586

100 0.04 0.0004 0.00406 116.4168

100 0.08 0.0003 0.00 131.9047

100 0.02 0.00014 0.00805 109.3423

100 0.06 0.0004 0.02 177.1752

Average 0.104 0.0007 0.01 89.9190

TS

ARD CV BRD ART

42 0.83 0.0024 0.40 4.8843

49 0.81 0.0020 0.40 7.4601

56 0.98 0.0017 0.64 11.0448

64 0.92 0.0017 0.59 13.8948

72 0.90 0.0015 0.54 22.1710

81 0.71 0.0009 0.50 31.0041

90 0.88 0.0012 0.59 42.1144

100 0.69 0.0003 0.64 206.0432

100 0.71 0.0014 0.37 111.6999

100 0.70 0.0008 0.60 111.8918

100 0.80 0.0010 0.60 103.1167

100 0.81 0.0013 0.52 103.1167

100 0.83 0.0009 0.72 103.0768

Average 0.81 0.0013 0.55 67.0399

Table 9. Performance comparison of the algorithms on 
PFSP

Problem SALS
job x machine ARD CV BRD ART

50 x 20 1.24 0.0029 0.70 11.35
100 x 20 1.48 0.0028 0.95 17.54
200 x 20 1.34 0.0022 0.96 85.04
Average 1.35 0.0026 0.87 37.97

TS
ARD CV BRD ART

50 x 20 3.36 0.0029 2.78 8.03
100 x 20 3.64 0.0021 3.24 31.26
200 x 20 3.37 0.001823 3.02 120.78
Average 3.46 0.0023 3.01 53.36

SA
ARD CV BRD ART

50 x 20 2.19 0.0040 1.51 0.32
100 x 20 2.28 0.0031 1.76 1.58
200 x 20 1.99 0.0025 1.57 6.459
Average 2.15 0.0032 1.61 2.79

RRT
ARD CV BRD ART

50 x 20 1.20 0.0026 0.90 11.79
100 x 20 1.49 0.0022 1.21 18.67
200 x 20 1.43 0.0020 1.16 91.36
Average 1.37 0.0023 1.09 40.61
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The Wilcoxon Signed Rank Test, which is a 
nonparametric test comparing the pairs, is used in the 
statistical analysis. The following three alternative 

hypotheses are defined for each problem type, 
separately, where Alg refers one of the TS, SA or RRT 
algorithms used in the statistical comparison.

Table 11. Performance comparison of the algorithms on TDP

Problem SALS
node size ARD CV BRD ART

6 0.74 0.0131 0.00 1.65
7 1.51 0.0232 0.00 5.69
8 1.21 0.0155 0.05 15.51
9 2.40 0.0329 0.00 28.59
10 2.54 0.0245 0.41 59.10
15 -8.6 0.0371 -13.36 539.33
20 -26.4 0.1251 -38.15 65.132
25 -16.8 0.1190 -29.85 97.82

Average -5.4 0.049 -10.1 101.60
TS

ARD CV BRD ART
6 0.93 0.0141 0.00 1.11
7 1.54 0.0205 0.00 2.81
8 1.34 0.0138 0.07 11.44
9 3.22 0.0374 0.26 24.27
10 2.61 0.0243 0.55 45.84
15 -0.6 0.0633 -8.14 408.67
20 -32.6 0.0407 -35.93 1203.94
25 -24.3 0.0758 -29.85 1940.58

Average -6.0 0.036 -9.1 454.83
SA

ARD CV BRD ART
6 5.70 0.0527 1.42 1.91
7 12.90 0.1039 2.04 5.72
8 12.58 0.1105 1.87 12.85
9 12.45 0.1094 1.03 18.92
10 13.87 0.1275 2.87 34.57
15 32.2 0.5363 -12.05 215.71
20 -21.3 0.1687 -34.07 643.67
25 -5.7 0.0246 -8.21 384.79

Average 7.8 0.154 -5.6 164.77
RRT

ARD CV BRD ART
6 7.59 0.0524 2.66 2.59
7 2.74 0.0313 0.20 7.15
8 2.18 0.0220 0.17 22.79
9 3.69 0.0381 0.36 36.92
10 3.52 0.0269 0.68 74.37
15 15.13 0.1643 -10.53 425.13
20 28.74 0.0567 20.74 708.00
25 7.36 0.0393 3.73 1062.00

Average 0.089 0.054 2.3 292.37

Table 10. Performance comparison of the algorithms on QAP  
(continued)

Problem SA

location size ARD CV BRD ART

42 0.35 0.0009 0.16 15.1817

49 0.68 0.0011 0.45 16.9134

56 0.79 0.0009 0.69 18.1236

64 0.88 0.0008 0.73 13.9457

72 0.99 0.0008 0.85 22.4009

81 1.01 0.0008 0.82 73.9325

90 1.16 0.0006 1.04 42.0001

100 1.17 0.0006 1.08 102.6517

100 1.09 0.0008 0.97 102.6500

100 1.15 0.0005 1.09 102.6584

100 1.18 0.0006 1.06 102.6698

100 1.09 0.0004 1.03 102.5934

100 1.15 0.0008 0.98 102.6517

Average 0.98 0.0007 0.84 62.9518

RRT

ARD CV BRD ART

42 2.93 0.0043 2.11 4.8202

49 2.15 0.0061 1.07 6.3066

56 2.36 0.0056 1.82 22.4434

64 2.40 0.0038 2.06 15.2400

72 2.57 0.0045 1.84 45.6800

81 2.02 0.0052 1.33 47.9212

90 1.84 0.0036 1.48 68.8599

100 1.52 0.0025 1.12 150.788

100 1.98 0.0044 1.39 149.3803

100 1.99 0.0068 1.00 149.3308

100 1.70 0.0022 1.29 149.3262

100 1.81 0.0039 1.23 149.3800

100 1.42 0.0030 0.99 149.3757

Average 2.05 0.0043 1.44 85.2963
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)1(
1H : 0lgASALS ARDARD

)2(
1H : 0lgASALS BRDBRD (10)

)3(
1H : 0lgASALS ARTART

Table 12 gives the Wilcoxon Signed Rank Test 
results derived from replications of SALS, TS, SA, and 
RRT algorithms on each test problem of VRP. The table 
shows that SALS gives smaller ARD than TS, SA, and 
RRT (i.e., the negative mean differences) and these 
mean differences are all statistically significant with p-
values close to zero. The same results are also hold in 
terms of BRD. On the other, ARTSALS is greater than that 
of TS and SA and the mean differences are statistically 
significant with p-values close to zero. The mean 
difference between ARTSALS and ARTRRT is not 
significant statistically, even ARTSALS is smaller than 
ARTRRT.

According to the statistical test on the data gathered 
from experiments on the test problems of PFSP, Table 
13 shows that SALS has smaller ARD than TS, SA, and 
RRT and the mean differences between ARDSALS and 
ARDTS and between ARDSALS and ARDSA are 
statistically significant with p-values close to zero while 
ARDSALS and ARDRRT are statistically similar. On the 
other hand BRDSALS is all statistically significant smaller 

than that of TS, SA, and RRT. Additionally, the p-
values which are close to zero statistically confirm that 
run time performance of SALS, ARTSALS, is better than 
ARTTS and ARTRRT as ARTSA is better than ARTSALS.

The results of Wilcoxon Signed Rank Test on the 
data obtained from experiments on the test problems of 
QAP are shown in Table 14. These results point out that 
solution quality of SALS in terms of both ARD and 
BRD is all statistically better than that of TS, SA, and 
RRT for QAP. Meanwhile, ART of SALS is greater than 
ART of TS, SA, and RRT and the mean differences are 
statistically significant with p-values smaller than 
significant level of 0.05.

The last statistically comparison between SALS and 
the other algorithms is fulfilled for TDP. The results of 
Wilcoxon Signed Rank Test are given in Table 15. As 
seen from the table ARDTS is smaller than ARDSALS with 
p-value of 0.044 which is close to significant level of 
0.05 while the mean differences between ARDSALS and 
ARDSA and ARDSALS and ARDRRT are statistically 
significant and ARDSALS is better. In terms of BRD,
SALS and TS are statistically similar for TDP. However 
SALS is better than both of SA and RRT in terms of 
BRD. Finally, ART performance of SALS is better than 
all other algorithms indicating statistical significance 
with p-values less than level of 0.05.

Table 12. Results of statistical analysis for SALS, TS, SA, and RRT 
algorithms on VRP

Test 
Hypothesis Comparison Mean 

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -4.05 .000a

0SASALS ARDARD -7.90 .000 a

0RRTSALS ARDARD -.99 .000 a

)2(
1H : 0TSSALS BRDBRD -2.94 .018 a

0SASALS BRDBRD -4.29 .028 a

0RRTSALS BRDBRD -.77 .028 a

)3(
1H : 0TSSALS ARTART .243 .000 a

0SASALS ARTART 6.10 .000 a

0RRTSALS ARTART -.461 .372
a Statistically significant different at level of 0.05
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In summary, it is statistically shown that SALS is 
better than TS, SA, and RRT in terms of both ARD and 
BRD for all problem types except TDP in which TS 
gives smaller ARD than SALS. However BRD of SALS 
and TS are not statistically different for TDP. On the 

other hand SALS has run time advantage respect to TS, 
SA, and RRT algorithms in terms of ART for TDP. For 
QAP, although, SALS is worse than other algorithms 
respect to ART, it is superior to others in terms of both 
ARD and BRD.

Table 13. Results of statistical analysis for SALS, TS, SA, and RRT 
algorithms on PFSP

Test 
Hypothesis Comparison Mean 

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -2.11 .000a

0SASALS ARDARD -.8 .000 a

0RRTSALS ARDARD -.02 .191
)2(

1H : 0TSSALS BRDBRD -2.14 .000 a

0SASALS BRDBRD -.74 .000 a

0RRTSALS BRDBRD -.22 .000 a

)3(
1H : 0TSSALS ARTART -15.39 .000 a

0SASALS ARTART 35.18 .000 a

0RRTSALS ARTART -2.64 .000a

a Statistically significant different at level of 0.05

Table 14. Results of statistical analysis for SALS, TS, SA, and RRT 
algorithms on QAP

Test 
Hypothesis Comparison Mean 

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -.706 .000a

0SASALS ARDARD -.876 .000 a

0RRTSALS ARDARD -1.946 .000 a

)2(
1H : 0TSSALS BRDBRD -.54 .000 a

0SASALS BRDBRD -.83 .001 a

0RRTSALS BRDBRD -1.43 .001 a

)3(
1H : 0TSSALS ARTART 22.880 .001 a

0SASALS ARTART 26.967 .000 a

0RRTSALS ARTART 4.623 .000a

a Statistically significant different at level of 0.05
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4.3. Comparison with the Literature

The aim of the second comparative study is to show the 
performance of SALS is whether comparable to those of 
the metaheuristics proposed in the literature. Some of
that heuristics used for the comparison are rather 
sophisticated. These metaheuristics also utilize some 
problem specific structures and speed-up procedures. 
On the other hand, SALS has very simple
straightforward structure to implement. Therefore, this 
comparative study takes into account the best solution 
quality of the heuristics in terms of BRD.

4.3.1. Results on VRP

In this application, a feasible initial solution, generated 
by assigning one vehicle to each customer location, is 
used to initialize SALS and only feasible neighbors are 
considered at each iteration of the algorithm. Sizes of 
benchmark instances by Christofides and Elion12 have 
been found insufficient to compare performance of the 
metaheuristics proposed in the VRP literature. 
Therefore, 20 larger-sized VRPs by Golden et al.20 are 
used to compare the SALS and the metaheuristics listed 
in Table 16. Table 16 also includes the number of 

parameters of these metaheuristics and their 
abbreviations. As outlined in the table, all listed 
algorithms require parameter tuning process for a 
number of parameters changing from 1 to 20. 

BRD values of the algorithms are shown in Table 
17. The reference objective values for each problem to 
calculate the BRDs are given in the reference value
column of the table. The parameters of all algorithms 
given in the table, except T-AMP, are tuned for each 
problem instance separately. T-AMP uses a standard 
parameter setting for the problem set. As seen in Table 
17, SALS has higher solution quality, on average, than 
five of the metaheuristics. Results of XK-TS, TK-AMP 
and LGW-RRT algorithms are not reported for the 
whole problem set since related data is not available in 
the literature. T-AMP and RDH-AC algorithms which 
have 9 and 8 parameters, respectively, give similar BRD
results. Though MB-AGES algorithm gives rather good 
results for each problem, the parallel implementation of 
record-to-record algorithm and integer programming, 
GGW-PRRTIP, by Groër et al.53 outperforms all 
algorithms. However, large parameter sets of MB-
AGES and GGW-PRRTIP make the algorithms 
complicated to apply different instances.

Table 15. Results of statistical analysis for SALS, TS, SA, and 
RRT algorithms on TDP

Test 
Hypothesis Comparison

Mean 
Difference

p-
value

)1(
1H : 0TSSALS ARDARD .6 .044a

0SASALS ARDARD -13.2 .000 a

0RRTSALS ARDARD -14.3 .000 a

)2(
1H : 0TSSALS BRDBRD -1.00 .087

0SASALS BRDBRD -4.550 .000 a

0RRTSALS BRDBRD -12.400 .019 a

)3(
1H : 0TSSALS ARTART -353.23 .000 a

0SASALS ARTART -63.17 .001 a

0RRTSALS ARTART -191.37 .000a

a Statistically significant different at level of 0.05
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4.3.2. Results on PFSP

The performance of SALS on the PFSP, described in 
subsection 4.2, is compared with some of the successful 
algorithms in the literature. Table 18 shows the 
considered heuristics with their abbreviations and the 

number of parameters while Table 19 displays the BRD
results of these metaheuristics. The studies listed in 
Table 18 have reported the solution quality results 
considering different reference objective values. In 
Table 19, BRD values are reported using Taillard’s13

results as reference to overcome this dissimilarity. The 
results are averaged over the 10 instances of the each 
size. As seen from the table, SALS outperforms the 
eight of the algorithms out of twelve in terms of solution 
quality. NS-MSSA, with 8 parameters, has the best 
solution quality. Although RS-IG and PTL-DDE have 
similar BRD performances, RS-IG has simplicity 
advantage from point of parameter tuning. Nevertheless, 
SALS is the simplest algorithms from the same 
perspective. 

4.3.3. Results on QAP

The performance of SALS is compared with the 
metaheuristics listed in Table 20 on the QAP by Skorin-
Kapov14. Table 20 shows these heuristics, their 
abbreviations, and the number of parameters of each 
algorithm. BRD results from the experiments and the 
results from the QAP literature are displayed in Table 
21. As seen from the table, the results of AOT-GGA, 
LO-HGA, SK-ETS, S-ILS/ES, and JRG-CPTS 
algorithms are available for the whole problem set.
SALS is superior in average to these algorithms, except 
S-ILS/ES and JRG-CPTS. While CK-TS, T-TS, S-
ILS/ES and JRG-CPTS algorithms outperform SALS 
for the first seven problems, FF-HGA finds the best 
solutions for the last eight problems.

4.3.4. Results on TDP

Effectiveness of SALS for TDP is compared with the 
algorithms given in Table 22 on the selected test 
problems, represented with notations L (number of 
links), p (reliability of the links), and R0 (overall 
network reliability requirement), from the whole 
benchmark set of Altiparmak15 mentioned in subsection 
4.2. As seen in Table 23, SALS, DAS-LGA, and DAB-
ACOSA give the optimum results at least one time for all 
problems. DAS-GA and AA-NN also are able to 
generate high quality solutions. While DAB-ACOSA has 
minimum average of CV, SALS has lower CV than that 
of DAS-GA and RR-SDA. CV results are not applicable 
for NN approach.

Table 16. Some successful algorithms for VRP and their 
parameters

Study Algorithm Algorithm 
Abbreviation

Number of 
Parameters

Xu and 
Kelly21 Tabu Search XK-TS 20

Golden et 
al.20

Record-to-
Record 
Travel

GWKC-
RRT 3

Tarantilis 
and 
Kiranoudis22

Adaptive 
Memory 
Programming

TK-AMP 7

Tarantilis et 
al.8

Threshold 
Accepting TKV-TA1 7

Tarantilis et 
al.9

Threshold 
Accepting TKV-TA2 1

Toth and 
Vigo23 Tabu Search TV-TS 7

Prins24 Evolutionary 
Algorithm P-EA 7

Reimann et 
al.25 Ant Colony RDH-AC 9

Tarantilis26
Adaptive 
Memory 
Programming

T-AMP 8

Li et al.10
Record-to-
Record 
Travel

LGW-RRT 5

Mester and 
Braysy27

Active 
Guided 
Evolution 
Strategy

MB-AGES 11

Groër et 
al.53

Parallel 
Algorithm 
Combining 
Record-to-
record travel 
with Integer 
Programming

GGW-
PRRTIP

13
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Finally, Table 24 gives the minimum cost results of 
the heuristics for large-size networks with unknown 
optimum solutions. It is seen that SALS gives superior 
results than other metaheuristics for each problem size. 
For the problem with node size, N, is 15, it is seen that 
obtained solution quality by DAB-ACOSA and SALS is 
almost same.

5. Conclusions

This paper presents a local search algorithm, called 
SALS, which has a single self-adaptive parameter. 
SALS algorithm has been tested on four different 
problem types selected from routing, scheduling, 
assignment, and topological design areas. SALS 
algorithm also can be applied to another combinatorial 
problem if a suitable solution representation scheme, a
cost function, and a moving mechanism are described. 
SALS gathers some feedback information throughout 
the search to perform a learning process of the 
parameter . The algorithm is successfully applied to 
VRP, PFSP, QAP, and TDP without any time and talent 
to manage parameter optimization. From this point of 
view, transferring of SALS into the real-world 
applications will be reasonable if the end-users have 
neither the time nor the experience to fine-tune 
sophisticated search methods.

Experimental study and statistical analysis show that 
SALS is the best performing heuristic in terms of 
solution quality for the mentioned problems comparing 
the basic TS, SA, and RRT algorithms except 
topological design problem in which TS is superior to 
SALS in terms of average solution quality while in the 
best case SALS and TS have statistically similar 
performances. As SALS has the shortest average run
time for the TDP problems, the run time performance 
for other problems is obtained as average. Best solution 
quality results of SALS algorithm also is compared with 
the performance of heuristics selected from the related 
literatures. This comparison points out that SALS either 
competes with these metaheuristics or outperforms the 
most of them. The proposed algorithm obviously has 
implementation simplicity and flexibility on different 
problem types without parameter tuning effort. 

Application of SALS to different combinatorial 
problems is also planned for future directions.

Table 18. Some successful algorithms for PFSP

Study Algorithm
Algorithm 
Abbreviation

Number of 
Parameters

Osman and 
Potts28

Simulated 
Annealing

OP-SA 4

Reeves29 Tabu Search R-TS 2

Reeves30 Genetic 
Algorithm R-GA 5

Nowicki 
and 
Smutnicki31

Tabu Search NS-TS 3

Reeves and 
Yamada32

Genetic 
Algorithm

RY-GA 5

Grabowski 
and 
Pempera33

Tabu Search GP-TS 4

Grabowski 
and 
Wodecki34

Tabu Search GW-TS 2

Nowicki 
and 
Smutnicki35

Modified 
Scatter Search 
Algorithm

NS-MSSA 8

Ruiz and 
Stützle48

Iterated 
Greedy 
Algorithm

RS-IG 2

Pan et al.51

Discrete 
Differential 
Evolution 
Algorithm

PTL-DDE 4

Tseng and 
Lin49

Hybrid 
Genetic 
Algorithm 
and Local 
Search

TL-GALS 5

Zobolas et 
al.50

Hybrid 
Genetic 
Algorithm 
and Variable 
Neighborhood 
Search

ZTI-GAVNS 3
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Table 19. BRD results on PFSP

nxm
OP-
SA

R-
TS

R-
GA

NS-
TS

RY-
GA

GP-
TS

GW-
TS

NS-
MSSA

RS-
IG

TL-
GALS

ZTI-
GAVNS

PTL-
DDE SALS

50x20 2.86 1.55 3.44 -
0.36

-
0.30

0.17 0.13 -0.90 -
0.84

-0.21 0.028 -0.795 -0.22

100x20 2.32 1.07 2.91 -
0.66

-
0.92

-
0.66 -0.68 -1.83 -

1.43 -0.33 -0.38 -1.22 -0.78

200x20 1.74 0.08 1.35 -
0.80

-
0.82

-
1.00 -1.12 -1.70 -

1.36 -0.43 -0.68 -1.74 -0.89

Average
Performance 2.31 0.90 2.57

-
0.61

-
0.68

-
0.50 -0.56 -1.48

-
1.21 -0.32 -0.34 -1.25 -0.63

Table 20. Some successful algorithms on QAP

Study Algorithm Algorithm 
Abbreviation

Number of 
Parameters

Skorin-
Kapov14 Tabu Search SK-TS 3

Taillard36 Tabu Search T-TS 4
Skorin-
Kapov 37

Extended 
Tabu Search

SK-ETS 3

Fleurent 
and 
Ferland38

Hybrid 
Genetic 
Algorithm

FF-HGA 6

Chiang and 
Kouvelis39 Tabu Search CK-TS 5

Chiang and 
Chiang40

Hybrid Tabu 
Search CC-HTS 6

Ahuja et 
al.41

Greedy 
Genetic 
Algorithm

AOT-GGA 8

Lim and 
Omatu42

Hybrid 
Genetic 
Algorithm

LO-HGA 6

Stützle43

Iterated 
Local Search 
with 
Evolution 
Strategies

S-ILS/ES 6

James et 
al.52

Cooperative 
Parallel Tabu 
Search 
Algorithm

JRG-CPTS 6
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Table 21. BRD results on QAP

n Reference
value

SK-
TS T-TS SK-

ETS
FF-

HGA
CK-
TS

CC-
HTS

AOT-
GGA

LO-
HGA

S-
ILS/ES

JRG-
CPTS SALS

42 15812 0.329 0 0 - 0 0 0 0.354 0 0 0

49 23386 0.641 0 0 - 0 0 0.214 0.188 0 0 0.07

56 34458 0.807 0 0 - 0 0 0.023 0.058 0 0 0

64 48498 1.118 0 0 - 0 0 0.169 0.095 0 0 0

72 66256 0.755 0 0 - 0 0.024 0.272 0.211 0 0 0

81 90998 0.857 0.011 0.011 0 0.011 0.031 0.211 0.123 0 0 0.01

90 115534 0.732 0 0.007 0 0.007 0.095 0.27 0.436 0 0 0.007

100 152002 - - 0.908 0 - - 0.191 0.224 0 0 0.05

100 153890 - - 0.765 0 - - 0.14 0.296 0 0 0.02

100 147862 - - 1.219 0 - - 0.011 0.058 0 0 0.004

100 149576 - - 0.749 0 - - 0.17 0.271 0.0013 0 0

100 149150 - - 0.992 0 - - 0.231 0.327 0 0 0.008

100 149036 - - 1.098 0 - - 0.191 0.411 0.023 0.003 0.02

Average
Performance 0.748 0.0016 0.442 0 0.0026 0.0214 0.161 0.235 0.0019 0.000 0.015

Table 22. Successful algorithms for TDP

Study Algorithm Algorithm 
Abbreviation

Number of 
Parameters

Dengiz et 
al.44

Genetic 
Algorithm DAS-GA 3

Dengiz et 
al.45

Genetic 
Algorithm 
with Local 
Search

DAS-LGA 4

Aboelfotoh 
and Al-
Sumait46

Neural 
Network AA-NN 3

Ramirez-
Marquez 
and 
Rocco47

Probabilistic 
Solution 
Discovery 
Algorithm

RR-SDA 4

Dengiz et 
al.54

Hybrid Ant 
Colony-
Simulated 
Annealing 
Algorithm

DAB-
ACOSA

8
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