
Received 22 March 2013

Accepted 18 January 2014

A Self-Adaptive Heuristic Algorithm for
Combinatorial Optimization Problems

Cigdem Alabas-Uslu*
Marmara University, Department of Industrial Engineering, 34722 Istanbul, Turkey

cigdem.uslu@marmara.edu.tr

Berna Dengiz
Baskent University, Department of Industrial Engineering, 06530 Ankara, Turkey

bdengiz@baskent.edu.tr

Abstract

This paper introduces a new self-tuning mechanism to the local search heuristic for solving of combinatorial
optimization problems. Parameter tuning of heuristics makes them difficult to apply, as parameter tuning itself is an
optimization problem. For this purpose, a modified local search algorithm free from parameter tuning, called Self-
Adaptive Local Search (SALS), is proposed for obtaining qualified solutions to combinatorial problems within
reasonable amount of computer times. SALS is applied to several combinatorial optimization problems, namely,
classical vehicle routing, permutation flow-shop scheduling, quadratic assignment, and topological design of
networks. It is observed that self-adaptive structure of SALS provides implementation simplicity and flexibility to
the considered combinatorial optimization problems. Detailed computational studies confirm the performance of
SALS on the suit of test problems for each considered problem type especially in terms of solution quality.

Keywords: Metaheuristics, Combinatorial optimization, Parameter tuning, Adaptive parameter.

* Corresponding author

International Journal of Computational Intelligence Systems, Vol. 7, No. 5 (October 2014), 827-852

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

827

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Baskent Universtiy

https://core.ac.uk/display/326523524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Alabas-Uslu, B. Dengiz

1. Introduction

Due to the practical and the theoretical importance of
combinatorial optimization problems, interest in
research to develop exact and heuristic algorithms has
been evolved consistently. The run time of exact
algorithms often increases exponentially with the
instance size and only small or moderate-sized problems
can be solved. Therefore, the use of heuristics to solve
larger instances has been unavoidable. Particularly, the
literature has been increasingly enlarged by
metaheuristic approaches since the late 1980s. The
survey carried out by Blum and Roli1 and the book by
Glover and Kochenberger2 give the most popular
metaheuristics from a conceptual point of view and
outlines the details of different components and
concepts.

Metaheuristics are controlled by a set of parameters.
This set has a significant impact on the solving progress
since parameters drive exploitation and exploration rate
of search space. Thus, through the search process a
solution is obtained with high quality. Parameters are
the re-configurable parts of a metaheuristic algorithm
that can be manipulated to alter the performance of the
heuristic. Therefore, the best combination of parameter
values is a crucial task. This task is generally called
parameter optimization, parameter tuning or parameter
setting. A careful selection of the best parameter set
requires either a deep knowledge of the problem
structure or a lengthy trial-and-error process. Tuning a
set of parameters to achieve robust and high
performance of the metaheuristic is a tedious and time
consuming process. Adenso-Diaz and Laguna3 state that
about 10% of the total time dedicated to designing and
testing of a new heuristic is spent for development, and
the remaining 90% is consumed by fine-tuning of
parameters. Today the operational research literature
includes the large number of sophisticated
metaheuristics which are considerably effective and
efficient for the most combinatorial problems.
Nevertheless, the most of them still are influenced by
tediousness of parameter optimization.

Silberhorz and Golden55 state that metaheuristics
with a low degree of complexity have a number of
advantages such as being simple to implement in an
industrial setting, being simple to re-implement by
researchers, and being simpler to explain and analyze.
Meanwhile, as the heuristics get complicated, the

number of parameters increases in general. Therefore a
meaningful metric to measure complexity of the
heuristics becomes the number of parameters used in the
algorithm.

The best parameter set is usually re-determined
before the run considering application area, size or input
data of each individual instance. Many researchers tune
the parameters applying different reasonable values and
then select the combination which generates the best
performance of the algorithm. There have been a
number of studies which propose systematic methods to
find the best parameter set for considered algorithm.
While Barr et al.4 use experimental design technique,
Adenso-Diaz and Laguna3 combine factorial
experimental design with a local search mechanism.

An alternative way to tuning parameters beforehand
is by controlling them throughout the run. Heuristics
which are managed by this way are generally called
adaptive, reactive or self-tuning heuristics. This kind of
heuristics utilize differing forms of feedback
information to perform a learning process of the
parameter combination during the search. Self-tuning
heuristics are achieved for evolutionary algorithms
earlier than local search based algorithms. Eiben et al.5

present a comprehensive study to classify parameter
control methods for evolutionary algorithms and survey
various forms of control methods. The pioneering
attempt to develop a self-tuning mechanism for the local
search based metaheuristics is the reactive tabu search
by Battiti and Tecchiolli6. Today, numerous studies
describing different dynamic parameter structures can
be cited. For instance, scatter search by Russell and
Chiang7, threshold accepting by Tarantilis et al.8, 9,
record-to-record travel by Li et al.10, and reactive tabu
search by Osman and Wassan11 are among the recent
metaheuristics with dynamic parameters proposed for
the vehicle routing problems.

In this study, a self-adaptive local search method,
named SALS, is proposed. SALS algorithm has only
one parameter notated acceptance
parameter dynamically
throughout the search process. Thus, the effectiveness
of the algorithm is improved using the response surface
information of the problem instance and the
performance measure of the algorithm. The most
important advantage of SALS is that the algorithm does
not need additional time and specialization to manage
parameter optimization. Therefore, SALS is suggested

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

828

A Self-Adaptive Heuristic for COPs

as a heuristic with a low degree of complexity. We aim
to show that SALS is able to generate very good
solutions to combinatorial optimization problems
without any tuning effort by applying it to problems
selected from different application areas, namely, the
classical vehicle routing (VRP), permutation flow shop
scheduling (PFSP), quadratic assignment (QAP), and
topological design of computer networks (TDP),
problems.

Remainder of this paper is organized as follows. The
structure of SALS algorithm is explained in Section 2.
Implementations of SALS and tabu search (TS),
simulated annealing (SA), record-to-record-travel
algorithms (RRT) on the selected problems are given in
Section 3. Section 4 contains comparison of SALS with
TS, SA, and RRT algorithms on the test problems.
Section 4 also includes another comparative study to
demonstrate the effectiveness of SALS with respect to
the some heuristic algorithms proposed in the VRP,
PFSP, QAP, and TDP literatures. Finally, the last
section presents the conclusions of this study.

2. Description of the Self-Adaptive Local Search
Algorithm

SALS is a local search algorithm. The algorithm starts
with any initial solution zX as a current solution and
searches the solution space iteratively. Vector of X =
[x1, x2, …, xn] represents decision variables of
considered problem. At iteration i, a neighbor solution
X' is selected randomly from the neighborhood of the
current solution X. X' is recorded as the new current
solution if the following condition is satisfied for a
minimization problem:

If f(X') f(X) then X X'

Here, f(X) is the objective function value of the
solution X at iteration i -adaptive
parameter of SALS. The search process around the
current solution, X, is repeated until obtaining of an
acceptable neighbor solution, X'. The algorithm is
progressed to the next iteration whenever a new current
solution is recorded (. If the total number of
rejected neighbors reaches the neighborhood size of the
current solution, N(X) , at any iteration i

1 2” only for the

based on two criteria: Quality of the best solution and

number of improved solutions obtained during the
1 2, given by equations 1-

2, are introduced to measure the quality and the count of
the searched solutions, respectively. Where,)(i

bX is the
best solution observed until iteration i, zX is the initial
solution, C(L(i)) is the number of improved solutions
obtained until iteration i:

)(
)()(

1
z

i
b

f
f

X
X

(1)

i

i)L(C)(

2 (2)

1 2 (3)

The number of improved solutions until iteration i,
is counted by C(L(i)) C(L(i))()()(i

bff XX for
an accepted neighbor solution X'. SALS assumes that
f(X) 0, for the whole solution space. Decreasing

1 represent that solution quality of the best
solution is improved comparing to the initial solution.

2

indicate flat regions of the solution space, while
fluctuating values of that may indicate the regions with

1 and 2 calculated
through the search process adaptively as given in

search region in terms of objective function value
surrounding the current solution X. During the iterations

1 and 2 are updated by
equations 1 and 2, re
re
to take smaller values (approaching to 1) during the last
part of the search. It is exp
approaches to 1, the search is forced to find better
solutions. Figure 1 depicts the decrease of relative
deviation from the reference solution accompanied by

QAP, and TDP. Furthermore, changing of
with respect to the number of iterations for these
problems is shown in Figure 2 (in this figure initial
iterations of the search process are ignored to provide
clear visibility of the remainder iterations). As
seen from the figures, the self-adaptive structure
provides that the

decreases as the number of iterations increases for all
problem types.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

829

C. Alabas-Uslu, B. Dengiz

An experimental study is carried out to show the
effectiveness of the self-
three fixed levels, such as 1.0015, 1.0025, and 1.0035,
so that they produce reasonably good results in the
preliminary experiments. The VRP, PFSP, QAP, and
TDP benchmark problem sets taken from Christofides
and Elion12, Taillard13, Skorin-Kapov14 and
Altiparmak15, respectively, are used for the
experimental analysis. Problem instances are selected
randomly for each size to be able to get a representative
subset of the associated benchmarking set and classified
as small, moderate, and large size problems. SALS is
r
algorithm is allowed to run until a pre-determined
number of solutions met. Table 1 shows the average
deviations from the best known solutions (abbreviated
as ARD) and also the standard deviation of the
deviations obtained over the 10 runs. Totally 30 runs are

. When
equal 1.0015 the SALS algorithm generally yields better

results (marked by italic fonts) than other fixed levels.
However, it is easily seen that it is not robust against
problem type and problem size. On the other hand, the
SALS algorithm with self-
better results for all problem types and sizes. This

value needs parameter tuning for each problem type,
there is no need to spend more effort for the tuning of

dynamically using self
adaptive structure. As a result we can say that self-

superior results (marked by
bolt fonts) than those with all fixed levels except only
three cases. Self-
fixed levels in terms of average results over the problem
sizes. As seen from the Table 1, self-
generates the smallest standard deviation of ARD for

Signed Rank Test is applied to data gathered from the
experimentation of SALS with diffe
each problem type under consideration. The Wilcoxon
Signed Ranks test is designed to test a hypothesis about
the mean of a population distribution. This test does not
require the assumption that the population is normally
distributed. It often involves the use of matched pairs,
here self-adaptiv , in
which case it tests for a mean difference of zero.
Hypothese given in equation 4 is designed to test to
compare ARD obtained by the replications of self-
adaptiv
fixed levels, seperately, since we expect ARD of self-

veSelfAdaptiARD , is less than
)(iFixedARD , where

)(iFixedARD is ARD value obtained
from the fixed level i for i = 1.0015, 1.0025, 1.0035.
Table 2 gives the result of the statistical analysis and p-

values which are close to zero indicating
veSelfAdaptiARD

is statistically different from each
)(iFixedARD at

significant level of .005.

1H : 0
)(iFixedveSelfAdapti ARDARD (4)

elative deviation from the
best solution

Fig. 2

1

1,001

1,002

1,003

1,004

1,005

1,006

1,007

1,008

1,009

1,01

0 50000 100000 150000 200000 250000 300000 350000 400000

number of iterations

VRP

PFSP

QAP

TDP

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

830

A Self-Adaptive Heuristic for COPs

Table 1. Average deviation from the best known using fixed and self-adaptive

Application area Problem Size 1.0015 1.0025 1.0035 Self-adaptive

VRP

Small 0.0115 0.0063 0.0012 0.0
Moderate 0.0102 0.0047 0.0253 0.0048

Large 0.0162 0.0434 0.1347 0.0158
Average 0.0126 0.0181 0.0537 0.0069
Std. Dev. 0.0059 0.0191 0.0592 0.0076

PFSP

Small 0.0095 0.0276 0.0374 0.0101
Moderate 0.0254 0.0371 0.0427 0.0016

Large 0.0328 0.0387 0.0425 0.0018
Average 0.0226 0.0345 0.0409 0.0045
Std. Dev. 0.0101 0.0052 0.0029 0.0051

QAP

Small 0.0004 0.0132 0.0293 0.0004
Moderate 0.0319 0.0499 0.0563 0.0013

Large 0.0492 0.0537 0.0589 0.0009
Average 0.0272 0.0389 0.0482 0.0008
Std. Dev. 0.0205 0.0187 0.0137 0.0007

TDP

Small 0.1795 0.1373 0.1243 0.0129
Moderate 0.3068 0.1780 0.0288 0.0508

Large 0.0421 0.0264 0.0438 0.0083
Average 0.1761 0.1139 0.0656 0.0240
Std. Dev. 0.2194 0.1503 0.0568 0.0303

Table 2. Results of statistical analysis for comparing of self-

Test
Hypothesis Comparison Mean Difference p-value

1H : 0)0015.1(FixedveSelfAdapti ARDARD -.0505 .000a

0)0025.1(FixedveSelfAdapti ARDARD -.0423 .000 a

0)0035.1(FixedveSelfAdapti ARDARD -.0430 .000 a

a Statistically significant different at level of 0.05

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

831

C. Alabas-Uslu, B. Dengiz

3. Implementation

SALS algorithm is compared with some widely used
local search based metaheuristics: TS (Glover16), SA
(Kirkpatrick et al.17), and RRT (Dueck18). Details of
these metaheuristics can be found in the last mentioned
references. The aim of this comparative study is to
examine the effectiveness and efficiency of SALS
relative to the basic versions of TS, SA and RRT
metaheuristics on the considered problems, since SALS
also is simple algorithm. In this study, TS, SA, and RRT
algorithms are coded sticking to the basic principles
proposed by the pioneers employing the same neighbor
generation mechanism with SALS. Thus, they run under
the same base line. Although VRP, PFSP, QAP, and
TDP are well-known problems having rather rich and
broader literatures, the short descriptions of these
problems are given in subsection 3.1, 3.2, 3.3, and 3.4.,
respectively, to provide a better explanation of neighbor
generation mechanism of SALS . Basic structures and
acceptance conditions of SALS, TS, SA, and RRT
algorithms are defined in subsection 3.6, while
neighbor generation mechanisms are introduced in
subsection 3.5.

3.1. Vehicle Routing Problem

The Classical VRP can be described as the problem of
designing optimal delivery routes from one depot to a
number of customers under the limitations of side
constraints to minimize the total traveling cost. Graph
theoretic definition of the problem is as follows: Let G =
(V, A) be a complete graph, where V = {1,, n+1} is
the vertex set and A is the arc set. Vertices i = 2, ..., n+1
correspond to the customers, whereas vertex 1
corresponds to the depot. A nonnegative cost, cij,
associated with each arc (i, j) A represents the travel
cost between vertexes i and j. Each customer i is
associated with a known nonnegative demand, di, to be
delivered. The total demand assigned to any route may
not exceed the vehicle capacity, Q. A fleet of m
identical vehicles is located at the depot. Another
constraint which is sometimes included in VRP is that
the total duration of each route does not exceed a
distance limit, L. In the capacity and/or distance
constrained VRP, each of the m routes starts and
terminates at the depot and each customer is served
exactly once by exactly one vehicle. VRP is an NP-hard
combinatorial problem and only small-sized problems
can be solved optimally. Heuristic methods are

commonly used for approximate solutions to VRP in
practice.

3.2. Permutation Flow Shop Scheduling Problem

PFSP is a production planning problem. There are n
jobs to be processed in the same sequence on m
machines. Processing time of job i on machine j is given
by tij 0. It is assumed that machines can execute at
most one job at a time and the operating sequences of
the jobs are the same on every machine. The objective is
to find the permutation of jobs which will minimize the
time between the beginning time of the first job on the
first machine and the completion time of the last job on
the last machine. PFSP is known to be NP-complete for
more than two machines and most of the literature in the
last 40 years recommends the heuristic procedures in
order to obtain near-optimal solutions to PFSP.

3.3. Quadratic Assignment Problem

QAP has remained one of the great challenges in OR.
Many practical problems like backboard wiring, facility
layout, scheduling, manufacturing and many others can
be formulated as QAP. QAP can be described as the
problem of assigning a set of facilities to a set of
locations with given distances between the locations and
given flows between the facilities to minimize the sum
of the product between flows and distances.
Mathematically, the problem can be formulated by a
flow matrix F whose fij element represents the flow
between facilities i and j and a distance matrix D whose
dij element represents the distance between locations i
and j. The goal is the minimization of

n

i

n

j
jxixij

1 1
)()(df

over the set of all assignments, where the vector X
represents an assignment. QAP is an NP-hard problem.
Heuristic methods ranging from simple improvement
algorithms to complex metaheuristic algorithms have
been proposed for approximate solutions.

3.4. Topological Design of Computer Networks
Problem

An important stage of the topological design of
computer networks is to find the best layout of reliable
communication paths among the computers. The
problem considered in this study is the backbone

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

832

A Self-Adaptive Heuristic for COPs

network design of computers under the overall network
reliability (all-terminal reliability) constraint. Overall
network reliability is defined as the probability that
every pair of computers can communicate with each
other. 2-connectiveness, at least 2 different paths
between each pair of nodes, is regarded as a second
constraint to increase the reliability of the networks.
This topological design problem is NP-hard and has a
further complication in that the calculation of overall
network reliability is also NP-hard. A backbone network
can be modeled by a probabilistic graph G = (N, L, p)
where N and L are the set of nodes and edges that
correspond to the computers and communication links,
respectively, and p is the link reliability. The problem
can be modeled as a 0-1 integer programming problem
where xij decision variable takes value 1 if a link exists
between nodes i and j, else 0. Thus, the problem is to
find the vector, X, of the decision variables which
minimizes the total cost of the network and satisfies
predetermined desired reliability constraint, R0.

3.5. Neighbor Generation Mechanisms

SALS algorithm uses permutation solution
representation for VRP, PFSP, and QAP and network
solution representation for the TDP. Moving
mechanisms to generate neighborhoods for the
permutation solution representation of VRP, PFSP, and
QAP and the network solution representation of TDP
are illustrated in the following subsections.

3.5.1. Permutation Solution Representation

According to the permutation solution representation, a
solution point X is represented as a vector (x1, x2, …, xD)
with dimension D (D = n m n is the number
of customers and m is the number of vehicles for VRP,
D = n where n is the number of jobs for PFSP and n is
the number of facilities for QAP). Neighborhood of a
solution point X is created using five different moving
types: Adjacent swap (MAS), general swap (MGS), single
insertion (MSI), block insertion (MBI) and reverse
location (MRL). These moving types are the most
commonly used types of perturbation schemes. Detailed
analysis of them can be found in Tian et al.19 for SA
algorithm. Solution representation examples for VRP,
PFSP, and QAP are given in Table 3. Definitions and
neighborhood sizes of each move type are given in
Table 4. Some examples of moving types are also

illustrated in Figure 3 for a small (15-customer, 1-depo,
4-vehicle) VRP instance.

3.5.2. Network Solution Representation

Solution X is represented using binary coding on a
matrix with nxn size. The definitions of the moves are
given in Table 5 where n is the number of nodes and

)(id is the degree of node. Figure 4 represents a
solution candidate network and its neighbors generated
by each moving type.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

833

C. Alabas-Uslu, B. Dengiz

Table 3. Solution point representation examples for VRP, PFSP, and QAP

Solution example Explanation

X = [1 12 4 10 7 1 8 9 6 1 5 11 3 2 1]

First vehicle starts its route from the depot 1, then visits
customers 12, 4, 10, 7 successively and returns the depot;
second vehicle visits customers 8, 9, 6 and third vehicle visits
customers 5, 11, 3, 2 successively

X = [3 5 10 15 1 7 8 11 12 14 13 2 4 6 9] The jobs are processed in the sequence “3 5 10 15 1 7 8 11 12
14 13 2 4 6 9” on each m machine

X = [10 1 7 8 3 4 5 12 2 6 9 11]
Facility 10 is assigned to location 1, facility 1 to location 2,
facility 7 to location 3 and so on

Table 4. Moving types and neighborhood sizes for permutation representation
Type Definition Neighborhood size
MAS Nodes xi and xj are interchanged for i, j = 1, …, n and abs(i-j) = 1. NAS(X) =)1(n

MGS Nodes xi and xj are interchanged, for i, j = 1, …, n and abs(i-j)>1. NGS(X) =
2

)2)(1(nn

MSI
Node xi is inserted between nodes xj and x , for i = 1, …, n, j = 1, …, n-1
and abs(i-j)>1.

NSI(X) =)2)(1(nn

MBI
A subsequence of nodes from xi to x is inserted between nodes xj and
x , for i = 1, …, n-1-b, j = i n-1 and b = 1, …, n-2.

MRL
A subsequence of nodes from xi to xj is sequenced in the reverse order for
i, j = 1, …, n and abs(i-j)>1.

NRL(X) =
2

)2)(1(nn

,oddisnif
1

)2(

even isn
1

,)2(

)(N
2/)3(2

2/)2(2

BI n

n

i

i
in

if

in

X

Table 5. Moving types and neighborhood sizes for the network solution representation
Type Definition Neighborhood size

MA Link xi,j takes value 1 for xi,j = 0 and i, j = 1 ,…, n(n-1)/2

1

1 1

)1()(
n

i

n

ij
ijM xN

A
X for

0ijx

MD Link xi,j takes value 0 for xi,j = 1 and i, j = 1 ,…, n(n-1)/2
1

1
() ()

D

n

M
i

N d iX for d(i) 2

MAD
Link xi,j takes value 1 and xk,l takes value 0 for xi,j = 0, xk,l

= 1 and i, j, k, l = 1 ,…, n(n-1)/2
() ()

A DM MN NX X

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

834

A Self-Adaptive Heuristic for COPs

Fig. 3 (a): Current solution X (b): MSI(X: x5/x7 – x8) (c): MAS(X: x16/x17) (d): MBI(X: x2 – x3/x19 – x20) (e):
MGS(X: x5/x7) (f): MRL(X: x7 – x9)

2

3

4

5 6

7

8

9

10

11

12
13

14

15

16
1

X = [1 16 15 14 13 1 12 11 10 9 1 8 7 6 1
11

3

4

5 6

7

8

9

10
12

13
14

15

16
1

2

X = [1 16 15 14 1 12 13 11 10 9 1 8 7 6 1

(a) (b

2

3

4

5 6

7

8

9

10

11

12
13

14

15

16
1

X = [1 16 15 14 13 1 12 11 10 9 1 8 7 6 1 4

2

3

4

5 6

7

8

9

10

11

12
13

14

15

16
1

X = [1 14 13 1 12 11 10 9 1 8 7 6 1 5 4 3 2

(c) (d

2

3

4

5 6

7

8

9

10

11

12
13

14

15

16
1

X = [1 16 15 14 12 1 13 11 10 9 1 8 7 6 1 5

2

3

4

5 6

7

8

9

10

11

12
13

14

15

16
1

X = [1 16 15 14 13 1 10 11 12 9 1 8 7 6 1 5

(e) (f)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

835

C. Alabas-Uslu, B. Dengiz

3.6. Steps of the Algorithms

The steps of SALS algorithm are given in Figure 5. At
each iteration of the algorithm, a subset N (X: X(s) , s
=1, …, S) is generated from X (current solution) by
applying S moving types. While in the case of VRP,
PFSP, and QAP S is five (explained in Subsection
3.5.1), for TDP S is three (explained in Subsection
3.5.2). The best one, X', among obtained neighbors with
best objective value is then selected as a new current
solution if it satisfies the acceptance condition “f(X')

f(X)”, otherwise a new subset N (X) is generated
randomly.

The steps of TS are listed in Figure 6. TS algorithm
uses a short-term memory with size tt. If a current
solution has been created by adjoining pth and rth

elements of X, moves which disarrange this successive
subsequence of the p and r are classified as tabu during
next tt iterations. At each iteration, the subset N (X: X(s)

, s =1, …, S) is obtained depending on the problem
handled and the best solution in the subset which
created using a non-tabu move, X', is added to a

sampling list, SL, with size ss. If the N entirely contains
tabu moves, then a new N is generated until SL is filled
with ss solutions. However, the aspiration criterion
removes the tabu condition when any move yields a
better solution than the best solution obtained so far.
The best solution, X'', in the sampling list is accepted as
the new current solution.

SA algorithm is given in Figure 7. The best solution,
X', in the N (X) is recorded as the current solution, if

f(X') < f(X) or U(0,1) <
T

XfXf
e

)()(

is satisfied,
where U(0,1) represents a uniformly generated number
between 0 and 1. T is a control parameter. The
algorithm proceeds by attempting a certain number of
neighborhood moves, M, at each temperature, while T is
gradually dropped in the ratio of .

Figure 8 represents the steps of RRT algorithm. At
each iteration of RRT, the subset N (X) is generated and
the best, X', is then selected as the new current solution
if it satisfies the acceptance condition “f(X') <))((i

bf X
D”, otherwise a new subset N (X) is generated

randomly.

Fig. 4 (a) Current solution X (b) Binary coding of X (c) MA(X: x1,6 = 1) (d)
MD(X: x2,5 = 0) (e) MAD(X: x1,6 = 1, x2,5 = 0)

2

1 3

6

5

4

(a)

1
2

3

4

5

2 3 4 5 6
1 0 1 0 0

1 0 1 0

0 0 1

1 0

1

(b)

2

1 3

6

5

4

2

1 3

6

5

4

2

1 3

6

5

4

(c) (d) (e)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

836

A Self-Adaptive Heuristic for COPs

Randomly create initial solution, zX
X zX ; z

i
b XX)(

Select a deviation parameter, D
Repeat

Select a neighbor solution X' randomly from the
N (X)

If f(X') <)()(i
bf X D then X X'

If f(X) <)()(i
bf X then)()(i

bf X f(X),)(i
bX X

Until a termination condition is met

Fig. 8 Steps of RRT

Randomly create initial solution, zX
X zX ; z

i
b XX)(

Select initial temperature, Tb, Tb

Repeat
Select a neighbor solution X' randomly from the N (X)

If f(X') < f(X) or U(0,1) < T
XfXf

e
)()(

then X X'

If f(X) <))(
(

i
bf X then))(

(
i

bf X f(X),)(i
bX X

M
Until a termination condition is met

Fig. 7 Steps of SA

Randomly create initial solution, zX
X zX ; z

i
b XX)(

Start with empty short-term memory
i
Repeat

Repeat
Create SL list, f(X'k), k = 1,..., ss
Select X'' with best f(X'k)
If X'' is created by nontabu moves or f(X'') <

))(
(

i
bf X then X X''
Otherwise select another X'' from SL list

Until an acceptable solution is found

If f(X) <))(
(

i
bf X then))(

(
i

bf X f(X),)(i
bX X

Update the short term memory
i i

Until a termination condition is met

Fig. 6 Steps of TS

i 1, C(L(i)) 1
Randomly create initial solution X0 zX
X zX ; z

i
b XX)(

Repeat

)(

)
)(

(
1

zf

i
bf

X

X
;

i

i
)

)(
L(C

2

1 2
i i r 0
Repeat

Select a neighbor solution X' randomly from the
N (X)

r
if r = N(X) 1 2

Until f(X') f(X)

If f(X') <))(
(

i
bf X then C(L(i)) C(L(i)

XX
)(i

b

X X'
1

Fig. 5 Steps of SALS

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

837

C. Alabas-Uslu, B. Dengiz

4. Computational Study

SALS algorithm is first compared with TS, SA, and
RRT algorithms on a suit of selected benchmarking
problems and then compared with the other
metaheuristics proposed in the related literatures. Since
TS, SA, and RRT require an additional process related
with parameter tuning, parameter selection studies for
these algorithms are given in the next subsection.

4.1. Parameter Selection

The basic TS, SA, and RRT algorithms have a set of
parameters which shown in Table 6. These parameter
sets must be tuned before their run. 3k factorial
experiments are designed individually for this purpose,
where k is the number of parameters (k is equal to 2, 3,
and 1 for TS, SA, and RRT, respectively). Table 6 also
shows the selected parameter levels based on pre-
experimentations. While parameter levels of TS and SA
are the same for all problem types, the parameter of
RRT, D, has been changed for each problem type.
Twelve separate factorial designs were carried out for
each algorithm and each application area. Each
algorithm was run 5 times with each parameter
combinations and then the analysis of variance was
performed at 95% level. Statistical analysis results show
that the parameters are statistically significant and
solution quality of related algorithm is influenced by
parameter levels. Consequently, selected parameter sets
which reveal the best solution quality are given in Table
7.

On the other hand, SALS algorithm has a single

throughout its run as explained previous sections.
Significant difference of SALS from other algorithms is

that it does not require parameter optimization (tuning)
effort.

4.2. Comparison with TS, SA, and RRT
algorithms

SALS, TS, SA, and RRT algorithms were executed 20
times on a Pentium IV/1000-512 RAM computer. All
runs were terminated when the number of solution
search reaches pre-determined level. Considered test
instances are followed for each problem type:

VRP: 7 instances with 50 - 199 customers
(Christofides and Elion12).

PFSP: 30 instances of 3 different sizes from the
whole benchmark set of Taillard13. A sample of 10
instances is provided for each of 50 x 20, 100 x 20, and
200 x 20 (n x m) sizes.

QAP: 13 instances with 42 – 100 locations (Skorin-
Kapov14)

TDP: 75 instances of 5 different sizes. A sample of
15 instances is given with known optima for each of 6 –
10 nodes. 3 instances with 15, 20, and 25 nodes with
unknown optima are given (Altiparmak15).

Performance measures in equation 5-9 were
obtained for each algorithm using above defined
problem sets separately.

Table 6. Parameters and selected levels for TS, SA and RRT

Levels
TS SA RRT

tt ss T M
D

VRP PFSP QAP TDP

-1 n n 0.5n 5n 0.90 5 15 5 20

0 n5.1 2n N 10n 0.93 10 20 7 30

1 n2 4n 2n 20n 0.96 15 25 9 40

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

838

A Self-Adaptive Heuristic for COPs

Relative Deviation percentage:

20,,1100 jBO

BOA
jO

jRD (5)

Where, A
jO is the objective value of considered

algorithm obtained from replication j. BO is reference
value (best known or optimum objective value).

Best Relative Deviation: BRD = jRD
j

min (6)

Average Relative Deviation: ARD =
20

j jRD
(7)

Coefficient of Variation: CV =

ARD

ARDRD
j j 20

1

2

(8)

Average Run Time in Minutes: ART =
20

j jRuntime
(9)

Performance comparisons of the algorithms in terms
of defined measures are given in Table 8 for VRP. As
shown in this table SALS algorithm outperforms others
in terms of ARD and BRD for all problem sizes.
Meanwhile SALS has minimum variability according to
CV. SA has run time advantage comparing to other
algorithms. Similar performance results of SALS are
shown in Table 9 for PFSP. SALS is more effective
than SA, TS, and RRT algorithms as seen from average
results. CV of SALS, TS, and RRT are close to each
others. TS has the worst effectiveness and efficiency

Table 7. Selected parameters for TS, SA and RRT

TS SA RRT
Application

area tt ss T M D

VRP n5.1 4n 2.0n 5n 0.93 10

PFSP n5.1 4n 0.5n 20n 0.96 15

QAP n5.1 4n 0.5n 5n 0.90 5

TDP n 2n n 5n 0.90 20

Table 8. Performance comparison of the algorithms on VRP

Problem SALS
customer size ARD CV BRD ART

50 1.42 1.25 0.00 1.1483
75 1.41 0.81 0.00 3.1150

100 0.68 0.29 0.15 3.9508
100 0.00 0.00 0.00 4.1258
120 0.14 0.19 0.00 5.5717
150 1.21 0.57 0.26 8.7982
199 2.87 0.95 1.15 16.3203

Average 1.10 0.06 0.22 6.1472
TS

ARD CV BRD ART
50 2.13 0.0111 0.04 1.1375
75 5.75 0.0066 4.45 2.4258

100 3.85 0.0075 2.46 3.8333
100 1.28 0.0054 0.27 3.7633
120 6.70 0.0287 2.45 5.1725
150 7.18 0.0085 5.85 8.6792
199 9.19 0.0091 6.62 16.3175

Average 5.15 0.0110 3.16 5.9042
SA

ARD CV BRD ART
50 4.87 0.0225 0.00 0.0092
75 9.51 0.0295 3.92 0.0200

100 5.12 0.0148 2.25 0.0317
100 3.65 0.0276 0.48 0.0317
120 9.52 0.0587 2.34 0.0442
150 13.50 0.0209 9.91 0.0683
199 16.96 0.0290 12.69 0.1242

Average 9.02 0.029 4.51 0.0470
RRT

ARD CV BRD ART
50 1.69 0.00928 0.00 1.3133
75 2.44 0.0141 0.832 2.6500

100 1.14 0.00251 0.74 4.3400
100 0.57 0.0015 0.30 4.7707
120 2.72 0.0194 0.22 6.4960
150 2.57 0.0032 2.24 9.7661
199 3.53 0.0076 2.58 16.9201

Average 2.09 0.0082 0.99 6.6080

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

839

C. Alabas-Uslu, B. Dengiz

performance for PFSP while again SA is the fastest
algorithm. Table 10 displays the results experienced on
QAP. SALS algorithm precisely surpasses other
algorithms with respect to average BRD and ARD.
Average ART results of SALS and RRT are similar,
while the results of TS and SA are better where ART
reported by SA is the best. For QAP, the worst solution
quality performance is belong to RRT algorithm.
Finally, Table 11 exhibits performance comparison of
the algorithms on TDP. Although, TS has the best ARD,
the best BRD are reported by SALS. SALS algorithm
also has shortest ART for TDP. RRT algorithm, again,
gives the worst solutions to TDP.

The results given in Tables 8-11 are descriptive
statistics related with performance metrics of ARD,
BRD, ART and CV obtained by SALS, TS, SA, and RRT
algorithms for all considered problem types. These
results especially are encouraging about the solution
quality of SALS in terms of ARD and BRD. A statistical
analysis study is also fulfilled to confirm statistically
meaningful differences between SALS and other

algorithms in terms of effectiveness and efficiency for
each problem types. Therefore, the statistical analysis
on ARD, BRD (treated as measures about effectiveness)
and ART (taken as a measure about efficiency) is
performed to test several hypotheses for significance.

Table 10. Performance comparison of the algorithms on QAP

Problem SALS
location ARD CV BRD ART

42 0.17 0.0014 0.00 5.1702

49 0.15 0.0012 0.07 5.8909

56 0.23 0.0018 0.00 29.4834

64 0.07 0.0005 0.00 39.4208

72 0.18 0.0011 0.00 52.1500

81 0.08 0.0006 0.01 49.6594

90 0.14 0.0009 0.00692 90.3967

100 0.07 0.0002 0.05 210.1782

100 0.06 0.0007 0.02 151.7586

100 0.04 0.0004 0.00406 116.4168

100 0.08 0.0003 0.00 131.9047

100 0.02 0.00014 0.00805 109.3423

100 0.06 0.0004 0.02 177.1752

Average 0.104 0.0007 0.01 89.9190

TS

ARD CV BRD ART

42 0.83 0.0024 0.40 4.8843

49 0.81 0.0020 0.40 7.4601

56 0.98 0.0017 0.64 11.0448

64 0.92 0.0017 0.59 13.8948

72 0.90 0.0015 0.54 22.1710

81 0.71 0.0009 0.50 31.0041

90 0.88 0.0012 0.59 42.1144

100 0.69 0.0003 0.64 206.0432

100 0.71 0.0014 0.37 111.6999

100 0.70 0.0008 0.60 111.8918

100 0.80 0.0010 0.60 103.1167

100 0.81 0.0013 0.52 103.1167

100 0.83 0.0009 0.72 103.0768

Average 0.81 0.0013 0.55 67.0399

Table 9. Performance comparison of the algorithms on
PFSP

Problem SALS
job x machine ARD CV BRD ART

50 x 20 1.24 0.0029 0.70 11.35
100 x 20 1.48 0.0028 0.95 17.54
200 x 20 1.34 0.0022 0.96 85.04
Average 1.35 0.0026 0.87 37.97

TS
ARD CV BRD ART

50 x 20 3.36 0.0029 2.78 8.03
100 x 20 3.64 0.0021 3.24 31.26
200 x 20 3.37 0.001823 3.02 120.78
Average 3.46 0.0023 3.01 53.36

SA
ARD CV BRD ART

50 x 20 2.19 0.0040 1.51 0.32
100 x 20 2.28 0.0031 1.76 1.58
200 x 20 1.99 0.0025 1.57 6.459
Average 2.15 0.0032 1.61 2.79

RRT
ARD CV BRD ART

50 x 20 1.20 0.0026 0.90 11.79
100 x 20 1.49 0.0022 1.21 18.67
200 x 20 1.43 0.0020 1.16 91.36
Average 1.37 0.0023 1.09 40.61

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

840

A Self-Adaptive Heuristic for COPs

The Wilcoxon Signed Rank Test, which is a
nonparametric test comparing the pairs, is used in the
statistical analysis. The following three alternative

hypotheses are defined for each problem type,
separately, where Alg refers one of the TS, SA or RRT
algorithms used in the statistical comparison.

Table 11. Performance comparison of the algorithms on TDP

Problem SALS
node size ARD CV BRD ART

6 0.74 0.0131 0.00 1.65
7 1.51 0.0232 0.00 5.69
8 1.21 0.0155 0.05 15.51
9 2.40 0.0329 0.00 28.59
10 2.54 0.0245 0.41 59.10
15 -8.6 0.0371 -13.36 539.33
20 -26.4 0.1251 -38.15 65.132
25 -16.8 0.1190 -29.85 97.82

Average -5.4 0.049 -10.1 101.60
TS

ARD CV BRD ART
6 0.93 0.0141 0.00 1.11
7 1.54 0.0205 0.00 2.81
8 1.34 0.0138 0.07 11.44
9 3.22 0.0374 0.26 24.27
10 2.61 0.0243 0.55 45.84
15 -0.6 0.0633 -8.14 408.67
20 -32.6 0.0407 -35.93 1203.94
25 -24.3 0.0758 -29.85 1940.58

Average -6.0 0.036 -9.1 454.83
SA

ARD CV BRD ART
6 5.70 0.0527 1.42 1.91
7 12.90 0.1039 2.04 5.72
8 12.58 0.1105 1.87 12.85
9 12.45 0.1094 1.03 18.92
10 13.87 0.1275 2.87 34.57
15 32.2 0.5363 -12.05 215.71
20 -21.3 0.1687 -34.07 643.67
25 -5.7 0.0246 -8.21 384.79

Average 7.8 0.154 -5.6 164.77
RRT

ARD CV BRD ART
6 7.59 0.0524 2.66 2.59
7 2.74 0.0313 0.20 7.15
8 2.18 0.0220 0.17 22.79
9 3.69 0.0381 0.36 36.92
10 3.52 0.0269 0.68 74.37
15 15.13 0.1643 -10.53 425.13
20 28.74 0.0567 20.74 708.00
25 7.36 0.0393 3.73 1062.00

Average 0.089 0.054 2.3 292.37

Table 10. Performance comparison of the algorithms on QAP
(continued)

Problem SA

location size ARD CV BRD ART

42 0.35 0.0009 0.16 15.1817

49 0.68 0.0011 0.45 16.9134

56 0.79 0.0009 0.69 18.1236

64 0.88 0.0008 0.73 13.9457

72 0.99 0.0008 0.85 22.4009

81 1.01 0.0008 0.82 73.9325

90 1.16 0.0006 1.04 42.0001

100 1.17 0.0006 1.08 102.6517

100 1.09 0.0008 0.97 102.6500

100 1.15 0.0005 1.09 102.6584

100 1.18 0.0006 1.06 102.6698

100 1.09 0.0004 1.03 102.5934

100 1.15 0.0008 0.98 102.6517

Average 0.98 0.0007 0.84 62.9518

RRT

ARD CV BRD ART

42 2.93 0.0043 2.11 4.8202

49 2.15 0.0061 1.07 6.3066

56 2.36 0.0056 1.82 22.4434

64 2.40 0.0038 2.06 15.2400

72 2.57 0.0045 1.84 45.6800

81 2.02 0.0052 1.33 47.9212

90 1.84 0.0036 1.48 68.8599

100 1.52 0.0025 1.12 150.788

100 1.98 0.0044 1.39 149.3803

100 1.99 0.0068 1.00 149.3308

100 1.70 0.0022 1.29 149.3262

100 1.81 0.0039 1.23 149.3800

100 1.42 0.0030 0.99 149.3757

Average 2.05 0.0043 1.44 85.2963

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

841

C. Alabas-Uslu, B. Dengiz

)1(
1H : 0lgASALS ARDARD

)2(
1H : 0lgASALS BRDBRD (10)

)3(
1H : 0lgASALS ARTART

Table 12 gives the Wilcoxon Signed Rank Test
results derived from replications of SALS, TS, SA, and
RRT algorithms on each test problem of VRP. The table
shows that SALS gives smaller ARD than TS, SA, and
RRT (i.e., the negative mean differences) and these
mean differences are all statistically significant with p-
values close to zero. The same results are also hold in
terms of BRD. On the other, ARTSALS is greater than that
of TS and SA and the mean differences are statistically
significant with p-values close to zero. The mean
difference between ARTSALS and ARTRRT is not
significant statistically, even ARTSALS is smaller than
ARTRRT.

According to the statistical test on the data gathered
from experiments on the test problems of PFSP, Table
13 shows that SALS has smaller ARD than TS, SA, and
RRT and the mean differences between ARDSALS and
ARDTS and between ARDSALS and ARDSA are
statistically significant with p-values close to zero while
ARDSALS and ARDRRT are statistically similar. On the
other hand BRDSALS is all statistically significant smaller

than that of TS, SA, and RRT. Additionally, the p-
values which are close to zero statistically confirm that
run time performance of SALS, ARTSALS, is better than
ARTTS and ARTRRT as ARTSA is better than ARTSALS.

The results of Wilcoxon Signed Rank Test on the
data obtained from experiments on the test problems of
QAP are shown in Table 14. These results point out that
solution quality of SALS in terms of both ARD and
BRD is all statistically better than that of TS, SA, and
RRT for QAP. Meanwhile, ART of SALS is greater than
ART of TS, SA, and RRT and the mean differences are
statistically significant with p-values smaller than
significant level of 0.05.

The last statistically comparison between SALS and
the other algorithms is fulfilled for TDP. The results of
Wilcoxon Signed Rank Test are given in Table 15. As
seen from the table ARDTS is smaller than ARDSALS with
p-value of 0.044 which is close to significant level of
0.05 while the mean differences between ARDSALS and
ARDSA and ARDSALS and ARDRRT are statistically
significant and ARDSALS is better. In terms of BRD,
SALS and TS are statistically similar for TDP. However
SALS is better than both of SA and RRT in terms of
BRD. Finally, ART performance of SALS is better than
all other algorithms indicating statistical significance
with p-values less than level of 0.05.

Table 12. Results of statistical analysis for SALS, TS, SA, and RRT
algorithms on VRP

Test
Hypothesis Comparison Mean

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -4.05 .000a

0SASALS ARDARD -7.90 .000 a

0RRTSALS ARDARD -.99 .000 a

)2(
1H : 0TSSALS BRDBRD -2.94 .018 a

0SASALS BRDBRD -4.29 .028 a

0RRTSALS BRDBRD -.77 .028 a

)3(
1H : 0TSSALS ARTART .243 .000 a

0SASALS ARTART 6.10 .000 a

0RRTSALS ARTART -.461 .372
a Statistically significant different at level of 0.05

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

842

A Self-Adaptive Heuristic for COPs

In summary, it is statistically shown that SALS is
better than TS, SA, and RRT in terms of both ARD and
BRD for all problem types except TDP in which TS
gives smaller ARD than SALS. However BRD of SALS
and TS are not statistically different for TDP. On the

other hand SALS has run time advantage respect to TS,
SA, and RRT algorithms in terms of ART for TDP. For
QAP, although, SALS is worse than other algorithms
respect to ART, it is superior to others in terms of both
ARD and BRD.

Table 13. Results of statistical analysis for SALS, TS, SA, and RRT
algorithms on PFSP

Test
Hypothesis Comparison Mean

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -2.11 .000a

0SASALS ARDARD -.8 .000 a

0RRTSALS ARDARD -.02 .191
)2(

1H : 0TSSALS BRDBRD -2.14 .000 a

0SASALS BRDBRD -.74 .000 a

0RRTSALS BRDBRD -.22 .000 a

)3(
1H : 0TSSALS ARTART -15.39 .000 a

0SASALS ARTART 35.18 .000 a

0RRTSALS ARTART -2.64 .000a

a Statistically significant different at level of 0.05

Table 14. Results of statistical analysis for SALS, TS, SA, and RRT
algorithms on QAP

Test
Hypothesis Comparison Mean

Difference
p-
value

)1(
1H : 0TSSALS ARDARD -.706 .000a

0SASALS ARDARD -.876 .000 a

0RRTSALS ARDARD -1.946 .000 a

)2(
1H : 0TSSALS BRDBRD -.54 .000 a

0SASALS BRDBRD -.83 .001 a

0RRTSALS BRDBRD -1.43 .001 a

)3(
1H : 0TSSALS ARTART 22.880 .001 a

0SASALS ARTART 26.967 .000 a

0RRTSALS ARTART 4.623 .000a

a Statistically significant different at level of 0.05

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

843

C. Alabas-Uslu, B. Dengiz

4.3. Comparison with the Literature

The aim of the second comparative study is to show the
performance of SALS is whether comparable to those of
the metaheuristics proposed in the literature. Some of
that heuristics used for the comparison are rather
sophisticated. These metaheuristics also utilize some
problem specific structures and speed-up procedures.
On the other hand, SALS has very simple
straightforward structure to implement. Therefore, this
comparative study takes into account the best solution
quality of the heuristics in terms of BRD.

4.3.1. Results on VRP

In this application, a feasible initial solution, generated
by assigning one vehicle to each customer location, is
used to initialize SALS and only feasible neighbors are
considered at each iteration of the algorithm. Sizes of
benchmark instances by Christofides and Elion12 have
been found insufficient to compare performance of the
metaheuristics proposed in the VRP literature.
Therefore, 20 larger-sized VRPs by Golden et al.20 are
used to compare the SALS and the metaheuristics listed
in Table 16. Table 16 also includes the number of

parameters of these metaheuristics and their
abbreviations. As outlined in the table, all listed
algorithms require parameter tuning process for a
number of parameters changing from 1 to 20.

BRD values of the algorithms are shown in Table
17. The reference objective values for each problem to
calculate the BRDs are given in the reference value
column of the table. The parameters of all algorithms
given in the table, except T-AMP, are tuned for each
problem instance separately. T-AMP uses a standard
parameter setting for the problem set. As seen in Table
17, SALS has higher solution quality, on average, than
five of the metaheuristics. Results of XK-TS, TK-AMP
and LGW-RRT algorithms are not reported for the
whole problem set since related data is not available in
the literature. T-AMP and RDH-AC algorithms which
have 9 and 8 parameters, respectively, give similar BRD
results. Though MB-AGES algorithm gives rather good
results for each problem, the parallel implementation of
record-to-record algorithm and integer programming,
GGW-PRRTIP, by Groër et al.53 outperforms all
algorithms. However, large parameter sets of MB-
AGES and GGW-PRRTIP make the algorithms
complicated to apply different instances.

Table 15. Results of statistical analysis for SALS, TS, SA, and
RRT algorithms on TDP

Test
Hypothesis Comparison

Mean
Difference

p-
value

)1(
1H : 0TSSALS ARDARD .6 .044a

0SASALS ARDARD -13.2 .000 a

0RRTSALS ARDARD -14.3 .000 a

)2(
1H : 0TSSALS BRDBRD -1.00 .087

0SASALS BRDBRD -4.550 .000 a

0RRTSALS BRDBRD -12.400 .019 a

)3(
1H : 0TSSALS ARTART -353.23 .000 a

0SASALS ARTART -63.17 .001 a

0RRTSALS ARTART -191.37 .000a

a Statistically significant different at level of 0.05

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

844

A Self-Adaptive Heuristic for COPs

4.3.2. Results on PFSP

The performance of SALS on the PFSP, described in
subsection 4.2, is compared with some of the successful
algorithms in the literature. Table 18 shows the
considered heuristics with their abbreviations and the

number of parameters while Table 19 displays the BRD
results of these metaheuristics. The studies listed in
Table 18 have reported the solution quality results
considering different reference objective values. In
Table 19, BRD values are reported using Taillard’s13

results as reference to overcome this dissimilarity. The
results are averaged over the 10 instances of the each
size. As seen from the table, SALS outperforms the
eight of the algorithms out of twelve in terms of solution
quality. NS-MSSA, with 8 parameters, has the best
solution quality. Although RS-IG and PTL-DDE have
similar BRD performances, RS-IG has simplicity
advantage from point of parameter tuning. Nevertheless,
SALS is the simplest algorithms from the same
perspective.

4.3.3. Results on QAP

The performance of SALS is compared with the
metaheuristics listed in Table 20 on the QAP by Skorin-
Kapov14. Table 20 shows these heuristics, their
abbreviations, and the number of parameters of each
algorithm. BRD results from the experiments and the
results from the QAP literature are displayed in Table
21. As seen from the table, the results of AOT-GGA,
LO-HGA, SK-ETS, S-ILS/ES, and JRG-CPTS
algorithms are available for the whole problem set.
SALS is superior in average to these algorithms, except
S-ILS/ES and JRG-CPTS. While CK-TS, T-TS, S-
ILS/ES and JRG-CPTS algorithms outperform SALS
for the first seven problems, FF-HGA finds the best
solutions for the last eight problems.

4.3.4. Results on TDP

Effectiveness of SALS for TDP is compared with the
algorithms given in Table 22 on the selected test
problems, represented with notations L (number of
links), p (reliability of the links), and R0 (overall
network reliability requirement), from the whole
benchmark set of Altiparmak15 mentioned in subsection
4.2. As seen in Table 23, SALS, DAS-LGA, and DAB-
ACOSA give the optimum results at least one time for all
problems. DAS-GA and AA-NN also are able to
generate high quality solutions. While DAB-ACOSA has
minimum average of CV, SALS has lower CV than that
of DAS-GA and RR-SDA. CV results are not applicable
for NN approach.

Table 16. Some successful algorithms for VRP and their
parameters

Study Algorithm Algorithm
Abbreviation

Number of
Parameters

Xu and
Kelly21 Tabu Search XK-TS 20

Golden et
al.20

Record-to-
Record
Travel

GWKC-
RRT 3

Tarantilis
and
Kiranoudis22

Adaptive
Memory
Programming

TK-AMP 7

Tarantilis et
al.8

Threshold
Accepting TKV-TA1 7

Tarantilis et
al.9

Threshold
Accepting TKV-TA2 1

Toth and
Vigo23 Tabu Search TV-TS 7

Prins24 Evolutionary
Algorithm P-EA 7

Reimann et
al.25 Ant Colony RDH-AC 9

Tarantilis26
Adaptive
Memory
Programming

T-AMP 8

Li et al.10
Record-to-
Record
Travel

LGW-RRT 5

Mester and
Braysy27

Active
Guided
Evolution
Strategy

MB-AGES 11

Groër et
al.53

Parallel
Algorithm
Combining
Record-to-
record travel
with Integer
Programming

GGW-
PRRTIP

13

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

845

C. Alabas-Uslu, B. Dengiz

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

846

A Self-Adaptive Heuristic for COPs

Finally, Table 24 gives the minimum cost results of
the heuristics for large-size networks with unknown
optimum solutions. It is seen that SALS gives superior
results than other metaheuristics for each problem size.
For the problem with node size, N, is 15, it is seen that
obtained solution quality by DAB-ACOSA and SALS is
almost same.

5. Conclusions

This paper presents a local search algorithm, called
SALS, which has a single self-adaptive parameter.
SALS algorithm has been tested on four different
problem types selected from routing, scheduling,
assignment, and topological design areas. SALS
algorithm also can be applied to another combinatorial
problem if a suitable solution representation scheme, a
cost function, and a moving mechanism are described.
SALS gathers some feedback information throughout
the search to perform a learning process of the
parameter . The algorithm is successfully applied to
VRP, PFSP, QAP, and TDP without any time and talent
to manage parameter optimization. From this point of
view, transferring of SALS into the real-world
applications will be reasonable if the end-users have
neither the time nor the experience to fine-tune
sophisticated search methods.

Experimental study and statistical analysis show that
SALS is the best performing heuristic in terms of
solution quality for the mentioned problems comparing
the basic TS, SA, and RRT algorithms except
topological design problem in which TS is superior to
SALS in terms of average solution quality while in the
best case SALS and TS have statistically similar
performances. As SALS has the shortest average run
time for the TDP problems, the run time performance
for other problems is obtained as average. Best solution
quality results of SALS algorithm also is compared with
the performance of heuristics selected from the related
literatures. This comparison points out that SALS either
competes with these metaheuristics or outperforms the
most of them. The proposed algorithm obviously has
implementation simplicity and flexibility on different
problem types without parameter tuning effort.

Application of SALS to different combinatorial
problems is also planned for future directions.

Table 18. Some successful algorithms for PFSP

Study Algorithm
Algorithm
Abbreviation

Number of
Parameters

Osman and
Potts28

Simulated
Annealing

OP-SA 4

Reeves29 Tabu Search R-TS 2

Reeves30 Genetic
Algorithm R-GA 5

Nowicki
and
Smutnicki31

Tabu Search NS-TS 3

Reeves and
Yamada32

Genetic
Algorithm

RY-GA 5

Grabowski
and
Pempera33

Tabu Search GP-TS 4

Grabowski
and
Wodecki34

Tabu Search GW-TS 2

Nowicki
and
Smutnicki35

Modified
Scatter Search
Algorithm

NS-MSSA 8

Ruiz and
Stützle48

Iterated
Greedy
Algorithm

RS-IG 2

Pan et al.51

Discrete
Differential
Evolution
Algorithm

PTL-DDE 4

Tseng and
Lin49

Hybrid
Genetic
Algorithm
and Local
Search

TL-GALS 5

Zobolas et
al.50

Hybrid
Genetic
Algorithm
and Variable
Neighborhood
Search

ZTI-GAVNS 3

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

847

C. Alabas-Uslu, B. Dengiz

Table 19. BRD results on PFSP

nxm
OP-
SA

R-
TS

R-
GA

NS-
TS

RY-
GA

GP-
TS

GW-
TS

NS-
MSSA

RS-
IG

TL-
GALS

ZTI-
GAVNS

PTL-
DDE SALS

50x20 2.86 1.55 3.44 -
0.36

-
0.30

0.17 0.13 -0.90 -
0.84

-0.21 0.028 -0.795 -0.22

100x20 2.32 1.07 2.91 -
0.66

-
0.92

-
0.66 -0.68 -1.83 -

1.43 -0.33 -0.38 -1.22 -0.78

200x20 1.74 0.08 1.35 -
0.80

-
0.82

-
1.00 -1.12 -1.70 -

1.36 -0.43 -0.68 -1.74 -0.89

Average
Performance 2.31 0.90 2.57

-
0.61

-
0.68

-
0.50 -0.56 -1.48

-
1.21 -0.32 -0.34 -1.25 -0.63

Table 20. Some successful algorithms on QAP

Study Algorithm Algorithm
Abbreviation

Number of
Parameters

Skorin-
Kapov14 Tabu Search SK-TS 3

Taillard36 Tabu Search T-TS 4
Skorin-
Kapov 37

Extended
Tabu Search

SK-ETS 3

Fleurent
and
Ferland38

Hybrid
Genetic
Algorithm

FF-HGA 6

Chiang and
Kouvelis39 Tabu Search CK-TS 5

Chiang and
Chiang40

Hybrid Tabu
Search CC-HTS 6

Ahuja et
al.41

Greedy
Genetic
Algorithm

AOT-GGA 8

Lim and
Omatu42

Hybrid
Genetic
Algorithm

LO-HGA 6

Stützle43

Iterated
Local Search
with
Evolution
Strategies

S-ILS/ES 6

James et
al.52

Cooperative
Parallel Tabu
Search
Algorithm

JRG-CPTS 6

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

848

A Self-Adaptive Heuristic for COPs

Table 21. BRD results on QAP

n Reference
value

SK-
TS T-TS SK-

ETS
FF-

HGA
CK-
TS

CC-
HTS

AOT-
GGA

LO-
HGA

S-
ILS/ES

JRG-
CPTS SALS

42 15812 0.329 0 0 - 0 0 0 0.354 0 0 0

49 23386 0.641 0 0 - 0 0 0.214 0.188 0 0 0.07

56 34458 0.807 0 0 - 0 0 0.023 0.058 0 0 0

64 48498 1.118 0 0 - 0 0 0.169 0.095 0 0 0

72 66256 0.755 0 0 - 0 0.024 0.272 0.211 0 0 0

81 90998 0.857 0.011 0.011 0 0.011 0.031 0.211 0.123 0 0 0.01

90 115534 0.732 0 0.007 0 0.007 0.095 0.27 0.436 0 0 0.007

100 152002 - - 0.908 0 - - 0.191 0.224 0 0 0.05

100 153890 - - 0.765 0 - - 0.14 0.296 0 0 0.02

100 147862 - - 1.219 0 - - 0.011 0.058 0 0 0.004

100 149576 - - 0.749 0 - - 0.17 0.271 0.0013 0 0

100 149150 - - 0.992 0 - - 0.231 0.327 0 0 0.008

100 149036 - - 1.098 0 - - 0.191 0.411 0.023 0.003 0.02

Average
Performance 0.748 0.0016 0.442 0 0.0026 0.0214 0.161 0.235 0.0019 0.000 0.015

Table 22. Successful algorithms for TDP

Study Algorithm Algorithm
Abbreviation

Number of
Parameters

Dengiz et
al.44

Genetic
Algorithm DAS-GA 3

Dengiz et
al.45

Genetic
Algorithm
with Local
Search

DAS-LGA 4

Aboelfotoh
and Al-
Sumait46

Neural
Network AA-NN 3

Ramirez-
Marquez
and
Rocco47

Probabilistic
Solution
Discovery
Algorithm

RR-SDA 4

Dengiz et
al.54

Hybrid Ant
Colony-
Simulated
Annealing
Algorithm

DAB-
ACOSA

8

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

849

C. Alabas-Uslu, B. Dengiz

References

1. Blum C and Roli A (2003). Metaheuristics in
combinatorial optimization: overview and conceptual
comparison. ACM Computing Surveys, 35(3):268-308.

2. Glover FW and Kochenberger GA (2003). Handbook of
Metaheuristics. Series: International Series in Operations
Research & Management Science , Vol. 57, Springer.

3. Adenso-Diaz B and Laguna M (2006). Fine-tuning of
algorithms using fractional experimental designs and
local search. Operations Research, 54(1):99-114.

4. Barr RS, Golden BL, Kelly JP, Resende MGC and
Stewart WR (1995). Designing and reporting
computational experiments with heuristic methods.
Journal of Heuristics, 1(1):9-32.

5. Eiben AE, Hinterding R and Michalewicz Z (1999).
Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 3(2):124-
141.

6. Battiti R and Tecchioli G (1994). The reactive tabu
search. ORSA Journal on Computing, 6(2):126-140.

Table 24. Best cost comparison on the heuristics for the large sized TDP

N L p R0
DAS-
GA

DAS-
LGA

AA-
NN

RR-
SDA

DAB-
ACOSA

SALS

15 105 0.90 0.95 317
N/A

304 268 262 263
20 190 0.95 0.95 926 270 200 181 167
25 300 0.95 0.90 1606 402 331 322 282

Table 23. BRD and CV comparisons on the heuristics for the moderate sized TDP

DAS-GA DAS-LGA AA-NN RR-SDA DAB-
ACOSA

SALS

N L p R0
Reference

Value BRD CV BRD CV BRD CV BRD CV BRD CV BRD CV

8 28 0.90 0.90 208 0 0.0211 0 0.0161 0

N/A

0 0.0315 0 0.0118 0 0.0171

8 28 0.90 0.95 247 0 0.0183 0 0.0183 0 0 0.0314 0 0.0049 0 0.0132

8 28 0.95 0.95 179 0 0.0228 0 0 0 0 0.0284 0 0 0 0.0151

9 36 0.90 0.90 239 0 0.0497 0 0.0066 0 0 0.0356 0 0.0048 0 0.0152

9 36 0.90 0.95 286 0 0.034 0 0.0325 0.0769 0 0.0474 0 0.0069 0 0.0295

9 36 0.95 0.95 209 0 0.0839 0 0 0 0 0.0569 0 0 0 0.017

10 45 0.90 0.90 154 0.0128 0.0618 0 0.0223 0 0 0.0791 0 0.0042 0 0.0364

10 45 0.90 0.95 197 0.0496 0.0095 0 0.0177 0 0 0.0448 0 0.0181 0 0.0155

10 45 0.95 0.95 136 0 0.0802 0 0.0185 0 0 0.0618 0 0 0 0.0292

Average 0.0069 0.0424 0 0.0147 0.0085 0 0.0463 0 0.0056 0 0.0209

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

850

A Self-Adaptive Heuristic for COPs

7. Russell RA and Chiang W-C (2006). Scatter search for
the vehicle routing problem with time windows.
European Journal of Operational Research, 169: 606-622.

8. Tarantilis CD, Kiranoudis CT and Vassiliadis VS (2002).
A backtracking adaptive threshold accepting
metaheuristic method for the vehicle routing problem.
System Analysis Modelling Simulation (SAMS),
42(5):631-644.

9. Tarantilis CD, Kiranoudis CT and Vassiliadis VS (2002).
A list based threshold accepting algorithm for the
capacitated vehicle routing problem. Journal of Computer
Mathematics, 79(5):537-553.

10. Li F, Golden B and Wasil E (2005). Vey large-scale
vehicle routing: new test problems, algorithms, and
results. Computers & Operations Research, 32:1165-
1179.

11. Osman IH and Wassan N (2002). Reactive tabu search
meta-heuristic for the vehicle routing problem with
backhauls. Journal of Scheduling, 5(4):263-285.

12. Christofides N and Elion S (1969). An algorithm for the
vehicle dispatching problem. Operational Research
Quarterly, 20:309-318.

13. Taillard, E (1990). Some efficient heuristic methods for
the flow shop sequencing problem. European Journal of
Operational Research, 47(1), 65-74.

14. Skorin-Kapov J (1990). Tabu search applied to the
quadratic assignment problem. ORSA Journal on
Computing, 2(1):33-45.

15.

Thesis, Gazi University, Turkey.
16. Glover F (1986). Future paths for integer programming

and links to artificial intelligence. Computers &
Operations Research, 1(3):533-549.

17. Kirkpatrick S, Gelatt Jr. CD and Vecchi MP (1983).
Optimization by simulated annealing. Science,
220(4598):671-680.

18. Dueck G (1993). New optimization heuristics: The great
deluge algorithm and the record-to-record travel. Journal
of Computational Physics, 104:86-92.

19. Tian P, Ma J and Zhang D-M (1999). Application of the
simulated annealing algorithm to the combinatorial
optimization problem with permutation property: An
investigation of generation mechanism. European Journal
of Operational Research, 118: 81-94.

20. Golden BL, Wasil EA, Kelly JP and Chao I-M (1998).
The impact of metaheuristics on solving the vehicle
routing problem: algorithms, problem sets, and
computational results. In: Crainic TG, Laporte G, editors.
Fleet Management and Logistics. Boston:Kluwer.

21. Xu J and Kelly JP (1996). A network flow-based tabu
search heuristic for the vehicle routing problem.
Transportation Science, 30(4):379-393.

22. Tarantilis CD, Kiranoudis CT (2002). BoneRoute: an
adaptive memory-based method for effective fleet
management. Annals of Operations Research,
115(1):227-241.

23. Toth P and Vigo D (2003). The granular tabu search (and
its application to the vehicle routing problem).
INFORMS Journal on Computing, 15(4):333-348.

24. Prins C (2004). A simple and effective evolutionary
algorithm for the vehicle routing problem. Computers &
Operations Research, 31:1985-2002.

25. Reimann M, Doerner K and Hartl RF (2004). D-Ants:
saving based ants divide and conquer the vehicle routing
problem. Computers & Operations Research, 31(4): 563-
591.

26. Tarantilis CD (2005). Solving the vehicle routing
problem with adaptive memory programming
methodology. Computers & Operations Research,
32(9):2309-2327.

27. Mester D and Braysy O (2007). Active-guided evolution
strategies for large-scale capacitated vehicle routing
problems. Computers and Operations Research, 34:2964-
2975.

28. Osman IH and Potts CN (1989). Simulated annealing for
permutation flow-shop scheduling. Omega,17(6):551-
557.

29. Reeves CR (1993). Improving the efficiency of tabu
search for machine sequencing problems. Journal of the
Operational Research Society, 44(4):375-382.

30. Reeves CR (1995). A genetic algorithm for flowshop
sequencing. Computers and Operations Research,
22(1):5-13.

31. Nowicki E and Smutnicki C (1996). A fast tabu search
algorithm for the permutation flow-shop problem.
European Journal of Operational Research, 91:160-175.

32. Reeves CR and Yamada T (1998). Genetic algorithms,
path relinking and the flowshop sequencing problem.
Evolutionary Computation, 6(1):230-234.

33. Grabowski J and Pempera J (2001). New block properties
for the permutation flow shop problem with application
in TS. Journal of the Operational Research Society,
52:210-220.

34. Grabowski J and Wodecki M (2004). A very fast tabu
search algorithm for the permutation flow shop problem
with makespan criterion. Computers & Operations
Research, 31:1891-1909.

35. Nowicki E and Smutnicki C (2006). Some aspects of
scatter search in the flow-shop problem. European
Journal of the Operational Research, 169:654-666.

36. Taillard E (1991). Robust taboo search for the quadratic
assignment problem. Parallel Computing, 17:443-455.

37. Skorin-Kapov J (1994). Extensions of a tabu search
adaptation to the quadratic assignment problem.
Computers and Operations Research, 21(8):855-865.

38. Fleurent C and Ferland JA (1994). Genetic hybrids for
the quadratic assignment problem. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
16:173-187.

39. Chiang WC and Kouvelis P (1996). An improved tabu
search heuristic for solving facility layout design
problems. International Journal of Production Research,
34(9):2565-2585.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

851

C. Alabas-Uslu, B. Dengiz

40. Chiang WC and Chiang C (1998). Intelligent local search
strategies for solving facility layout problems. European
Journal of Operational Research,106(2-3):457-488.

41. Ahuja RK, Orlin JB and Tiwari A (2000). A greedy
genetic algorithm for the quadratic assignment problem.
Computers and Operations Research, 27:917-934.

42. Lim M-H and Omatu S (2002). Extensive testing of a
hybrid genetic algorithm for solving quadratic
assignment problem. Computational Optimization and
Applications, 23:47-64.

43. Stützle T (2006). Iterated local search for the quadratic
assignment problem. European Journal of the Operational
Research, 174:1519-1539.

44.
optimization of all-terminal reliable networks using an
evolutionary approach. IEEE Transactions on Reliability,
46(1):18-26.

45.
searh genetic algorithm for optimal design of reliable
networks. IEEE Transactions on Evolutionary
Computation, 1(3):179-188.

46. AboElFotoh HMF and Al-Sumait LS (2001). A neural
approach to topological optimization of communication
networks, with reliability constraints. IEEE Transactions
on Reliability, 50(49):397-408.

47. Ramirez-Marquez, JE and Rocco, C (2008). All-terminal
Network Reliability Optimization via Probabilistic
Solution Discovery. Reliability Engineering & System
Safety, 93(11), 1689-1697.

48. Ruiz, R., Stützle, T., 2007. A simple and effective
iterated greedy algorithm for the permutation flowshop
scheduling problem. European Journal of Operational
Research, 177(3), 2033-2049.

49. Tseng, L.-Y., Lin, Y-T., 2009. A hybrid genetic local
search algorithm for thepermutation flowshop scheduling
problem. European Journal of Operational Research,
198(1), 84-92.

50. Zobolas, G.I., Tarantilis, C.D., Ioannou, G., 2009.
Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic
algorithm. Computers & Operations Research, 36, 1249-
1267.

51. Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C., 2008. A
discrete differential evolution algorithm for the
permutation flowshop problem. Computers&Industrial
Engineering, 55, 795-816.

52. James, T., Rego, C., Glover, F., 2009. A cooperative
parallel tabu search algorithm for the quadratic
assignment problem. European Journal of Operational
Research, 195, 810-826.

53. Groër, C., Golden, B., Wasil, E., 2011. A parallel
algorithm for the vehicle routing problems. INFORMS
Journal on Computing, 23, 315–30.

54. Dengiz B, Altiparmak F, Belgin O., 2009. Design of
reliable communication networks: A hybrid ant colony
optimization. IIE Transactions, 42(4), 273-287.

55. Silberholz, J., Golden, B. 2010. Comparison of
Metaheuristics. Handbook of Metaheuristics. Eds: M.,
Genderau and J.-Y. Potvin, Springer.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

852

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

