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Abstract We discuss the generic properties of a general,
smoothly varying, spherically symmetric mass distribution
D(r, θ), with no cosmological term (θ is a length scale param-
eter). Observing these constraints, we show that (1.) the de
Sitter behavior of spacetime at the origin is generic and
depends only on D(0, θ), (2.) the geometry may posses up
to 2(k + 1) horizons depending solely on the total mass M
if the cumulative distribution of D(r, θ) has 2k + 1 inflec-
tion points, and (3.) no scalar invariant nor a thermodynamic
entity diverges. We define new two-parameter mathemati-
cal distributions mimicking Gaussian and step-like functions
and reduce to the Dirac distribution in the limit of vanishing
parameter θ . We use these distributions to derive in closed
forms asymptotically flat, spherically symmetric, solutions
that describe and model a variety of physical and geometric
entities ranging from noncommutative black holes, quantum-
corrected black holes to stars and dark matter halos for var-
ious scaling values of θ . We show that the mass-to-radius
ratio πc2/G is an upper limit for regular-black-hole forma-
tion. Core–multi-shell and multi-shell regular black holes are
also derived.

1 Distributions smoothing out the Dirac’s δδδ

One- and multi-parameter-dependent mathematical distribu-
tions smoothing out the Dirac’s δ distribution are needed in
areas of science where the notion of locality is being aban-
doned. For instance, in quantum gravity the noncommuta-
tivity of coordinates is phenomenologically explained by the
nonlocality of matter distributions [1]. The singularities aris-
ing in classical physics are due to the hypothetical point-like
matter distributions. Such a point-like or Dirac distribution is
mathematically useful in getting closed-form simple expres-
sions for the physical and geometric entities one is concerned
with. In a sense, the Schwarzschild, Reissner–Nordström,
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Kerr and other classical solutions of general relativity are
extremely simplified models of nature and should exist in
a real world only asymptotically. In some other instances
of science, as is the case with regular black holes sourced
by nonlinear electrodynamics, such distributions were not
needed. That remains true, however, as far as one is con-
cerned with macroscopic scales; for scales of the order of the
Compton wavelength or the Planck length, the contribution
of the vacuum, namely its radial pressure sustaining matter
from collapsing, renders mass distributions extended.

In a first tentative one may think to replace the Dirac dis-
tribution for mass by a central – decreasing as one moves
away from the source – extended distribution. For spheri-
cally symmetric solutions, a Gaussian mass distribution with
width θ ,

G(r, θ) = e−r2/(2θ2)

(2π)3/2θ3 , (1)

where r is a radial coordinate, satisfies the above-mentioned
requirement. However, the resulting metric and fields are not
in closed-forms and are not easily handled numerically – not
to mention analytically – via computer algebra systems [1].
Do extended distributions for charge and spin (if the solu-
tion is rotating) follow the same mass-distribution model? In
Ref. [2] noncommutative charged black holes, with a Gaus-
sian charge distribution, were determined, while in Ref. [3]
it was argued that, if masses follow Gaussian distributions,
charges could, rather, follow extended Weibull distributions
to ensure a de Sitter behavior of the solution in the vicinity
of the origin and noncommutative charged black holes, with
a Weibull charge distribution, were determined.

Whether the gravitational quantum effects are well under-
stood or not, introducing them phenomenologically via mass,
charge, and spin distribution functions seems to be a fruitful
way as this cures singularities, skips the matching problems,
and preserves the asymptotical behavior. There remains to
understand how the vacuum responds to the mass, charge,
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and spin extended distributions to generate negative pressures
sustaining matter from collapsing. The only known process
to advance an explanation for that is vacuum fluctuations but
so far no concrete formulation seems to exist.

For the Gaussian distribution the substitution rule Dirac-
to-Gaussian reads

δ(r)

2πr2 → e−r2/(2θ2)

(2π)3/2θ3 , (2)

where the numerical coefficients in (1) and (2) have been
determined on observing the normalization conditions
∫ ∞

0

δ(r)

2πr2 4πr2dr =
∫ ∞

0

e−r2/(2θ2)

(2π)3/2θ3 4πr2dr = 1.

Let D(r, θ) ≥ 0 be some spherically symmetric, not neces-
sarily central, distribution with the normalization condition

∫ ∞

0
D(r, θ) 4πr2dr = 1. (3)

If D is a mass distribution one may think of it to be central,
however, the vacuum negative radial pressure, too assumed
to be spherically symmetric, may push more matter from the
center rendering the distribution non-central with voids. This
is the case with four-dimensional charge distributions [3],
which may be non-central (of Weibull character in some
instances) and vanish at the origin. Three-dimensional non-
central mass distributions with a central void have been
shown to exist too [4]. The presence of the central void is
to ensure existence of a two-horizon structure.

Let m(r, θ) denote the mass inside a sphere of radius r .
This is given by

m(r, θ) = M
∫ r

0
D(r ′, θ)4πr ′2dr ′ = MD(r, θ), (4)

where M is the total mass of the solution. To simplify the
notation we have set

D(r, θ) ≡
∫ r

0
D(r ′, θ)4πr ′2dr ′, (5)

which is the cumulative distribution. The above substitution
rule (2) is replaced by

δ(r)

2πr2 → D(r, θ). (6)

The constraint (3) implies that D → 1 as r → ∞. This
excludes from our analysis the de Sitter-like solutions,1 as
those treated in [5], where D → ∞ as r → ∞, and the

1 A de Sitter-like metric includes a term proportional to −r2, which
can be arranged as −m(r)/r with m(r) ∝ r3 [compare with (10)]. This
means that m(r) and D(r) go to ∞ as r → ∞.

anti-de Sitter-like solutions, where D turns negative for some
r > 0.

It is understood that the distribution D(r, θ), smoothing
out the Dirac’s one, is assumed to be finite and differentiable
for all r . This implies that ∂rD(r, θ) ≡ D′(r, θ) has finite
values for all r . The convergence of the integral in (3) implies
that D must go to 0 faster than 1/r3 in the limit r → ∞.
These requirements are expressed mathematically as

0 < D(r, θ) < ∞, (7)

−∞ < D′(r, θ) < ∞, (8)

lim
r→∞ r3D = 0. (9)

In Sect. 2 we discuss the generic properties of any mass dis-
tribution obeying (7)–(9) and of its resulting metric solution.
In Sect. 3 we define new two-parameter, (n, θ ), mathematical
distributions mimicking the Gaussian distribution and reduce
to the Dirac distribution in the limit of vanishing parameter
θ (for all n) and discuss their specific properties and the
properties of their resulting metric solutions. In Sect. 4 we
discuss some limiting cases. In Sect. 5 we provide instances
of applications ranging from noncommutative black holes,
quantum-corrected black holes to stars and dark matter halos
for various scaling values of θ . An Appendix section has been
added to complete the discussion of, and to derive some equa-
tions pertaining to, Sect. 2. We conclude in Sect. 7.

2 Generic properties of the metric

We seek a static spherically symmetric solution of the form

ds2 = f (r)dt2 − dr2

f (r)
− r2(dϑ2 + sin2 ϑdϕ2),

f (r) = 1 − 2Gm(r, θ)

c2r
= 1 − 2MG D(r, θ)

c2r
, (10)

where m(r, θ) is given by (4). In the following we discuss the
generic properties of (10) for a matter distribution obeying
the minimum set of constraints (7), (8), and (9).

a. Behavior near the origin Since D(r, θ) is assumed to be
finite everywhere, for r � 1, we may replace D(r ′, θ) in (4)
by D(0, θ) to obtain

m(r, θ) 	
(r→0)

M
∫ r

0
D(0, θ)4πr ′2dr ′ = 4πMD(0, θ)

3
r3,

(11)

yielding

f 	
(r→0)

1 − 8πMGD(0, θ)

3c2 r2. (12)

Thus, any distribution with nonvanishing value at the origin
[D(0, θ) 
= 0] yields a metric having a de Sitter behavior
there with an effective “cosmological constant”
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Fig. 1 Generic plots of the cumulative distribution D(r, θ) (5) whether
θ depends on M or not. In the left-most plot D(r, θ) has one point of
inflection and the corresponding metric may have up to two horizons.
In the second plot from the left D(r, θ) has three inflection points and
the corresponding metric may have up to four horizons [this is the plot
of the cumulative distribution of the core–shell regular black hole (75)
taking M2 = 2/3 = 2M1 (M = 1) and θ2 = 5 = 8θ1]. In the third plot
from the left D(r, θ) has five inflection points and the corresponding
metric may have up to six horizons [this is the plot of the cumula-

tive distribution of the core–two-shell regular black hole (77) taking
M1 = 0.3, M2 = 0.8, M3 = 1.2 (M = 2.3), θ1 = 1, θ2 = 4, and
θ3 = 9.5]. In the right-most plot D(r, θ) has three inflection points and
the corresponding metric may have up to four horizons [this is the plot
of the cumulative distribution of D(r, θ) as given by (80), (82) and (83),
taking θ1 = θ2 = a ≡ θ = 1, M1 = M/7, and M2 = 6M/7. This
describes another core–shell regular black hole]. In all these cases the
origin has been excluded

� = 8πMGD(0, θ)/c2, (13)

linearly proportional to the total mass M as far as the width
θ does not dependent on the mass. The distribution need not
be central to yield such a behavior for f : All that we need is
to have D(0, θ) 
= 0.

b. The scalar invariants With the further assumption that
D′(r, θ) has a finite value at r = 0 (8) and that D(r, θ) exe-
cutes smooth variations near the origin, it is straightforward
to show that the curvature and Kretschmann scalars are finite
at the origin:

R = −8πMG

c2 (4D + rD′), (14)

RαβμνRαβμν = 16G2m[3m + 4πMr3(rD′ − 2D)]
c4r6

+64π2M2G2

c4 (4D2 + r2D′2). (15)

Since m(r, θ) behaves as r3 (11) near the origin, we see that
both expressions of R and RαβμνRαβμν have finite limits as
r → 0. Thus, the singularity at the origin has been removed.
Moreover, since D′(r, θ) is finite for all r (8), the two scalar
invariants remain finite too for all r > 0.

c. HorizonsThe horizons, all denoted by rh , are solutions to
the equation f (rh) = 0, which reduces to

c2

2MG
rh = D(rh, θ), (16)

where we have used (4) and (5). In the rh y plane, the hori-
zons are the intersection points of the straight line y =
c2rh/(2MG) and the curve y = D(rh, θ) among which we
find the point rh = 0, which we exclude. By (11) the graph
of y = D(rh, θ) is flat at the origin (in the limit rh → 0) and
by (3) it is also flat asymptotically (in the limit rh → ∞).
SinceD(r, θ) is the cumulative distribution it is an increasing

function of r [D′ = 4πr2D > 0 (7)], so its shape looks like a
flat S if it has one inflection point or like a step function with
two steps if it has three inflection points (with more steps if it
has more than three inflection points), as depicted in Fig. 1.
This generic graph of D(r, θ), as is the case with any cumu-
lative distribution, does not depend on θ and on whether the
latter depends on M or not. It is now clear that for large M ,
the slope of the line y = c2rh/(2MG) is small enough to
have some intersection points with the curve y = D(rh, θ),
that is, up to two horizons rh 
= 0 if D(rh, θ) has one inflec-
tion point and up to 2(k + 1) horizons if D(rh, θ) has 2k + 1
inflection points. As M decreases and reaches some value
Mext, the slope of y = c2rh/(2MG) increases until the line
becomes tangent to y = D(rh, θ), with no more intersection
points, yielding an extremal black hole solution with one
horizon rext 
= 0. For M < Mext there are no horizons. To
summarize, the metric (10) will have the following generic
properties:

up to 2(k + 1) horizons if: M > Mext and D has 2k

+1 inflection points

(black hole solution),

one horizon if: M = Mext (extremal BH solution),

no horizon if: M < Mext (particle-like solution), (17)

whether θ depends on M or not. The r coordinates of the
inflection points of D(rh, θ) are solutions to

2D + rD′ = 0. (18)

In Sect. 2 we will show that the tangential pressure is given
by pt = −c2ρm − c2r∂rρm/2 where ρm = MD is the mass
density. Equation (18) is just pt = 0. This is precisely the
equation used in Ref. [6] to determine the number of horizons.
This simply implies that at each inflection point of D(rh, θ)

the tangential pressure vanishes.
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Note that regular multi-horizon solutions are well known
objects in the scientific literature (see, for instance, [7,8] and
some other references therein).

Let xext ≡ rext/θ and generally

x ≡ r/θ. (19)

We show in the Appendix that xext is a solution to

D(xext)x
3
ext =

∫ xext

0
D(u)u2du, (20)

and that Mext is given by

2MextG

c2 = 1

4πθ2D(xext)x2
ext

. (21)

We see that if D does not depend on the mass M , this will be
the case for xext too.

For large, massive black holes one of the nonzero horizons,
the inner most horizon rh−, shrinks to 0 while the outer most
horizon rh+ goes to infinity. For the latter horizon we let
rh → ∞, so that the r.h.s of (16) is 1 by (3) implying

rh+ 	
(M large)

rS ≡ 2MG

c2 , (22)

where rS denotes the Schwarzschild radius.
It is clear from (3) and (4) that the metric (10) is asymp-

totically flat.

d. The temperature Due to quantum effects near the event
horizon, black holes emit Hawking radiation at the tempera-
ture [9]

T = h̄c

4πkB
∂r f

∣∣
r=rh+ ,

= h̄c

4πkBrh+
2MG

c2

(
D

r
− D

′)∣∣∣
r=rh+

, (23)

where h̄ and kB are the reduced Planck and Boltzmann con-
stants. In order to investigate the behavior of the temperature
as a varying function, it has become customary to express it
in terms of the radius of the event horizon rh+ [10]. If it were
possible to express T in terms of the mass M of the black
hole, as in the Schwarzschild case, we would have an explicit
T -M relation. However, since in our case it is not possible to
solve (16) for rh+ in terms of M , all we can do is to express
T in terms of rh+ as done in [10].

We obtainD′ upon differentiating (5) with respect to r and
we use (16) to express (D/r)|r=rh+ in terms of c2/(2MG).
Finally, we arrive at

T (rh+) = h̄c

4πkBrh+
(
1 − 4πrS r2

h+D(rh+)
)
, (24)

where rS = rh+/D(rh+, θ) (16) and T is seen as a function
of rh+.

Using (9) and (17), we see that for large massive black
holes (MG/c2)r2

h+D(rh+) → 0 and

T 	 h̄c

4πkBrS
, (25)

which is the well-known expression for the Schwarzschild
black hole temperature. Note that rext is the minimum value
of rh+. In the Appendix we show that T (rext) = 0. Now, since
T vanishes at rext and it is positive (25) for large values of
rh+, it must reach some maximum value for some r̃h+ > rext,
then, by (25), goes to zero as rh+ approaches infinity. In the
Appendix we show that r̃h+ is solution to

∂r

(4πr2D
D

)∣∣∣∣
r=r̃h+

= − 1

r̃2
h+

. (26)

We see that an evaporation process which starts at some
value of rh+ > r̃h+ leads, after some loss of matter, to a
configuration where the temperature becomes initially larger
than the temperature of the starting point, it attains its max-
imum value at r̃h+, then it drops to zero as rh+ reaches the
value rext, which marks the end of the evaporation process
for there will be no black hole. The remaining mass is a cold,
at T = 0, regular non-black-hole solution (17).

e. The stress-energy tensor The stress-energy tensor (SET)
sourcing the metric (10) is assumed to satisfy Gμν =
(8πG/c4)Tμν . It has the algebraic structure

T t
t = T r

r , T θ
θ = T ϕ

ϕ . (27)

The resulting equation of state reads

pr = −c2ρm, pt = −c2(ρm + r∂rρm
2

)
, (28)

where pr ≡ −T r
r is the radial pressure and pt ≡ −T θ

θ ( 
= pr )
is the tangential pressure. Here ρm is given by

ρm ≡ ∂rm(r, θ)/(4πr2) = MD(r, θ). (29)

The SET (27), being invariant under boosts in the radial direc-
tion (having an infinite set of comoving reference frames),
is commonly identified as describing a spherically symmet-
ric anisotropic vacuum [14]. This sort of SET belongs to the
so-called family of cosmological tensors or variable cosmo-
logical term [15,16] where the vacuum state behaves as a de
Sitter one, in the vicinity of the origin, and as a Minkowski
one, at spatial infinity. A corresponding black hole solution
is sometimes called a �μνBH [15].

As we shall see in Sects. 3.2.5 and 5 the model, described
by (28), has different scales from cosmological to elementary
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particles. In the vicinity of the origin we certainly have pt < 0
but its sign may change as r increases. The negative radial
pressure is necessary for preventing matter from collapsing
and forming a singularity.

f. Energy conditions and change of spatial topology
From (28) we see that the Weak Energy Condition (WEC),
which requires,

ρm ≥ 0, c2ρm + pr ≥ 0, c2ρm + pt ≥ 0, (30)

is violated by non-central mass distributions where ∂rρm is
positive in the vicinity of the center.

Central mass distributions, where ∂rρm < 0, do not violate
the WEC. Previous studies [36] have shown that under the
constraints of the Null Energy Condition (NEC), which are
the second and third conditions in (30), there may be a change
of spatial topology if the black hole is to be regular. Since
ρm > 0 for the type of regular black holes we are considering,
the WEC and NEC are equivalent.

More accurately, it was shown that if a black hole space-
time contains trapped surfaces and satisfies the weak energy
condition, then there must be a change of spatial topology
if the black hole is to be regular [36]. Inside the horizon
there is a region where the spatial topology changes from
open to compact slices; that is, the spacetime changes its
spatial topology from S2 × R to S3 as the non-compact
spacelike three-dimensional hypersurfaces (slices) at spatial
infinity evolve to future-trapped compact three-dimensional
slices inside the horizon. This can be seen from Figure 1 of
Ref. [36] which depicts the conformal global structure of a
portion of a regular black hole. In such diagrams each point
represents a two-sphere described by two spacelike coordi-
nates, the remaining spacelike coordinate (which runs from
−∞ to +∞) is represented horizontally, and the time coor-
dinate is represented vertically. So the line S1 of Figure 1 of
Ref. [36] represents a three-dimensional cylinder which con-
nects two regions at infinity (the one at −∞ and the other
at +∞) and thus has the topology S2 × R where R is the
real line. As time goes on, S1 evolves to S2. Since the line
S2 connects the two origins r = 0 (of two different coordi-
nate patches), it is compact and consequently it represents a
closed three-dimentional surface with topology S3, that of a
three-sphere.2

It is generally believed that topology changes do not occur
in classical physics and so they would be purely quantum
phenomena [37,38]. No finalized theory of topology changes
exists [39], and it is reasonable to abandon the semi-classical
approach in the Planck scale where quantum fluctuations

2 Given a spacetime based on an n-dimensional manifold M and an ini-
tial spacelike (n−1)-dimensional hypersurface Si and a final spacelike
(n − 1)-dimensional hypersurface S f . A topology change occurs if S f
is not diffeomorphic to Si [38].

become more important causing gravity to manifest itself
in the form of an effective pressure that prevents matter from
collapsing. It is admitted that the system (the collapsing black
hole) makes a quantum jump with a change of spatial topol-
ogy to avoid the creation of a singularity [40].

A subsequent investigation [41] has provided further clar-
ifications on when the topology change occurs. It was argued
that if the Dominant Energy Condition (DEC), ρm ≥ 0 and
pr and pt ∈ [−c2ρm, c2ρm], is not violated (this implies the
WEC is too not violated), the four necessary conditions of
the Ref. [36]’s theorem are not sufficient to yield a topology
change. Only if the DEC is violated but not the WEC, a topol-
ogy change occurs. This was related to a sign change [41] of
the curvature scalar (14), which is brought to the following
form using pt = −c2M(2D + rD′)/2 and 2D = 2ρm/M :

R = −16πG

c4

(
c2ρm − pt

)
= 16πG

c4 (pr + pt ). (31)

If the DEC is not violated,R < 0. Now, if the DEC is violated
but not the WEC results in

pt > c2ρm, (32)

and the sign of R changes from − (in the region where the
DEC is not violated) to + (in the region where the DEC is
violated).

3 New distributions DDD

In this section we define new mathematical distributions D
that mimic to a large extent the Dirac’s one, then we discuss
the special properties of the metric (10).

3.1 Definition

Let A(n, z) be the function defined by

A(n, z) ≡
∫ z

0

4πu2

un + 1
du. (33)

If z is real and n > 0 (as we shall see later, we will require
n > 3 to ensure convergence of the integral), then

A(n, z) = (−1)−3/n4πB(−zn; 3/n, 0)

n
,

A(n,∞) = 4π2

n sin(3π/n)
, (34)

where

B(z; a, b) ≡
∫ z

0
ta−1(1 − t)b−1dt, (35)
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is the incomplete beta function.3 One brings (33) to (34) upon
setting t = −un .

Using the new variable x = r/θ (19), we define the dis-
tribution Dn(r, θ) to be the function related to A(n, x) by

Dn(r, θ) ≡ 1

A(n,∞)θ3

1

xn + 1

= θn−3

A(n,∞)

1

rn + θn
, n > 3, (36)

where n is a real number and to ensure the convergence of
the integral in (3) we have required n > 3 (9). It is obvious
from the definition that the distribution (36) reduces to the
Dirac δ in the limit θ → 0. The cumulative distribution takes
the form

Dn(r, θ) = A(n, x)

A(n,∞)
, n > 3. (37)

Both Dn(r, θ) and Dn(r, θ) take the simplified expressions:

Dn(r, θ) = n sin
( 3π

n

)
4π2θ3(xn + 1)

, (n > 3, x = r/θ) (38)

Dn(r, θ) = (−1)−3/n

π
sin

(
3π

n

)
B

(
−xn; 3

n
, 0

)
, (39)

and the metric (10) reduces to

f (r) = 1 − 2MG Dn(r, θ)

c2r

= 1 − 2MG

c2r

(−1)−3/n

π
sin

(
3π

n

)
B

(
−xn; 3

n
, 0

)
. (40)

Using (18) it is easy to show that Dn(r, θ) has one inflection
point given by

r =
( 2

n − 2

)1/n
θ. (41)

There does not seem to be a special name given to the distri-
butions of the form (36). A distribution of the form

1

π(x2 + 1)
,

is called the standard Cauchy4 distribution [17]. It has been
used to model dark haloes in spiral galaxies in the center
and in the outer spatial regions [19]; the model is widely

3 There are two notations for the incomplete beta function: Bz(a, b),
used in [11], and B(z; a, b), used in [12] and http://mathworld.wolfram.
com/IncompleteBetaFunction.html.
4 Its generalization [18], know as the generalized Cauchy distribution
f (z), is proportional to

σ

(σ p + |z − θ |p)2/p
,

where θ is the location parameter, σ is the scale parameter, and p is the
tail constant.

0.05 0.15 0.25 r
20

60

100

140

6 &

Fig. 2 The continuous plot represents the step-likeD6 distribution (38)
and the dashed plot represents the Gaussian distribution (1) G for the
same value of θ = 0.1. Near the black hole D6, and generally Dn , goes
to 0 faster than the Gaussian distribution but far from the horizon this
order is reversed (for clarity this is not shown in the plot)

accepted. An advantage in using the distribution (38) is that
it depends on two parameters (θ, n). The distributions (38)
and (1) have their denominators proportional to θ3, thus hold-
ing θ constant and varying n one can generate a distribu-
tion (38) mimicking to a large extent the Dirac’s one, as
shown in Fig. 2, which is not possible with the Gaussian dis-
tribution (1). Another advantage is that the cumulative distri-
bution (39) can be brought to a closed-form (for all n > 3) in
terms of arctan and ln elementary functions. Table 1 provides
some distributions Dn(r, θ) with their cumulative functions
Dn(r, θ).

3.2 Special properties of the metric (10) and the physical
scales

In the previous section we discussed the general properties of
the metric (10) that are independent of the special form of the
distribution D(r, θ). In this section we focus on other, rather
specific, properties of (10) that result from the application of
the distribution (38): These are the properties of (40).

3.2.1 large M

Introducing the parameters xh = rh/θ and xS = rS/θ we
bring (16) to

xh
xS

= Dn(xh). (42)

For large x , the cumulative distribution is easily brought to
the form

Dn 	
(r large)

1 − νn

xn−3 with νn ≡ n sin
( 3π

n

)
(n − 3)π

. (43)
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Table 1 Some values of the distribution Dn(r, θ) (38) and of its cumu-
lative distribution Dn(r, θ) (39) and (37), expressed in terms of arctan
and ln elementary functions. Here x = r/θ (19). For the case n = 9/2,
(−1)1/3 and (−1)2/3 are complex numbers with (−1)1/3 + (−1)2/3 =√

3 i and i2 = −1 but the given expression of D9/2(r, θ) is real and is

completely different from −3
√

3 ln(1 + x3/2)/(2π). The same remark
applies to the case n = 18/5. The corresponding metric solution (10) is
given by (40): f = 1 − 2MG Dn/(c2r). We provide the values of the
coefficient cn (66) and the extremal horizon xext ≡ rext/θ (48) in the
fourth and fifth columns, respectively

n Dn(r, θ) Dn(r, θ) cn xext

18
5

9
20π2θ3(x18/5+1)

i
2π

ln
(

1−x3/5i
1+x3/5i

)
+ 1

2π

{
(−1)1/6

[
ln

(
1−(−1)1/6x3/5

1+(−1)1/6x3/5

)
+ (−1)2/3 ln

(
1−(−1)5/6x3/5

1+(−1)5/6x3/5

)]}
0.842 1.882

4 1√
2π2θ3(x4+1)

1
2π

[
2 arctan(1 + √

2x) − 2 arctan(1 − √
2x) + ln

( x2−√
2x+1

x2+√
2x+1

)]
0.561 1.679

9
2

9
√

3
16π2θ3(x9/2+1)

−
√

3
2π

{ln(1 + x3/2) − (−1)1/3 ln[1 − (−1)1/3x3/2] + (−1)2/3 ln[1 + (−1)2/3x3/2]} 0.421 1.521

6 3
2π2θ3

1
x6+1

2
π

arctan(x3) 0.284 1.295

n
n sin

(
3π
n

)
4π2θ3(xn+1)

(−1)−3/n

π
sin

(
3π
n

)
B

(
− xn; 3

n , 0
)

cn xext

Using this in (42) we solve it by iteration and obtain the outer
horizon

xh+ 	
(M large)

xS − νn

xn−4
S

. (44)

The area of the outer horizon A = πr2
h+ expands for large r ,

that is for large M , as

A 	
(M large)

πθ2x2
S

(
1 − 2νn

xn−3
S

)
. (45)

The area spectrum follows the Bekenstein [20] law

A = bN with b ≡ 4�2
P ln 2 and N ∈ N

+. (46)

Here N is a positive integer and �P = √
h̄G/c3 	 1.616 ×

10−35 m is the Planck length. If the black hole emits a quanta,
that is, if N changes by 1 (dN = −1), this yields a change in
the mass parameter M given by the first order approximation

|dM | 	 bM

2πθ2x2
S

= bc4

8πMG2 � 1, (47)

which is independent of θ . Since b � 1 and M is supposed
large, this implies that the change in M or the mass loss is
almost continuous.

3.2.2 Extremal horizon

The value of xext is solution to (20), which takes the form

x3
ext

xnext + 1
=

∫ xext

0

u2

un + 1
du, (48)

The solution of which yields an xext independent of the mass
M .

3.2.3 Temperature

With D given by (38) the expression of T (24) reduces to

T (rh+) = h̄c

4πkBrh+

(
1 − n

π
sin

(3π

n

) xSxh+
xnh+ + 1

)
, (49)

where xS = xh/Dn(xh) (42). ForD given by (38) it is not easy
to determine the value of the outer horizon r̃h+ that yields a
maximum temperature, while for a Gaussian distribution (1)
r̃h+ = √

2 θ .

3.2.4 Topology change

The condition pt > c2ρm (32) is brought to r |∂rρm | > 4ρm
or, equivalently, to r |D′| > 4D. Using the expression (38) of
D we arrive at

(n − 4)rn > 4θn . (50)

Thus, for 3 < n ≤ 4 there is no topology change and R < 0
for all r . For n > 4, the DEC is violated but not the WEC
and a toplogy change occurs along with a sign change of R
where it becomes positive for

r > r� ≡
( 4

n − 4

)1/n
θ. (51)

3.2.5 From Planckian scale to stellar scale

For large M , the metric (40) expands as

f 	
(M large)

1 − xS

x
+ νnxS

xn−2 . (52)

The inner horizon rh− is obtained upon solving the algebraic
equation:

xn−2
h− − xSx

n−3
h− + νnxS 	 0. (53)
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For instance, for n = 5 we obtain

rh− 	
(M large)

√
ν5 θ + ν5θ

2

2rS
,

(
xh− 	 √

ν5 + ν5

2xS

)
, (54)

where ν5 = 5 sin(3π/5)/(2π) ≈ 582/769 	 0.756827.
The metric (52) is a quintessence-like metric. Know-

ing that a Gaussian distribution (1) does not accurately
describe [21] the galaxies rotation curves [22] as does,
for instance, the pseudoisothermal model [19]. This shows
another advantage in using the distributions (38), for they
can model dark matter distributions better than a Gaussian
distribution and provide best fits compared to the standard
models [19,23,24]. From this point of view θ is of the order
of the stellar or core radius.

The metric (52) is also of the form of a quantum-corrected
Schwarzschild black hole [25–27]. It is of the same form as
Eq. (3) of Ref. [26] provided we take

n = 5 and ν5θ
2 ≡ γ �2

P. (55)

With these identifications the outer (44) and inner (54) hori-
zons coincide with the solutions given in Eqs. (41) and (42)
of Ref. [26]. The parameters ν5 and γ > 0 [26] being of the
order of unity, we see that from this point of view θ is of the
order of the Planck length.

Considering regular particle-sized black holes with a
Gaussian mass distribution (1), it was argued in Ref. [1] that a
qualitative realization of the UV self-completeness of quan-
tum gravity could be achieved taking θ of the order of the
Compton wavelength of a particle of mass M : θ ∼ 1/M .
This scheme can be easily realized using our model for mass
distributions given by (38).

Thus, the parameter θ provides three length scales of appli-
cation:

1. A cosmological scale where θ is of the order of the stellar
or core radius;

2. A subatomic scale where θ is of the order of the Compton
wavelength of a particle of mass M ;

3. A Planckian scale for describing quantum-corrected
black holes.

For black hole or particle-like solutions there are, however,
other means by which one may constrain the values of θ , as
we shall discuss in the remaining sections.

3.2.6 Radius of fuzzy matter distributions

It is straightforward to show that the transverse pressure (27)
is up to a constant factor given by

pt ∝ (n − 2)rn − 2θn

2(rn + θn)2 , (56)

for all r . This vanishes in the limit r → ∞. It is negative for
0 ≤ r < r0, null for r = r0, and positive for r > r0 where

r0 ≡
( 2

n − 2

)1/n
θ, (57)

which is just the point where Dn(r, θ) has its inflection
point (41). First note that r� > r0 (51). One may call the
value r0 the distributional radius of the black hole or that
of the galaxy. It is a measure of the distance beyond which
the effects of vacuum due to the fuzzy distribution of matter
tend to be neglected. For a Gaussian distribution (1), r0 = ∞,
that is, the tangential pressure is negative for the whole range
of the radial coordinate. One sees that the distributions (38)
provide more realistic models for describing fuzzy matter
distributions or galactic dark matter halos.

For black hole solutions one may constrain the values of
θ upon requiring that all the fuzzy matter distribution be
confined within the inner horizon. This allows one to describe
classically the geometry outside the event horizon.

4 Limiting values

Using (38) we bring (13) to

� = MG

πc2θ3 n sin
(3π

n

)
. (58)

If we assume that the smallest value of � is the cosmological
constant �csm, this yields the maximum value for θ

θmax
3 = 3

�P

�csm

M

mP
, (59)

where we replaced n sin(3π/n) by its upper bound 3π . Here
mP = √

h̄c/G 	 2.177 × 10−8 kg is the Planck mass.
An upper bound for � could be set requiring the width θ

to be of the order of the Compton wavelength h̄/(Mc) for
the mass M , which expresses the inability to localize a single
particle in a region of size h̄/(Mc). We obtain

�max1 = n sin
(3π

n

) M4

πm4
P

�−2
P < 3

M4

m4
P

�−2
P , (60)

where we replaced n sin(3π/n) by its upper bound 3π .
For describing quantum-corrected black holes θ could be

of the order of the Planck length. For these holes, an upper
bound for � is rather

�max2 ≈ 3
M

mP
�−2

P . (61)
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5 New metric solutions

Selecting the simplest solution given in Table 1 we are led to
the following regular metric

f (r) = 1 − 4MG

πc2r
arctan

( r3

θ3

)
. (62)

This is a substitute to the singular Schwarzschild metric
resulting from the substitution rule (2)

δ(r)

2πr2 → 3θ3

2π2

1

r6 + θ6 = 3

2π2θ3(x6 + 1)
, (63)

where we have replaced the Gaussian distribution by (38)
taking n = 6. The corresponding continuous mass density
ρm(r) and mass m(r) within a sphere of radius r are given
by

ρm(r) = 3θ3

2π2

M

r6 + θ6 , m(r) = 2M

π
arctan

( r3

θ3

)
. (64)

Plots of (62) are shown in Fig. 3 for different values of
MG/(πc2θ). For large values of M the solution is a double-
horizon black hole and for smaller values of M the solu-
tion is a quantum particle or a regular non-black-hole solu-
tion. For some intermediate value of M = Mext such that
MextG/(πc2θ) 	 0.284 (xS 	 2π × 0.284) the two hori-
zons merge forming one extremal horizon at rext 	 1.295 θ .
The value of xext is solution to (48).

This solution models a regular noncommutative black hole
where the effects of noncommutativity of coordinates are
phenomenologically played by a smeared, extended, mass
distribution. For larger values of n, the mass distribution (38),
being almost a step function (see Fig. 2), is more confined
in a region around the black hole and the solution represents
a classical black hole. For smaller values of n the distribu-
tion (38) is more extended, like a Gaussian distribution, and
the solution represents a semi-classical black hole.

One may ask: What is the upper limit of the ratio M/θ ,
where θ is a measure of the extent of matter, that prevents
the occurrence of horizons? The answer is as follows.

For modeling dark matter halos one may apply the mass
distribution (64) to halos with stellar radius a and mass M
such that

M <
c6πc2a

G
and c6 = 0.284, (65)

so as to avoid the formation of black-hole dark matter halos.
The mass within a sphere of radius r is given by (64) on
replacing θ by a.

Such an upper limit on M is not absolute, that is, larger
dark matter halos are modeled by the distribution (38) taking

1.295 6 10
r θ

0.5

1
f

Fig. 3 Plots of the metric f versus r/θ . Upper plot: A (non-black-hole)
quantum particle (62) for MG/(πc2θ) = 0.2. Intermediate plot: An
extremal noncommutative black hole (62) for MG/(πc2θ) = 0.284.
Lower plot: A noncommutative black hole (62) with two horizons for
MG/(πc2θ) = 0.5

n < 6. This will set another upper limit for the mass for such
halos similar to (65) with a new coefficient cn larger than,
but remains of the same order of 0.284 for the values of n
considered in Table 1:

M <
cnπc2a

G
. (66)

Table 1 provides some values of cn . This allows us to claim
that the mass-to-radius ratio of dark matter halos is of the
order of

M

a
� μ ≡ πc2

G
= πc

h̄
mP

2 = 4.23126 × 1027 kg/m. (67)

This upper limit is at least satisfied by the dwarf galaxies with
stellar radii 10–30 kpc as can be seen from the dark matter
profiles [24] derived from the data of rotation curves of the
DDO 154, DDO 105, NGC 3109, and DDO 170 spiral galax-
ies reported in Refs. [28], [29], [30], and [31], respectively.
The scaling empirical Eq. (3) of Ref. [24] correlates the dark
matter mass M inside a sphere of radius a where the ratio
M/a remains of the order of 1020 kg/m.

For modeling stars one may apply the mass distribu-
tion (64) to stars with radius a and mass M such that (65) is
satisfied so as to avoid the formation of a black hole. This is
justified since the graph ofD6, shown in Fig. 2, is almost sim-
ilar to that of a step function; the mass distribution vanishes
almost identically for r > θ , and vanishes faster than a Gaus-
sian distribution in the vicinity of r � θ . For lighter stars we
may take n > 6 in (38) so that the mass remains confined
inside the sphere of radius θ (the radius of the star). We reach
the same conclusion as before, in that, the ratio M/a remains
bounded from above by the constant μ defined in (67). For
the stars of Table 2, the data of which has been reported in
Refs. [32], [33], and [34], the ratio M/a ∼ 1023 kg/m < μ.

For modeling elementary particles we take θ to be of
the order of the (reduced) Compton wavelength, a = θ =
h̄/(Mc), and n ≥ 6 so that the shape of the mass distribution
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Table 2 The masses are in solar mass units and radii are in solar radius
units. The data has been reported in Refs. [32], [33], and [34]

Star M (× M�) a (× R�)

Sirius B 1.034 0.0084

Sun 1 1

Procyon B 0.604 0.0096

40 Eri B 0.501 0.0136

EG 50 0.50 0.0104

GD 140 0.79 0.0085

CD-38 10980 0.74 0.01245

W485A 0.59 0.0150

G154-B5B 0.46 0.0129

LP 347-6 0.56 0.0124

G181-B5B 0.54 0.0125

WD1550+130 0.535 0.0211

Stein 2051B 0.48 0.0111

G107-70AB 0.65 0.0127

L268-92 0.70 0.0149

G156-64 0.59 0.0110

be that of a step function. In this case Dn depends on the
mass of the particle via θ . The condition (66) ensuring the
absence of horizons reduces to

M2 < πmP
2, (68)

where we have dropped cn . This is the well known prop-
erty stating that the masses of elementary particles are much
smaller than the Planck mass mP.

We draw the general conclusion that anymass distribution
of extent θ and mass M is exempt of, or freed from, horizons
if

M

θ
� μ = πc

h̄
mP

2. (69)

The largeness of the constant μ (69) is behind the difficulty in
manufacturing laboratory black holes by compressing solids.
To achieve that one should reduce the size of the solid, with
given mass M , to below M/μ.

This may apply to the whole universe itself: If the ratio
(mass of the universe/extent of the universe) is larger than μ,
we may be living inside a two or multi-horizon black hole,
most likely inside the inner horizon. Otherwise, the space
around us is freed from horizons.

Can the metric (62), which corresponds to n = 6,
describe a quantum-corrected Schwarzschild black hole? In
Sect. 3.2.5 we have seen that such a black hole can be
described by a mass distribution (38) provided we take n = 5.
The metric expansion (52) with n = 5,

f 	 1 − rS

r
+ γ �2

PrS

r3 , (70)

which describes a quantum-corrected Schwarzschild black
hole, has been first derived in [25] upon evaluating the self-
energy insertion tensor (SEIT) [35] due to the inclusion of a
single-closed loop, which is a quantum correction. The finite
piece of the SEIT contains some arbitrary parameters while
the infinite piece is supposed to be canceled by appropriate
counter-terms in the Lagrangian. However, it is all possible
that these canceling counter-terms may alter the values of
the parameters in the finite piece of the SEIT causing the
final expression of the metric (70) to include, say, a term
proportional to 1/r4 or other powers of 1/r instead of a term
proportional to 1/r3.

6 Cumulative distributions with many inflection points:
Core–multi-shell regular black holes

All we have dealt with in the previous sections concerned
cumulative distributions with one inflection point. On large
scales, mass distributions may not be central; rather, spread
onto concentric extended shells or accretion disks with voids
in between. The location of the voids are nearly coincident
with the inflection points of the cumulative distribution. As
we have seen earlier, such mass distributions with 2k + 1
inflection points may have up to 2(k + 1) horizons (17).

We present two ways to construct such multi-horizon
solutions. In these constructions we take the mass distribu-
tion (64) as a prototype. Notice that

∫ r

0

ui−1

u2i + θ2i du = 1

iθ i
arctan

(
r i

θ i

)
, (i integer), (71)

so, in order to obtain simple solutions, we choose the mass
distribution of the form

ρm(r) = MD(r, θ) ≡
∑
i=1

(2 + i)θ2+i
i Mi

2π2

r i−1

r2(2+i) + θ
2(2+i)
i

,

(72)

where M = ∑
i=1 Mi and θ = (θ1, θ2, . . . , θi , . . .). The

coefficients have been chosen so that the integral of each
term on the whole range of r is Mi , M1 being the mass of
the central core and Mi with i ≥ 2 are the masses of shells.
This yields

D(r, θ) = 2

π

∑
i=1

Mi arctan

(
r2+i

θ2+i
i

)
, (73)

which represents a core–multi-shell regular black hole.
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6.1 Core–shell regular black hole

Keeping the first two terms in (72) and (73) we obtain a
core-shell regular black hole,

ρm(r) = 3θ3
1 M1

2π2

1

r6 + θ6
1

+ 4θ4
2 M2

2π2

r

r8 + θ8
2

(74)

D(r, θ) = 2

π

2∑
i=1

Mi arctan

(
r2+i

θ2+i
i

)
, (75)

where the graph of D(r, θ) is shown in the second plot from
the left of Fig. 1 taking M2 = 2/3 = 2M1 (M = 1) and
θ2 = 5 = 8θ1.

6.2 Core–two-shell and two-shell regular black holes

Keeping the first three terms in (72) and (73) we obtain a
core–two-shell regular black hole,

ρm(r) = 3θ3
1 M1

2π2

1

r6 + θ6
1

+ 4θ4
2 M2

2π2

r

r8 + θ8
2

+ 5θ5
3 M3

2π2

r2

r10 + θ10
3

(76)

D(r, θ) = 2

π

3∑
i=1

Mi arctan

(
r2+i

θ2+i
i

)
, (77)

where the graph of D(r, θ) is shown in the third plot from
the left of Fig. 1 taking M1 = 0.3, M2 = 0.8, M3 = 1.2
(M = 2.3), θ1 = 1, θ2 = 4, and θ3 = 9.5.

Now, keeping for instance the second and third terms
in (72) and (73) we obtain a two-shell regular black hole
with total mass M = M2 + M3 and whose mass density and
cumulative distribution are given by

ρm(r) = 4θ4
2 M2

2π2

r

r8 + θ8
2

+ 5θ5
3 M3

2π2

r2

r10 + θ10
3

(78)

D(r, θ) = 2

π

3∑
i=2

Mi arctan

(
r2+i

θ2+i
i

)
. (79)

In the same manner we can obtain a multi-shell regular black
hole.

6.3 Another core–shell regular black hole

One may obtain core–multi-shell regular black holes upon
shifting, horizontally, the graph of the mass distribution (64).
This yields a piecewise solution where the mass distribution
of (64) represents the core and the shifted graph represents
the shell. We choose ρm(r) = MD(r, θ) such that

D(r, θ) =
⎧⎨
⎩
D1(r, θ1) = c1

r6+θ6
1
, 0 ≤ r ≤ a;

D2(r, θ2) = c2r2+br+c
(r−a)6+θ6

2
, r > a

. (80)

We can determine b and c in terms of the other parameters
on imposing the continuity of D(r, θ) and of its r derivative,
D′(r, θ), at r = a (no jump discontinuities at r = a so that
the scalar invariants R and RαβμνRαβμν remain finite). In
order to fix the other two constants we require that∫ a

0
4πu2D1(u, θ1)du = M1

M
,

∫ ∞

a
4πu2D2(u, θ2)du = M2

M
, (81)

M = M1 + M2,

where M1 is the mass of the central core and M2 is that of
the shell. For instance, if we take

θ1 = θ2 = a ≡ θ, (82)

we find

c1 = 3M1θ
3

π2M
, c2 = 3[3M + (6 + 8

√
3)M1]θ

2(9 + 4
√

3)π2M
,

c = 9[M + 2(7 + 4
√

3)M1]θ3

2(9 + 4
√

3)π2M
, (83)

b = −3[6M + (39 + 28
√

3)M1]θ2

2(9 + 4
√

3)π2M
.

A plot of the cumulative distribution of (80), with its param-
eters as given in (82) and (83), is shown in the right-most
plot of Fig. 1 taking θ = 1, M1 = M/7, and M2 = 6M/7.

The thermodynamics of these core–multi-shell regular
black holes deserves a special treatment that is out of the
scope of this paper.

7 Conclusion

A way to describe phenomenologically dark matter halos,
stars, effects of noncommutativity and quantum corrections
to stellar objects is to model them by extended mass distri-
butions.

A variety of such mass distributions as well as charge
distributions [2,3] have been put forward for the sole pur-
pose mentioned above. To the best of our knowledge only a
Gaussian mass distribution has received a two-fold applica-
tion: Constructing noncommutative black holes and describ-
ing dark matter halos.

We have discussed the generic properties of these mass
distributions. Their resulting metric solutions all have a de
Sitter behavior near the origin, finite scalar invariants, and
finite temperature if they describe black holes. In the latter
case, the evaporation processes are marked by the finiteness
of the temperature which first increases to a maximum value
then decreases to absolute zero at the end of the process,
contrary to the Schwarzschild case where the temperature
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unceasingly increases to infinity during the process of evap-
oration.

Then we have specialized to a new class of mass distri-
butions. We have defined and used step-like mass distribu-
tions. Being dependent on two independent parameters, these
distributions are multi-fold and they apply to a variety of
physical configurations ranging from noncommutative black
holes, quantum-corrected black holes to stars and dark mat-
ter halos depending on different scaling values of one of the
two parameters.

The resulting regular metric solution is always given in
closed form in terms of the arctan and ln elementary func-
tions. For linear mass densities exceeding πc2/G, the geom-
etry is that of a two-horizon regular black hole; otherwise the
geometry is freed from horizons and describes a regular non-
black-hole configuration that could be a quantum particle, a
star, a dark matter halo, the whole universe, or a compressed
quantum solid.

Core–multi-shell and multi-shell regular black holes were
also the subject of this work. We have presented two different
ways to construct these objects which represent final stages
of matter collapse into regular configurations.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix: Equation yielding the extremal horizon and
maximum temperature for generic mass distribution

Using the new variable x = r/θ we bring (5) and (16) to

D(x) = 4πθ3
∫ x

0
D(u)u2du, (A.1)

v
x

xS
= D(x). (A.2)

Excluding the point x = 0, the line y = x/xS is tangent to
the curve y = D(x) at the only intersection point xext ifD has
one inflection point; if D has 2k + 1 inflection points (17),
there could be up to k + 1 tangential intersection points xext

satisfying the system

xext

xS
= D(xext), (A.3)

1

xS
= ∂xD(x)

∣∣
x=xext

. (A.4)

From (A.1) we obtain ∂xD(x)
∣∣
x=xext

= 4πθ3D(xext)x2
ext and

the system (A.3)–(A.4) reduces to

xext

xS
= 4πθ3

∫ xext

0
D(u)u2du, (A.5)

1

xS
= 4πθ3D(xext)x

2
ext, (A.6)

which upon eliminating xS yields the integral-algebraic
Eq. (20)

D(xext)x
3
ext =

∫ xext

0
D(u)u2du.

With ∂xD(x)
∣∣
x=xext

= 4πθ3D(xext)x2
ext, Eq. (A.6) reduces

to (21).
Note that (A.6) may be arranged as

1 − 4πxSθ3D(xext)x
2
ext = 1 − 4πrSD(rext)rext

2 = 0,

which implies that the temperature (24) vanishes at rext.
The temperature T is proportional to

∂r ln
( r

D

)∣∣∣∣
r=rh+

, (A.7)

yielding

∂rh+T ∝ − 1

r2
h+

− ∂r

(4πr2D
D

)∣∣∣∣
r=rh+

, (A.8)

where we have used D
′ = 4πr2D. The equation

∂rh+T
∣∣
rh+=r̃h+ = 0 yields (26).
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