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Abstract
Objectives To investigate the association between CT imaging traits and texture metrics with proteomic data in patients with
high-grade serous ovarian cancer (HGSOC).
Methods This retrospective, hypothesis-generating study included 20 patients with HGSOC prior to primary cytoreductive
surgery. Two readers independently assessed the contrast-enhanced computed tomography (CT) images and extracted 33 imag-
ing traits, with a third reader adjudicating in the event of a disagreement. In addition, all sites of suspected HGSOCweremanually
segmented texture features whichwere computed from each tumor site. Three texture features that represented intra- and inter-site
tumor heterogeneity were used for analysis. An integrated analysis of transcriptomic and proteomic data identified proteins with
conserved expression between primary tumor sites and metastasis. Correlations between protein abundance and various CT
imaging traits and texture features were assessed using the Kendall tau rank correlation coefficient and the Mann-WhitneyU test,
whereas the area under the receiver operating characteristic curve (AUC) was reported as a metric of the strength and the direction
of the association. P values < 0.05 were considered significant.
Results Four proteins were associated with CT-based imaging traits, with the strongest correlation observed between the CRIP2
protein and disease in the mesentery (p < 0.001, AUC = 0.05). The abundance of three proteins was associated with texture
features that represented intra-and inter-site tumor heterogeneity, with the strongest negative correlation between the CKB protein
and cluster dissimilarity (p = 0.047, τ = 0.326).
Conclusion This study provides the first insights into the potential associations between standard-of-care CT imaging traits and
texture measures of intra- and inter-site heterogeneity, and the abundance of several proteins.
Key Points
• CT-based texture features of intra- and inter-site tumor heterogeneity correlate with the abundance of several proteins in
patients with HGSOC.

• CT imaging traits correlate with protein abundance in patients with HGSOC.
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IISTH Intra- and inter-site heterogeneity measures
MRI Magnetic resonance imaging
PROVAR Protein-driven index of ovarian carcinoma
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Introduction

It is estimated that over 14,000 women will die from epithelial
ovarian cancer in 2019 in the USA, the preponderance of
whom will have high-grade serous ovarian cancer (HGSOC)
[1]. Despite improvements in the treatment of ovarian cancer,
the rate of recurrence remains high and both disease-free sur-
vival and overall survival are poor, due to resistance to stan-
dard platinum-based chemotherapy [2]. Although several
clinical-pathological factors, such as age, stage, histologic
grade, and surgical debulking status, have been shown to be
important prognostic indicators of outcome in ovarian cancer
patients, there are still no reliable biomarkers for predicting
response to therapy and outcome [3].

Several studies have identified genetic markers that are
associated with outcome in HGSOC patients [4–7], with
TP53 the major driver mutation [8, 9]. Risk stratification using
gene expression is reliable only in a subset of patients [6], as
gene function may not necessarily correlate with the cognate
gene product (e.g., protein) function. An analysis of 412 cases
from The Cancer Genome Atlas (TCGA) study, which used
reverse-phase protein arrays, identified a protein-driven index
of ovarian carcinoma (PROVAR), which enabled classifica-
tion of patients with different risks of recurrence and survival
[10]. In addition, the Clinical Proteomic Tumour Analysis
Consortium performed a mass spectrometry–based proteomic
analysis of 174 ovarian tumors previously analyzed by the
TCGA and integrated those data with genome-level data from
a whole-exome sequencing [11]. This work showed that an
abundance of selected proteins was associated with genomic
changes, such as chromosomal structural abnormalities, copy
number alterations, and the homologous recombination defi-
ciency status. In addition, protein signatures were identified as
a strong independent predictor for patient survival.

Imaging by computed tomography (CT) and, in selected
cases, by magnetic resonance imaging (MRI), is used to eval-
uate the extent of disease and monitor treatment response in
patients with HGSOC. To date, a few studies have applied
radiomic feature analysis in patients with ovarian cancer.
They showed thatMRI-derived radiomic features can discrim-
inate between benign and malignant ovarian masses, with a
high accuracy of 87% [12]. Furthermore, CT radiomic fea-
tures of patients with ovarian cancer correlate with response
to therapy [13], progression-free survival [14, 15], and overall
survival [15], and can identify patients at higher risk for

recurrence [16]. Recent work by our group focused on evalu-
ating the possible associations between CT imaging traits and
texture metrics with genomics data and patient outcome
[17–19]. The integration of clinical, proteomic, and radiomic
data may enable to stratify patients according to risk for pro-
gression thereby allowing for tailored therapy [20].

In this pilot, hypothesis-generating study, we investigated
the association between CT imaging traits and texture metrics
with proteomic data in a small cohort of patients with
HGSOC.

Materials and methods

Study population

This was a multi-institutional, institutional review board–ap-
proved, and Health Insurance Portability and Accountability
Act (HIPAA)–compliant retrospective study, with waiver of
informed consent from all institutions that participated in The
Cancer Genome Atlas-Ovarian Cancer (TCGA-OV) Imaging
Research Group [21].

The eligibility criteria included the following: (1) con-
firmed diagnosis of HGSOC, (2) HGSOC tissue submitted
and analyzed by TCGA, (3) no neoadjuvant chemotherapy
administered, (4) intravenous contrast-enhanced CTof the ab-
domen and pelvis performed prior to primary cytoreductive
surgery, and (5) protein relative abundance measurements
available. The final patient cohort consisted of 20 patients.
Figures 1 and 2 summarize the experimental design. All pa-
tients were included in two prior studies that evaluated the
association between the Classification of Ovarian Cancer
(CLOVAR) subtype signatures and CT features in a single-
[17] and multi-institutional setting [21], respectively. All pa-
tients were also included in two other studies that evaluated
the feasibility of CT-based texture measures in the quantifica-
tion of inter-site tumor heterogeneity and combined intra- and
inter-site tumor heterogeneity [17, 22] in patients with
HGSOC. None of these prior studies involved any analysis
of protein abundance data.

Image analysis

Thirty-six image features, including the 33 radiologist-scored
CT imaging traits used in the study by Vargas et al, such as
lesion size and laterality, locations of peritoneal disease, nodal
stations involved, and locations of metastases, and three
computer-extracted texture metrics were obtained [21]. All
CT-derived variables are shown in Table 1 and Table 2.

The CT images were a part of the TCIA TCGA-OV [23]
collection in The Cancer Imaging Archive (https://
cancerimagingarchive.net) [24], an NCI-supported archive of
anonymized medical images. The cases were reviewed on a
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Fig. 1 Study flow chart. Patients
analyzed in this study were part of
the TCGA dataset (n = 169).
Protein candidates (5504 total)
that exhibited stable expression
between primary and metastatic
sites and those that highly
correlated with transcript
abundance (n = 107 HGSOC
patients, TCGA, and CPTAC)
were selected using the Student’s
t test (p value < 0.1) after boxCox
normalization of transcript
expression coefficients of
variation and Spearman
correlation distributions,
respectively. Forty-seven genes
exhibited both low correlation of
variables between primary and
metastatic sites (529 candidates)
and were highly correlated at the
protein and transcript levels (569
candidates). Among those, 16
proteins were associated with
amino acid metabolism and
selected for final analysis. CT
data were available in 20 patients.
Thirty-three radiologist-scored
imaging traits and three CT-based
texture measures of inter-site
tumor heterogeneity were
assessed and their correlationwith
the 16 cancer proteins was
calculated

Fig. 2 Overview of the experimental workflow. For each patient, 33
imaging traits, proteomics from a single-site tumor biopsy, as well as
intra- and inter-site tumor heterogeneity texture measures, were

obtained. The 33 imaging traits and measures of intra- and inter-site
heterogeneity were correlated with proteomic data
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Table 1 The CT-based image features used in this study, with possible values, summary statistics and inter-reader agreement

Feature Possible values and summary statistics Inter-reader agreement
(%); Cohen’s kappa

Disease in mesentery Yes: 50% (10/20)
No: 50% (10/20)

95%; 0.90

Peritoneal disease in paracolic gutters Yes: 80% (16/20)
No: 20% (4/20)

100%; 1.0

Peritoneal disease in Pouch of Douglas Yes: 75% (15/20)
No: 25% (5/20)

85%; 0.57

Peritoneal disease in spleen/left upper quadrant Yes: 85% (17/20)
No: 15% (3/20)

100%; 1.0

Peritoneal disease in lesser sac Yes: 30% (6/20)
No: 70% (14/20)

90%; 0.76

Peritoneal disease in liver/right upper quadrant Yes: 70% (14/20)
No: 30% (6/20)

100%; 1.0

Number of locations with peritoneal disease 0: 10% (2/20)
1: 5% (1/20)
2: 5% (1/20)
3: 5% (1/20)
4: 30% (6/20)
5: 20% (4/20)
6: 25% (5/20)

90%; 0.62

Peritoneal disease calcifications Yes: 5% (1/20)
No: 95% (19/20)

95%; N/A

Peritoneal disease omental implant Yes: 95% (19/20)
No: 5% (1/20)

90%; 0.5

Shape of peritoneal disease Diffuse: 15% (3/20)
Predominantly diffuse: 50% (10/20)
Predominantly nodular: 30% (6/20)
Nodular: 0% (0/20)
Peritoneal enhancement only: 0% (0/20)
No peritoneal disease: 5% (1/20)

90%; 0.71

Infrarenal retroperitoneal lymphadenopathy Yes: 30% (6/20)
No: 70% (14/20)

100%; 1.0

Pelvic lymphadenopathy Yes: 15% (3/20)
No: 85% (17/20)

95%; 0.77

Inguinal lymphadenopathy Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Porta/celiac/gastro lymphadenopathy Yes: 25% (5/20)
No: 75% (15/20)

100%; 1.0

Retrocrural lymphadenopathy Yes: 5% (1/20)
No: 95% (19/20)

95%; N/A

Supradiaphragmatic lymphadenopathy Yes: 45% (9/20)
No: 55% (11/20)

100%; 1.0

Thoracic lymphadenopathy Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Number of locations with lymphadenopathy 0: 45% (9/20)
1: 15% (3/20)
2: 20% (4/20)
3: 5% (1/20)
4: 15% (3/20)

100%; 1.0

Metastases in liver Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Metastases in lung Yes: 5% (1/20)
No: 95% (19/20)

100%; 1.0

Metastases in pleura Yes: 10% (2/20)
No: 90% (18/20)

100%; 1.0

Metastases in spleen Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Metastases in other locations Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Number of locations with metastases 0: 85% (17/20)
1: 15% (3/20)

100%; 1.0
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cloud-based virtual machine using the ClearCanvas with
Annotation and Imaging Markup viewing software
(Northwestern University) [25]. Image data in DICOM for-
mat, and features and segmentations generated for this paper,
are available at https://doi.org/10.7937/TCIA.2019.9stoinf1
[26].

CT-based qualitative imaging features

The CT imaging traits were assessed by two radiologists (E.S.
and H.A.V.; 17 and 12 years’ experience in ovarian cancer
imaging) independently, who were blinded to the patients’
clinical, pathological, and proteomic data. The details of the
CT imaging trait evaluation are provided in the study by

Vargas et al [17]. Briefly, each reader individually recorded
the imaging interpretation on an electronic case report form,
which was uploaded to a central server, compiled, and sub-
mitted for statistical analysis. Both ovarian masses and peri-
toneal disease were evaluated. If a definable ovarian mass was
present, its features were recorded, including laterality, maxi-
mum size, internal architecture, and presence of calcifications
and/or septations. The presence or absence of definable peri-
toneal implants and their specific location (small bowel mes-
entery, omentum, paracolic gutters, Pouch of Douglas,
perisplenic/left upper quadrant region, lesser sac, and
perihepatic/right upper quadrant region) was also recorded.
Lymphadenopathy was defined as a short-axis dimension
above a predefined size cutoff specific to each location or spe-
cific imaging appearance, as detailed in Vargas et al [21].

In the event, the two radiologists disagreed on a categorical
feature (e.g., presence of peritoneal disease in the mesentery),
and a third radiologist (L.B. 5th year of training) served as an
arbitrator. For quantitative features, such as lesion size, the
measurements of the two radiologist were averaged. The num-
ber of sites in which peritoneal disease was present was also
recorded and was considered an additional human-read fea-
ture. This was also done for the presence of lymphadenopathy
and intra-parenchymal metastases.

Table 2 The texture features used in this study, with summary statistics

Feature Distribution

Cluster site entropy Median: 3.724
Range: 2.170 to 4.969

Cluster standard deviation Median: 2.271
Range: 0.241 to 13.32

Cluster dissimilarity Median: 4394
Range: 483.8 to 15,857

Table 1 (continued)

Feature Possible values and summary statistics Inter-reader agreement
(%); Cohen’s kappa

Metastases calcifications Yes: 0% (0/20)
No: 100% (20/20)

100%; N/A

Size of pleural effusions No pleural effusions: 65% (13/20)
Small: 20% (4/20)
Moderate/Large: 15% (3/20)

95%; 0.91

Pleural metastases removed Pleural effusion: 5% (1/20)
[NA]: 95% (19/20)

100%; 1.0

Pleural effusion metastases removed Small: 5% (1/20)
[NA]: 95% (19/20)

100%; 1.0

Size of ascites No ascites: 15% (3/20)
Trace or small: 40% (8/20)
Moderate or large: 35% (9/20)

95%; 0.92

Mass laterality No mass: 10% (2/20)
Left: 5% (1/20)
Right: 5% (1/20)
Bilateral: 85% (16/20)

90%; 0.73

Mass calcifications Yes: 10% (2/20)
No: 90% (18/20)

95%; 0.64

Mass septations Yes: 10% (2/20)
No: 90% (18/20)

90%; N/A

Mass internal architecture Cystic: 0% (0/20)
Predominantly cystic: 0% (0/20)
Mixed: 35% (7/20)
Predominantly solid: 55% (11/20)
Solid: 10% (2/20)

75%; 0.38

Length of largest lesion Median: 63 mm
Range: 24 mm to 116 mm

N/A

N/A, not applicable. Inter-reader agreement is shown as absolute agreement and Cohen’s kappa statistics for the two radiologists. In case of disagreement,
a third radiologist acted as arbitrator. In case one or both readers scored all cases the same value, we were not able to calculate kappa values
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CT-based texture analysis

A detailed description of image segmentation and texture fea-
ture extraction are provided in Veeraraghavan et al [22]. A slice
thickness of 5 mmwas used for analysis. kVp were variable, as
CT machines from different vendors in different institutions
were used. In brief, two oncologic imaging research fellows
with 4 and 6 years of experience (M.M., S.N.), respectively,
in consensus, manually segmented primary ovarian tumor(s)
and all metastatic tumor implants in the abdomen and pelvis.
Segmentationwas performed using 3DSlicer [27] by tracing the
contour of each lesion on each slice to produce the volumes of
interest (VOI). In total, tumor burden in 14 distinct anatomical
regions was manually segmented. Voxel-wise Haralick textures
(energy, entropy, contrast, and homogeneity) were computed
from within the manually delineated VOIs using in-house soft-
ware implemented in C++ using the Insight ToolKit [28]. Site-
specific sub-regions were computed by voxel-wise clustering of
the Haralick textures using the kernel K-means method [29].
Following clustering, tumor sites were divided into distinct sub-
regions of similar texture features. The intra- and inter-site het-
erogeneity (IISTH) measures (i.e., cluster site entropy, cluster
standard deviation, and cluster dissimilarity) were computed.
IISTHmeasures summarized the heterogeneity across all tumor
sites in each patient. The more different each site of disease, the
higher are the IISTH measures.

Protein abundance measurements

Given that the molecular profiles of TCGA patients were
based on primary ovarian tumor specimens and our radiologic
measurements were made on metastatic patterns of disease,
we sought to identify proteins conserved between primary and
metastatic tumors in an ovarian cancer patient and then cross-
reference these with proteins associated with radiologic pat-
terns of metastasis and proteomic profiles in TCGA. Protein
relative abundance measurements from the CPTAC analysis
of 107 TCGA HGSOC patients were available for 3377 pro-
teins (normalized log-ratios, standardized across two institu-
tions), which were obtained from Zhang et al [11]. When
multiple measurements were available, their abundances were
averaged.

As we included only 20 patients in this study, a simple
correlation analysis between the protein abundance of 3377
proteins and the CT imaging traits and texture features would
result in a high number of false-positive results. Therefore, the
purpose of the workflow described below was to reduce the
number of proteins used for the final analysis. First, the 3377
proteins were prioritized for inclusion in the analysis, based on
evidence of conserved transcript expression between primary
and metastatic sites and on agreement between transcript and
protein abundance levels. Transcript expression (Affymetrix)
data (Supplemental Table 2 in reference [30]) from the

primary tumor and multiple metastatic sites (spleen, right-up-
per-quadrant, liver, and vaginal cuff) from an HGSOC patient
[30], along with transcript expression (mRNA-seq) data from
primary HGSOC tumors (n = 107) [31] with matching protein
expression data from the same case set (n = 107) [11], were
merged by gene name, yielding a final matrix of 5504 co-
measured proteins and transcripts (Supplemental Table 1, in
reference [11]). Second, coefficients of variation (CV) values
in transcript expression between the primary and metastatic
sites, as reported by Jimenez-Sanchez et al [30], and
Spearman correlations calculated for transcript and protein
expression from the n = 107 patients, were normalized using
the boxCox function in R (version 3.3.2). Transcripts that
exhibited a low CV between the primary and metastatic sites
(i.e., stable expression independent of metastatic loci), and
with expression levels highly correlated to their proteins, were
selected by comparison with normal distributions using T test
analyses and a significance threshold of a p value < 0.1. These
analyses identified 529 candidates with conserved expression
between primary and metastatic sites and 569 candidates high-
ly correlated at the protein and transcript level; 47 of these
intersected between these two analyses. To further reduce
the number of proteins, we prioritized proteins based on their
molecular function and their interaction with each other using
MetScape [32]. Sixteen proteins were associated with the reg-
ulation of the amino acid metabolism (p < 0.001). The selec-
tion of these 16 proteins was done solely on the basis their
summary statistics (coefficients of variation in transcript ex-
pression between primary and metastatic sites, correlations
between transcript and protein expression) and molecular
function while correlations of imaging features were not con-
sidered in any way in selecting these proteins. Finally, these 16
candidates were included in subsequent analyses to identify
those that further correlated with clinical imaging features
(Fig. 1). The 16 proteins are given in Supplementary Table 1.

Statistical methods

The percentage agreement and the Cohen’s kappa coefficient
used to assess the agreement between the two radiologists
were calculated for all CT-based imaging features.
Univariate associations were assessed between the expression
levels of the proteins and CT-based image features in which
previous results provided evidence of prognostic power (pres-
ence of peritoneal disease in the mesentery and diffuse—
non-mass forming—peritoneal involvement, as found in the
study by Vargas et al [21]: number of sites with peritoneal
disease; presence of peritoneal disease in the liver; presence
of Pouch of Douglas implants; presence of supradiaphragmatic
lymphadenopathy; and non-visualization of a discrete ovarian
mass). For binary image features, these associations were
assessed using a Mann-Whitney U test to compare the expres-
sion levels of a specific protein among patients with the feature
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to those among patients without the feature. The area under the
receiver operating characteristic curve (AUC) was reported as a
metric of the strength and direction of this association. For
quantitative features, these associations were assessed through
inferences on the Kendall tau rank correlation coefficient.

Univariate associations between the texture radiomic fea-
tures (cluster site entropy, cluster standard deviation, and clus-
ter dissimilarity) and protein relative abundance were assessed
through inferences on the Kendall tau rank correlation coeffi-
cient. The Benjamini-Hochberg procedure was used to correct
for multiple hypothesis testing. All tests were performed at the
α = 0.05 level.

Results

Patient characteristics and distribution of disease

The patients’ characteristics are shown in Table 3. The median
number of tumor sites was six (range, 1–11). The median
tumor volume was 192 cm3 (range, 12–2574 cm3), the highest
being the tumor volume of the ovarian masses, with a median
of 80 cm3 (range, 0–600 cm3). Figure 3 illustrates the tumor
volumes for each anatomical sub-region.

Inter-reader agreement of CT-based imaging traits

There was a good to excellent inter-reader agreement for CT-
based imaging traits, with an absolute agreement ranging be-
tween 75% (κ = 0.32) for the variable mass internal architec-
ture to 100% (κ = 1.0) agreement for the majority of variables
(Table 1).

CT imaging traits are associated with an abundance
of several proteins

Four CT imaging traits were associated with an abundance of
several proteins (Table 4). For example, disease in the mesen-
tery was associated with reduced levels of CRIP2 (p = 0.0002,
AUC = 0.05 ) and GPI (p = 0 .004 , AUC = 0.22 ) .
Supradiaphragmatic lymphadenopathy was associated with
decreased abundance of ALDH3A2 (p = 0.02, AUC 0.192)
and increased abundance of MAGEA4 (p = 0.046, AUC =
0.768). The number of sites with peritoneal disease was cor-
related with increased levels of ALDH3A2 (p = 0.03, τ =
0.36) and CRIP2 (p = 0.01, τ = 0.378). The shape of peritone-
al disease was associated with the abundance of MAGEA4 (=
0.04, τ = − 0.343). After correction for multiple testing
through the Benjamini-Hochberg procedure, the correlation
between CRIP2 and the presence of supradiaphragmatic
lymphadenopathy remained significant (corrected p = 0.03).
Patients with without or diffuse peritoneal disease had higher
levels of MAGEA4 (median 2.31 and 2.31 respectively) than
patients with predominantly diffuse or predominantly nodular
disease (median − 0.233 and − 1.51 respectively).

CT-based intra- and inter-site heterogeneity metrics
were associated with an abundance of several
proteins

The protein abundance of three proteins was associated with
intra- and inter-site tumor heterogeneity texture metrics
(Table 5). For example, cluster site entropy was positively
correlated with the abundance of STXBP2 (p = 0.007, τ =
0.432) and negatively with ASS1 (p = 0.011, τ = − 0.364).
Cluster standard deviation was positively correlated with an

Fig. 3 Tumor volume of the sub-regions of the 20 patients included in the
final analysis is shown. LUQ, left upper quadrant: the horizontal line
indicates the median value

Table 3 Clinical characteristics of the 20 patients used in the analysis

Characteristic

Median age (year) 60.5 (49–80)

FIGO stage III 8 (40%)

FIGO stage IV 12 (60%)

Residual disease following primary debulking

None 5 (25%)

Less than 1 cm 11 (55%)

Greater than 1 cm 3 (15%)

No. of patients with missing data 1 (5%)

Median TTP (day) 426 (9–1475)

Median OS 1469 (9–2749)

Age, TTP, and OS are shown as median (range), while the remaining
variables are shown as number of patients; TTP, time to progression;
OS, overall survival
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STXBP2 (p = 0.05, τ = 0.453). Cluster dissimilarity was pos-
itively correlated with STXBP2 (p = 0.03, τ = 0.368) and neg-
atively with ASS1 (p = 0.009, τ = − 0.427) and CBK
(p = 0.047, τ = − 0.326). However, none of these associations
were significant after correction for multiple testing through
the Benjamini-Hochberg procedure.

Discussion

In this hypothesis-generating study, we investigated the rela-
tionship of CT imaging traits and CT-based texture measures
of tumor heterogeneity to protein abundance in patients with
HGSOC. This study is part of the efforts of the NCI initiative
to combine proteomic data available from TCGAwith patient-
matched CT images collected as part of the TCIA effort in
ovarian cancer. Our results provide preliminary evidence that
suggests possible associations between imaging traits, CT-
based texture measures of tumor heterogeneity, and the abun-
dance of several proteins. These results are a step forward to
the development of models that integrate clinical, proteomic,
and radiomic data to predict meaningful clinical endpoints and
facilitate tailored therapies.

Tumor involvement of the mesentery, which is a known
important limiting factor in primary debulking surgery, was

negatively correlated with the protein abundance of cysteine
rich protein 2 (CRIP2). This correlation was even significant
after correction for multiple testing. CRIP2 regulates cell pro-
liferation, and acts as a tumor suppressor [33, 34]. In addition,
the presence of supradiaphragmatic lymphadenopathy that
causes patients to be up-staged to stage IV disease was posi-
tively associated with the protein abundance of MAGE family
member A4 (MAGE4). Increased MAGE4 expression in
ovarian cancer cells is an independent predictor for mortality
in associated with worse overall survival [35].

This study also provides the first insights into possible as-
sociations between measures of CT-based tumor heterogene-
ity and protein abundance. The most interesting associations
was with argininosuccinate synthase 1 (ASS1). HGSOC cells
are known to express high levels of ASS1 [36, 37], and re-
duced levels of this protein correlate with platinum-based drug
resistance in vitro and in vivo, and with worse prognosis [38].
We found that more heterogeneous tumors had lower ASS1
expression in with more homogenous tumors. This would
support previous finding higher tumor heterogeneity mea-
sured by CT is predictive for worse survival [18].

A few studies, thus far, have applied radiomics in patients
with ovarian cancer, mainly evaluating the ability of texture
features to characterize tumor tissue [15, 17, 39, 40] and predict
outcome [14, 15, 17, 18, 21, 22, 39]. Best to our knowledge,

Table 4 Associations between protein abundance and CT-based
imaging traits previously found to be prognostic in patients with
HGSOC. Only associations for which the p value was less than 0.05
were included in this table. AUC values greater than 0.5 indicate a
positive association between the imaging trait and the level of

expression of the protein whereas AUC values less than 0.5 indicate a
negative association. Positive values of τ indicate positive association
between the imaging trait and the level of expression of the protein
whereas negative values of indicate negative association

Image trait Protein p value Corr. p value Point estimate of metric of association

Disease in mesentery CRIP2 0.0002 0.03 AUC= 0.05

GPI 0.04 0.51 AUC= 0.22

Supradiaphragmatic lymphadenopathy ALDH3A2 0.02 0.45 AUC= 0.192

MAGEA4 0.046 0.52 AUC= 0.768

Number of sites with peritoneal disease ALDH3A2 0.03 0.51 τ = 0.36

CRIP2 0.01 0.29 τ = 0.439

Shape of peritoneal disease MAGEA4 0.04 0.52

Table 5 Association between CT-based texture metrics and protein
abundance in patients with HGSOC. Only associations for which the p
value was less than 0.05 were included in this table. Positive values of τ

indicate positive association between the texture metric and the level of
expression of the protein whereas negative values of τ indicate negative
association

Texture feature Protein p value Corr. p value Point estimate of metric of association

Cluster site entropy ASS1 0.03 0.45 τ = − 0.364
STXBP2 0.007 0.28 τ = 0.432

Cluster standard deviation STXBP2 0.005 0.20 τ = 0.453

Cluster dissimilarity ASS1 0.009 0.29 τ = − 0.427
CKB 0.047 0.52 τ = − 0.326
STXBP2 0.03 0.45 τ = 0.368
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our work is the first that combines proteomic and radiomic data
in patients with HGSOC, thereby facilitating the integration of
multiple layers of data that is needed for the realization of
precision medicine in oncological patients [20].

Our study was primarily limited by the retrospective de-
sign, the small study population, and the lack of a validation
cohort. Due to the small sample size, there are inevitable
biases in extracting CT textural features, with the risk of both
false-positive and false-negative results. Therefore, we a priori
selected only three texture metrics to assess IISTH, which had
already been validated in larger studies to be predictive of
treatment response and survival in patients with HGSOC
[18, 19]. In addition, the process of selecting proteins may
have screened out proteins that may be important. However,
we think that this approach is justified, as the main aim of this
study was to reduce the number of selected proteins to avoid
false-positive correlations between protein expression and CT
data. A larger study is needed for a more definitive analysis on
the association between imaging traits and texture metric and
CLOVAR subtypes, as well as from integrating the imaging,
genomics, and proteomics data to predict response to treat-
ment and outcome. However, since the TCGA/TCIA has been
the only publicly available cohort of HGSOC patients with
imaging, proteomics, and genomics data to date, this study
was designed as a small hypothesis-generating study rather
than a confirmative study.

In conclusion, this study provides the first insights into the
potential associations between CT imaging traits and CT-
based texture measures of tumor burden heterogeneity and
the abundance of several tumor-associated proteins. Future,
larger, prospective studies, such as that being conducted in
the Applied Proteogenomic Organizational Learning and
Outcomes (APOLLO) Research Network, are needed to val-
idate our findings and enable the integration of clinical data,
proteomics and radiomics to guide tailored therapies.
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