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Abstract. We investigate how a Generative Adversarial Network could be used to generate
a list of particle four-momenta from LHC proton collisions, allowing one to define a generative
model that could abstract from the irregularities of typical detector geometries. As an example
of application, we show how such an architecture could be used as a generator of LHC parasitic
collisions (pileup). We present two approaches to generate the events: unconditional generator
and generator conditioned on missing transverse energy. We assess generation performances in
a realistic LHC data-analysis environment, with a pileup mitigation algorithm applied.

1. Introduction
The simulation of subatomic particle collisions, their subsequent detector interaction, and

their reconstruction is a computationally demanding task for the computing infrastructure of
the experiments operating at the CERN Large Hadron Collider (LHC). The high accuracy of
state-of-the-art Monte Carlo (MC) simulation software, typically based on the GEANT4 [1], has
a high cost: MC simulation amounts to about one half of the experiments’ computing budget
and to a large fraction of the available storage resources [2], the other half being largely used to
process simulated and real data (event reconstruction).

Following their invention in 2014, GANs gained traction as generative models, often superior
to Variational Autoencoders [3] and with very impressive results in image production [4, 5]. Due
to their high inference speed, GANs can be used as fast-simulation libraries. This approach
has been successfully investigated with proof-of-principle studies related to particle showers in
multilayer calorimeters [6, 7, 8] and particle jets [9], as well as in similar application to different
HEP domains [10, 11, 12, 13, 14, 15]. All these studies formalized the simulation task in terms
of either image generation or analysis-specific high-level features.

In this work, we present pGAN, a full-event particle-based generative model that can be used
to emulate pileup simulation at the LHC.

2. Pileup simulation
The majority of LHC proton-proton collisions result in so-called minimum-bias (MB) events,

i.e., in low-energy (soft) interactions between proton constituents. These events are characterized
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by low-pT particles, as opposed to the head-on collision processes typically studied at the LHC
(so-called hard or high-pT interactions). Any hard interaction happens simultaneously to many
parasitic MB events, generically referred to as pileup. Pileup simulation is a fundamental aspect
of a realistic LHC simulation software. The current implementation of pileup simulation consists
in overlapping a set of MB events to the main high-pT collision. Events could be generated on
demand or be sampled from a pre-generated library. The former is computationally expensive,
while the latter is inflexible and suffers from I/O issue.

GAN emerges as a possible solution to speed up the on-demand generation of MB events
and remove the need for a pre-generated library. To our knowledge, the only application of
machine learning to pileup simulation is the work presented in Ref. [16], where pileup images
are generated using a Deep Convolutional GAN model (DCGAN) [17]. However, an image-
based event representation can’t be used as input for downstream reconstruction algorithms. In
addition, our proposed pGAN, which uses particle-based event representation, can abstract from
the details of the detector geometry (e.g., its irregularities) and better scales with the foreseen
increase of detector complexity.

3. Dataset
Synthetic MB events from proton-proton collisions are produced using the PYTHIA8 [18] event

generator. The center-of-mass energy of the collision is set to 13 TeV, corresponding to the
LHC Run II (2015-2018). All soft QCD processes are activated, allowing for both initial- and
final-state radiation as well as multiple parton interactions. The produced events are passed to
DELPHES [19], to emulate the detector response. We take as a reference the upgraded design
of the CMS detector, foreseen for the High-Luminosity LHC phase. The DELPHES particle-flow
reconstruction algorithm is applied, returning the list of charged particles, photons, and neutral
hadrons in the event. Minimum bias events are then combined to simulate a per-event pileup
contribution, with mean number of MB events nPU = 20 following a Poisson distribution. We
randomly sample nPU events from the MB dataset and mix them by merging the list of charged
particles, neutral hadrons, and photons across the events.

Due to the complexity of training on long sequences, we restrict a maximum of 150 particles
per event: the 50 charged particles, 50 photons and 50 neutral hadrons with the highest pT
value. This choice is mainly due to technical limitations that a more powerful training setup
might help to overcome. On the other hand, cutting the sequence after pT ordering is a well
motivated simplification of the problem: a typical physics analysis would be based on a pileup
mitigation algorithm, which usually removes the majority of the soft pileup contamination.

4. Network architectures
A GAN consists of two neural networks, a generator G and a discriminator D. Given a set of

samples x, the aim of a GAN training is to learn the function pdata(x) ∈ A under which the x
samples are distributed. We define an n-dimensional prior of input noise z ∼ pz(z) ∈ Rn. The
generator G is a differentiable function with trainable parameters θG , mapping Rn to A. The
discriminator D, with trainable parameters θD, is a map between A and [0, 1], returning the
probability that a given sample belongs to the set of real samples rather than originating from
G. D is trained to assign the correct probability to both real and generated ("fake") data; G is
trained to produce samples such that they maximize the probability of them being real D(G(z)).

We develop 2 models for pGAN: an unconditional pGAN where the generator starts from
purely random noise z, and a conditional pGAN [20] where a label acts as an extension of z
to allow for generation of events based on an initial condition. In our use case, the missing
transverse energy Emiss

T is chosen as the label due to its importance in most physics analyses.
The loss function to train G and D in an unconditional pGAN is described as:

Luncond = Ladv = Ez∼pz(z)[log(P(D(G(z)) = 0)] + EI∼A[log(P(D(I) = 1))] , (1)
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Figure 1: The architecture of conditional pGAN: generator Gcond (left) and discriminator Dcond

(right). Arrows signify concatenation. Details are described in the text.

while for conditional pGAN, the loss function becomes:

Lcond = Ladv + αLaux , where (2)

Laux = E(z,Emiss
T )∼(p(z)×f(A))

[
|Emiss

T − Êmiss
T (G(z|Emiss

T ))|
Emiss

T

]
+ Ex∼A

[
|Emiss

T (x)− Êmiss
T (x)|

Emiss
T (x)

]
(3)

Êmiss
T is the missing transverse energy value computed from list of particles input to the

discriminator, f(A) is the empirical Emiss
T distribution of the dataset. In the conditional GAN

setting, the dataset is transformed such that φ( ~Emiss
T ) = 0 and the φ value of each particle is

computed as azimuth angle between its momenta and ~Emiss
T . This way a single scalar value Emiss

T

can describe the full vector ~Emiss
T since the direction is chosen as the coordinate axis.

4.1. Unconditional pGAN
4.1.1. Generator The G model takes as input a set of time steps, corresponding to the number
of particles to generate, sampled from a uniform distribution from 0 to 50 for each particle class.
Along with the noise, the current particle number n is given to the network. We represent each
particle as a (pT , φ, η) tuple. We enforce the φ-symmetry constraint through a mod-2π activation
function for φ. The input in each branch from the noise input is processed via a block of Dense
layers, a GRU layer, and another block of Dense layers as the final outputs. Each block of Dense
consists 3 concatenated Dense layers that represent the particle’s pT , φ, and η respectively.

Due to the peculiar shapes of the η distributions, we pre-train a small dense network that fed
with a Gaussian-distributed input mimics the η distribution as output. This network is used to
process the η output of the generator. This can be viewed as an activation function parametrizing
the η distribution in an unbiased way and decouples learning the distribution from the already
complex particle generation task.

4.1.2. Discriminator The discriminator D is of a binary classifier whose first step consists in a
Physics layer, which takes each particle’s defining features (pT , φ, η, n) and concatenates to them
other redundant features (θ, pz, p). This Physics layer is introduced to maximize the information
given to the discriminator without adding redundant information to the particle representation
returned by the generator. This prevents the generator for having to learn dependencies between
different features of the particle representation, while allowing the discriminator to exploit them.
The discriminator makes use of a Bidirectional recurrent layer, which reduces the dependence on
the long term memory of the GRU cell. A layer that calculates the mean and standard deviation
of the features in a dense layer is included, in a similar spirit to feature matching [21]. Mini-batch
discrimination is used to prevent mode collapse.
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4.2. Conditional pGAN
4.2.1. Generator The generator Gcond for the conditional pGAN, as shown in Fig. 1, is built
on top of the unconditional generator G. An initial value of the Emiss

T , sampled from real data,
is injected as the input of the generator along with the noise after being rescaled to same range
of the noise. This initial Emiss

T is also used as the input to the discriminator. The rest of the
generator architecture is similar to the unconditional pGAN’s G.
4.2.2. Discriminator The discriminator Dcond, as shown in Fig. 1, takes as inputs the 3 lists of
particles along with the event Emiss

T , which is either the initial condition Emiss
T (in the case of the

generated lists of particles) or the actual Emiss
T (in the case of sampling the lists of particles from

the training data). In addition to usual computation flow in the unconditional D described in
Sec. 4.1, Dcond also computes a few high-level features out of the input particle lists, in particular
the reconstructed Emiss

T and HT (the scalar sum of all input particles’ momenta), which are used
as inputs to the final prediction. A binary flag ∆, which returns 1 if the absolute difference
between reconstructed Emiss

T and the initial Emiss
T is greater than ε and returns 0 otherwise, is

also concatenated to the input of the final prediction. This can be viewed as an attempt to
let the discriminator to learn some global kinematic features of the inputs. Additionally, the
reconstructed Êmiss

T are compared with the initial input Emiss
T to construct the additional term

Laux in the loss function, as described in Eq. (3).

4.3. Implementation details
Adam [22] is used for optimization with a batch size of 32, a learning rate of 1× 10−4 for the

generator and of 2 × 10−4 for the discriminator. For the conditional pGAN, we choose ε = 10
GeV and α = 0.05. We train on cropped sequences of variable length, forcing the discriminator to
learn to distinguish even very short arrays, and make use of dropout in the discriminator. Batch
normalization [23] is included in the discriminator but not in the generator. Hyperparameter
optimization was performed on the learning rate of both networks. We find Least-Squarse
GAN [24] offers the most stable training, outperforming both Wasserstein GAN [25] and the
original GAN implementation.

5. Experimental evaluation
GAN performance evaluation is a challenging task. Due to their unsupervised nature, domain

and task-specific metrics are often required. Our evaluation technique is three-fold: (i) we plot
distributions of relevant physical features and quantify the matching between the ground-truth
(GT), PYTHIA8 + DELPHES, and our network; (ii) we make use of high-level global event-shape
variables such as the transverse thrust and the Emiss

T ; (iii) we evaluate the effect of using our
proposed generation technique in a real analysis environment. To this purpose, we apply a
state-of-the-art pileup removal algorithm (SoftKiller [26]) and cluster the remaining particles in
the event, characterizing the agreement between real simulation and pGAN on jet kinematic
properties (e.g., the jet pT ). These three different performance assessments are discussed in the
rest of this section.

5.1. Histogram matching
Fig. 2 shows how the pGAN generators succeed in learning the main aspects of the particles’

pT , η and φ distributions. The comparison is limited to the first 50 high-pT particles of each
class, in order for the representation of the generated event to be consistent with the GAN
generator output. We observe a remarkable agreement in pT and φ: the long tail of the transverse
momentum distribution is well described across four orders of magnitude and the φ rotation
invariance of the physical process is reproduced. On the other hand, while the qualitative features
of the pseudorapidity distribution are learned, the agreement is not completely satisfactory. A
better match should be the goal of future work. Fig. 3 shows comparisons for some of the event-
related high level features used in model evaluation: transverse thrust and Emiss

T . We observe
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Figure 2: Comparison of the transverse momentum pT (left), azimuth angle φ (center) and
pseudorapidity η (right) for charged particles between the test data and the events generated
by unconditional pGAN (top) and conditional pGAN (bottom). For the conditional pGAN, φ is
transformed to be the azimuth angle between the particles’ momenta and ~Emiss

T .

some discrepancy being associated to overall scale shifts, related to the different truncation
criteria applied to the two sets of events.

(a) Unconditional pGAN (b) Conditional pGAN

Figure 3: Comparison of the transverse thrust and Emiss
T distributions between the test data

and the generated events by pGANs.

Figure 4: Evolution of our performance metric (solid black) as a function of training. EM
distances for some of the individual quantities are superposed.
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5.2. Wasserstein metric
We use the previously described histograms to quantify the difference between the target and

generated distributions through the Wasserstein or Earth Mover’s (EM) distance. We define our
performance metric as the weighted average of the EM distances over the feature distributions:
pT , η, φ for all three particle types, sphericity, transverse thrust, aplanarity, Emiss

T , and the first
and second transverse Fox-Wolfram moments [27]. The use of this metric tackles the problem
of lack of interpretability of the loss function: we observe that the metric decreases steadily as
the training progresses, as shown in Fig. 4, providing a way of monitoring progress, performing
early-stopping and tracking training failure. Based on this metric, we perform model comparison,
hyperparameter tuning, and the final best-model choice.

5.3. Pileup subtraction
Typical LHC analyses are performed after applying a pileup removal algorithm, which aims

to subtract soft radiation from QCD. It is then important to demonstrate that the pGAN is good
in modeling the residual pileup contribution, after such a subtraction algorithm is applied. Since
this residual pileup contribution is the only relevant effect for physics analyses, it is acceptable
for a pileup emulation software to have a non-accurate pileup simulation as long as the pileup
effect is well model after applying a pileup mitigation technique. For this purpose, we consider
a sample of Z → νν events, generated using Pythia8. Events are processed with Delphes,
using the same setup adopted to generate the pileup reference sample, both with and without
activating the pileup emulation at nPU = 20. The generated no-pileup events are mixed with
the pileup emulation returned by the generator. The SoftKiller [26] algorithm with a grid size
of a ≈ 0.5 is then applied to both these events and those with a full pileup simulation.

Table 1: Mean leading-jet pT for events with no pileup and pileup generated by Pythia8 and
by the network (pGAN), before and after running SoftKiller.

〈pT 〉 / GeV 〈pT 〉 / GeV

No PU 136.8
Pileup - GT 146.6 Pileup - GT - subtracted 135.0

Pileup - pGAN 141.1 Pileup - pGAN - subtracted 135.7

Figure 5: Comparison between leading jet pT distributions for events with no pileup (solid
black) and pileup generated by Pythia8 (green) and by the network (magenta). Distributions
are shown both before (left) and after (right) running the SoftKiller pileup mitigation algorithm.
The bottom plot shows the Pythia/GAN ratio.
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Fig. 5 shows the pT distribution of the highest-pT jet in the event in various configurations.
The main effect of pileup contamination is a shift in the pT distribution towards larger values.
The shift is underestimated when the pileup is described through the pGAN generator, which
is due to the fact that pGAN only returns the first 150 particles per event, instead of the usual
∼ 900. After processing the event with the SoftKiller algorithm, the leading jet pT distribution
for Pythia8 and our GAN match within 0.7 GeV. The agreement could be further improved by
increasing the number of neutral hadrons and charged particles returned by the pGAN.

6. Conclusions
We presented GAN models based on a recurrent unit, capable of generating lists of particles

with variable lengths and also with an initial condition on Emiss
T . Such a model could be used for

particle-based simulation software, such as those of experiments using particle-flow reconstruction
algorithms. This model could be used to replace ordinary rule-based algorithms in specific aspects
of jet generation. In this paper, we show its application to pileup emulation in LHC collisions.
While technical limitations forced us to reduce the length of the returned particle chain, the
network is capable of emulating the effect of pileup on a realistic data analysis, after applying a
pileup mitigation algorithm.
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