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Abstract. A random walk is a basic stochastic process on graphs and
a key primitive in the design of distributed algorithms. One of the most
important features of random walks is that, under mild conditions, they
converge to a stationary distribution in time that is at most polyno-
mial in the size of the graph. This fundamental property, however, only
holds if the graph does not change over time; on the other hand, many
distributed networks are inherently dynamic, and their topology is sub-
jected to potentially drastic changes.
In this work we study the mixing (i.e., convergence) properties of random
walks on graphs subjected to random changes over time. Specifically, we
consider the edge-Markovian random graph model: for each edge slot,
there is a two-state Markov chain with transition probabilities p (add a
non-existing edge) and q (remove an existing edge). We derive several
positive and negative results that depend on both the density of the
graph and the speed by which the graph changes.
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1 Introduction

A random walk on a network is a simple stochastic process, defined as follows.
Given an undirected graph G = (V,E), the walk starts at a fixed vertex. Then,
at each step, the random walk moves to a randomly chosen neighbor 1. Due to
their simplicity and locality, random walks are very useful algorithmic primitive,
especially in the design of distributed algorithms. In contrast to topology-driven
algorithms, algorithms based on random walks usually benefit from a strong
robustness against structural changes in the network.

Random walks and related works have found various applications such as
routing, information spreading, opinion dynamics, and graph exploration [3, 9].
One key property of random walks is that, under mild assumptions on the un-
derlying network, they converge to a stationary distribution – an equilibrium
state in which every vertex is visited proportionally to its degree. The time for
this convergence to happen is called mixing time, and understanding this time is

? The second and third author acknowledge support by the ERC Starting Grant “Dy-
namic March”.

1 In case of a lazy random walk, the walk would remain at the current location with
probability 1/2, and otherwise move to a neighbor chosen uniformly at random.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/326520677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 L. Cai et al.

crucial for many sampling and exploration related tasks. In particular, whenever
a graph has a small mixing time, also its cover time (the expected time to visit
all vertices of the graph) is small as well.

While most of the classical work devoted to understanding random walks has
focused on static graphs, many networks today are subject to dramatic changes
over time. Hence understanding the theoretical power and limitations of dynamic
graphs has become one of the key challenges in computer science [17]. Several
recent works have indeed considered this problem and studied the behavior of
random walks [2, 3, 10, 15, 21, 22, 24] or similar processes [4, 5, 8, 11, 14] on such
dynamic graphs, and their applications to distributed computing [2, 14,24].

In this work, we study the popular evolving graph model. That is, we consider
sequences of graphs G1, G2, . . . over the same set of vertices but with a varying
set of edges. This model has been studied in, for example, [3, 15, 25]. Both [3]
and later [25] proved a collection of positive and negative results about the mix-
ing time (and related parameters), and they assume a worst-case scenario where
the changes to the graph are dictated by an oblivious, non-adaptive adversary.
For example, [3] proved the following remarkable dichotomy. First, even if all
graphs G1, G2, . . . are connected, small (but adversarial) changes to the station-
ary distribution can cause exponential mixing (and hitting) times. Secondly, if
the sequence of connected graphs share the same stationary distribution, i.e.,
the degrees (or relative degrees) of vertices are time-invariant, then mixing and
hitting times are polynomial. This assumption about a time-invariant stationary
distribution is crucial in the majority of the positive results in [3, 25].

In contrast to [3,25], we do not impose such assumptions, but instead study
a model with incremental changes. Specifically, we consider a setting where the
evolving graph model changes randomly and study the so-called edge-Markovian
random graph G(n, p, q), which is defined as follows (see Definition 2.5 for a more
formal description). For each edge slot, there is a two-state Markov chain that
switches from off to on with probability p and from on to off with probability q.
This model can be seen as a dynamic version of the Erdős-Rényi random graph,
and has been studied in the context of information spreading and flooding [5–7].
While these results demonstrate that information disseminates very quickly on
these dynamic graphs, analysing the convergence properties of a random walk
seems to require new techniques, since degree fluctuations make the use of any
“inductive” argument very difficult – from one step to another, the distribution
of the walk could become “worse”, whereas the set of informed (or reachable)
nodes can never decrease.

In this work, we will investigate the mixing time of a random walk on such
evolving graphs. It turns out that, as our results demonstrate, the mixing time
depends crucially on the density as well as on the speed by which the graph
changes. We remark that deriving bounds on the mixing time on G(n, p, q) poses
some unique challenges, which are not present in the positive results of [3, 25].
The main difficulty is that in G(n, p, q), due to the changing degrees of the
vertices, there is no time-invariant stationary distribution, and the traditional
notion of mixing time must be adapted to our dynamic setting. Informally, what
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we ask, then, is how many steps the walk needs to take before the distance to
a time-dependent stationary distribution becomes small enough. Furthermore,
in contrast to static graphs, where the distance between the distribution of the
walk and the stationary distribution can only decrease, in dynamic graphs the
distance to the time-dependent stationary distribution might increase with time.
For this reason, we also ask that the distribution of the walk remains close to a
time-dependent stationary distribution for a long enough interval of time (for a
precise definition of our notion of mixing time, see Definition 2.7). We believe
this requirement is necessary for our definition of mixing time to be useful in
potential applications.

Further Related Work. Recently, [15] analysed the cover time of so-called
“Edge-Uniform Stochastically-Evolving Graphs”, that include our model as a
special case (i.e., the history is k = 1). Their focus is on a process called “Random
Walk with a Delay”, where at each step the walk picks a (possible) neighbor and
then waits until the edge becomes present. In [15, Theorem 4], the authors also
relate this process to the standard random walk, and prove a worst-case upper
bound on the cover time. However, one of the key differences to [15] is that we
will study the mixing time instead of the cover time.

In [26], the authors analysed a continuous-time version of the edge-Markovian
random graph. However, unlike the standard random walk, they consider a
slightly different process: when the random walk tries to make a transition from
a vertex u, it picks one of the n − 1 other vertices and moves there only if the
edge is present; otherwise it remains in place. For this process, they were able to
derive very tight bounds on the mixing time and establish a cutoff phenomenon.
The same random walk was also analysed on a dynamic graph model of the
d-dimensional grid in [19,20] and, more generally, in [12].

1.1 Main Results

We study the mixing properties of random walks on edge-Markovian random
graphs G(n, p, q). In particular, we consider six different settings of parameters p
and q, which separates edge-Markovian models based on how fast graphs change
over time (slowly vs. fast changing), and how dense graphs in the dynamic se-
quence are (sparse vs. semi-sparse vs dense).

As noted in previous works (see, e.g., [5]), a dynamic sequence sampled from
G(n, p, q) will eventually converge to an Erdős-Rényi random graph G(n, p̃) where
p̃ = p

p+q (for the sake of completeness, we give a proof of this fact in Appendix A).

We use the expected degree in such random graph, which is equal to d = (n−1)p̃,
to separate edge-Markovian models according to their density as follows:

1. Sparse d = o(log n)

2. Semi-sparse d = Θ(log n)

3. Dense d = ω(log n).
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Notice that the sparse regime corresponds to random graphs with density below
the connectivity threshold of Erdős-Rényi random graphs.

We further separate edge-Markovian models based on how fast they change
over time. Let δ =

(
n
2

)
p̃q+

(
n
2

)
(1− p̃)p be the expected number of changes at each

step, when starting from a stationary initial graph G0 ∼ G(n, p̃). We consider
the following two opposite regimes.

1. Fast-changing δ = Θ(dn).

2. Slowly-changing δ = O(log n)

Notice that the fast-changing regime corresponds to graphs for which a constant
fraction of edges change at each step in expectation.

Fast-changing Slowly-changing

δ = Θ(dn) δ = O(logn)

Sparse tmix =∞ tmix = Ω(n)

d ∈ [1, o(logn)] Thm 1.1 Proposition 1.4

Semi-sparse Coarse mixing2 in O(log n)

d = Θ(logn) Prop 3.2 tmix = O(log n),

Dense tmix = O(log n) Thm 1.3

d ∈ [ω(logn), n/2] Thm 1.2

Table 1.1. Summary of our main results (informal). See referenced theorems for the
precise and complete statements.

The main results of our work are presented in Table 1.1. Here, we assume G0

is sampled from the stationary graph distribution G(n, p̃). In the fast-changing
regime, as highlighted in Remark A.1, this is without loss of generality. For
slowly-changing models, instead, different choices of G0 can result in drastically
different outcomes with regard to the mixing time. For ease of presentation,
we assume in Table 1.1 that G0 ∼ G(n, p̃), but this assumption can usually be
relaxed, and we refer to the full statement of the corresponding results for our
actual assumptions on G0.

Next, we formally state the four main results of our work. The formal def-
initions of mixing time for random walk on dynamic graphs will be presented
in Section 2.1 (see in particular Definition 2.7 and Definition 2.8). The first
theorem is a negative result that tells us that, for fast-changing and sparse edge-
Markovian graphs, random walks don’t have finite mixing time. Its proof will be
presented in Section 3.1.

2 In this regime we are not able to prove finite mixing time. However, we show that
the distribution of the walk will “flatten out” after O(logn) steps. We refer to this
behavior as coarse mixing.
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Theorem 1.1 (Fast-changing and sparse, no mixing). Let p = Θ(1/n)
and q = Ω(1). Then, tmix(G(n, p, q)) =∞.

The following theorem is a positive result that establishes fast mixing time
in the dense and fast-changing regime. Its proof is presented in Section 3.2.

Theorem 1.2 (Fast-changing and dense, fast mixing). Let p = ω (log n/n)
and q = Ω(1). Then, tmix(G(n, p, q)) = O(log n).

The only case missing in the fast-changing regime is the semi-sparse case,
where nodes have average degree d = Θ(log n). We do not have a definitive
answer on the mixing time of random walks in such case, however, we do have
a partial result that guarantees at least that random walk distributions will be
“well spread” over a large support after O(log n) steps (we call this behavior
coarse mixing). This statement can be made formal by considering the `2-norm
of the distribution of the walk. Because of its technical nature, we defer the
formal statement to Section 3.2 and Proposition 3.2.

We now turn our attention to the slowly-changing regime, where at most
δ = O(log n) edges are created and removed at each step. Unlike the results for
the fast-changing regime, where the choice of the starting graph G0 does not
really affect the mixing time of a random walk (see Appendix A and Remark
A.1 for a discussion), in the slowly-changing regime the choice of G0 will affect
the properties of Gt for a large number of steps t.

The following theorem shows that in the slowly-changing and dense regime,
under mild conditions on the starting graph G0 = (V,E0) (which are satisfied
for G0 drawn from the limiting distribution of dense G(n, p, q)), random walks
will mix relatively fast. We use E0(S, V \ S) to indicate the set of edges in G0

between a subset of vertices S ⊂ V and its complement, and ΦG0to indicate the
minimum conductance of G0 (see Definition 2.2).

Theorem 1.3 (Slowly-changing and dense, fast mixing). Let d = Ω(log n),
p = O(log n/n2), and q = O(log n/(dn)). Let the following assumptions on the
starting graph G0 = (V,E0) be satisfied for large enough constants c1, c2, c3 > 0.

(1) deg0(x) = Θ(d) for any x ∈ V ;
(2) |E0(S, V \ S)| ≥ c2 log n|S|, for any S ⊂ V with |S| ≤ c1 log n;
(3) ΦG0

≥ c3 log d/d.

Then, tmix(G(n, p, q)) = O(log n/Φ2
G0

).

Let us briefly discuss the assumptions and results of Theorem 1.3. First of
all notice that the parameters p and q are defined so that the average degree
is d = Ω(log(n)) and the number of changes in the graph at each step is δ =
O(log(n)). Assumption (1) just requires the degree of the vertices in G0 to be
of the same order as the degree of the vertices in the limiting graph G(n, p̃).
Assumption (2) guarantees that for any small set S there are enough edges
going from S to the rest of the graph. Assumption (3) is a mild condition on
the conductance of G0. The last two assumptions ensure that the conductance
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of Gt will not be much lower than the conductance of G0 for a large number
of steps t. Finally, notice that O(log n/Φ2

G0
) is a classic bound for the mixing

time of a static random walk on G0. Theorem 1.3 essentially states that, if the
three assumptions are satisfied, the mixing time of a random walk on G(n, p, q)
will not be much larger. In particular, all the three assumptions are satisfied
for a starting graph G0 ∼ G(n, p̃) with p̃ = p/(p+ q). Furthermore, in such case
tmix(G(n, p, q)) = O(log n). The proof of this theorem can be found in Section 4.1.

We conclude this section by stating our result in the slowly-changing and
dense regime. We prove a negative result: we show that the mixing time of
G(n, p, q) is at least linear in n.

Proposition 1.4 (Slowly-changing and sparse, slow mixing). Let p =
O(1/n2) and q = ω(1/(n log n)). Consider a random walk on G(n, p, q) with
starting graph G0 ∼ G(n, p̃) with p̃ = p/(p+ q). Then, tmix(G(n, p, q)) = Ω(n).

2 Notation and Definitions

2.1 Random Walk and Conductance

In this section we introduce the relevant notation and basic results about Markov
chains that we will use throughout the paper. For more background on Markov
chains and random walks we defer the reader to [16].

Let G = (Gt)t∈N be a sequence of undirected and unweighted graphs defined
on the same vertex set V , with |V | = n, but with potentially different edge-sets
Et (t ∈ N). We study (lazy) random walks on G : suppose that at a time t ≥ 0
a particle occupies a vertex u ∈ V . At step t+ 1 the particle will remain at the
same vertex u with probability 1/2, or will move to a random neighbor of u in
Gt. In other words, it will perform a single random walk step according to a
transition matrix Pt, which is the transition matrix of a lazy random walk on
Gt: Pt(u, u) = 1/2, Pt(u, v) = 1/(2 degt(u)) (where degt(u) is the degree of u in
Gt) if there is an edge between u and v in Gt , or Pt(u, v) = 0 otherwise.

Given an initial probability distribution µ0 : V → [0, 1], which is the distri-
bution of the initial position of the walk, the t-step distribution of a random
walk on G is equal to µt = µ0P1 · P2 · . . . · Pt. In particular, we use µxt to denote
the t-step distribution of the random walk starting at a vertex x ∈ V . Hence
µx0(x) = 1 and µx0(y) = 0 for x 6= y ∈ V . Furthermore, we use πt to denote the
probability distribution with entries equal to πt(x) = degt(x)/(2|Et|) for any
x ∈ V . This distribution is stationary for Pt (i.e, it satisfies πtPt = πt) and, if Gt
is connected, it is the unique stationary distribution of Pt. If Gt is disconnected,
Pt will have multiple stationary distribution. However, unless stated otherwise,
we will consider only the “canonical” stationary distribution πt. Finally, while
any individual Pt is time-reversible (it satisfies πt(x)Pt(x, y) = πt(y)Pt(y, x) for
any x, y ∈ V ), a random walk on G may not. 3

3 For example, it might happen that P1 · · ·Pt(x, y) > 0 while P1 · · ·Pt(y, x) = 0. This
cannot happen in the “static” case where P1 = · · · = Pt = P with P reversible.
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Recall that if P is a transition matrix of a reversible Markov chain, it has
n real eigenvalues, which we denote with −1 ≤ λn(P ) ≤ · · · ≤ λ1(P ) = 1. If
P is the transition matrix of a lazy random walk on a graph G, it holds that
λn(P ) ≥ 0. Moreover, λ1(P ) < 1 if and only if G is connected

For two probability distributions f, g : V → [0, 1], the total variation distance
between f and g is defined as ‖f − g‖TV := 1

2

∑
x∈V |f(x)− g(x)|. We denote

with ‖f‖2 =
(∑

x∈V f
2(x)

)1/2
and ‖f‖∞ = maxx∈V |f(x)| the standard `2 and

`∞ norms of f . Given a probability distribution π : V → R+, we also define the
`2(π)-norm as ‖f‖2,π :=

√∑
x∈V f

2(x)π(x). By Jensen’s inequality, it holds for
any f, g that 2·‖f − g‖TV ≤ ‖f − g‖2,π. The lemma below relates the decrease in
the distance to stationarity after one random walk step to the spectral properties
of its transition matrix.

Lemma 2.1 (Lemma 1.13 in [18], rephrased). Let P be the transition ma-
trix of a lazy random walk on a graph G = (V,E) with stationary distribution π.
Then, for any f : V → R, we have that∥∥∥∥fPπ − 1

∥∥∥∥2
2,π

≤ λ2(P )2
∥∥∥∥fπ − 1

∥∥∥∥2
2,π

.

In the lemma above and throughout the paper, a division between two func-
tions is to be understood entry-wise, while 1 refers to a function always equal
to one. An important quantity which can be used to obtain bounds on λ2(P ) is
the conductance of G, which is defined as follows.

Definition 2.2. The conductance of a non-empty set S ⊆ V in a graph G is
defined as:

ΦG(S) :=
|E(S, V \ S)|

vol(S)
,

where vol(S) :=
∑
x∈V deg(x) and E(S, V \S) is the set of edges between S and

V \ S. The conductance of the entire graph G is defined as

ΦG := min
S⊂V :

1≤vol(S)≤vol(V )/2

|E(S, V \ S)|
vol(S)

.

The conductance of G and the second largest eigenvalue of the transition
matrix P of a lazy random walk in G are related by the so-called discrete Cheeger
inequality [1], which we state below.

Theorem 2.3 (Cheeger inequality). Let P be the transition matrix of a lazy
random walk on a graph G. Then, it holds that

1− λ2(P ) ≤ ΦG ≤ 2
√

1− λ2(P ).

Finally, we use the notation on(1) to denote any function f : N → R such
that limn→+∞ f(n) = 0. We often drop the subscript n.
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2.2 Dynamic graph models

In this section we formally introduce the random models of (dynamic) graphs
that are the focus of this work. We start by recalling the definition of the Erdős-
Rényi model of (static) random graphs.

Definition 2.4 (Erdős-Rényi model). G = (V,E) ∼ G(n, p) is a random
graph such that |V | = {1, . . . , n} and the

(
n
2

)
possible edges appear independently,

each with probability p.

We now introduce the edge-Markovian model of dynamic random graphs,
which has been studied both in the context of information spreading in networks
[5, 6] and random walks [15]. This model is the focus of our work.

Definition 2.5 (edge-Markovian model). Given a starting graph G0, we
denote with (Gt)t∈N ∼ G(n, p, q) a sequence of graphs such that Gt = (V,Et),
where V = {1, . . . , n} and, for each t ∈ N, any pair of distinct vertices u, v ∈ V
will be connected by an edge in Gt independently at random with the following
probability:

P [{u, v} ∈ Et+1 | Gt] =

{
1− q if {u, v} ∈ Et
p if {u, v} 6∈ Et.

Notice that different choices of a starting graph G0 will induce different
probability distributions over (Gt)t∈N. In general, we try to study G(n, p, q) by
making the fewest possible assumptions on our choice ofG0. Moreover, as pointed
out for example in [15], (Gt)t∈N ∼ G(n, p, q) converges to G(n, p̃) with p̃ =
p/(p+ q). We leave considerations about the speed of this convergence and how
this affects our choice of G0 to Appendix A and, in particular, Remark A.1 .

2.3 Mixing time of random walks on dynamic graphs

One of the most studied quantities in the literature about time-homogeneous
(i.e., static) Markov chains (random walks included) is the mixing time, i.e., the
time it takes for the distribution of the chain to become close to stationarity.
Formally, it is defined as follows.

Definition 2.6 (Mixing time for time-homogeneous Markov chains).
Let µxt be the t-step distribution of a Markov chain with state space V starting
from x ∈ V . Let π be its stationary distribution. For any ε > 0, the ε-mixing
time is defined as

tmix(ε) := min{t ∈ N : max
x∈V
‖µxt − π‖TV ≤ ε}.

A basic fact in random walk theory states that a lazy random walk on
a connected undirected graph G = (V,E) has always a finite mixing time.
In particular, if |V | = n, tmix(1/4) = O(n3). Moreover, considering a differ-
ent ε does not significantly change the mixing time: for any ε > 0, tmix(ε) =
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O(tmix(1/4) log(1/ε)) (see, e.g., [16]). Also, it is a well-known fact that ‖µxt − π‖TV
is non-increasing.

However, in the case of random walks on dynamic graphs, convergence to a
time-invariant stationary distribution does not, in general, happen. For this rea-
son, other works have studied alternative notions of mixing for dynamic graphs,
such as merging [23], which happens when a random walk “forgets” the vertex
where it started. In this work, instead, we focus on a different approach that we
believe best translates the classical notion of mixing from the static to the dy-
namic case. More precisely, let us consider a dynamic sequence of graphs (Gt)t∈N
with corresponding stationary distributions (πt)t∈N. Our goal is to establish if
there exists a time t such that the distribution µt of the walk at time t is close
to πt. Moreover, to make this notion of mixing useful in possible applications,
we require that µs remains close to πs for a reasonably large number of steps
s ≥ t. Formally, we introduce the following definition of mixing time for dynamic
graph sequences.

Definition 2.7 (Mixing time for dynamic graph sequences). Let G =
(Gt)t∈N be a dynamic graph sequence on a vertex set V , |V | = n. The mixing
time of a random walk in G is defined as

tmix (G) = min
{
t ∈ N : ∀s ∈ [t, t+

√
n), ∀x ∈ V, ‖µxs − πs‖TV = on(1)

}
,

where πs is the stationary distribution of a random walk in Gs, and µxs is the
s-step distribution of a random walk in G that started from x ∈ V .

First observe we require that the total variation distance between µs and πs
goes to zero as the number of vertices increases.4 This is motivated by the fact
that the distance to stationarity, unlike in the static case, might not tend to zero
as the number of steps t goes to infinity. However, we ask that the distance to
stationarity is smaller than a threshold which decreases for larger sized graphs.
Secondly, we require that such distance remains small for

√
n steps (recall n

is the number of vertices in the graph). This is due to the fact that, for all
dynamic graph models we consider, we cannot hope for such distance to stay
small arbitrarily long. However, we believe that

√
n steps is a long enough period

of time for mixing properties to be useful in applications.
Since our goal is to study the mixing property of G(n, p, q), we now introduce

a definition of mixing time for edge-Markovian models that takes into account
the probabilistic nature of such graph sequences. Essentially, we say that the
mixing time of G(n, p, q) is t if a random walk on a dynamic sequence of graphs
sampled from G(n, p, q) mixes (according to the previous definition) in t steps
with high probability over the sampled dynamic graph sequence.

Definition 2.8 (Mixing time for edge-Markovian models). Given an edge-
Markovian model G(n, p, q), its mixing time is defined as

tmix (G(n, p, q)) = min
{
t ∈ N : PG∼G(n,p,q) [tmix (G ) ≤ t] ≥ 1− on(1)

}
.

4 We are implicitly assuming there is an infinite family of dynamic graph sequences
with increasing n.
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Finally, we remark that, while in static graphs connectivity is a necessary
prerequisite to mixing, random walks on sequences of disconnected dynamic
graphs might nonetheless exhibit mixing properties. Examples of this behavior
were studied in [25].

3 Results for the fast-changing case

3.1 Negative result for mixing in the sparse and fast-changing case

In this section we consider random walks on sparse and fast-changing edge-
Markovian graphs. In particular, we study G(n, p, q) with 0 < q = Ω(1) and
p = 1

n . Since Ω(1), by Remark A.1, we can restrict ourselves to consider the case
where G0 ∼ G(n, p̃) with p̃ = p/(p+ q). We prove the following theorem.

Theorem 1.1 (Fast-changing and sparse, no mixing). Let p = Θ(1/n)
and q = Ω(1). Then, tmix(G(n, p, q)) =∞.

The key idea behind this result is that, due to the fast-changing nature of
graphs in this model, the degrees of the nodes also change rapidly. In particular,
for a linear number of nodes such as u, there is at least one neighbor vmin in the
neighbors of u whose degree may change from one constant in round t to basically
any other constant (this also makes use of the assumption on p, ensuring that
the graph is sparse). The proof then exploits that, due to the “unpredictable”
nature of this change, the probability mass received by vmin in round t + 1 is
likely to cause a significant difference between µt+1(u) and πt+1(u). Since this
holds for a linear number of nodes u, we obtain a sufficiently large lower bound
on the total variation distance, and the theorem is established. The complete
proof will appear in the full version of the paper.

3.2 Positive result for mixing in the dense and fast-changing case

In this section we analyse the mixing properties of G(n, p, q) for p = Ω(log n/n)
and q = Ω(1). Since q is large, for simplicity we will assume throughout this
section that G0 ∼ G(n, p̃), where p̃ = p

p+q (see Remark A.1 for an explanation

of why this is not a restriction). The following theorem is the main result.

Theorem 1.2 (Fast-changing and dense, fast mixing). Let p = ω (log n/n)
and q = Ω(1). Then, tmix(G(n, p, q)) = O(log n).

While in this paper we study for simplicity only lazy random walks on graphs,
to prove Theorem 1.2, however, we need to introduce simple random walks on
graphs: given a graph G = (V,E), a simple random walk on G has transition
matrixQ such that, for any x, y ∈ V ,Q(x, y) = 1/ deg(x) if {x, y} ∈ E,Q(x, y) =
0 otherwise. The following lemma, whose proof is the main technical part of the
section, shows that if the simple random walk on a sequence of graphs G =
(Gt)t∈N exhibits strong expansion properties, and the time-varying stationary
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distribution is always close to uniform, then a lazy random walk on G will be
close to the stationary distribution of Gt for any t large enough. Note that a
strong expansion condition on lazy random walks can never be satisfied; luckily,
we just need this strong expansion condition to hold for their simple counterpart.

Lemma 3.1. Let (Gt)t∈N be a sequence of graphs, and (Pt)t∈N (resp. (Qt)t∈N)
the corresponding sequence of transition matrices for a lazy (resp. non-lazy)
random walk. Assume there exists 1 < C = O(1) such that, for any t ≥ 1 and
any x ∈ V , 1/(C ·n) ≤ πt(x) ≤ C/n. Moreover, also assume that, for any t ∈ N,
max{|λ2(Qt)|, |λn(Qt)|} ≤ λ = o(1). Then, there exists an absolute constant C ′

such that, w.h.p., for any t ≥ C ′ log n and any starting distribution µ0,∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

≤ 10C2(C − 1)2,

where µt = µ0P1 · · ·Pt.

We now show how it can be used to derive Theorem 1.2. First recall that since
we are assuming G0 ∼ G(n, p̃), all graphs in the sequence (Gt)t∈N are sampled
(non-independently) from G(n, p̃) (see Appendix A). Furthermore, for any t ∈
N, the assumptions of Theorem 1.2 on λ2(Qt) and λn(Qt) are satisfied with
probability 1 − o(1/n2) for any graph sampled from G(n, p̃) with p̃ > 2 log n/n
by [13, Theorem 1.1]. Moreover, for p̃ = ω (log n/n), by a standard Chernoff
bound argument we can show that, with probability 1 − o(1/n2), all vertices
of a graph sampled from G(n, p̃) have degree (1 + on(1))np̃. This implies that,
for any t, w.h.p, the stationary distribution of Gt satisfies the assumptions of
Lemma 3.1 with C = 1 + o(1), which yields Theorem 1.2.

It is natural to ask if we can relax the condition on p. Assume for exam-
ple that p, q are such that p̃ = p/(p + q) > 2 log n. By [13, Theorem 1.1], the
conditions on λ are still satisfied. However, it only holds that C = Θ(1). There-
fore, Lemma 3.1 can only establish that the `2(πt)-distance to stationarity is a
constant (potentially larger than 1). This, unfortunately, does not give us any
meaningful bound on the total variation distance. However, if the `2-distance
between two distributions µ and π is small, µ(x) cannot be much larger than
π(x). In a sense, this result can be interpreted as a coarse mixing property. This
is summarised in the following proposition.

Proposition 3.2. Let (Gt)t∈N ∼ G(n, p, q) with p/(p + q) > 2 log n/n and q =
Ω(1). Let πt be the stationary distribution of Gt. Then, there exists absolute
constants c1, c2 > 0 such that, for any starting distribution µ0 and any c1 log n ≤
t ≤
√
n+ c1 log n, it holds that

P

[∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

≤ c2

]
≥ 1− on(1).
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4 Results for the slowly-changing case

4.1 Positive result for mixing in the dense and slowly-changing case

The aim of this section is to prove the following theorem.

Theorem 1.3 (Slowly-changing and dense, fast mixing). Let d = Ω(log n),
p = O(log n/n2), and q = O(log n/(dn)). Let the following assumptions on the
starting graph G0 = (V,E0) be satisfied for large enough constants c1, c2, c3 > 0.

(1) deg0(x) = Θ(d) for any x ∈ V ;
(2) |E0(S, V \ S)| ≥ c2 log n|S|, for any S ⊂ V with |S| ≤ c1 log n;
(3) ΦG0

≥ c3 log d/d.

Then, tmix(G(n, p, q)) = O(log n/Φ2
G0

).

We start by stating that, if the three assumptions of Theorem 1.3 are satisfied,
then, for any t = O(nd log n), the conductance of Gt is not much worse than the
conductance of G0 (with high probability).

Lemma 4.1 (Conductance lower bound). Let d = Ω(log n), p = O(log n/n2),
and q = O(log n/(dn)). Assume that G0 satisfies assumptions (1),(2),(3) of The-
orem 1.3. Then, there exists a constant c > 0 such that, for any t = O(nd log n)
and any vertex v ∈ V ,

P
[
degt(v) ≤ 1

2
deg0(v)

]
= O(n−4)

and
P [ΦGt

≥ c · ΦG0
] = 1−O(n−4).

The proof of this lemma proceeds as follows: for any S ⊂ V , when an edge is
randomly added or removed from the graph, we show that the probability that
|Et(S, V \S)| increases is usually larger than the probability it decreases. There-
fore, we model |Et(S, V \ S)| as a random walk on N with a bias towards large
values of |Et(S, V \ S)|, i.e., a birth-and-death chain. Using standard arguments
about birth-and-death chains, we show it is very unlikely that |Et(S, V \ S)|
becomes much smaller than |E0(S, V \ S)|. By a similar argument we also show
that the degrees of all nodes in S are approximately the same as their original
degrees in G0. This ensures that the conductance of a single set S is preserved
after t = O(dn log n) steps. We then use a union bound argument to show that,
with high probability, the conductance of the entire graph is preserved. For cer-
tain values of d, however, we cannot afford to use a union bound on all possible
sets of vertices. To overcome this, we show that only applying the union bound
for connected sets S would suffice. By bounding the number of such sets with
respect to the maximum degree in G0, we establish the lemma.

We can now give an outline of the proof of Theorem 1.3. The idea is to show

that
∥∥∥µt+1

πt+1
− 1
∥∥∥
2,πt+1

is smaller than
∥∥∥µt

πt
− 1
∥∥∥
2,πt

(unless the latter is already
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very small). We do this by first relating
∥∥∥µt

πt
− 1
∥∥∥
2,πt

with
∥∥∥µt+1

πt
− 1
∥∥∥
2,πt

. More

precisely, we can use Lemma 2.1 and Lemma 4.1 to show that the latter is smaller
than the former by a multiplicative factor that depends on ΦG0 . Then, we bound

the difference between
∥∥∥µt+1

πt
− 1
∥∥∥
2,πt

and
∥∥∥µt+1

πt+1
− 1
∥∥∥
2,πt+1

. In particular, by

exploiting the fact that at each step only O(log n) random edges can be deleted

with high probability, we are able to show that
∥∥∥µt+1

πt+1
− 1
∥∥∥
2,πt+1

is not much

larger than
∥∥∥µt+1

πt
− 1
∥∥∥
2,πt

. Finally, by putting together all these argument, we

show that
∥∥∥µt

πt
− 1
∥∥∥
2,πt

is monotonically decreasing in t, at least until the walk

is mixed. This establishes the theorem.

Proof of Theorem 1.3. We establish the theorem by showing that, unless
∥∥µt

πt
−

1
∥∥
2,πt

is already small,
∥∥µt

πt
− 1

∥∥
2,πt

will significantly decrease at each step. In

particular we relate
∥∥µt

πt
− 1
∥∥
2,πt

to
∥∥µt+1

πt+1
− 1
∥∥
2,πt+1

in two steps:

(1) We lower bound the change between
∥∥µt

πt
− 1
∥∥
2,πt

and
∥∥µt+1

πt
− 1
∥∥
2,πt

;

(2) We upper bound the difference between
∥∥µt+1

πt
−1
∥∥
2,πt

and
∥∥µt+1

πt+1
−1
∥∥
2,πt+1

.

Step 1: The first step follows from a simple spectral argument. Indeed, by Lemma
2.1, we have that ∥∥∥∥µt+1

πt
− 1

∥∥∥∥2
2,πt

≤ λ22(Pt)

∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

,

where λ2(Pt) is the second largest eigenvalue of Pt, the transition matrix of Gt.

Step 2: We now upper bound the expected difference between
∥∥µt+1

πt
− 1

∥∥
2,πt

and
∥∥µt+1

πt+1
− 1

∥∥
2,πt+1

. In the following analysis we condition on the event that

at any time t, |Et| ∈ [(1− o(1))nd, (1 + o(1))nd] where d = (n− 1)p̃. This event
happens with probability 1− o(1) by Lemma 4.1. Recall that∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

=
∑
y∈V

πt(y)

(
µ(y)

πt(y)
− 1

)2

=

∑
y∈V

µ2
t (y)

πt(y)

− 1.

Hence, we have that

E

[∥∥∥∥µt+1

πt+1
− 1

∥∥∥∥2
2,πt+1

−
∥∥∥∥µt+1

πt
− 1

∥∥∥∥2
2,πt

]

=
∑
y∈V

E
[
µ2
t+1(y)

(
1

πt+1(y)
− 1

πt(y)

)]

=
∑
y∈V

E
[
µ2
t+1(y)

(
2|Et+1|

degt+1(y)
− 2|Et|

degt(y)

)]
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≤ 2(1 + o(1))|E|
∑
y∈V

µ2
t+1(y)E

[(
1

degt+1(y)
− 1

degt(y)

)]
(4.1)

≤ 2(1 + o(1))|E|
∑
y∈V

µ2
t+1(y)

(1− 1
2 ) degt(y)

1
2 degt(y) · degt(y)

(1− (1− q)degt(y)) (4.2)

≤ 2(1 + o(1))

1− o(1)

∑
y∈V
·

µ2
t+1(y)

degt(y)/((1− o(1))|E|)
(1− (1− q)degt(y))

≤ 2(1 + o(1))

1− o(1)
· (1− (1− q)degt(y))

∑
y∈V

µ2
t+1(y)

πt(y)

≤ O
(

log n

n

)(∥∥∥∥µt+1

πt
− 1

∥∥∥∥2
2,πt

+ 1

)
(4.3)

where |E| = nd and d = (n− 1)p̃. From line (4.1) to line (4.2) we upper bound
the expectation by only considering the cases where the difference is positive, i.e.,
degt(y) ≥ degt+1(y). In line (4.2), by Lemma 4.1 we know degt+1(y) will not be
smaller than 1

2 · degt(y) with probability 1−O(n−4). Moreover, the probability

1 − (1 − q)degt(y) is the probability that at least one of the edges connected to
y at time t changes at t + 1. In line (4.3), we hide unimportant constants in
the O-notation and we use the inequality (1 − q)degt(y) ≥ 1 − q · degt(y). Since
q = O(log n/(dn)) by assumption, we get O(log n/n) in line (4.3).

By combining the two steps above we have

E

[∥∥∥∥µt+1

πt+1
− 1

∥∥∥∥2
2,πt+1

−
∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

]

≤ O
(

log n

n

)(∥∥∥∥µt+1

πt
− 1

∥∥∥∥2
2,πt

+ 1

)
− (1− λ22(Pt))

∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

≤ O
(

log n

n

)(
λ22(Pt)

∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

+ 1

)
− (1− λ22(Pt))

∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

≤
(
n+ log n

n
· λ22(Pt)− 1

)∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

+O

(
log n

n

)
Therefore, it holds that

E

[∥∥∥∥µt+1

πt+1
− 1

∥∥∥∥2
2,πt+1

]
≤
(
n+ log n

n

)
λ22(Pt) ·

∥∥∥∥µtπt − 1

∥∥∥∥2
2,πt

+O

(
log n

n

)
.

By Theorem 2.3 and the laziness of the walk,

Φ2
Gt

2
≤ 1− λ2(Pt) ≤ 2ΦGt .

Since we assume the conductance is lower bounded by O(log d/d), we have
λ2(Pt) ≤ 1 − O(log2 d/d2) and hence ((n + log n)/n)λ22(Pt) ≤ 1. Therefore,
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in expectation, the `2 distance shrinks by a constant factor (unless it’s already
small in the first place). Therefore, by standard arguments, after O(log n/Φ2

G0
)

rounds the expected distance to πt is at most O(
√

log n/n). By Lemma 4.1, we
know this holds for poly(n) time steps. Finally, it suffices to apply Markov’s
inequality and a union bound to show the expected distance is small with prob-
ability 1−O(n−4) on a polynomially long time interval as required by Definition
2.7.

4.2 Negative result for mixing in the sparse and slowly changing
case

Proposition 1.4 (Slowly-changing and sparse, slow mixing). Let p =
O(1/n2) and q = ω(1/(n log n)). Consider a random walk on G(n, p, q) with
starting graph G0 ∼ G(n, p̃) with p̃ = p/(p+ q). Then, tmix(G(n, p, q)) = Ω(n).

Proof. Consider the graph G0 ∼ G(n, p̃). Notice that p̃ = o(log n/n) is well below
the connectivity threshold of Erdős-Rényi random graphs. Therefore, with high
probability, there is at least one isolated vertex in G0; call this vertex u and
assume the random walk starts from that vertex. The probability that u remains
isolated in the steps 1, 2, . . . , t is at least

(1− p)(n−1)·t ≥ (1−O(1/n2))(n−1)·t ≥ 1−O(t/n).

Therefore, with at least constant nonzero probability, there exists a constant
c > 0 such that, for any t ≤ c · n, µut (u) = 1. Since πt(u) = 0, this implies that
‖µut − πt‖TV = 1.

Actually the proof reveals a stronger “non-mixing” property; if the random
walk starts from a vertex that is isolated in G0, then this vertex will remain
isolated for Θ(1/(np)) rounds in expectation, and in this case the random walk
did not move at all!

5 Conclusion

In this work we investigated the mixing time of random walks on the edge-
Markovian random graph model. Our results cover a wide range of different
densities and speeds by which the graph changes. On a high level, these find-
ings provide some evidence to the intuition that both “high density” and “slow
change” correlate with fast mixing.

For further work, one interesting setting that is not fully understood is the
semi-sparse (d = Θ(log n)) and fast-changing (q = Ω(1) > 0) case. While we
proved that the random walk achieves some coarse mixing in O(log n), we con-
jecture that strong mixing is not possible. Another possible direction for future
work is, given the bounds on the mixing time at hand, to derive tight bounds on
the cover time. Finally, it would be also interesting to study the mixing time in a
dynamic random graph model where not all edge slots are present (similar to the
models studied in [12, 15], where the graph at each step is a random subgraph
of a fixed, possibly sparse, network).
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A Mixing times for the graph chain of edge-Markovian
models

It is well known that the edge-Markovian graph model G(n, p, q) converges to an
Erdős-Rényi model G(n, p̃) where p̃ = p

p+q , which is the stationary distribution
of the original edge-Markovian model. The mixing time of the graph chain has
not been proven formally in previous works. Hence, we provide a proof for the
sake of completeness. We remark that since an edge-Markovian model is a time-
homogeneous (i.e., static) Markov chain, the classical definition of mixing time
(Definition 2.6) applies.

Theorem A.1 (Graph chain mixing time). For an edge-Markovian model
G(n, p, q), the graph distribution converges to the graph distribution of the random
graph model G(n, p̃) where p̃ = p

p+q . For any ε ∈ (0, 1), the mixing time of

the graph chain G(n, p, q) is tmix(ε) = O
(

log(n/ε)
log(1/|1−p−q|)

)
for p + q 6= 1, and

tmix(ε) = 1 if p+ q = 1.

Proof. Every edge slot can be represented by a two-state (close/open) Markov
chain with transition matrix

P =

(
1− p p

q 1− q

)

and stationary distribution
(

q
p+q ,

p
p+q

)
. By using standard Markov chain ar-

guments (see, e.g., [16, Chapter 1]), the distance to the stationary distribution
shrinks at each step by a factor of |1− p− q|, i.e.,

‖µt+1 − π‖TV ≤ |1− p− q| ‖µt − π‖TV .

Therefore, when p + q 6= 1, the mixing time tmix(ε) of this two-state Markov

chain is O
(

log(1/ε)
log(|1−p−q|)

)
where ε < 1. For all the

(
n
2

)
edge slots, the time that all

of them mix is O

(
log (n

2)+log(1/ε)

log(|1−p−q|)

)
. When p + q = 1, instead, the graph mixes

immediately, which confirms the fact that in this regime the graph model is
equivalent to a sequence of independent graphs from G(n, p̃).

Remark A.1. Theorem A.1 essentially tells us that, whenever at least one be-
tween p and q is large (e.g., Ω(1)), the graph chain quickly converges to G(n, p̃)
with p̃ = p

p+q . This suggests that for a fast-changing edge-Markovian model

G(n, p, q) with q = Ω(1), we can consider w.l.o.g. the starting graph G0 as sam-
pled from G(n, p̃).
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