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In this study, we connect concepts that have been recently developed in thermoacoustics,
specifically, (i) high-order spectral perturbation theory, (ii) symmetry induced degenerate
thermoacoustic modes, (iii) intrinsic thermoacoustic modes, and (iv) exceptional points.
Their connection helps gain physical insight into the behaviour of the thermoacoustic
spectrum when parameters of the system are varied. First, we extend high-order adjoint-
based perturbation theory of thermoacoustic modes to the degenerate case. We provide
explicit formulae for the calculation of the eigenvalue corrections to any order. These
formulae are valid for self-adjoint, non-self-adjoint or even non-normal systems; therefore,
they can be applied to a large range of problems, including fluid dynamics. Second,
by analysing the expansion coefficients of the eigenvalue corrections as a function of a
parameter of interest, we accurately estimate the radius of convergence of the power
series. Third, we connect the existence of a finite radius of convergence to the existence
of singularities in parameter space. We identify these singularities as exceptional points,
which correspond to defective thermoacoustic eigenvalues, with infinite sensitivity to
infinitesimal changes in the parameters. At an exceptional point, two eigenvalues and
their associated eigenvectors coalesce. Close to an exceptional point, strong veering of
the eigenvalue trajectories is observed. As demonstrated in recent work, exceptional
points naturally arise in thermoacoustic systems due to the interaction between modes
of acoustic and intrinsic origin. The role of exceptional points in thermoacoustic systems
sheds new light on the physics and sensitivity of thermoacoustic stability, which can be
leveraged for passive control by small design modifications.
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1. Introduction

Thermoacoustic instability is the result of the mutual coupling between flow dynamics,
the unsteady heat release produced by a flame, and the surrounding acoustic environ-
ment (Dowling & Stow 2003; Lieuwen & Yang 2005; Dowling & Morgans 2005; Culick
2006; Poinsot 2017). Thermoacoustic instability is a problem of major concern for the
development of gas turbines that reliably work at a wide-range of operating conditions,
while producing reduced levels of carbon dioxide and NOx emissions that comply with
environmental regulations. During thermoacoustic instability, large amplitude pressure
fluctuations develop inside the combustion chamber and affect the entire engine as
undesired vibrations. These vibrations affect the normal operation of the system and
reduce the lifespan of the engine. In extreme cases, thermoacoustic instability may induce
flashback of the flame, causing severe damage to the system elements (Lieuwen & Yang
2005). Quantitative stability prediction and analysis of thermoacoustic systems require
the calculation of complex-valued eigenvalues and their associated eigenvectors. Ther-
moacoustic eigenvalues can be found by solving a nonlinear eigenvalue problem, which is
often derived from the non-homogeneous Helmholtz equation including a feedback term
that represents the flame response to acoustic perturbations (e.g., Nicoud et al. 2007).
This calculation may be computationally demanding if systems with millions of degrees of
freedom are considered. In order to calculate the drift of eigenvalues and eigenvectors due
to changes in parameters at an affordable computational cost, high-order adjoint-based
perturbation theory can instead be used (Mensah et al. 2020).

1.1. Thermoacoustic eigenvalues: classification and origin

In this study, we consider a finite-dimensional nonlinear eigenvalue problem of the form

L(s)p̂ = 0, (1.1)

where s is the eigenvalue and p̂ is the associated eigenvector. Nonlinear eigenproblems
appear in different applications in science and engineering beyond thermoacoustics, for
example, in vibrations of structures, fluid-structure interaction, nanotechnology (quan-
tum dots), time-delay systems and control theory, to name a few (Friedman & Shinbrot
1968; Mehrmann & Voss 2004; Betcke et al. 2013; Güttel & Tisseur 2017). The classifica-
tion of the eigenvalues according to their algebraic and geometric multiplicity, and their
thermoacoustic physical origin, is essential, because it reflects certain physical properties
of the system, such as symmetry and sensitivity. In the following, we briefly recall the
relevant definitions.

An eigenvalue has algebraic multiplicity a if ∂j/∂sjdet(L) = 0 and ∂a/∂sadet(L) 6= 0,
where j = 0, 1, ..., a−1. The geometric multiplicity, g, of an eigenvalue s is the dimension
of the null space of L(s), i.e. g ≡ dim null L(s). The geometric multiplicity is always less
than or equal to the algebraic multiplicity. An eigenvalue is semi-simple if a = g, it is
defective if a > g, and it is called simple if a = g = 1. Eigenvalues that are not simple are
degenerate. Degenerate semi-simple eigenvalues are of relevance in several applications
with spatial symmetries, including thermoacoustics. For example, rotationally symmetric
annular and can-annular combustors, which are are common in thermoacoustics, feature
degenerate semi-simple eigenvalues. An important class of defective eigenvalues are
branch-point solutions of the characteristic function, which are known as exceptional
points (EPs) (Heiss 2004). As recently shown, these spectral singularities are general
features of thermoacoustic systems (Mensah et al. 2018; Orchini et al. 2020). At EPs,
the eigenvalues have infinite sensitivity to infinitesimal perturbations to the system.

From a physical point of view, thermoacoustic eigenvalues can be classified according
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to the feedback loop between unsteady heat release and acoustics. Unsteady heat release
rate generates acoustic waves, which propagate away from the flame until they reach the
system’s boundaries. After reflection at the boundaries, the acoustic waves impinge on
the flame, modulate it, thereby generating new fluctuations in the heat release rate. In
this work, we refer to the eigenvalues associated with this feedback loop as of acoustic
origin. In recent years, another feedback loop in thermoacoustic systems was discovered:
the Intrinsic ThermoAcoustic (ITA) feedback loop (Hoeijmakers et al. 2014; Bomberg
et al. 2015). In the ITA loop, the upstream travelling acoustic waves produced by the
flame directly modulate the upstream velocity (without reflection from the boundaries),
which, in turn, causes new fluctuations in the unsteady heat release rate, which closes
the loop. The ITA loop is independent of the surrounding acoustic boundaries. It exists
in both anechoic environments (Hoeijmakers et al. 2016; Silva et al. 2015) and reflective
environments (Emmert et al. 2017; Silva et al. 2017; Mukherjee & Shrira 2017; Orchini
et al. 2020; Buschmann et al. 2020a). We refer to the eigenvalues associated with this
feedback mechanism as of ITA origin.

1.2. Adjoint-based methods in thermoacoustics

Thermoacoustic systems may be exceedingly sensitive to small variations in the sys-
tem’s parameters (Juniper & Sujith 2018; Magri 2019). For the accurate calculation
of these sensitivities, adjoint methods proved to be efficient mathematical and com-
putational tools, as reviewed by Magri (2019). Adjoint methods for thermoacoustic
eigenvalue sensitivity analysis were developed for design parameter and passive control
by Magri & Juniper (2013), and subsequently applied to more complex flames in Magri
& Juniper (2014); Orchini & Juniper (2016). Rigas et al. (2015) tested experimentally
adjoint-based predictions, showing that the eigenvalue shift was predicted accurately by
adjoint sensitivity analysis. The sensitivity information provided by adjoint methods can
be embedded into a gradient-update optimisation routine to optimally place and tune
acoustic dampers in annular combustors (Mensah & Moeck 2017).

The thermoacoustic eigenvalue problem is typically nonlinear in the eigenvalue s.
Existing methodologies for the solution of nonlinear thermoacoustic eigenproblems utilize
iterative schemes (Nicoud et al. 2007). This may be expensive, for example, for Helmholtz
solvers with tens or hundreds of thousands of degrees of freedom, which makes parametric
studies computationally demanding. Adjoint methods can also be exploited to simplify
the solution of nonlinear eigenvalue problems. Using them, it is possible to map nonlinear
eigenproblems, which are difficult to solve, into a series of linear non-homogeneous
equations, which are easier to solve, to approximate eigensolutions to any desired order.
For simple eigenvalues, general formulae based on the high-order expansion of the
eigenvalue problem have been derived by the thermoacoustic community (Mensah et al.
2020). The same level of generality, however, has not been reached for degenerate
thermoacoustic modes, which are often found in practice due to the rotational symmetries
of annular and can-annular combustors in gas turbines. In this study, higher-order
eigenvalue perturbation expansions of thermoacoustic eigenvalues are extended to the
degenerate case, which has challenging mathematical complications, as explained in §2
and §3.

1.3. Exceptional points

In the past years, the theory of exceptional points (EPs) has been widely employed to
explain physical phenomena, e.g. in quantum mechanics and optics (Heiss 2012; Miri &
Alù 2019). In thermoacoustics, recent studies have shown that, in certain areas of the
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complex-frequency plane, small variations in a parameter of the thermoacoustic system
lead to a significant change in the eigenvalues in the complex plane (Silva & Polifke 2019;
Sogaro et al. 2019). These studies, however, did not explain what caused the observed
high sensitivities. As highlighted in the present work, high sensitivity is a manifestation of
the existence of EPs in the thermoacoustic spectrum. As a matter of fact, the sensitivity
to infinitesimal changes in parameters is infinite at EPs (Kato 1980). Practically, the
existence of EPs is observed via strong veering (due to high sensitivity) of the eigenvalue
trajectories in their vicinity.

In recent work, the existence of exceptional points in the spectrum of a one-dimensional
Rijke-tube has been shown (Mensah et al. 2018). Orchini et al. (2020) extended these
findings to realistic configurations, by investigating the thermoacoustic modes associated
with the acoustic and ITA loop in 3D longitudinal and annular combustors with an n–
τ flame response model. The corresponding thermoacoustic eigenvalues of acoustic and
ITA origin were studied in the complex plane for systematic variations of n and τ . It
was shown that eigenvalues of acoustic origin can coalesce with eigenvalues of ITA origin,
manifesting in EPs. Furthermore, in an annular combustor, an EP may also originate from
the coalescence of two eigenvalues of acoustic origin. These eigenvalues were found to be
associated with two azimuthal modes, one dominant in the plenum and the other in the
combustion chamber. This has analogies with the EPs arising due to the acoustic coupling
between a cavity and an acoustic damper. In this respect, Bourquard & Noiray (2019)
experimentally demonstrated the existence of such EPs, and showed that both Helmholtz
resonators and quarter-wave tube dampers achieve optimal damping performance when
tuned to operate at the EPs of the closed-loop coupled acoustic system. In this study, we
shall relate EPs in the spectrum of thermoacoustic systems with (i) the high sensitivity
experienced by some thermoacoustic eigenvalues, and (ii) the limits of validity of high-
order perturbation methods.

1.4. Scope

All the concepts introduced in the introduction – high-order perturbation theory,
intrinsic thermoacoustic modes, and exceptional points – have been independently shown
to be relevant to thermoacoustic models in recent years, and thoroughly studied. They
are, however, strongly interconnected. The objectives of this article are to reveal these
interconnections, develop an efficient and accurate method for the calculation of thermoa-
coustic eigenvalue variations, and gain physical insight on the properties and behaviour
of the thermoacoustic spectrum.

The article is structured as follows. In §2 a general theory for high-order adjoint-
based perturbation expansion of degenerate semi-simple thermoacoustic eigenvalues and
eigenvectors is presented. The role of exceptional points in relation to high-order per-
turbation theory is discussed in §3. It is shown how exceptional points can be identified
numerically, exploiting the high-order perturbation theory presented in §2. Furthermore,
we will discuss how knowledge on the location of EPs determines well-defined ranges
of convergence for the eigenvalues estimated by perturbation theory. In §4 we apply
the presented high-order perturbation theory to two thermoacoustic cases: a simple
eigenvalue of an axial combustor and a degenerate semi-simple eigenvalue of an annular
combustor. Lastly, in §5 we discuss how perturbation theory of degenerate thermoacoustic
eigenvalues can also be used at EPs by means of Puiseux series expansions. This highlights
the difference between symmetry-induced degenerate modes, which are semi-simple and
have finite sensitivity with respect to parameter perturbations, and degenerate modes at
exceptional points, which are defective and have an infinite sensitivity.
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2. High-order adjoint-based perturbation theory for degenerate
thermoacoustic modes

In this section, we present a general formulation of high-order adjoint-based per-
turbation theory for 2-fold degenerate semi-simple eigenvalues. This is the category
of eigenvalues under which symmetry-induced degeneracies fall, as, for example, the
thermoacoustic eigenvalues of rotationally symmetric annular combustors. With adjoint
perturbation theory it is possible to (i) understand if a given perturbation unfolds the
degeneracy or not; (ii) track the evolution of the split eigenvalues in the complex plane
when a parameter is changed; (iii) calculate the variation of the split eigenvectors when
the parameter is changed. We shall indicate with

L(s, ε)p̂ = 0 (2.1)

a nonlinear eigenvalue problem that depends on a (set of) parameters ε. L is a linear
operator acting on an eigenvector p̂. The pairs (s, p̂) for which (2.1) is satisfied represent
the eigenvalues and eigenvectors of the operator. The operator L is assumed to have an
analytical dependence on the eigenvalue and the parameter(s). No further assumptions
are made on the properties of the operator L, which, in general, can be non-self-adjoint
or even non-normal. Its corresponding adjoint operator, L†, is defined via〈

g
∣∣Lf〉 ≡ 〈L†g∣∣f〉, (2.2)

where
〈
·
∣∣ · 〉 is an inner product, and f and g are arbitrary complex-valued vectors

in their relevant Hilbert spaces. In the following, we shall adopt the Hermitian inner
product

〈
g
∣∣f〉 = gHf , where the superscript H indicates conjugate transpose. Note

that, according to this definition, the direct and adjoint operators have the same eigen-
values (López-Gómez & Mora-Corral 2007; Güttel & Tisseur 2017) and, in a discretized
finite element framework as that used in §4, the discrete adjoint operator is equivalent
to the Hermitian transpose of the direct operator, i.e., L† = LH . For the thermoacoustic
problem, the eigenproblem that we are solving is (Dowling & Stow 2003; Culick 2006;
Nicoud et al. 2007)[

∇ · (c2∇)− s2 − (γ − 1)

ρ

Q

U
ne−sτ n̂ref ·∇ref

]
p̂ = 0, (2.3)

coupled with a set of boundary conditions. The finite-dimensional operator L and the
eigenvector p̂ in (2.1) are, respectively, the discretisation of the thermoacoustic operator
and the acoustic pressure p̂ in (2.3). In Eq. (2.3), which is valid in the zero mean Mach
number limit, c is the speed of sound (which may vary spatially), γ is the ratio of specific
heats, assumed to be homogeneous, and ρ, Q, U are the mean density, heat release
rate and flow velocity, respectively. The last term on the l.h.s. represents the effect of
unsteady heat release on the acoustics, modelled with a so-called n–τ model (Crocco
1965). According to this model, the flame response is proportional to the delayed axial
acoustic velocity fluctuations at a reference location, ref , upstream of the flame. Together
with non-trivial boundary conditions (Nicoud et al. 2007), the flame response causes
the thermoacoustic operator L to have non-orthogonal eigenvectors, thus exhibiting a
non-normal response. Additionally, the delayed response of the flame also causes the
thermoacoustic operator to be nonlinear in the eigenvalue s. In the present study, we
will consider both flame response coefficients, n and τ , as perturbation parameters. We
highlight that the use of an n–τ model is not a limitation of the perturbative method
that we will discuss. The method can be applied to any flame model that is analytic
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in the eigenvalue. This was demonstrated in Mensah et al. (2019) on the basis of an
experimentally measured flame response expressed in state-space form.

For semi-simple eigenvalues, the eigenvalue and eigenvector dependence on a parameter
ε is expressed in terms of power series expansions of the form

s(ε) ≈ s0 +

N∑
j=1

εjsj , p̂(ε) ≈ p̂0 +

N∑
j=1

εj p̂j , (2.4)

where, without loss of generality, the perturbation parameter ε is centred at a reference
value ε0 = 0. The coefficients sj and p̂j are the jth-order corrections to the eigenvalues
and eigenvectors, respectively. The approximation symbols in (2.4) indicate that the
power series are truncated at order N . In thermoacoustics, arbitrarily high-order adjoint-
based perturbation theory for non-degenerate eigenvalues has been presented in Mensah
et al. (2020). We report here the key ideas and results of the method since they serve as
a starting point for the discussion of the degenerate case, which is the main focus of this
study. It is convenient to define the shorthand

Ln,m ≡
1

n!m!

∂n+mL
∂sn∂εm

∣∣∣∣s=s0
ε=0

. (2.5)

The power series approximations (2.4) are substituted into the eigenvalue problem (2.1),
which is then expanded into a Taylor series. By collecting the terms at every order of
ε, one obtains a series of linear, non-homogeneous equations that need to be solved in
ascending order

L0,0p̂j = −rj − sjL1,0p̂0, for j = 1, . . . , N. (2.6)

We refer to Mensah et al. (2020) for a detailed derivation of Eq. (2.6). The complexity
of the equations is hidden in the rj terms, which (i) contain all the possible ways of
distributing j derivatives between s, ε and p̂, and (ii) are functions of the eigenvalue
and eigenvector corrections sk and p̂k at orders k < j. Explicit expressions for the list of
all the terms that compose rj at any order can be analytically obtained. This helps the
recursive implemention of perturbation theory (Mensah et al. 2020). In Appendix A, we
provide a general formula for rj at any order, and its explicit expressions for j = 1, 2.

The solution strategy becomes straightforward: at any order, a solvability condition
based on the Fredholm alternative is imposed, by projecting the r.h.s. of Eq. (2.6) onto

the adjoint eigenvector p̂†0, defined by LH0,0p̂
†
0 = 0. This yields a general equation for the

eigenvalue correction at order j

sj = −
〈
p̂†0
∣∣rj〉〈

p̂†0
∣∣L1,0p̂0

〉 . (2.7)

Note that, at first order, for which r1 = L0,1p̂0, one finds s1 = −
〈
p̂†0
∣∣L0,1p̂0

〉
/
〈
p̂†0
∣∣L1,0p̂0

〉
,

retrieving the known first-order sensitivity expression for nonlinear eigenvalue prob-
lems (Magri et al. 2016). Once the eigenvalue correction at order j is known, it can be
substituted back into the linear systems (2.6), which can then be solved with standard
methods for p̂j . Although its solution is not unique – (2.6) is an underdetermined
system of equations – the ambiguity in the solution can always be addressed by choosing
a normalization condition for the eigenvectors. With both eigenvalue and eigenvector
corrections at order j, we can move to order j + 1 and repeat the procedure, up to any
desired order.

High-order expressions of thermoacoustic eigenvalue sensitivities have not been de-
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veloped for the degenerate case. The state-of-the-art is a second-order analysis for the
eigenvalues only (Magri et al. 2016; Mensah et al. 2019). Starting from the procedure
outlined above, in the following we show how perturbation theory can be generalised
to handle degenerate semi-simple eigenvalues. We will show that, in order to develop a
theory generalisable to arbitrarily high order, perturbation theory of degenerate semi-
simple eigenvalues needs to be carried out in parallel on both members of the degenerate
eigenvalue pair.

2.1. Baseline and adjoint degenerate solution

As in any perturbative method, we first require a baseline solution. We shall assume
that the baseline solution, obtained for ε = 0, is degenerate with algebraic multiplicity 2
and semi-simple, so that the geometric multiplicity is also 2. We thus have an unperturbed
eigenvalue s0 with an associated 2-dimensional subspace spanned by two eigenvectors,
denoted ˆ̃p0,1 and ˆ̃p0,2, which are chosen to be orthonormal without loss of generality.
The first subscript refers to the expansion order, and the second to distinguish between
the modes in the degenerate eigenvalue. The tilde symbol highlights that the choice of
these vectors is not unique. We also need to calculate the associated adjoint eigenvectors,
ˆ̃p†0,1 and ˆ̃p†0,2, which satisfy LH0,0 ˆ̃p†0,ζ = 0, for ζ = 1, 2. As a convention, the subscripts of
the following equations will contain Latin letters to indicate the perturbation order, and
Greek letters to distinguish between the (two) degenerate modes.

For semi-simple eigenvalues, it can be shown that the direct and adjoint eigenvectors
can always be chosen to satisfy the bi-orthonormalization condition (Güttel & Tisseur
2017) 〈

ˆ̃p†0,ζ
∣∣L1,0

ˆ̃p0,η
〉

= δζ,η, (2.8)

with L1,0 defined via (2.5). This condition is valid also for non-normal operators, and we
will adopt it to simplify the perturbative equations.

2.2. Solvability conditions

Because the operator L0,0 has a nullspace of dimension two (spanned by ˆ̃p0,ζ), each of
the perturbative equations (2.6) requires two solvability conditions. More specifically, for
the equations to admit solutions, their r.h.s. must be orthogonal to the (two-dimensional)

adjoint subspace spanned by ˆ̃p†0,ζ . Depending on whether eigenvalue splitting has oc-
curred or not, different solutions strategies need to be employed. This is discussed in the
following.

2.2.1. Case 1: Degeneracy is not resolved

As long as the perturbation considered does not resolve the degeneracy (e.g., for
perturbations that preserve the symmetry of the problem), the perturbed eigenvalues
will remain degenerate, and the ambiguity in the choice of a basis in the nullspace of
the perturbed operator will persist. Thus, at an arbitrary order j, we have that the
two eigenvalue corrections at orders 0 6 k < j are identical, sk,1 = sk,2 = sk, and the
degenerate subspace correction is given by the linear combination

p̂k = α1
ˆ̃pk,1 + α2

ˆ̃pk,2, (2.9)

where the αζ coefficients are, without loss of generality, chosen to be identical at
every order k. We are therefore still tracking one degenerate eigenvalue, governed by
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equation (2.6). By imposing the two solvability conditions at order j, we obtain〈
ˆ̃p†0,1

∣∣rj〉+
〈
ˆ̃p†0,1

∣∣sjL1,0p̂0
〉

= 0, (2.10a)〈
ˆ̃p†0,2

∣∣rj〉+
〈
ˆ̃p†0,2

∣∣sjL1,0p̂0
〉

= 0. (2.10b)

Each of the terms contained in rj is proportional to p̂k for some k < j, which can

be expressed as (2.9). By indicating with r̃j,ζ the terms of rj proportional to ˆ̃pk,ζ , the
solvability conditions (2.10) can be written in matrix form as

Xjα = sjα, (2.11)

whereXjη,ζ ≡ −
〈
ˆ̃p†0,η

∣∣r̃j,ζ〉, and α ≡ [α1, α2]T . Equation (2.11) is a 2×2 linear eigenvalue
problem, which we refer to as the auxiliary eigenvalue problem. We need to distinguish
two solution cases:

(i) if the two eigenvalues of (2.11) are identical, the problem remains degenerate at
this order. We therefore cannot uniquely determine a basis for the eigenvector corrections,
but it is convenient to choose them as the solutions of the linear equations

L0,0
ˆ̃pj,ζ = −r̃j,ζ − sjL1,0

ˆ̃p0,ζ , for ζ = 1, 2, (2.12)

so that equation (2.9) holds also at order j, and, at the next order, the same procedure
outlined in this subsection can be applied;

(ii) if the two eigenvalues of (2.11) are different, the degeneracy unfolds at this order.
Together with the eigenvalue corrections sj,ζ , which have different values, we obtain
the eigenvectors αζ that uniquely determine the directions along which the degenerate
subspace of the problem unfolds at lower orders as

p̂k,ζ = [ˆ̃pk,1, ˆ̃pk,2] ·αζ , for k = 0, . . . , j − 1. (2.13)

This is the appropriate basis with which to investigate the problem at higher orders
because, from (2.4), it ensures that p̂ζ(ε) smoothly approaches p̂0,ζ when ε→ 0. To each
eigenvalue at order j corresponds an eigenvector correction p̂j,ζ defined by

L0,0p̂j,ζ = −rj,ζ − sj,ζL1,0p̂0,ζ , for ζ = 1, 2. (2.14)

Note the differences between (2.12) and (2.14): in the latter the tilde symbols have been
dropped because the basis is uniquely determined, and an additional index has been
appended to the eigenvalue correction at order j, as the two eigenvalues now follow
different trajectories.

Importantly, the system of equations for the eigenvector corrections, (2.12) or (2.14),
admits solutions but is underdetermined since the matrix L0,0 has a non-zero nullspace.
Therefore, it admits an infinite number of solutions, which can be expressed as

p̂j,ζ = p̂⊥j,ζ + cj,ζ,1p̂0,1 + cj,ζ,2p̂0,2, (2.15)

where p̂⊥j,ζ is orthogonal to the unperturbed degenerate subspace, and cj,ζ,η are unde-
termined coefficients [there are two coefficients (η) for each order (j) for each eigenvalue
(ζ)]. As for the non-degenerate case, one coefficient associated with each eigenvector can
be determined by imposing a normalization condition on the eigenvectors. The other
coefficients, however, are uniquely determined by solvability conditions at higher orders
if the eigenvalues split; this will be discussed in §2.2.2.

2.2.2. Case 2: Degeneracy is resolved

If at a certain order the perturbation resolves the degeneracy, the eigenvalues split,
and we can identify the unique eigendirections along which this splitting occurs. Let us
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assume that the degeneracy is resolved at order d. At orders n > d, we are therefore
tracking two branches (solutions), whose equations are governed by (2.14), and have as
unknowns two eigenvalue and two eigenvector corrections. The four solvability conditions
(two for each branch) in this case read〈

p̂†0,η
∣∣rj,ζ〉+

〈
p̂†0,η

∣∣sj,ζL1,0p̂0,ζ
〉

= 0, for ζ = 1, 2 and η = 1, 2. (2.16)

By exploiting the bi-orthonormality condition (2.8), these reduce to

sj,ζ = −
〈
p̂†0,ζ

∣∣rj,ζ〉 if η = ζ, (2.17a)〈
p̂†0,η

∣∣rj,ζ〉 = 0 if η 6= ζ. (2.17b)

The solvability condition (2.17a) defines the eigenvalue corrections on each branch
ζ at order j, and is identical to the non-degenerate equation (2.7) when the bi-
orthonormalization condition (2.8) is considered. The second condition, (2.17b) instead,
is new, and belongs to the degenerate case only. It has not been considered by
the thermoacoustic community so far, which is why the current state-of-the-art on
perturbation theory (Magri et al. 2016) is limited to second order. If not considered, the
solvability conditions are not satisfied, which would then lead to incorrect results in the
evaluation of the eigenvector corrections and higher-order coefficients. This fact was first
mentioned by Mensah et al. (2019) and is formally demonstrated in a complete form in
the current study.

The degrees of freedom that can be leveraged to satisfy the conditions (2.17b) are
the coefficients cj−d,ζ,η. In fact, rj,ζ is a function of all the eigenvector corrections p̂k,ζ
that have been determined at orders k < j, and due to (2.15), it is a function of all the
coefficients ck,ζ,η. Analogous to the derivation outlined by Mensah et al. (2020), it can be
shown that all the coefficients with k > j− d have no influence on the order j conditions
(2.17), and that the order j − d coefficients that guarantee solvability are given by

cj−d,ζ,η =

〈
p̂†0,η

∣∣r⊥j,ζ〉
sd,η − sd,ζ

for η 6= ζ, (2.18)

where the terms in r⊥j,ζ include all the information available at order j on the eigenvectors

p̂k,ζ – specifically, the orthogonal components p̂⊥k,ζ and all the coefficients ck,ζ,η for k <
j−d. A derivation of this equation in the case d = 1, which is the most common scenario, is
outlined in Appendix B. The general case is treated in §3 of the Supplementary Material.
Once both the eigenvalue corrections sj,ζ and the coefficients cj,ζ,η have been evaluated,
Eq. (2.14) is guaranteed to be solvable, the eigenvector corrections p̂j,ζ can be calculated,
and one can finally proceed to the next order.

Equation (2.18) is a theoretical contribution of this study, and is important for several
reasons. It is inversely proportional to the eigenvalue split gap that occurred at order
d; the numerator is formally equivalent to the eigenvalue correction equation, but with
the adjoint eigenvector chosen to be that of the “other” branch (η 6= ζ); although it is
obtained at order j, it contains no unknown terms at this order, and instead it defines
coefficients at order j − d. This is consistent with the fact that the numerator is of order
O(εj), whereas the denominator is of order O(εd). As a consequence, in order to obtain
perturbations accurate to order N , an expansion at order N +d is needed. By repeatedly
applying the equations contained in §2.2.1 and §2.2.2, one can calculate the eigenvalue and
eigenvector coefficients of power series expansions of degenerate, semi-simple eigenvalues
to arbitrarily high orders.

To conclude this theoretical section, we highlight that, in most cases of practical
relevance, perturbations unfold degenerate states at first order (d = 1). This is known as
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complete regular splitting (Lancaster et al. 2004). The solution of the first-order equations
(j = 1) then follows what is described in §2.2.1 and determines the eigenvalue splitting
and the correct basis. At second order (j = 2), the solution follows what is described
in §2.2.2, from which one can see that the expression for the eigenvalues is still exact
(because no coefficients c are evaluated at first order). However, also the coefficients c1,ζ,η
need to be determined for solvability at second order; if these are ignored, all the higher-
order coefficients for both eigenvalues and eigenvectors will be incorrect. Perturbations
that unfold the degeneracy at first order were discussed by Magri et al. (2016), where only
variations in the eigenvalues and not in the eigenvectors were considered; this explains
why the perturbation theory that was outlined in that study was applicable up to second
order only.

3. Radius of convergence and exceptional points

The theory introduced in §2 yields approximations for the parametric dependence of
simple and semi-simple eigenvalues and their associated eigenvectors. It provides explicit
expressions for the coefficients of power series expansion up to arbitrary order. For
a simple eigenvalue s, the function s = s(ε) can always be locally expanded into a
power series up to arbitrary order (Kato 1980). For degenerate semi-simple eigenvalues,
power series expansions at high orders can also generally be obtained, provided that
the eigenvalue splitting is regular (Lancaster et al. 2004). However, regardless of the
degeneracy of the eigenvalue of interest, power series expansions generally have a finite
radius of convergence (Fisher 1999). There is, therefore, a fundamental question that
needs to be addressed: in what region of the parameter space do these power series
approximations of the eigenvalues and eigenvectors converge?

The limit in the convergence of a power series expansion is ruled by the closest
singularity in parameter space, i.e., a point εsng such that s(εsng) is singular. There
may be two reasons for a singularity to exist: (i) the algebraic dependence s(ε) explicitly
contains a pole of the form 1/(ε−εsng). A notable example for compressible fluid dynamics
and (thermo)acoustic problems is the dependence of the governing equations on the
boundary conditions expressed in terms of an impedance Z, which can appear at the
denominator of the governing equations, and cause a pole singularity for sound soft
boundary conditions, Z = 0; (ii) for ε = εsng the eigenvalue problem features a defective
eigenvalue with infinite sensitivity, i.e., εsng is an exceptional point (EP) in parameter
space (Kato 1980). Fortunately, the closest singularity can be estimated directly from
the power series coefficients, at no additional numerical cost. Using an approach that
has been successfully applied in quantum mechanics (Fernández 2000), in the following
we will demonstrate how this can be achieved and how it enables us to identify the EPs
closest to an eigenvalue of interest.

3.1. Estimating the radius of convergence from high-order perturbation coefficients

Close to a singularity located at ε = εsng in the parameter space, the eigenvalue
parameter dependence has to be of the form

s(ε) ∼ (ε− εsng)k, (3.1)

where k ∈ Q\N. If k ∈ Z−, the singularity corresponds to a pole; if k ∈ Q+\N, the
singularity corresponds to a branch-point. The value of εsng and the exponent k are
unknown a priori. However, it can be shown that both quantities can be estimated from
the coefficients sj of a power series that is expanded in the vicinity of (but not at) the



Degenerate high-order sensitivity and EPs in thermoacoustics 11

singularity, using the relations

εsng = ε0 +
sjsj−1

(j + 1)sj+1sj−1 − js2j
, (3.2a)

k =
(j2 − 1)sj+1sj−1 − (jsj)

2

(j + 1)sj+1sj−1 − js2j
. (3.2b)

We refer to the perturbation techniques explained in Fernández (2000, chapter 6) for a
detailed derivation of Eqs. (3.2). These estimates are asymptotic, become increasingly
more accurate with the perturbation order, and converge to the closest singularity. This
will be numerically shown in §4. When calculating the high-order sensitivity of eigenvalues
around an unperturbed parameter ε0, the series of eigenvalue correction coefficients will
therefore converge to the actual value within a disk with radius

Rc ≡ |εsng − ε0|, (3.3)

known as the radius of convergence. The value of k aids in understanding the nature of
the singularity: poles are identified for negative values of k, whereas EPs are identified
by fractional values of k of the form 1/a, where a is the algebraic multiplicity of the
defective eigenvalue at the EP (a = 2 for the cases considered in this article).

3.2. Locating EPs using perturbation theory

The closer the expansion point is to the singularity, the higher is the accuracy of
the singularity estimated by Eq. (3.2b). This suggests a procedure that can be used
to accurately locate EPs. Rather than performing a high-order expansion around ε0,
which becomes relatively time consuming at high orders, we adopt the following iterative
scheme: (i) calculate the expansion coefficients sj of an eigenvalue up to about order N =
10, using the theory of §2; (ii) use these coefficients to estimate the closest singularity εsng
by means of Eq. (3.2b) at the highest available order; (iii) if the radius of convergence (3.3)
is larger than a predefined threshold δ, shift the expansion point to ε0 ← ε0 + εsng and
repeat from point (i). When Rc < δ, the (shifted) expansion point coincides with the
singular parameter, up to an error of order O (δ).

In general, the closest singular parameter εsng will be a complex number, even if the
associated physical parameter (e.g., a time delay or a length) is a real quantity. We
refer to these as non-physically realisable EPs, because one cannot perform real-world
experiments with complex-valued parameters. Real-valued EPs exist, but are unlikely to
be found when varying only one parameter (Seyranian et al. 2005). A strategy to locate
EPs while varying two parameters was suggested by Orchini et al. (2020). Even if the
singularity εsng is found in the complex plane, it nonetheless limits the convergence of
the power series. This also applies when considering only real values of the parameter
ε. Furthermore, although not realisable, the presence of complex-valued singularities has
an effect on the eigenvalue trajectories. In fact, in the vicinity of EPs, eigenvalues have
extremely large first order sensitivities (which become infinite at the EP). These large
sensitivities cause steep variations of the eigenvalue in the complex plane, as recently
analysed by Orchini et al. (2020) and observed in, e.g., Bauerheim et al. (2014) and Sogaro
et al. (2019). This phenomenon is known as mode veering (Seyranian et al. 2005), and
is the fundamental cause of the strong sensitivity of some thermoacoustic eigenvalues,
and the deviation of the eigenvalue trajectories away from the first-order sensitivity
predictions.
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4. Applications

We apply the methods developed in §2 and §3 to two fundamental configurations for
the investigation of thermoacoustic instabilities: a longitudinal combustor and an annular
combustor. Both geometries correspond to existing experiments: respectively, the BRS
combustor (Komarek & Polifke 2010) and the MICCA annular combustor (Bourgouin
et al. 2013). The nonlinear thermoacoustic eigenvalue problem (2.3) is solved for these
configurations, using an n–τ model to reproduce the flame response at a frequency of
interest.

4.1. Axial combustors: non-degenerate thermoacoustic modes

We consider a non-degenerate thermoacoustic eigenvalue in a longitudinal combustor.
In addition to demonstrating the validity of non-degenerate high-order perturbation
expansions, detailed in Mensah et al. (2020) and summarised in Eq. (2.7), we will use
this simpler configuration to show how the theory of §3 can be used to (i) quantify
the convergence limit of high-order perturbation theory and (ii) identify the closest
EP to an operating condition of interest, which in turn gives essential information on
the thermoacoustic spectrum and the trajectory followed by the eigenvalues when a
parameter is varied. The setup we model is known as the BRS combustor; a detailed
description of the geometry and the experiment is given by Komarek & Polifke (2010).
The 3D geomety of the model we solve is shown in Figure 1. It consists of a cylindrical
plenum, a premixing/swirling duct, and a combustion chamber with rectangular cross
section.

The BRS combustor is one of the first configurations in which thermoacoustic in-
stabilities at a frequency that is not directly related to an acoustic mode have been
experimentally observed, at about 100 Hz (Tay-Wo-Chong et al. 2012). This instability
was first generically attributed to “flame dynamics”. Later, it has been better understood
and reproduced in a low-order network model by Emmert et al. (2017), and relabelled
as intrinsic thermoacoustic (ITA) instability. ITA instabilities can be observed even in
purely anechoic conditions, as they originate from the intrinsic feedback between the
generation of acoustic waves by the flame and the sensitivity of the latter to upstream
velocity fluctuations.

We discretize the thermoacoustic equation (2.3) on this geometry, imposing sound
hard boundary conditions (Z = ∞) on all walls, except at the outlet, which is assumed
to be sound soft (Z = 0). A compact flame is located at the inlet of the combustion
chamber. Across the flame, a temperature jump T2/T1 ≈ 5 is imposed. The flame response
is modelled with an n–τ model, whose values are extracted from the Flame Transfer
Function (FTF) reported by Tay-Wo-Chong et al. (2012) around the 100 Hz frequency.
In particular, the time lag is assumed to be constant, as the experimentally determined
FTF phase linearly decreases with frequency, with a slope τ ≈ 4 ms. The flame gain n
was instead shown to be frequency dependent, with values up to 2. We choose to specify
a constant value of the FTF gain, n0 = 1.68, and consider it as a perturbation parameter.

The thermoacoustic eigenvalue problem is solved using the open-source thermoacoustic
eigenvalue solver PyHoltz (PyHoltz 2018). We first employ standard iterative Newton
techniques to solve the eigenvalue problem. We identify a thermoacoustic mode with
growth rate σ = −150 s−1 and frequency f = 65.2 Hz. This eigenvalue is close to that of
a Helmholtz resonant mode of the combustor, in which the plenum acts as a cavity and
the premixing tube as a neck (Emmert et al. 2017). However, its eigenvector – Modeshape
C in Figure 1 – is not fully consistent with that of a Helmholtz mode: this mode is in
fact active not only in the plenum, but also at the end of the premixing tube and at the
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Figure 1: Modeshapes of the lowest frequency acoustic mode for τ = 4 ms and different
values of n. Modeshapes A and B appear for vanishing values of n, and correspond to
an acoustic and an ITA mode, respectively. Thermoacosutic modes for finite values of
n will generally inherit features from both acoustic and ITA modes. This is particularly
evident when the eigenvalue is close to an EP, as for the Modeshape C shown here.

inlet of the combustion chamber. The nature of this modeshape will be clarified in the
following.

By slowly decreasing the interaction index n towards zero, with steps ∆n = −0.02, we
track the eigenvalue trajectory in the complex plane with a continuation-like method.
This eigenvalue trajectory is shown in Figure 2a. We find that, in the limit n → 0, the
growth rate of this eigenvalue tends to negative infinity, and the frequency is consistent
with that of the ITA mode identified by Emmert et al. (2017) and Orchini et al. (2020).
Modeshape B in Figure 1 shows the magnitude of the pressure mode found when n = 0.01.
Its shape is indeed consistent with that of an ITA mode, as the magnitude of the
eigenvector is high only around the flame (Courtine et al. 2015).

We then repeat the eigenvalue tracking restarting from n = n0 and increasing the
interaction index n up to 2.5, with steps ∆n = 0.02. The trajectory of the eigenvalue
for large values of n follows a highly nonlinear path; strong mode veering is observed.
Mode veering may generally occur when a small variation in a parameter can cause two
closely spaced eigenvalues to coalesce into a single degenerate eigenvalue. This degenerate
eigenvalue is more likely to be an EP than a semi-simple one, unless the problem
considered contains specific symmetries (Seyranian et al. 2005), which is not the case
for the thermoacoustic system considered here. We can therefore exploit perturbation
theory to identify the EP responsible for the eigenvalue veering.

We consider the interaction index n as a perturbation parameter, choosing as a baseline



14 A. Orchini et al.

(a)

5 10 15 20 25 30
Perturbation order

0
0.5168

1

2

3

4

R c

(b)

Figure 2: (a): Eigenvalue trajectories estimated with perturbation theory at 1st (dashed
black line) and 30th (solid black) order, compared with exact solutions (thick shaded
line). Within the radius of convergence (black markers), comparison with high-order
perturbation theory is excellent. (b): Convergence of the estimated radius of convergence
(and therefore location of the closest exceptional point) with the order of the perturbation
expansion, from Eq. (3.3).

solution the value n0 = 1.68. We apply high-order perturbation theory for non-degenerate
eigenvalues, Eq. (2.6), and calculate the coefficients of the Taylor expansion of the
eigenvalue up to 30th order. We then employ Eqs. (3.2) to estimate the value of n at which
the closest singularity is found, nsng, and its exponent, k. At the highest order considered,
the exponent of this singularity is k = 0.49, close to that of a square-root branch-point.
This supports the fact that the singularity is due to an exceptional point with algebraic
multiplicity a = 2, at which k should have the value 1/a. We can also estimate the radius
of convergence of the power series from Eq. (3.3). This is shown in Figure 2b as a function
of the perturbation order. The estimated value for Rc strongly oscillates with estimates
at low expansion orders, but converges to a constant value, Rc = 0.52, at high expansion
orders (N > 10). Thus, we can determine that the Taylor expansion of the eigenvalue
converges to the correct result in the entire range n ∈ [1.16, 2.2], which is a broad range
for a flame gain parameter. More specifically, if we were to allow for complex values of
the interaction index n, the eigenvalue power series expansion would converge for all
|n−n0| < Rc. This is shown in Figure 3. The first-order sensitivity estimate (dashed line
in Figure 2a) correctly predicts the slope of the eigenvalue trajectory at the expansion
point, but fails in identifying the mode veering. The trajectory reconstructed from the
expansion up to 30th order (solid black line in Figure 2a), instead, captures the veering
and is almost indistinguishable from the exact solution (thick, shaded line) within the
convergence limits (black markers). Outside of the radius of convergence, the expansion
is not valid, and eigenvalue estimates quickly diverge.

The value of n for which the eigenproblem contains an EP is nsng = 2.19 − 0.067i,
highlighted with a star in Figure 3. As this value is complex, this specific EP cannot
be physically realised, although it would be possible to vary a second parameter (e.g.
τ) to find an EP at real-valued parameters (Mensah et al. 2018; Orchini et al. 2020).



Degenerate high-order sensitivity and EPs in thermoacoustics 15

1.2 1.4 1.6 1.8 2.0 2.2
Re[n]

−0.4

−0.2

0.0

0.2

0.4

Im
[n
]

Figure 3: Left: trajectories of eigenvalues in the vicinity of the EP. The closer the
trajectory is to the EP, the stronger is the veering. The thicker lines are those on which
n is real-valued, thus physically realisable. Right: the distance of the EP (red star) from
the chosen expansion point defines the radius of convergence of the power series. The
convergence region in frequency space, between the two black lines in the left figure, is
not small, which means that the perturbation method is robust.

Nonetheless, the imaginary part of nsng is small: the smaller is the imaginary part of the
closest EP, the stronger is the eigenvalue veering in its vicinity. The eigenvalue identified
at the singular point is indicated in Figure 2a with a star; the same Figure also shows
how the eigenvalue trajectory exhibits the strongest veering in the vicinity of the EP. If
we calculate thermoacoustic eigenvalues for real values of n, we can never reach exactly
the EP. However, when n = 2.19, the eigenvalue we track is very close to being defective.
This implies that another eigenvalue exists in its vicinity since these two eigenvalues must
coalesce at the EP. Using the contour-integration method suggested by Buschmann et al.
(2020b) for thermoacoustic eigenvalue problems, we, hence, search for all eigenvalues
found for n = 2.19 in the vicinity of the EP eigenfrequency. We identify two eigenvalues:
one is already known, as it lies on the trajectory that was already discussed, but the
second is a new eigenvalue. By applying again a continuation method, we track this
newly found eigenvalue trajectory in the entire range n ∈ [0, 2.5]. This trajectory is the
one shown on the top-left in Figure 2a. When n = 0, this eigenvalue has zero growth
rate, and corresponds to a purely acoustic mode, specifically, a Helmholtz mode of the
plenum. Modeshape A of Figure 1 shows the magnitude of this mode.

We have now all the ingredients to interpret the modeshape of the thermoacoustic
mode found at n = 1.68, Modeshape C in Figure 1. Starting from small values of n, two
thermoacoustic eigenvalues exist, with similar frequencies but different growth rates: the
one with zero growth rate is of acoustic origin, the one with very negative growth rate is
of intrinsic origin. Their eigenvectors are indicated as Modeshape A and B respectively
in Figure 1. As we increase the flame gain, the two eigenvalues first approach each other
towards the EP, but eventually are repelled away from it for n > 2.19. At the EP, not
only the eigenvalues, but also the two modeshapes coalesce. The eigenvalue we considered
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at n = 1.68, marked with a diamond in Figure 2a, lies between the acoustic and the ITA
eigenvalues, and it is relatively close to the veering region caused by the EP (Figure 3).
Thus, the modeshape of the thermoacoustic eigenvalue at n = 1.68 contains features
from both the acoustic and the ITA one. This is clearly the case for Modeshape C in
Figure 1: the thermoacoustic modeshape has a strong plenum component (inherited from
the acoustic modeshape) but also a strong component around the flame zone (inherited
from the ITA mode).

The case just discussed (i) validates high-order perturbation theory for simple eigen-
values and its convergence limits, and (ii) demonstrates that knowledge of the existence
of EPs is essential for understanding the structure of thermoacoustic modeshapes, as
well as in the identification of other eigenvalues in the vicinity of trajectories that exhibit
strong veering. We conclude the analysis with some remarks on the numerical cost of
the calculations. On a quad-core Intel i7 processor, the Newton-like method employed
for calculating eigenvalues without perturbation theory takes approximately 2 seconds to
convergence for each value of the parameter n considered, provided that the initial guess
is reasonably accurate. Perturbation theory, on the other hand, takes approximately 30
seconds to calculate the expansion coefficients up to 30th order, but can then be used to
evaluate the eigenvalues accurately for any value of n ∈ (n0 −Rc, n0 +Rc) at negligible
computational cost.

4.2. Annular combustors: degenerate thermoacoustic modes

We now consider an annular combustor geometry, which is directly relevant for aero-
nautical and power generation gas turbines. Annular combustors are known to exhibit
degenerate eigenvalues (Evesque et al. 2003; Noiray & Schuermans 2013; Bothien et al.
2015), which arise from spatial symmetries of the system (typically discrete rotational
symmetry and reflection symmetry). These degenerate eigenvalues have algebraic and
geometric multiplicity two, i.e., they are semi-simple. From a physical point of view,
these degenerate modes can be thought of as representing two travelling waves, one
spinning in the clockwise direction and one in the counterclockwise direction, at the same
frequency. A pair of degenerate thermoacoustic modes interacts nonlinearly, and a mode-
selection process takes place, which can lead to the stabilisation of spinning, standing, or
mixed-type thermoacoustic oscillations (Noiray et al. 2011; Ghirardo et al. 2016; Laera
et al. 2017). All these types of oscillations have been observed experimentally (Noiray
et al. 2011; Worth & Dawson 2013; Bourgouin et al. 2014b). An annular combustor in
which azimuthal instabilities have been investigated in detail is known as the MICCA
combustor (Bourgouin et al. 2014b; Prieur et al. 2017). In addition to standing and
spinning oscillations, this combustor also exhibits a more complex oscillation pattern
that has been labelled slanted mode, and is believed to be due to the synchronisation of a
longitudinal and an azimuthal thermoacoustic instability (Bourgouin et al. 2014a; Orchini
et al. 2018; Moeck et al. 2019; Yang et al. 2019). Given the interest of the thermoacoustic
community in this combustor, we demonstrate the application of perturbation theory to
the MICCA combustor geometry. Our goal here is not that of accurately reproducing the
dynamics observed in the MICCA combustor, and we therefore simplify the linear flame
response to an n–τ model with constant coefficients.

The MICCA geometry consists of two annular sections, a plenum and a combustion
chamber, connected by 16 ducts that are equispaced around the annulus. The geometry
we model is shown in Figure 4. The geometrical details used for modelling this config-
uration are given by Mensah et al. (2019). We impose sound hard boundary conditions
(Z = ∞) on all walls, and a sound soft boundary condition (Z = 0) at the outlet of
the combustion chamber. An axially varying temperature field is used (see Figure 4),
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Figure 4: MICCA combustor model employed in this study. The geometrical details and
speed of sound field are the same as in (Mensah et al. 2019). The mesh maintains the
reflection symmetry of each burner segment and the discrete rotational symmetry of the
whole geometry; it contains approximately 60 000 tetrahedra.

as by Laera et al. (2017), with the speed of sound fixed to c = 348 m/s in the cold
plenum and ranging from c = 784 m/s at the flame zone to c = 690 m/s at the chamber
exit. An acoustically compact flame zone is located at the exit of each duct. We fix
the gain of the flame response to n = 1, and we consider the flame time delay as the
perturbation parameter, starting from the unperturbed value τ0 = 3 ms. Variations in
the flame’s time delay response are known to have a strong impact on the thermoacoustic
stability (Rayleigh 1878; Dowling 1995), which can be achieved, e.g., by means of fuel
staging or the use of cylindrical burner outlets (Noiray et al. 2011; Krebs et al. 2002).

We discretize the thermoacoustic equations on the MICCA geometry with finite
elements, and we solve the resulting eigenproblem using PyHoltz. For the set of pa-
rameters we investigate, we identify an unstable thermoacoustic mode with frequency
f = 527.78 Hz and growth rate σ = 306.44 s−1. This eigenvalue is degenerate, with
algebraic multiplicity a = 2, and it is associated with a mode of azimuthal order 1
of the plenum cavity. This degeneracy is due to the rotation and mirror symmetries
of the combustor. Thus, the eigenvalue is semi-simple, and the geometric multiplicity
also equals 2. There exist therefore two linearly independent eigenvectors, spanning the
2-dimensional subspace associated with the degenerate eigenvalue, which we calculate
together with their corresponding adjoint eigenvectors.

We consider two types of perturbation patterns: (I) we perturb the time delay τ of all
flames; (II) we perturb the time delay of certain flames only, specifically flames 1, 4, 8 and
10, counting in the counterclockwise direction (see Figure 5). While the former pattern
preserves all the symmetries of the combustor geometry, the latter pattern is chosen such
that both the mirror and discrete rotational symmetries are broken. For each of the two
cases, we apply degenerate perturbation theory as discussed in §4.2.

Since pattern I preserves the symmetry, the degeneracy has not unfolded. Regardless of
the magnitude of the perturbation, the eigenvalue remains degenerate with algebraic and
geometric multiplicity 2. The perturbation method correctly identifies that the eigenvalue
does not split since the eigenvalues of the auxiliary eigenvalue problem (2.11) remain
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Figure 5: Radius of convergence of the perturbed eigenvalues estimated from the
expansion coefficients (markers) and obtained by identifying the closest branch-point
(shaded lines). The perturbation patterns are shown as insets. On the left, perturbation
pattern I retains the symmetry and the eigenvalue remains degenerate regardless of
the perturbation strength. On the right, perturbation pattern II breaks the geometrical
symmetries, and each eigenvalue branch exhibits a different convergence behaviour.

degenerate at all considered orders. We therefore have only one power series expansion,
whose radius of convergence (shown as percentage variation from the unperturbed time
delay τ0), is shown in Figure 5 at various perturbation orders. The results show that high-
order perturbation theory accurately predicts the evolution of the degenerate eigenvalue
from the unperturbed state for variations in τ up to 22%, a relatively large value for
a flame time delay. The subspace spanned by the two linearly independent eigenvectors
varies as a function of the perturbation parameter, according to Eq. (2.4), with the
coefficients of the eigenvector expansion calculated according to Eq. (2.15). Note that,
since the problem remains degenerate, any other linear combination of the eigenvectors
identified by our method would be equally valid. Our method, however, always converges
to the same solution, which is constrained by the bi-orthogonalization of the perturbed
eigenvectors.

On the other hand, the perturbation pattern II unfolds the degeneracy as the chosen
flame staging pattern breaks the spatial symmetries. The two eigenvalues therefore follow
different trajectories when varying τ (shown in Figure 6). We label these eigenvalue
trajectories branch 1 and branch 2. Since their power series expansions have different
coefficients, the estimated radius of convergence and closest EP, calculated via Eqs. (3.2)
and (3.3), will be different for the two branches. The radius of convergence estimated
from the coefficients of the two eigenvalue expansions are shown in Fig. (5)b. Note that,
for branch 2, there is a small mismatch between the radius of convergence estimated via
the high-order perturbation theory expansion coefficients (dotted line) and the actual
distance to the closest branch-point obtained using the iteratitive procedure outlined in
§3.2 (shaded line). This deviation is justified in that Eq. (3.2a) is only an estimate of the
location of the EP, even at high orders: the closer is the expansion point to the EP, the
better is the estimate of the radius of convergence.

Despite this small mismatch, Figure 5 indicates that perturbation theory should yield
correct results in the prediction of the evolution of the eigenvalues in a significant range
of values of τ , which can vary up to 15% and 20% for the two eigenvalues, respectively.
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Figure 6: Comparison between the growth rate and frequency of the eigenvalues close
to a degenerate state (τ0 = 3 ms) for the symmetry breaking perturbation pattern (II).
The coloured, shaded regions indicate the radius of convergence of the respective branch.
The exact solutions (solid lines) are poorly approximated by the first-order sensitivity
(dashed lines) but well approximate by high-order power series expansions (markers).

This is verified by comparing the reconstruction of the eigenvalue trajectories from the
high-order perturbation theory with brute-force solutions (direct numerical solutions of
the thermoacoustic eigenproblem (2.3)) at various values of τ ∈ [2.3, 3.6] ms, shown in
Figure 6. The shaded backgrounds in the figures indicate the range of convergence of each
eigenvalue. It is evident that, within each convergence region, the brute-force and high-
order perturbation results are almost indistinguishable, for both frequency and growth
rate of the eigenvalues. On the other hand, as soon as perturbation theory is applied
outside of the radius of convergence of its corresponding eigenvalue, the eigenvalue power
series approximation rapidly diverges from the actual solution. For comparison, we have
reported in Figure 6 also the eigenvalue approximation that one would obtain by using
only first-order sensitivity. For both growth rate and frequency, first-order perturbation
theory correctly predicts the tangential direction along which the eigenvalues split, but
fails in capturing the more complex, nonlinear behaviour of the eigenvalues at moderate
changes of the perturbation parameter. This is true particularly for the growth rates
shown in Figure 6. First-order theory predicts that increasing (decreasing) the time
delay will linearly increase (decrease) the growth rate of both eigenvalues. High-order
theory, instead, shows that the growth rate of the unperturbed eigenvalue is close to a
maximum, so that either increasing or decreasing the flame time lag response will lead
to a reduction in the growth rate of both modes.

Convergence results analogous to those of the eigenvalues are obtained for the eigen-
vectors too. Since perturbation pattern II breaks the symmetries, there exists a specific
basis in the unperturbed degenerate subspace that perturbation theory must identify,
which consists of the pair of eigenvectors p̂0,1 and p̂0,2 into which the degeneracy linearly
unfolds. This is also correctly captured by the presented high-order perturbation theory,
which is able to accurately reconstruct the 3D modeshape of the thermoacoustic modes
at hand when varying τ . As was shown in Mensah et al. (2020), the accuracy of the
estimated eigenvectors within the radius of convergence increases at higher perturbation
orders. Figure 7 shows a plenum cut view of the magnitude of the pressure modeshapes
of the split eigenvalues for τ = 2.65 ms. Although the asymmetry is moderate – 4
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Figure 7: Cut view of the absolute value of the pressure eigenvector in the plenum of
the MICCA combustor when the non-symmetric flame staging pattern II is considered.
The degeneracy is resolved, and the two modeshapes that were spanning the two fold-
degenerate subspace in the unperturbed case are now well-defined. The symmetries in
the system’s solution are lost, as correctly captured by perturbation theory. Left column:
eigenvalues and eigenvectors obtained by solving the non-symmetric configuration
directly with the Helmholtz solver. Middle column: eigenvalues and eigenvectors obtained
from perturbation theory at 10th order, applied to the nominally symmetric, degenerate
case. Right column: error between the exact and approximated eigenvectors.

flames have a time delay that differs by 0.35 ms from that of the other 12 flames –
the modeshapes deviate markedly from the symmetric case. This is particularly evident
for the lower-frequency mode (on the top in Figure 7), for which the pressure nodes
are visibly not aligned, and the two pressure maxima have different intensities. The
modeshapes reconstructed using perturbation theory and the relative error between the
exact and approximated eigenvectors are also shown. We recall that eigenvectors can
always be arbitrarily scaled by a complex-valued coefficient. Thus, when comparing the
exact and approximated eigenvectors, one needs to ensure that the same normalisation
has been applied to the eigenvectors calculated with the exact and approximated method.
This was discussed in Mensah et al. (2020).

We conclude the analysis with some numerical remarks. When two closely spaced
eigenvalues exist, as those generated by symmetry breaking, it may be difficult to identify
both of them using standard Newton-like algorithms. This is because these iterative
algorithms need an initial guess and will eventually converge to an eigenvalue solution.
We observe that, often, the basin of attraction of one of these two solutions is much
larger than that of the other. Unless rather accurate initial guesses are provided to
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the iterative algorithm, only one of the two solutions will be identified. High-order
perturbation methods are useful also in this respect. Within the radius of convergence,
the eigenvalue estimates they provide are suitable initial guesses for the actual eigenvalues
of the system, as shown above, and Newton-like methods are able to identify both closely
spaced eigenvalues in a few iterations. The brute-force results shown in Figure 6 have been
calculated using this effective strategy. An alternative is to use Beyn’s contour-integration
method, which is able to identify all eigenvalues inside a circle in the complex-frequency
space (Beyn 2012; Buschmann et al. 2020b). Both methods have their pros and cons.
High-order perturbation methods require only one longer calculation, needed to obtain
the eigenvalue expansion coefficients, and then only short calculations to (i) obtain good
initial guesses and (ii) converge to the eigenvalue(s) of interest via Newton methods, for
any value of the perturbation parameter within the radius of convergence. Beyn’s method,
instead, requires a moderately long calculation for each of the perturbation parameter
values one is interested in, but does not suffer from radius of convergence limitations –
although for very large perturbations, the split eigenvalues may be far from each other,
which requires the integration over a large circle, with increasing computational effort
needed. We are of the opinion that no general conclusion can be made regarding which
of the two methods is preferable. The trade-off depends on the size of the eigenproblem
at hand and on the range parameters one wants to investigate.

5. Expansion of defective eigenvalues at exceptional points

At defective points, the theory described in §2 breaks down. This is because the
eigenvectors of a defective eigenvalue lose the bi-orthogonality property (2.8). We have
demonstrated the existence of EPs, which are defective eigenvalues (§3), in the spectrum
of thermoacoustic systems. To make our technique applicable to all types of eigenvalues,
in this section, we present the perturbation theory at defective eigenvalues. For defective
eigenvalues, the following relation between direct and adjoint eigenvectors holds in place
of (2.8): 〈

ˆ̃p†def
∣∣L1,0

ˆ̃pdef
〉

= 0. (5.1)

This is known as self-orthogonality in non-Hermitian quantum mechanics (Moiseyev 2011;
Heiss 2012) and invalidates the derivation of the expansion equations of §2.2. The latter
relies on expressions of the form analogous to those shown in Eq. (2.7), in which the
scalar product in the denominator vanishes in the defective eigenvalue scenario due to
the self-orthogonality condition (5.1). Consequently, already the first-order sensitivity of
the eigenvalues diverges to infinity, and it is not possible to expand the dependence of
the eigenvalues on a parameter into a power series.

However, eigenvalues at an EP can be expanded into a fractional power series, also
known as Puiseux series. In particular, for a defective eigenvalue with algebraic multiplic-
ity a, it is possible (under mild assumptions) to expand the eigenvalue as follows (Leung
1990; Lancaster et al. 2004):

s(ε) ≈ s0 +

N∑
j=1

sjε
j/a. (5.2)

By using this ansatz, and introducing the concept of generalised eigenvectors for defective
eigenvalues (see Supplementary Material §1), it is possible to follow the steps of §2.2
to derive arbitrary high-order equations for the calculation of the coefficients of the
Puiseux series (5.2). It is not the aim of this contribution to provide the entire (and
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lengthy) derivation of these expressions. Our goal is to show that expansions at EPs are
possible, and that the Puiseux coefficients can be evaluated by means of adjoint methods.
Additional details on the derivation of the Puiseux expansions at EPs are provided in
the Supplementary Material.

Here, we shall focus only on the special case of defective eigenvalues with algebraic
multiplicity a = 2 and (consequently) geometric multiplicity 1. In this case, it can be
shown (see Eq. (S1.8) in the Supplementary Material) that the first coefficient of the
Puiseux series expansion is given by

s1 = ±

√√√√− 〈
p̂†def

∣∣L0,1p̂def
〉〈

p̂†def
∣∣L1,0

ˆ̃pgen
〉

+
〈
p̂†def

∣∣L2,0p̂def
〉 , (5.3)

where ˆ̃pgen is the generalised eigenvector, defined by L0,0
ˆ̃pgen ≡ −L1,0p̂def . Note the

differences between (5.3) and the first-order ordinary sensitivity equation, which reads

s1 = −
〈
ˆ̃p†0
∣∣L0,1

ˆ̃p0
〉
/
〈
ˆ̃p†0
∣∣L1,0

ˆ̃p0
〉
. First, two branches (the + and - roots) stem from the

sensitivity equation for defective eigenvalues (5.3) due to the a = 2 algebraic multiplicity.
Second, a square root appears in the equation, highlighting the fact that the defective
eigenvalue is a branch-point. This is due to the fact that the first coefficient in the Puiseux
series expansion is determined at second order (whereas first-order power series expansion
coefficients are determined at first order). Lastly, a new term appears in the denominator,
which involves the second derivative of the operator L with respect to the eigenvalue.
This results from the fact that the defective eigenvalue sensitivity is determined at second
order and that bi-orthogonality conditions do not hold.

The above sensitivity equation represents an exception to the standard sensitivity
equations for semi-simple eigenvalues outlined in §2.2, and should be used if and only if
the eigenvalue of interest is a defective eigenvalue. Note that, in practice, it is unlikely to
converge exactly to a defective eigenvalue with numerical methods. Both the series (3.2a)
– which converges to the closest EP in the complex-parameter space – and the method
outlined in Orchini et al. (2020) – which converges to an EP in the real parameter
space – are iterative numerical methods, whose accuracy is limited by machine precision.
Due to the infinite sensitivity of eigenvalues at EPs, even a very small deviation in
the estimation of the defective eigenvalue is sufficient to strongly affect the eigenvalue
sensitivity, causing large errors in the results of Eq. (5.3). The latter should therefore be
applied only to problems for which EPs can be identified analytically.

5.1. Application to a 1D thermoacoustic model

We shall now provide an application of Puiseux series expansion to numerically show
that the sensitivity to small perturbations of eigenvalues at EPs is not polynomial, but
scales with powers of ε1/2. The model we use is a single-mode Galerkin expansion of the
thermoacoustic equations in an acoustically open tube (Juniper & Sujith 2018), expressed
in non-dimensional units, for which the scalar operator L is given by

L(s) ≡ s2 + 2πβe−sτ + π2. (5.4)

We wish to find defective eigenvalues of the above equation, which are obtained when

L(s) = 0 and
∂L

∂s
≡ L1,0 = 0. (5.5)

These are generally only necessary conditions for a defective point, as they would also be
satisfied for a semi-simple degenerate eigenvalue with algebraic multiplicity of (at least)
two. However, as shown in Seyranian et al. (2005), when degenerate eigenvalues arise the
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Figure 8: Left: trajectories of two eigenvalues coalescing at an EP (solid lines), and
1st (dashed) and 2nd (dotted) order Puiseux approximations of these trajectories.
The discontinuous branch-point behaviour at the EP is correctly captured by the
Puiseux approximations. Right: relative error between the exact eigenvalues and their
approximations by Puiseux series, at various orders in log-log scale. The error scales as
(∆τ)1/2, which is consistent at an EP with algebraic multiplicity 2.

occurrence of a defective eigenvalue is almost certain in a system without symmetries –
semi-simple degenerate eigenvalues exist, but have a negligible measure compared to that
of the defective ones. No symmetries are present here, so Eqs. (5.5) effectively identify
EPs.

From Eqs. (5.4) and (5.5) it can be shown that choosing βτe = ±1 for πτ > 1, and

with the additional constraints that tan [(πτ)
2 − 1]1/2 = [(πτ)

2− 1]1/2, yields a defective
eigenvalue with algebraic multiplicity 2 and geometric multiplicity 1 of the form

sdef = −1

τ
± i

√
(πτ)

2 − 1

τ
. (5.6)

The non-dimensional parameters at which we identify an EP are τ = 1.4653 and
β = 0.2511; the corresponding defective eigenvalue is sdef = −0.6825 + 3.0666i.

Let us now consider a perturbation expansion of the defective eigenvalue around τ .
Since we have imposed that L1,0 = 0, it is not correct to use Eq. (2.7) to try to identify
polynomial coefficients, as the latter equation diverges. Instead, we can calculate the first
coefficient of the Puiseux series using Eq. (5.3), which yields the following expansion for
the eigenvalues around the EP:

s = sdef ±

√
2πβsdefe−sdefτ

1 + πβτ2e−sdefτ
(∆τ)1/2 +O (∆τ) . (5.7)

Because this example is 1-dimensional, the direct and adjoint eigenvectors associated
with the EP equal 1, and the generalised eigenvector vanishes.

Figure 8a shows the evolution of the eigenvalues around the EP while varying τ .
The solid lines are obtained by repeatedly applying Beyn’s contour-integral method
while varying the flame’s time delay. The colour indicates the evolution of each tracked
eigenvalue: at the EP (black dot) the eigenvalues coalesce, and the trajectories have
a discontinuous first-order derivative, with cusp angles of 90 degrees. The eigenvalue
trajectories approximated with the first-order Puiseux series (5.7) are shown with dashed
lines. The Puiseux series expansions accurately capture the angle along which the two
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cusps formed by the eigenvalue trajectories intersect at the EP, and are locally tangent
to the exact trajectories. Figure 8b shows the relative error between the actual eigenvalue
and that estimated by the Puiseux series for the red branch only; analogous results are
obtained for the other branch. At expansion order N = 0, the error equals to the distance
between the eigenvalue for a given τ and the eigenvalue found at the EP. For very small
variations of τ , machine precision limits the error to a lower bound. However, when
increasing the variation in the time delay, ∆τ , the relative error follows a linear trend in
log-log scale. Linear regression identifies the slope of this line to be α = 0.501, implying
that the error scales with ∆τ1/2. This is the leading term in the Puiseux series (5.2) for
algebraic multiplicity a = 2. When calculating the error including the first term of the
Puiseux expansion, instead, the relative error generally decreases and its slope becomes
α ≈ 1, which is the power of the leading error in Eq. (5.7). A further increase in accuracy
by a factor of ∆τ1/2 is observed when including also the second term of the Puiseux series,
N = 2, whose expression for the model investigated here is provided in Eq. (S2.4) of the
Supplementary Material. The trajectories of the eigenvalues reconstructed including also
the second term of the Puiseux series are shown in Figure 8a with dotted lines. They
provide better approximations of the actual eigenvalues for larger deviations from the
EP, and they are able to capture both the local angle and also the curvature of the cusps
that intersect at the EP.

6. Conclusions

In this study, we have established interconnections between several topics that are
essential for the investigation of thermoacoustic stability, namely symmetry-induced
degeneracies, high-order adjoint perturbation theory, the origin of thermoacoustic modes,
and exceptional points. We have first extended adjoint-based high-order perturbation for-
mulae for thermoacoustic eigenproblems, currently available only for simple eigenvalues,
to semi-simple degenerate eigenvalues, typical of annular configurations. Although degen-
erate perturbation theory could be extended to arbitrary level of degeneracies, the 2-fold
degenerate case, which arises due to spatial symmetries of combustor configurations,
is the most relevant for applications in thermoacoustics, and is the one that has been
considered in this study.

Well-defined boundaries of validity of eigenvalues reconstructed with perturbation
methods can be defined by evaluating the radius of convergence of the power series,
directly from their coefficients. The radius of convergence is generally finite but not
necessarily small. In fact, it can be sufficiently large to use perturbation theory for
investigating the effects of parametric variations on the thermoacoustic spectrum in a
broad parameter range of physical relevance. The existence of a finite limit of convergence
is due to singularities in the thermoacoustic eigenproblems that arise at exceptional
points. Exceptional points appear in the spectrum of thermoacoustic systems when
eigenvalues of acoustic and/or ITA origin coalesce, and we have shown how they can be
identified by means of the coefficients of high-order perturbation methods. At exceptional
points, eigenvalues have infinite sensitivities; moreover, the eigenvalue trajectories that
form when a parameter is varied exhibit strong veering in the vicinity of an EP. This
explains the high sensitivity of some thermoacoustic modes that has recently been
discussed in the literature.

We applied the presented theory to two thermoacoustic configurations that model exist-
ing experiments. We demonstrated that the identification of exceptional points facilitates
the prediction and understanding of the trajectories and modeshapes of thermoacous-
tic eigenvalues as the system parameters are varied. We have shown that degenerate
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perturbation theory is capable of correctly predicting whether a given perturbation
pattern breaks or retains the degeneracy of semi-simple eigenvalues found in annular
combustors. When splitting occurs, the method correctly predicts the two trajectories
that are followed by both eigenvalues, as well as the eigenvector basis into which the
unperturbed problem unfolds. All these results are valid within a radius of convergence
that was accurately calculated from the power series coefficients. The framework enables
one to predict the strong veering that thermoacoustic eigenvalues may experience, and
explain the latter via the identification of the closest EP.

Lastly, we have shown how adjoint-based methods allow also for the calculation of
the coefficients of Puiseux series, which can be used to expand the eigenvalues found at
exceptional points. Combined together, our findings provide a comprehensive and efficient
theory that can be applied to investigate the thermoacoustic spectrum in the vicinity of
any eigenvalue (simple, semi-simple or defective) while varying a parameter.

Our results show that perturbation theory is a powerful tool that enables the ef-
ficient and accurate assessment of the effects that parametric variations have on the
thermoacoustic spectrum. Its results are valid in a finite but broad range of design
parameters, and can be exploited in the execution of tasks relevant to the thermoacoustic
community such as design optimisation and uncertainty quantification. In fact, although
the trajectories followed by thermoacoustic eigenvalues are nonlinear, in particular in
the vicinity of an EP, often only the linear first-order sensitivity is considered for the
prediction of eigenvalue variations. This can lead to a misinterpretation of the behaviour
of the thermoacoustic spectrum. The high-order adjoint-based method proposed here
constitutes a significant step forward, as it enables the accurate estimation of the
nonlinear behaviour of thermoacoustic eigenvalues in a wide parametric range. This helps
in understanding and predicting the effect that real-world finite perturbations have on
thermoacoustic stability. It can also be leveraged in advanced optimisation methods, by
providing nonlinear descent information that can lead to a quicker identification of local
optima.
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Appendix A. Explicit expressions of perturbation equations

A detailed derivation of Eq. (2.6) has been provided in Mensah et al. (2020), to which
we refer the interested reader. For completeness, we report here without demonstration
the explicit expression that can be used to calculate the vectors rj at any order:

rj ≡
j∑

n=1

L0,npj−n +
∑

0<|µ|w6j
µ6=1j

j−|µ|w∑
n=0

(
|µ|
µ

)
sµL|µ|,npj−n−|µ|w , (A 1)



26 A. Orchini et al.

where we have introduced the multi-index notation µ ≡ [µ1, µ2, . . . , µN ], where µn ∈ N,
and we have defined the multi-index 1j as having index 1 at position j, and 0 otherwise.
The following notation for multi-index properties holds:

|µ| ≡
N∑
n=1

µn, |µ|w ≡
N∑
n=1

nµn,

(
|µ|
µ

)
≡ |µ|!

N∏
n=1

(µn!)

, sµ ≡
N∏
n=1

sµnn . (A 2)

From (A 1), the explicit expressions of rj for the first two orders are:

ε : r1 ≡ L0,1p̂0, (A 3a)

ε2 : r2 ≡ (L0,1 + s1L1,0)p̂1 + (L0,2 + s1L1,1 + s21L2,0)p̂0. (A 3b)

Appendix B. Derivation of eigenvector coefficients equations

In this Appendix we shall prove Eq. (2.18) for the specific case in which the degeneracy
unfolds at first order, d = 1, which is the relevant scenario for the applications shown in
the present work. The equation is however more general and holds also for d > 1, a proof
of which is contained in §3 of the Supplementary Material.

If the degeneracy unfolds at first order, the auxiliary eigenvalue problem X1α = s1α
has 2 different simple eigenvalues, s1,ζ and s1,η – see (2.11). Furthermore, the coefficients
α identify the basis into which the degeneracy unfolds. In this basis, the auxiliary
eigenvalue problem is diagonal, so that〈

p̂†0,η
∣∣r1,ζ〉 =

〈
p̂†0,η

∣∣L0,1p̂0,ζ
〉

= −s1,ζδη,ζ , (B 1)

where we used (A 3a) for the definition of r1,ζ .
Then the eigenvector correction at first order is

p̂1,ζ = −Lg0,0 [r1,ζ + s1,ζL1,0p̂0,ζ ] + c1,ζ,ζ p̂0,ζ + c1,ζ,ηp̂0,η =

= p̂⊥1,ζ + c1,ζ,ζ p̂0,ζ + c1,ζ,ηp̂0,η,
(B 2)

analogous to Eq. (2.15).
Using the expression for r2, (A 3b), on branch ζ, the perturbation equation at second

order is

L0,0p̂2,ζ = −(L0,1 + s1,ζL1,0)p̂1,ζ − (L0,2 + s1,ζL1,1 + s21,ζL2,0)p̂0,ζ − s2,ζL1,0p̂0,ζ . (B 3)

To be solvable, this equation needs to satisfy the conditions (2.17). We will now focus
only on the second of these solvability conditions, (2.17b), for which η 6= ζ, and we will
use it to derive an equation for the coefficients c1,ζ,η, (2.18). This condition explicitly
reads〈
p̂†0,η

∣∣(L0,1 + s1,ζL1,0)p̂1,ζ + (L0,2 + s1,ζL1,1 + s21,ζL2,0)p̂0,ζ + s2,ζL1,0p̂0,ζ
〉

= 0. (B 4)

We immediately notice that the last term vanishes since
〈
p̂†0,η

∣∣L1,0p̂0,ζ
〉

= 0 for η 6= ζ,
from the bi-orthogonality conditions (2.8). We then expand the term containing p̂1,ζ
using its explicit expression, from (B 2). Equation (B 4) then becomes〈

p̂†0,η
∣∣(L0,1 + s1,ζL1,0)p̂⊥1,ζ + (L0,2 + s1,ζL1,1 + s21,ζL2,0)p̂0,ζ

〉
+

+ c1,ζ,ζ
〈
p̂†0,η

∣∣(L0,1 + s1,ζL1,0)p̂0,ζ
〉

+ c1,ζ,η
〈
p̂†0,η

∣∣(L0,1 + s1,ζL1,0)p̂0,η
〉

= 0.
(B 5)

We note that the right-side argument of the inner product in the first line of this equation
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is formally identical to the definition of r2 from (A 3b), with the difference that p1 is
replaced by p⊥1 . This suggests the definition of

r⊥2,ζ ≡ (L0,1 + s1,ζL1,0)p̂⊥1,ζ + (L0,2 + s1,ζL1,1 + s21,ζL2,0)p̂0,ζ . (B 6)

We then tackle the inner product multiplying c1,ζ,ζ in Eq (B 5). Using the linearity of
the inner product, we can split it into two parts, both of which vanish:〈

p̂†0,η
∣∣L0,1p̂0,ζ

〉
+ s1,ζ

〈
p̂†0,η

∣∣L1,0p̂0,ζ
〉

= 0. (B 7)

The first term vanishes because of the diagonalization of the basis (B 1), and the second
term vanishes because of the bi-orthogonality condition (2.8). This proves that the
coefficients c1,ζ,ζ do not affect the solution of the perturbation equations at the next
orders. These coefficients can be uniquely determined if a normalisation condition is
imposed on the eigenvector, however, this is not discussed here. Finally, we consider the
inner product multiplying c1,ζ,η in Eq. (B 5), which simplifies to〈

p̂†0,η
∣∣L0,1p̂0,η

〉
+ s1,ζ

〈
p̂†0,η

∣∣L1,0p̂0,η
〉

= −s1,η + s1,ζ , (B 8)

where we have used again (B 1) for the first term, and the bi-orthogonality condition (2.8)
on branch η for the second term.

Substituting the simplified expressions (B 6), (B 7), (B 8) into Eq. (B 5), we finally have

〈
p̂†0,η

∣∣r⊥2,ζ〉+ c1,ζ,η (−s1,η + s1,ζ) = 0, (B 9)

from which an explicit expression for the coefficients c1,ζ,η follows:

c1,ζ,η =

〈
p̂†0,η

∣∣r⊥2,ζ〉
s1,η − s1,ζ

for η 6= ζ, (B 10)

which is (2.18) for d = 1 and j = 1. This proof can be extended to higher orders n with
appropriate definitions of the vectors r⊥n,ζ , which, analogously to (B 6), are obtained from

the definition of rn,ζ by replacing p̂n−1,ζ with p̂⊥n−1,ζ .
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