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Abstract Several models of physics beyond the Standard
Model predict the existence of dark photons, light neutral
particles decaying into collimated leptons or light hadrons.
This paper presents a search for long-lived dark photons
produced from the decay of a Higgs boson or a heavy
scalar boson and decaying into displaced collimated Stan-
dard Model fermions. The search uses data corresponding to
an integrated luminosity of 36.1 fb−1 collected in proton–
proton collisions at

√
s = 13 TeV recorded in 2015–2016

with the ATLAS detector at the Large Hadron Collider. The
observed number of events is consistent with the expected
background, and limits on the production cross section times
branching fraction as a function of the proper decay length of
the dark photon are reported. A cross section times branching
fraction above 4 pb is excluded for a Higgs boson decaying
into two dark photons for dark-photon decay lengths between
1.5 mm and 307 mm.

1 Introduction

Several extensions of the Standard Model (SM) predict the
existence of a dark sector weakly coupled to the SM [1–4].
Depending on the structure of the dark sector and its coupling
to the SM, some unstable dark states may be produced at
colliders, and could decay into SM particles with sizeable
branching fractions. In order to avoid a new long-range force,
a dark Higgs boson is introduced in such scenarios, to give
mass to the dark gauge bosons. The dark Higgs boson may
also lead to an exotic decay mode of the Higgs boson, via
mixing between the two Higgs sectors, which is one of the
favoured production modes that may be probed at the Large
Hadron Collider (LHC). This is the mode explored in this
search. Branching fractions of up to 10% are currently not
excluded for Higgs-boson decays into exotic final states [5,
6]. This paper investigates the case where the two sectors
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couple via a vector portal, in which a dark photon (γd) mixes
kinetically with the SM photon and decays into SM leptons
and light quarks [7–9]. The kinetic mixing term (ε), which
can vary over a wide range of values, ε ∼ 10−11–10−2,
determines the lifetime of the dark photon. For a small kinetic
mixing value, the γd has a long lifetime, so that it decays
at a macroscopic distance from its production point. This
analysis focuses on small values of the kinetic mixing term,
ε < 10−5, and a dark photon mass range between twice
the muon mass and twice the tau mass. Due to their small
mass, the dark photons are expected to be produced with
large boosts, resulting in collimated groups of leptons and
light hadrons in a jet-like structure, referred to hereafter as
dark-photon jets (DPJs).

The search for displaced DPJs presented in this paper uses
the dataset collected by the ATLAS detector during 2015–
2016 in proton–proton (pp) collisions at a centre-of-mass
energy

√
s = 13 TeV, corresponding to an integrated

luminosity of 36.1 fb−1. The analysis exploits multivariate
techniques for the suppression of the main multi-jet back-
ground, optimised for the different DPJ channels. This tech-
nique allows the exploitation of the fully hadronic signa-
ture for the first time in ATLAS DPJ searches, resulting in
increased sensitivity compared with previous ATLAS results
using the data collected in 2011 and 2012 at 7 and 8 TeV
respectively [10,11]. The results are complementary to those
from related ATLAS searches for prompt DPJs using 7 and
8 TeV data [12–14], which probed higher values of ε, and
for displaced dimuon vertices using 13 TeV data [15], which
probed higher dark photon mass values. Related searches for
dark photons were conducted by the CDF and D0 collabora-
tions at the Tevatron [16–18] and by the CMS [19–22] and
LHCb [23,24] collaborations at the LHC. Additional con-
straints on scenarios with dark photons are extracted from,
e.g., beam-dump and fixed-target experiments [25–35], e+e−
colliders [36–44], electron and muon anomalous magnetic
moment measurements [45–47] and astrophysical observa-
tions [48,49]. Given the various constraints, a displaced dark
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photon with a kinetic mixing term ε < 10−5 is allowed for
γd masses greater than 100 MeV.

2 The ATLAS detector

ATLAS [50] is a multipurpose detector at the LHC, consist-
ing of an inner detector (ID) contained in a superconducting
solenoid, which provides a 2 T magnetic field parallel to the
beam direction, electromagnetic and hadronic calorimeters
(ECAL and HCAL) and a muon spectrometer (MS) that has
a system of three large air-core toroid magnets, each com-
posed of eight coils.

The ID provides measurements of charged-particle mome-
nta in the region of pseudorapidity |η| ≤ 2.5.1 The highest
spatial resolution is obtained around the vertex region using
semiconductor pixel detectors arranged in four barrel lay-
ers [51,52] at average radii of 3.3 cm, 5.05 cm, 8.85 cm, and
12.25 cm, and three discs on each side, covering radii between
9 and 15 cm. The pixel detector is surrounded by four lay-
ers of silicon microstrips covering radial distances from 29.9
to 56.0 cm. These silicon detectors are complemented by a
transition radiation tracker (TRT) covering radial distances
from 56.3 to 106.6 cm.

The ECAL and HCAL calorimeter system covers |η| ≤
4.9, and has a total depth of 9.7 interaction lengths at η = 0,
including 22 radiation lengths in the ECAL. The ECAL barrel
starts at a radius of 1.41 m and ends at 1.96 m with a z
extension of ±3.21 m, covering the |η| ≤ 1.475 interval. In
the 1.37 ≤ |η| ≤ 3.2 region, the ECAL endacap starts at
z ± 3.70 m and end at z ± 4.25 m. The HCAL barrel starts
at a radius of 2.28 m and ends at 4.25 m with a z extension
of ±4.10 m, covering the |η| ≤ 1.0 interval. In the endcaps
regions up to |η| ≤ 4.9, the HCAL starts at z ± 4.3 m and
ends at z ± 6.05 m.

The MS provides trigger information and momentum
measurements for charged particles in the pseudorapidity
ranges |η| ≤ 2.4 and |η| ≤ 2.7 respectively. It
consists of one barrel (|η| ≤ 1.05) and two endcaps
(1.05 ≤ |η| ≤ 2.7), each with 16 sectors inφ, equipped with
fast detectors for triggering and with chambers for recon-
structing the tracks of the outgoing muons with high spatial
precision. The MS detectors are arranged in three stations
at increasing distances from the IP: inner, middle and outer.
Three planes of MS trigger chambers are located in the mid-
dle and outer stations. The toroidal magnetic field allows pre-

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point in the centre of the detector and the z-axis
coinciding with the beam-pipe axis. The x-axis points from the interac-
tion point to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r ,φ) are used in the transverse plane, φ being
the azimuthal angle around the beam pipe. The pseudorapidity is defined
in terms of the polar angle θ as η = −ln tan(θ /2).

cise reconstruction of charged-particle momenta independent
of the ID information.

The ATLAS trigger system has two levels [53], level-1
(L1) and the high-level trigger (HLT). The L1 trigger is a
hardware-based system using information from the calorime-
ters and MS. It defines one or more regions-of-interest (RoI),
which are geometric regions of the detector identified by (η,
φ) coordinates, containing interesting physics objects. The
L1 trigger reduces the event rate from the LHC crossing fre-
quency of 40 MHz to a design value of 100 kHz. L1 RoI
information provides a seed for the reconstruction of physics
objects by the HLT, a software-based system that can access
information from all subdetectors. It is implemented in soft-
ware running on a PC farm that processes the events and
reduces the rate of recorded events to 1 kHz.

3 Benchmark model

Among the numerous models predicting dark photons, one
class particularly interesting for the LHC features a hidden
sector communicating with the SM through the Higgs por-
tal for production and through vector portal for decay. The
benchmark model used in this analysis is the Falkowski–
Ruderman–Volansky–Zupan (FRVZ) model [8,9], where a
pair of dark fermions fd2 is produced via a Higgs boson
(H ) decay. Two different cases of this model are considered,
involving the production of either two or four dark photons.
In the first case, shown in Fig. 1 (left), each dark fermion
decays into a γd and a lighter dark fermion assumed to be the
hidden lightest stable particle (HLSP). In the second case,
shown in Fig. 1 (right), each dark fermion decays into an

Fig. 1 The two processes of the FRVZ model used as benchmarks
in the analysis. In the first process (left), the dark fermion fd2 decays
into a γd and an HLSP. In the second process (right), the dark fermion
fd2 decays into an HLSP and a dark scalar sd that in turn decays into a
pair of dark photons. The γd decays into SM fermions, denoted by f +
and f −
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Table 1 Parameters used for the Monte Carlo simulations of the benchmark model

Sample mH m fd2
mHLSP msd mγd cτ

(GeV) (GeV) (GeV) (GeV) (GeV) (mm)

H → 2γd + X 125 5.0 2.0 – 0.4 49.23

H → 4γd + X 125 5.0 2.0 2.0 0.4 82.40

H → 2γd + X 800 5.0 2.0 – 0.4 11.76

H → 4γd + X 800 5.0 2.0 2.0 0.4 21.04

HLSP and a dark scalar sd that in turn decays into a pair of
dark photons.

In general, dark-sector radiation [54] can produce extra
dark photons. The number of radiated dark photons is pro-
portional to the size of the dark gauge coupling αd [7]. The
dark radiation is not considered in this signal model, which
corresponds to an assumed dark coupling αd � 0.01.

The vector portal communication of the hidden sector with
the SM is through kinetic mixing of the dark photon and the
standard photon

Lgauge mixing = ε

2
Bμνb

μν,

where Bμν and bμν denote the field strengths of the elec-
tromagnetic fields for the SM and dark sector respectively,
and ε is the kinetic mixing parameter. A dark photon with a
massmγd up to a few GeV that mixes kinetically with the SM
photon will decay into leptons or light mesons, with branch-
ing fractions that depend on its mass [8,55,56].

The mean lifetime τ , expressed in seconds, of the γd is
related to the kinetic mixing parameter [57] by the relation

τ ∝
(

10−4

ε

)2(100 MeV

mγd

)
. (1)

Equation (1) is an approximate expression based on the full
relation in Ref. [56].

4 Data and simulation samples

The analysis presented in this paper uses
√
s = 13 TeV pp

collision data recorded by the ATLAS detector during the
2015–2016 data-taking periods. Only runs in which all the
ATLAS subdetectors were operating normally are selected.
The total integrated luminosities are 3.2 fb−1 and 32.9 fb−1

for 2015 and 2016 respectively.
Data were collected using a set of dedicated triggers that

were active during collision bunch crossings as well as during
empty and unpaired bunch-crossing slots. The LHC config-
uration for pp collisions contains 3564 bunch-crossing slots
per revolution. An empty bunch-crossing is defined as a slot

in which neither beam is filled with protons, and in addi-
tion is separated from filled bunches by at least five unfilled
bunches on each side. Data collected during empty bunch
crossings, referred to as the cosmic dataset, are used for the
estimation of the cosmic-ray background. The ratio of the
number of filled to empty bunch crossings, FCR = 2.1, is
used to scale the number of events in the cosmic dataset to
that in the pp collision data. In unpaired bunch crossings,
protons are present in only one of the two beams. Data taken
during unpaired bunch crossings are used to study character-
istic features of beam-induced backgrounds [58] (BIB) and
are referred to as the BIB dataset.

Monte Carlo (MC) simulation samples were produced for
the model considered in this paper and are summarised in
Table 1.

Samples were generated for the Higgs boson mass of
125 GeV, and for a hypothetical beyond-the-SM (BSM)
heavy scalar boson with a mass of 800 GeV, considering only
the dominant gluon–gluon fusion (ggF) production mech-
anism. The ggF Higgs boson production cross section in
pp collisions at

√
s = 13 TeV, estimated at next-to-next-

to-leading order (NNLO) [59–62], is σSM = 43.87 pb for
mH = 125 GeV. The BSM heavy scalar with a mass of
800 GeV production cross section is conventionally assumed
to be σ = 5 pb.

The mass of the hidden fermion m fd2
and of the hidden

scalar msd were chosen to be low relative to the Higgs boson
mass. Due to the production from a two-body decay of the
Higgs boson generated at rest in the transverse plane, events
with two back-to-back DPJs are expected. This is also the
case leading to four dark photons where each DPJ consist of
two collimated dark photons.

The dark-photon mass was chosen to be 0.4 GeV, above
the pion pair mass threshold, and the γd decay branching
fractions (B) are expected to be B(γd → ee) = 45%, B(γd

→ μμ) = 45%, B(γd → ππ ) = 10% [8]. In the generated
samples, the proper decay length cτ of the γd was chosen
such that ∼ 80% of the decays occur in the volume delimited
by the muon trigger chambers (i.e. up to 7 m in radius and
13 m along the z-axis). Since the analysis is sensitive to a
wide range of mean proper lifetimes, a weighting method is
used to extrapolate the signal efficiency to other mean proper
lifetimes.
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All MC samples described above were generated at lead-
ing order usingMadGraph 5_aMC@NLO 2.2.3 [63] inter-
faced to Pythia 8.210 [64] for parton shower generation.
The A14 set of tuned parameters (tune) for parton show-
ering and hadronisation [65] was used together with the
NNPDF2.3LO parton distribution function (PDF) set [66].

One of the main SM backgrounds in this analysis is multi-
jet events. Such events were simulated to perform back-
ground studies and to evaluate systematic uncertainties. The
MC samples were generated with Pythia 8.210 using the
same tune and PDF as for the signal samples.

Potential sources of background also include W+jets,
Z+jets, t t̄ , single-top-quark, WW, WZ, and ZZ events. Sim-
ulation samples are used to study these backgrounds. The
W+jets, Z+jets , WW, WZ, and ZZ events were generated
using Sherpa 2.2.2 [67] with the NNPDF 3.0 NNLO [68]
PDF set. Single-top-quark and t t̄ MC samples were gen-
erated using Powheg- BOX 1.2856 [69–72] and Pythia
6.428 [73] with the Perugia2012 [74] tune for parton show-
ering and hadronisation, and CT10/CTEQ6L1 [75,76] PDF
sets.

Data and MC samples of J/ψ → μμ events are used to
evaluate systematic uncertainties in muon trigger and recon-
struction efficiencies. The MC sample was generated using
Pythia8+Photos++ [77] with the A14 tune for parton show-
ering and hadronisation, and the CTEQ6L1 PDF set. The
J/ψ → μμ data sample was selected in 2015–2016 pp
collisions using the triggers described in Ref. [78].

The generated MC events were processed through a full
simulation of the ATLAS detector geometry and response
[79] using the Geant4 [80] toolkit. The simulation included
multiple pp interactions per bunch crossing (pile-up), as
well as the detector response to interactions in bunch cross-
ings before and after the one producing the hard interac-
tion. To model the effect of pile-up, simulated inelastic pp
events were overlaid on each generated signal and back-
ground event. The multiple interactions were simulated with
Pythia 8.210using the A2 tune [81] and the MSTW2008LO
PDF set [82].

5 Definition of the dark-photon jets

5.1 Dark-photon jet classification

Displaced DPJs are reconstructed with criteria that depend
on the γd decay channel. A γd decaying into a muon pair is
searched for by looking for two closely spaced muon tracks
in the MS, while a γd decaying into an electron or pion pair,
given the high boost of the γd, is searched for as an energy
deposit in the calorimeters identified as a single narrow jet.
MC simulations show that DPJs containing two dark photons

both decaying into an electron or pion pair are reconstructed
as a single jet.

Tracks that are reconstructed in the MS and are not
matched to any track in the ID are used to identify displaced
γd decays into muons. Since the ID track reconstruction in
ATLAS [83] requires at least one hit in one of the two inner-
most pixel layers, this analysis is sensitive only to displaced
γd decays occurring after the first pixel layers. The search
is limited to the pseudorapidity interval |η| < 2.5, corre-
sponding to the ID coverage, to ensure that selected muons
are isolated from ID tracks. Muons with pseudorapidity in
the range 1.0 ≤ |η| ≤ 1.1 are rejected to avoid the transi-
tion region of the MS between barrel and endcap. In order
to reconstruct γd decays that occur outside of the innermost
layer of muon chambers but before the first MS trigger cham-
ber, muons are required to have at least one hit in two of the
three MS tracking station.

Jets used in this search are reconstructed from clusters [84]
of energy deposits in the ECAL and HCAL using the anti-
kt algorithm [85,86] with radius parameter R = 0.4. The
search is limited to γd decays into electron or hadron pairs
in the hadronic calorimeter. Jets produced in the HCAL are
expected to be isolated from activity in the ID, with a high
ratio of energy deposited in the HCAL (EHCAL) to energy
deposited in the ECAL (EECAL), and appear narrower than
ordinary jets. The standard jet-cleaning requirements [87]
applied in most ATLAS analyses reject jets with high values
of EHCAL/EECAL. A dedicated cleaning algorithm for jets
created in the HCAL is applied instead, with no requirements
on the ratio EHCAL/EECAL. Jets are required to have trans-
verse momentum pT ≥ 20 GeV and |η| < 2.5. In addition,
the weighted time of the energy deposit in the calorimeter
cells is required to be in the range [–4 ns, 4 ns] of the expected
arrival time for particles produced at t = 0 (bunch-crossing
time) and moving with the speed of light, to reduce cosmic-
ray background and BIB jets.

DPJs are classified according to the number of muons
and jets found within a given cone of angular size �R ≡√

(�φ)2 + (�η)2 around a muon or jet candidate with the
highest transverse momentum. The cone size is fixed to
�R = 0.4, since the MC simulations show that this selec-
tion retains up to 90% of the dark-photon decay products in
the H → 4γd + X decay channel with mH = 125 GeV. The
DPJ classification is summarised as follows:

• muonic-DPJ (μDPJ) – to select DPJs with all con-
stituent dark photons decaying into muons, at least two
muons are required and no jets are allowed in the cone.

• hadronic-DPJ (hDPJ) – to select DPJs with all con-
stituent dark photons decaying into electron or pion pairs
in the HCAL, one jet is required and no muons are
allowed to be in the cone. The electromagnetic fraction of
the jet energy, defined as the ratio of the energy deposited
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in the ECAL to the total jet energy (EECAL/Etotal), is
required to be less than 0.4. This helps reduce the over-
whelming background due to multi-jet production. This
variable is also used later, as described in Sect. 5.3

Reconstructed DPJs with both muon and jet constituents
are not considered in this analysis.

5.2 Muonic-DPJ selection

Muonic-DPJs are reconstructed using a Cambridge–Aachen
clustering algorithm [88] that combines all the muons lying
within a cone of fixed size in (η, φ) space. The algorithm
starts from the highest-pT muon, searching for additional
muons within the �R = 0.4 cone around the muon momen-
tum vector. If a second muon is found in the cone, the axis
of the cone is rotated to the vector sum of the momenta of
the two muons, and the search is repeated until no additional
muons are found in the cone.

Cosmic-ray muons that cross the detector in time coin-
cidence with a pp interaction constitute the main source of
background to the muonic-DPJ. The cosmic dataset is used
to study this background. A boosted decision tree (BDT)
with gradient boosting, implemented in the TMVA frame-
work [89], is trained to discriminate signal DPJs from the
DPJ candidates that originate from cosmic-ray background.
The BDT uses the following track variables, for each muon
in the DPJ, to classify a DPJ as being from signal or back-
ground:

– longitudinal impact parameter z0, defined as the mini-
mum separation in the z-coordinate between the muon
track and the primary vertex (PV);2

– arrival times measured by the trigger detectors of the MS;
– pseudorapidity η;
– azimuthal angle φ.

Even if the decay is displaced, signal muons point to the
primary vertex because of the high boost of the dark photon,
resulting in a narrow z0 distribution peaking around zero. By
contrast, cosmic-ray muons have a broad z0 distribution.

Cosmic-ray muons mainly come through the two shafts
above the ATLAS detector, resulting in two well-defined
peaks in the η and φ distributions. Each hit in the trigger
detector of the MS provides a measurement of the time for
the muon track, corrected by the time of flight assuming the
pp interaction point as the origin of the muon [90]. The dif-
ference in time measured by the two layers in the middle

2 The primary interaction vertex is defined to be the vertex with the
largest value of �p2

T, the sum of the squared transverse momenta of all
the tracks originating from the vertex.

station and in the outer station is thus useful for discriminat-
ing between cosmic-ray muons and collision muons. Since
cosmic-ray muons are downward going, their arrival times
in the layers in the upper part of the MS (0 < φ < π ) are
different from those of collision muons, which are upward-
going in this part of the detector. In the lower part of the
MS (π < φ < 2π ), cosmic-ray muons and collision
muons travel downwards, making hit timing less useful for
separating between them.

The cosmic dataset and the signal MC sample H → 2γd+
X with mH = 125 GeV are used for the training of the BDT.
The gain in signal significance obtained from dedicated BDT
training with the other signal MC samples is found to be
negligible. Figure 2 (left) shows the BDT output (μBDT)
for the constituent muons of the μDPJs: the distribution
provides a clear separation between signal and background
muons from cosmic rays. The μBDT output is required to
be μBDT > 0.21; the value is chosen to yield the highest
signal significance, S/

√
S + B, where S is the number of

signal events and B the number of background events.

5.3 Hadronic-DPJ selection

Signal jets are discriminated from multi-jets using a second
classifier also based on a BDT (hBDT). The following vari-
ables are used as input to the hBDT:

– jet width, defined as the pT-weighted sum of the �R
between each energy cluster and the jet axis;

– jet vertex tagger (JVT) output [91];
– EECAL/Etotal;
– jet mass, as defined by the jet clustering algorithm [92];
– jet charge, defined as the momentum-weighted charge

sum constructed from tracks associated with the jet;
tracks are associated with jets using ghost associa-
tion [93];

– jet timing, defined as the energy-weighted average of the
timing for each cell in the jet.

The JVT is designed to differentiate between pile-up jets and
jets originating from the PV. The algorithm uses a multivari-
ate combination of track variables that are sensitive to pile-up.
Since jets produced in the hadronic calorimeter have a JVT
output distribution similar to that of pile-up jets, the JVT out-
put is used for selection of hadronic-DPJs. Possible pile-up
jets contamination is reduced by the analysis selection to a
negligible level.

The signal MC sample H → 2γd+X withmH = 125 GeV
and the simulated multi-jet background events are used for
the BDT training. The gain in signal significance obtained
from dedicated BDT training with the other signal MC sam-
ples is found to be negligible. Figure 2 (right) shows the BDT
output for the hDPJs (hBDT). The peak at ∼ –0.2 in the BDT
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Fig. 2 BDT output distributions for signal and background for μDPJs
(left) and hDPJs (right). For muonic-DPJs the background is the cos-
mic dataset and the FRVZ signal sample is the H → 2γd + X process

with mH = 125 GeV. For hadronic-DPJs the signal MC sample is the
H → 2γd + X process with mH = 125 GeV and the background is the
simulated multi-jet background sample

distributions corresponds to jets with a JVT output that indi-
cates a low pile-up probability. The hBDT output is required
to be hBDT > 0.91; the value is chosen to yield the highest
signal significance.

6 Trigger and event selection

The standard ATLAS triggers are optimised to select prompt
events and are thus usually very inefficient in the selection
of displaced objects. This search uses events selected by the
logical OR of three dedicated triggers targeting displaced
objects: two muon triggers and one calorimeter trigger.

The L1 muon trigger used in this analysis requires hits in
the middle stations to create a low-pT (≥ 6 GeV) muon RoI
or hits in both the middle and outer stations for a high-pT

(≥ 20 GeV) muon RoI. The muon RoIs have a �η × �φ

spatial extent of 0.2 × 0.2 in the barrel and of 0.1 × 0.1 in
the endcaps. L1 RoI information seeds the reconstruction of
muon momenta by the HLT, which uses precision-chamber
information to confirm or reject the L1 decision.

The first muon trigger, the tri-muon MS-only [94],
requires at least three L1 muons with pT ≥ 6 GeV in the
event, confirmed by the HLT using only MS information.

The second muon trigger, the muon narrow-scan, is specif-
ically designed to select non-prompt collimated muons orig-
inating in the region between the first pixel layer and the first
muon trigger plane. It requires an L1 muon with pT ≥ 20 GeV
confirmed by the HLT using only MS information. At the
HLT a ‘scan’ is then performed in a cone of �R = 0.5 around
this muon, looking for a second muon reconstructed using
only MS information. During the course of the 2015–2016

data taking, in order to stay within the allocated trigger-rate
limits given the increasing luminosity delivered by the LHC,
the pT requirement on the second muon was increased from
6 GeV to 15 GeV. In addition, both muons were required
to be unmatched to any track in the ID, and isolation was
required for the leading muon.3 This tends to selects events
with dark photons of higher pT and with more displaced
decay position.

The calorimeter trigger, the CalRatio [94], is designed
to select narrow jets produced in the hadronic calorimeter.
At L1, the trigger requires a transverse-energy deposit of
ET ≥ 60 GeV within a 0.2 × 0.2 (�η × �φ) region in
the pseudorapidity range |η| ≤ 2.4. At the HLT, jet recon-
struction is then performed with the anti-kt algorithm using
a radius parameter of R = 0.4. Transverse energy ET ≥ 30
GeV and log(EHCAL/EECAL) ≥ 1.2 are required. Jets
are required to have no tracks with pT ≥ 2 GeV within
�R = 0.2 of the jet axis. Finally, jets are required to pass a
BIB removal algorithm that relies on calorimeter cell timing
and position. Muons from BIB enter the HCAL and can radi-
ate a bremsstrahlung photon, generating an energy deposit
that may be reconstructed as a jet with characteristics similar
to the hadronic-DPJ. The algorithm identifies events as con-
taining BIB if the triggering jet has at least four HCAL cells
at the same φ and in the same layer with timing consistent
with that of a BIB energy deposit.

Two DPJs satisfying the selection criteria described in
Sect. 5 are required in the events selected by the triggers.
If more than two DPJs are reconstructed, the one with the

3 The isolation is quantified by summing the pT of inner detector tracks
with pT > 1 GeV, excluding the muon candidate, which are found in a
cone of �R = 0.2 around the muon candidate.
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Table 2 Summary of the definitions of the signal regions (SRs) and validation regions (VRs) used in the ABCD method

Region Channel Criteria

SR μDPJ–μDPJ μBDT > 0.21 for both DPJs

μDPJ–hDPJ μBDT > 0.21 and hBDT > 0.91

hDPJ–hDPJ hBDT > 0.91 for both DPJs

VR μDPJ–μDPJ –0.75 < μBDT < 0.35 for leading μDPJ, μBDT > –0.7 for subleading μDPJ

μDPJ–hDPJ –0.5 < μBDT < 0.8 and 0.2 < hBDT < 0.8

hDPJ–hDPJ hBDT < 0.91 for both DPJs

highest transverse momentum, labelled the leading DPJ, and
the one farthest in �φ from the leading one, labelled the
subleading DPJ, are used to classify the event. More than
two DPJs are found in 9% of the events in the signal MC
sample H → 2γd + X with mH = 125 GeV. Events are
classified as one of the three following channels:

• μDPJ–μDPJ,
• μDPJ–hDPJ,
• hDPJ–hDPJ.

In the μDPJ–hDPJ channel, either the μDPJ or the hDPJ may
be the leading DPJ.

7 Multi-jet background estimation

A data-driven ABCD method is used to estimate the multi-
jet background in each of the three channels. The ABCD
method uses two nearly uncorrelated variables defined at the
event level to create a two-dimensional plane that is split into
four parts: region A, where most signal events are located,
and three control regions (B, C, and D) that contain mostly
background. The number of background events in A can
be predicted from the population of the other three regions:
NA = NB × ND/NC, assuming negligible leakage of signal
into regions B, C and D. For each channel, the ABCD calcu-
lation is performed in two separate regions: one background-
dominated validation region (VR) to test the validity of the
method, and one signal region (SR). The SRs are defined
by the selection criteria described in Sects. 5 and 6. These
define also the VRs except for the BDT cuts. The VRs BDT
cuts for the leading and the subleading DPJs are chosen to
have negligible signal contamination, which otherwise can
bias the ABCD method validation. SR and VR definitions
are summarised in Table 2.

The two event-level variables used to define the ABCD
plane are the isolation of the DPJs relative to tracks in the
inner detector and the opening angle between the two DPJs
in the transverse plane (|�φ|). Displaced DPJs are expected
to be highly isolated in the ID. The track isolation (

∑
pT)

is defined as the scalar sum of the transverse momenta of
the tracks reconstructed in the ID and matched to the PV of
the event within a �R = 0.4 cone around the DPJ direction.
Matching to the PV helps reduce the dependence of

∑
pT

on the amount of pile-up. The PV is correctly selected in
the ∼ 56% of the events. However, the selection efficiency
does not depend significantly on whether the PV is correctly
identified. The larger of the two

∑
pT values, max(�pT), is

used as the event-level variable. For signal, the opening angle
|�φ| is expected to be large, due to production of the DPJs
in the two-body decay of a Higgs boson generated at rest in
the transverse plane.

The ABCD method relies on there being only one source
of background, or multiple sources that have identical dis-
tributions in the ABCD plane. Muons from BIB originate
from beam-halo interactions with the collimators upstream
of the ATLAS detector, resulting in muons travelling paral-
lel to the beam-pipe. The analysis requirements select events
with two separate energy deposits in the hadronic calorimeter
produced by two BIB muons. The requirement |�φ| > 0.1
in the ABCD plane removes BIB events that would otherwise
contaminate the method for the hDPJ–hDPJ channel, and has
no effect on the signal efficiency. After the final selection, the
contribution of BIB events to the signal region is negligible.

The ABCD plane is defined for all the three channels by
0 ≤ max(�pT) ≤ 20 GeV and 0.1 ≤ |�φ| ≤ π . The region
A is defined by max(�pT) < 4.5 GeV and |�φ| > 0.625.
Regions B, C, and D are defined by reversing one or both of
the requirements: max(�pT)> 4.5 GeV and |�φ| > 0.625,
max(�pT) > 4.5 GeV and |�φ| < 0.625, max(�pT) <

4.5 GeV and |�φ| < 0.625 respectively.
In order to estimate the residual cosmic-ray background

component in the ABCD plane, the event selection is applied
to the cosmic dataset, and the resulting event yield is mul-
tiplied by FCR. The expected number of cosmic-ray events
in the validation regions is: 4 ± 3 in region A and 2 ± 2 in
region D for the μDPJ–μDPJ channel; 10 ± 5 in region D for
the μDPJ–hDPJ channel. In the signal regions, the expected
number of cosmic-ray events is: 8 ± 4 in region A and 2 ±
2 in region D for both the μDPJ–μDPJ and the μDPJ–hDPJ
channel; 2 ± 2 in region A for the hDPJ–hDPJ channel. No
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Table 3 Event count in each of the four regions of the ABCD plane
in the validation regions and expected number of background events in
region A. Only statistical uncertainties are shown. The expected contri-

bution from cosmic rays is included in all regions and in the background
estimation

DPJ pair type B C D Expected background in A A

μDPJ–μDPJ 4 15 61 20 ± 10 17

μDPJ–hDPJ 455 87 318 1611 ± 227 1573

hDPJ–hDPJ 2556 536 14 67 ± 18 57

Fig. 3 Opening angle between the two DPJs, |�φ|, vs inner-detector
isolation, max(�pT), in the μDPJ–μDPJ channel for data (left) and
MC signal H → 2γd + X with mH = 125 GeV (right), assuming a

10% Higgs boson decay branching fraction into γd. The red (solid) lines
show the boundaries of the ABCD regions

events are observed in the remaining regions in the cosmic
dataset. The estimated cosmic-ray event yields are subtracted
from each of the ABCD regions before using the method to
estimate the multi-jet background yield.

Other potential backgrounds to the signal include all the
processes that lead to real prompt muons and muons plus jets
in the final state, such as the SM production ofW+jets,Z+jets,
t t̄ , single-top-quark, WW, WZ, and ZZ events. MC samples
are used to study these processes. They give no contribution
after the trigger selection and the definition of muonic-DPJ
and hadronic-DPJ and do not enter in the ABCD plane.

The signal contamination in the VRs is verified to be less
than 5% for all channels. The linear correlation coefficient
between the max(�pT) and |�φ| variables is verified to be
less than 6% in the VR data, as well as in the SR using
multi-jet MC events. The effect of this correlation on the
final result is found to be negligible compared to the statistical
accuracy. Table 3 shows the event counts in each of the four
regions of the ABCD plane in the validation regions and
the expected number of background events in the validation
region A in data. Only statistical uncertainties are shown.
The expected contribution from cosmic rays is included in

all regions and in the background estimation. The observed
number of events in the validation region A is in agreement
with the number predicted by the ABCD method within the
statistical uncertainties.

As additional validation of the ABCD method, control
region D of the SR is divided into four subregions. The subre-
gion with low max(�pT) and high |�φ| is treated as a mock
signal region, with the other subregions serving as control
regions. Applying the method, the expected and the observed
numbers of events in the mock signal region are: 231 ± 58
and 184 for the μDPJ–μDPJ channel, 131 ± 41 and 145 for
the μDPJ–hDPJ channel, 402 ± 77 and 479 for the hDPJ–
hDPJ channel. These are in agreement within the statistical
uncertainties.

Figure 3 shows the distribution of events in the ABCD
plane of the μDPJ–μDPJ channel in the SR for the collision
data and the MC signal H → 2γd + X with mH = 125 GeV,
assuming a 10% Higgs boson decay branching fraction into
γd. As a reference, the boundaries defining regions A, B, C
and D are indicated in the figure by solid red lines.

In order to take into account the small signal contamina-
tion in regions B, C and D, a likelihood-based ABCD method
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is used for the background estimation in the SR. It estimates
the background in region A by performing a fit to the back-
ground and signal yields in the four regions. A likelihood
function is formed from the product of four Poisson func-
tions, one for each of the A, B, C, and D regions, describing
signal and background expectations. The likelihood takes the
form:

L(nA, nB, nC, nD|s, b, τB, τC) =
∏

i=A,B,C,D

e−Ni Nni
i

ni ! ,

where nA, nB, nC and nD are the four observables that denote
the number of events observed in each region in data. The Ni

are linear combinations of the signal and background expec-
tation in each region, defined as follows:

NA = s + b

NB = s εB + b τB

NC = s εC + b τC

ND = s εD + b τC / τB

where s (b) is the signal (background) yield in region A, εi is
the signal contamination derived from MC simulation, and
τB and τC are the nuisance parameters that describe the ratio
of the background expectation in the control region to the
background expectation in the signal region. The s, b, τB

and τC values are allowed to float in the fit to the four data
regions.

8 Systematic uncertainties

The uncertainty in the ABCD-method background estimate
is evaluated from the impact of a possible correlation between
the ABCD variables in the SR. The correlation is evaluated
using multi-jet MC events and validated in VR data. This
effect is found to lead to a potential variation of less than 4%
in the background estimate. The size of this uncertainty is
therefore considered negligible when compared to the statis-
tical one and it is not included in the fit.

The following effects are considered as possible sources
of systematic uncertainty in the signal.

Luminosity
The uncertainty in the combined 2015–2016 integrated lumi-
nosity is 2.1% [95], obtained using the LUCID-2 detec-
tor [96] for the primary luminosity measurements.

Trigger
The systematic uncertainty in the narrow-scan trigger effi-
ciency is evaluated using a tag-and-probe method applied to
J/ψ → μμ events in data and simulation. The difference
between the trigger efficiency in data and that in simulation
is evaluated as a function of the opening angle between the

two muons. The difference in the region �R < 0.05, corre-
sponding to the �R expected for signal, is taken as the uncer-
tainty and is 6%. The systematic uncertainty in the tri-muon
MS-only trigger efficiency is 5.8%, taken from the analysis
of 2012 data [11] since the algorithm has not undergone a
major change since then. The systematic uncertainty in the
CalRatio trigger efficiency is taken from Ref. [97] and is 2%.

BDT shape
The systematic uncertainty in the MC modelling of the input
variables used for the BDT training is evaluated for both the
μDPJ and the hDPJ. For the μDPJ, the data-to-MC ratio is
computed for muon timing and z0 BDT input variables using
samples of Z → μμ events. This comparison relies on the
fact that, due to the high boost of low-mass dark photons and
the high pT of signal muons, the muon z0 and timing distribu-
tions are similar to those of prompt muons from Z → μμ.
Muons from Z boson decay are reconstructed using infor-
mation only from the MS. The BDT is retrained using MC
signal variables scaled to the data using these ratios, and the
fit procedure is repeated. The resulting change in the final
signal yield is taken as the systematic uncertainty, and its
value is 3%. The same procedure is used for the hDPJ, where
the ratios of data to simulated distributions are computed
from data and MC samples of multi-jet events. The resulting
uncertainty is 14%.

Muon reconstruction
The systematic uncertainty in the single-γd reconstruction
efficiency is evaluated using a tag-and-probe method applied
to J/ψ → μμ events in 2015 data and simulation. J/ψ →
μμ decays are selected, and the efficiency is evaluated as a
function of the opening angle�R between the two muons, for
both the data and simulated J/ψ decays. For low �R values,
the efficiency decreases due to the difficulty of reconstruct-
ing two tracks with small angular separation in the MS. The
difference in J/φ → μμ reconstruction efficiency between
simulation and data in the �R interval between 0 and 0.06
(where the DPJ samples are concentrated) amounts to 15%,
and is taken as the uncertainty.

Jet energy scale and jet energy resolution
The jet energy scale and jet energy resolution introduce
uncertainties in the signal yield of 1–8% and 1–5% respec-
tively, depending on the signal process, where the processes
with two dark photons are less affected. These uncertainties
are calculated using the procedure detailed in Ref. [98]. Since
the jets used in this analysis are required to have a low frac-
tion of energy in the electromagnetic calorimeter, additional
jet energy uncertainties are derived as a function of electro-
magnetic energy fraction as well as of pseudorapidity. These
additional jet energy uncertainties are found to have an effect
of up to 4% on the signal yield, and are taken in quadrature
with the regular jet energy uncertainties.

123



450 Page 10 of 29 Eur. Phys. J. C (2020) 80 :450

Table 4 Observed numbers of events in the ABCD regions and
expected number of background events in region A. In the estimate,
the data in region A are not considered and the signal strength is fixed

to zero. Both the statistical and systematic uncertainties in the back-
ground expectations are given. The expected contribution from cosmic
rays is included in all regions

DPJ pair type B C D Expected A A

μDPJ–μDPJ 24 92 463 128 ± 26 (stat.) 113

μDPJ–hDPJ 8 2 45 177 ± 86 (stat.) 179

hDPJ–hDPJ 13 2 15 97 ± 48 (stat.) 69

Table 5 Expected numbers of signal events in region A. A branch-
ing fraction value of B(H → fd2 f̄d2 ) = 10% is assumed for DPJ
production in the decay of the mH = 125 GeV Higgs boson. For DPJ

production in the decay of a mH = 800 GeV BSM scalar boson, a value
ofB(H → fd2 f̄d2 ) = 100% and a production cross section of σ = 5 pb
are assumed. Only statistical uncertainties are reported

DPJ pair type mH = 125 GeV mH = 125 GeV mH = 800 GeV mH = 800 GeV
H → 2γd + X H → 4γd + X H → 2γd + X H → 4γd + X

μDPJ–μDPJ 639 ± 25 519 ± 23 610 ± 87 660 ± 91

μDPJ–hDPJ 74 ± 9 22 ± 5 1544 ± 139 996 ± 111

hDPJ–hDPJ 8 ± 3 0 560 ± 84 336 ± 65

Effect of pile-up on �pT
The presence of multiple collisions per bunch crossing affects
the efficiency of the ID track isolation criterion quantified in
terms of �pT. The systematic uncertainty is evaluated by
comparing �pT for muons from a sample of reconstructed
Z → μμ events in data with that in simulation, as a function
of the number of interaction vertices in the event. The sys-
tematic uncertainty is evaluated as the maximum difference
at the value of the selection requirement on max(�pT). It is
found to be 5.1%.

9 Results and interpretation

The observed numbers of events in the ABCD regions and the
expected number of background events in the signal region
A are summarised in Table 4. The expected number of back-
ground events in region A is estimated using the likelihood-
based ABCD method, assuming no signal and not includ-
ing the observed data in region A. The background esti-
mate includes both the multi-jet and cosmic-ray background,
where the former is obtained as described in Sect. 7, and the
latter is estimated from the cosmic dataset. Both sources are
included in the expected background given in Table 4. The
observed number of events in region A is in agreement with
the predicted number of background events.

Table 5 shows the expected number of signal events in
region A for the FRVZ model parameters of Table 1 and the
following assumptions: a value of B(H → fd2 f̄d2 ) = 10%
for a Higgs boson with mH = 125 GeV, which is not
excluded by the current measurements [5]; a value ofB(H →
fd2 f̄d2 ) = 100% and a production cross section of σ = 5 pb
for a BSM scalar boson with mH = 800 GeV.

Upper limits on the production cross section times branch-
ing fraction (σ×B) as a function of the γd proper decay length
are derived for the FRVZ H → 2γd + X and H → 4γd + X
processes using the CLs method [99]. Since each signal sam-
ple was generated for a particular proper decay length, it is
necessary to extrapolate the signal efficiency to other decay
lengths to obtain limits as a function of cτ . This is achieved
by applying to the i-th dark photon in the event a weight

wi (ti ) = τref

e−ti /τref
· e−ti /τnew

τnew
,

where τref is the lifetime with which the event sample was
simulated, τnew is the lifetime for which it is weighted, and ti
is the proper decay time of the i-th dark photon. Each event
is weighted by the product of the individual dark-photon
weights. The weighted sample is used to evaluate the sig-
nal efficiency for τnew. Figure 4 shows the extrapolated sig-
nal efficiency for the H → 2γd + X and H → 4γd + X
processes as a function of cτ of the dark photon in the μDPJ–
μDPJ, μDPJ–hDPJ and hDPJ–hDPJ channels. The tri-muon
MS-only trigger has a lower efficiency for the H → 2γd +X
process with a mH = 125 GeV Higgs boson than for the other
processes, resulting in a lower signal efficiency in the μDPJ–
μDPJ channel. The pT requirements of the CalRatio trigger
are not optimal for selecting jets produced by γd decays in the
processes with a mH = 125 GeV Higgs boson, resulting in a
signal efficiency below 1% in the hDPJ–hDPJ channel. The
muon narrow-scan trigger helps to recover some efficiency
in the μDPJ–hDPJ channel for these processes.

The observed 95% CL cross-section upper limits in the
μDPJ–μDPJ channel for the H → 2γd + X and
H → 4γd + X processes are presented in Fig. 5 for
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Fig. 4 Extrapolated signal efficiencies as a function of proper decay
length of the γd for the H → 2γd + X and H → 4γd + X processes
and for the three different channels: μDPJ–μDPJ (left), μDPJ–hDPJ
(right) and hDPJ–hDPJ (bottom). The signal efficiency in the hDPJ–

hDPJ channel for mH = 125 GeV H → 4γd + X process is small
compared with the other channels and is not shown. The vertical bars
represent the statistical uncertainties

mH = 125 GeV. The 95% CL exclusion limits in the
μDPJ–μDPJ and hDPJ–hDPJ channels for the process
H → 2γd + X are presented in Fig. 6 for mH = 800 GeV.
The figures also show the expected limits obtained from the
likelihood-based ABCD method, using the background esti-
mate derived from the background-only fit using data in the
four regions. Excluded cτ ranges are summarised in Table 6,
assuming B(H → fd2

¯fd2 ) = 10% for the Higgs boson
with mH = 125 GeV and B(H → fd2

¯fd2 ) = 100% for
the BSM Higgs boson, with subsequent decay of the fd2 and
¯fd2 giving rise to the production of two or four dark photons.

The results for the μDPJ–μDPJ channel is also inter-
preted in terms of the kinetic mixing parameter ε and γd

mass, shown in Fig. 7 as exclusion contours. These lim-

its assume four possible values of the Higgs boson decay
branching fractions into γd, ranging from 1 to 20%, and the
NNLO gluon–gluon fusion Higgs boson production cross
section. The γd detection efficiency for a γd mass of 0.4 GeV
is used for the mass interval 0.25–2 GeV, as the detection effi-
ciency is constant throughout this interval [11]. The decay
branching fraction variations as a function of the γd mass
are estimated and included in the 90% CL exclusion region
evaluations [56]. The low sensitivity in the hDPJ–hDPJ chan-
nel prevents the exclusion of the mass regions where the γd

decays into hadronic resonances: γd mass regions around 0.8
and 1.0 GeV, where the γd decays into the ρ, ω, and φ reso-
nances. Figure 7 also shows previous exclusions for a Higgs
boson decay branching fractions into γd of 10% from a search
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Fig. 5 Upper limits at 95% CL on the cross section times branching
fraction for the processes H → 2γd + X (left) and H → 4γd + X
(right) in the μDPJ–μDPJ final states for mH = 125 GeV. The hori-

zontal lines correspond to the cross section times branching fraction for
a value of the branching fraction of the Higgs boson decay into dark
fermions of 10%

Fig. 6 Upper limits at 95% CL on the cross section times branching fraction for the process H → 2γd + X , where H is an 800 GeV BSM Higgs
boson, in the μDPJ–μDPJ (left) and hDPJ–hDPJ (right) final states. The horizontal lines correspond to a cross section times branching fraction of
5 pb

Table 6 Ranges of γd cτ excluded at 95% CL for H → 2γd + X and
H → 4γd + X . A branching fraction value of B(H → fd2

¯fd2 ) = 10%
is assumed for DPJ production in the decay of a mH = 125 GeV Higgs

boson. For DPJ production in the decay of a mH = 800 GeV BSM
scalar boson, a value of B(H → fd2

¯fd2 ) = 100% and a production
cross section of σ = 5 pb are assumed

Model Excluded cτ [mm] Excluded cτ [mm] Excluded cτ [mm] Excluded cτ [mm]
mH = 125 GeV mH = 125 GeV mH = 800 GeV mH = 800 GeV
H → 2γd + X H → 4γd + X H → 2γd + X H → 4γd + X

μDPJ–μDPJ 1.5 ≤ cτ ≤ 307 3.7 ≤ cτ ≤ 178 5.0 ≤ cτ ≤ 1420 10.5 ≤ cτ ≤ 312

μDPJ–hDPJ – – 7.2 ≤ cτ ≤ 1234 14.5 ≤ cτ ≤ 334

hDPJ–hDPJ – – 7.3 ≤ cτ ≤1298 13.6 ≤ cτ ≤ 231
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Fig. 7 The 90% CL exclusion regions for the decay H → 2γd + X
of the Higgs boson as a function of the γd mass and of the kinetic mix-
ing parameter ε. These limits are obtained assuming the FRVZ model
with decay branching fractions of the Higgs boson into γd between
1 and 20%, and the NNLO Higgs boson production cross sections via
gluon–gluon fusion. The figure also shows excluded regions with decay
branching fraction of the Higgs boson into γd of 10% from the run-1
ATLAS displaced [11] (black line) and prompt [14] (red line) dark-
photon jets searches

for displaced dark-photon jets [11] and prompt dark-photon
jets [14] at ATLAS. The search of Ref. [11], which explored
the same region probed by this analysis, is slightly more sen-
sitive in the region of high γd mass and low ε. This is due
to inclusion of dark-photon jets with both muon and hadron
constituents, which are not used in the current analysis. The
search of Ref. [14] excluded high ε values (shorter lifetimes),
a region complementary to this analysis.

10 Conclusions

The ATLAS detector at the LHC is used to search for the
production of displaced dark-photon jets in a sample of pp
collisions at

√
s = 13 TeV corresponding to an integrated

luminosity of 36.1 fb−1. No significant excess of events com-
pared with the background expectation is observed, and 95%
confidence-level upper limits are set on the production cross
section times branching fraction of scalar bosons that decay
into dark photons according to the FRVZ model. The upper
limits are computed as a function of the proper decay length
cτ of the dark photon γd. In addition to the increase in inte-
grated luminosity and centre-of-mass energy, improvements
in background suppression and the exploitation of hadronic
γd decays result in increased sensitivity compared with the
ATLAS search using 8 TeV pp data. In the pure muonic
channel, assuming a branching ratio B(H → 2(4)γd +
X) = 10% for mH = 125 GeV, decays of dark pho-
tons are excluded at 95% CL for cτ ∈ [1.5, 307] mm
and cτ ∈ [3.7, 178] mm for production of two and four

dark photons, respectively. For mH = 800 GeV, assuming
σ × B(H → 2(4)γd + X) = 5 pb, the excluded regions are
cτ ∈ [5, 1420] mm and cτ ∈ [10.5, 312] mm. In the pure
hadronic channel, the mH = 800 GeV excluded regions
become cτ ∈ [7.3, 1298] mm and cτ ∈ [13.6, 231] mm.

The results for H → 2γd + X , when H is the Higgs
boson, are also interpreted as 90% confidence-level limits
on the kinetic mixing parameter as a function of the dark-
photon mass. These results improve upon the constraints set
in previous LHC searches.
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K. Wraight57, S. L. Wu181, X. Wu54, Y. Wu60a, T. R. Wyatt101, B. M. Wynne50, S. Xella40, Z. Xi106, L. Xia178, X. Xiao106,
D. Xu15a, H. Xu60a,c, L. Xu29, T. Xu145, W. Xu106, Z. Xu60b, Z. Xu153, B. Yabsley157, S. Yacoob33a, K. Yajima133,
D. P. Yallup95, D. Yamaguchi165, Y. Yamaguchi165, A. Yamamoto82, M. Yamatani163, T. Yamazaki163, Y. Yamazaki83,
Z. Yan25, H. J. Yang60c,60d, H. T. Yang18, S. Yang78, X. Yang58,60b, Y. Yang163, W -M. Yao18, Y. C. Yap46, Y. Yasu82,
E. Yatsenko60c,60d, J. Ye42, S. Ye29, I. Yeletskikh80, M. R. Yexley90, E. Yigitbasi25, K. Yorita179, K. Yoshihara137,
C. J. S. Young36, C. Young153, J. Yu79, R. Yuan60b,i, X. Yue61a, S. P. Y. Yuen24, B. Zabinski85, G. Zacharis10, E. Zaffaroni54,
J. Zahreddine136, A. M. Zaitsev123,ap, T. Zakareishvili159b, N. Zakharchuk34, S. Zambito59, D. Zanzi36, D. R. Zaripovas57,
S. V. Zeißner47, C. Zeitnitz182, G. Zemaityte135, J. C. Zeng173, O. Zenin123, T. Ženiš28a, D. Zerwas65, M. Zgubič135,
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