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ABSTRACT  
 
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the 

primary risk factor for CVD. The development of vascular dysfunction, including endothelial 

dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), 

contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large 

part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in 

the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated 

mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial 

dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss 

current evidence for prevention and treatment of vascular aging via lifestyle and 

pharmacological strategies that improve mitochondrial health. We will also identify promising 

areas and important considerations (“research gaps”) for future investigation.  

 

Keywords: endothelial dysfunction, arterial stiffness, reactive oxygen species, oxidative 

stress, mitophagy 
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 Cardiovascular diseases (CVD) remain the largest contributor to morbidity and mortality 

in both developed and many developing nations [1, 2]. Aging is by far the strongest risk factor 

for CVD, with >90% of all deaths occurring in adults 50 years of age and older [1, 2]. 

Importantly, the changing demographics of aging characterized by a shift toward older 

populations [3] predicts a progressive, marked increase in prevalence of CVD in the absence 

of effective intervention [4].  

 A key mechanism by which aging increases CVD risk is the development of vascular 

dysfunction [5, 6]. A number of adverse changes to the vasculature occur with aging, but two 

major clinically relevant expressions are endothelial dysfunction, as assessed by reduced 

arterial dilation in response to endothelium-derived nitric oxide (NO), and stiffening of the large 

elastic arteries (i.e., the aorta and carotid arteries) [5, 6]. In combination, endothelial 

dysfunction and arterial stiffening contribute to a “vascular aging” phenotype that drives much 

of the adverse effects of age on CVD.                                                                                                                                                                                                                                                 

Vascular Endothelial Dysfunction. The vascular endothelium is a single-cell layer 

lining the lumen of blood vessels. Endothelial cells play a critical role regulating vasomotor 

tone, metabolism, immune function, thrombosis and many other processes via synthesis and 

release of a variety of vasoactive molecules [7]. A major vasodilatory and largely 

vasoprotective molecule released by endothelial cells is NO, which is produced in response to 

mechanical (i.e., blood flow) and chemical (e.g., acetylcholine [ACh]) stimuli by the enzyme 

nitric oxide synthase (eNOS); eNOS catalyzes the generation of NO from L-arginine and 

oxygen, with NO subsequently diffusing to vascular smooth muscle cells where it induces 

vascular smooth muscle relaxation and vasodilation [7]. Endothelial dysfunction occurs with 

aging and is characterized by a decline in endothelium-dependent dilation (EDD), largely as a 
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consequence of reductions in NO, although changes in concentrations of vasoactive factors 

such as prostaglandins, endothelin-1, norepinephrine, angiotensin II also contribute [7].  

NO-mediated EDD can be determined in pre-clinical models by assessing changes in 

artery diameter in response to flow in vivo [8, 9] or changes in diameter of isolated artery 

segments ex vivo in response to mechanical or pharmacological stimuli, such as ACh [10]. In 

humans, the gold-standard non-invasive assessment of NO-mediated EDD is brachial artery 

flow-mediated dilation (FMD), in which the change in brachial artery diameter in response to 

increases in blood flow is determined [10, 11]. Brachial artery FMD primarily assesses 

macrovascular (conduit artery) function. Microvascular (resistance vessel) function can be 

determined by measuring changes in blood flow in response to intra-arterial infusions of ACh 

and is primarily assessed in the forearm [10, 11]. These experimental approaches all 

demonstrate reduced endothelial function with aging in pre-clinical models and humans [12-

17]. Endothelial dysfunction is the major antecedent of atherosclerosis [5, 18] and both 

reduced brachial artery FMD and lower forearm blood flow responses to ACh are independent 

predictors of CV events and CVD in middle-aged and older adults free from clinical disease in 

large, community-based cohort studies [19-21]. 

Large Elastic Artery Stiffening. The aorta and carotid arteries expand and recoil as 

blood is ejected into the arterial system by the left ventricle during systole [22]. This action 

limits arterial pulsatile pressures by providing a dampening function and protects the 

downstream microvasculature from potentially damaging fluctuations in blood pressure and 

flow [23]. Moreover, the elastic recoil of the aorta aids in the propulsion of blood to the 

periphery and maintains perfusion of the heart during diastole [22]. With aging, aortic stiffening 

results in blood being ejected into a stiffer aorta, which augments central systolic blood 
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pressure because the ejected pressure wave travels at a higher velocity in stiffer arteries and 

is reflected by points of impedance such that the returning pressure wave reaches the heart at 

mid-to-late systole [22, 24]. In addition, the greater forward moving pressure wave amplitude 

(from systolic ejection, prior to the return of wave reflections) is a major contributor to the age-

related increase in central systolic blood pressure after age 60, particularly in women, as a 

consequence of a plateau or decrease in reflected wave amplitude [25, 26]. The augmented 

systolic blood pressure, in turn, contributes to isolated systolic hypertension and results in a 

loss of diastolic pressure augmentation, such that aortic pulse pressure is widened [22, 24]. 

Aortic stiffening therefore increases left ventricular afterload during systole, promoting left 

ventricular hypertrophy and dysfunction, and compromises coronary perfusion during diastole 

because of the reduced augmentation of diastolic pressure [24, 27]. The loss of pulsatility-

dampening effects of the aorta and the carotid artery also allows for transmission of high 

pulsatile pressures to the delicate small vessels in the microcirculation, which is particularly 

harmful for high-flow, low-resistance organs such as the brain and kidney, and a potential 

causative factor in target organ damage [23].  

 Structural changes to arteries, functional influences (i.e., factors influencing vascular 

smooth muscle tone) and the stiffness of vascular smooth muscle cells contribute to large 

elastic artery stiffening with aging [28, 29]. The primary structural changes mediating arterial 

stiffening occur in the extracellular matrix and include degradation/fragmentation of elastin 

(e.g., by matrix metalloproteinases), an increase in the deposition of collagen and formation of 

advanced glycation end products (AGEs), which cross-link collagen fibers, increasing their 

stiffness [5, 30, 31]. Increased vascular smooth muscle tone is a consequence of changes 

such as reductions in NO and increased sympathetic nervous system, endothelin-1, and renin-
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angiotensin aldosterone system activity [32-34]. These factors also influence the intrinsic 

stiffness of the vascular smooth muscle cells, which adds to the stiffness of the arterial wall 

[29].  

 The mechanical stiffness of the large elastic arteries can be determined ex vivo in pre-

clinical models by directly measuring properties such as compliance by creating stress-strain 

curves [35, 36]. In vivo, arterial stiffness can be assessed in pre-clinical settings and humans 

with pulse wave velocity (PWV), which is a measure of the (regional) speed of the pulse wave 

generated by the heart when blood is ejected into the arterial system [22]. Aortic PWV is the 

predominant measure in rodents and carotid-femoral PWV is the reference standard measure 

of aortic stiffness in humans [10, 22]. Carotid-femoral PWV increases with aging and is a 

strong, independent predictor of CVD risk in older adults [37, 38]. Moreover, consistent with 

aortic stiffness-associated end organ damage, growing evidence supports an association 

between elevated carotid-femoral PWV and other age-related clinical disorders such as 

cognitive decline, dementia, including Alzheimer’s disease, and decreases in renal 

function/chronic kidney disease [39-43]. The local distensibility of the carotid artery can also be 

determined in humans by measuring carotid artery compliance (the change in artery diameter 

for a given change in arterial pressure) and determining the carotid distensibility coefficient 

(i.e., changes in artery diameter normalized to diastolic lumen diameter) and/or carotid beta-

stiffness index, which is largely independent of blood pressure [10, 22]. Carotid artery 

compliance is associated with incident stroke, independent of aortic stiffness [44].  

Mechanisms of Vascular Dysfunction with Aging. The primary molecular 

mechanisms of vascular aging are oxidative stress and chronic, low grade inflammation [45, 

46] (Figure 1). Excessive production of reactive oxygen species (ROS) in combination with 



 6 

unchanged or decreased abundance/activity of antioxidant enzymes (e.g., superoxide 

dismutase, SOD) results in the development of oxidative stress in arteries with aging [24, 45]. 

Excess superoxide rapidly reacts with NO to form the secondary reactive species peroxynitrite 

(ONOO-), decreasing the bioavailability of NO [24, 45], causing endothelial dysfunction. 

Peroxynitrite is also the primary molecule that reacts with and oxidizes tetrahydrobiopterin 

(BH4), an essential co-factor for NO production by eNOS [47]. Loss of BH4 leads to eNOS 

uncoupling, whereby eNOS produces more superoxide and less NO, exacerbating oxidative 

stress and decreasing bioavailable NO and endothelial cell function [47]. Excess ROS also can 

activate pro-inflammatory networks such as those regulated by the transcription factor nuclear 

factor kappa B (NFkB), which upregulates the production of pro-inflammatory cytokines that 

can impair vascular function and activate other ROS producing systems and enzymes, 

creating an adverse feed-forward (vicious) cycle of inflammation and oxidative stress [24, 45].  

This overall state of oxidative stress and inflammation also contributes to arterial 

stiffening with aging by altering the structural properties of the arterial wall. Production of 

collagen by fibroblasts is stimulated by superoxide-related oxidative stress [30, 48, 49]. Matrix 

metalloproteinases are upregulated and elastin content is lower in aorta of SOD-deficient mice, 

consistent with the concept that elastin degradation is induced by oxidative stress [50]. 

Vascular oxidative stress also promotes transforming growth factor β signaling and this, in turn, 

stimulates inflammation, which further reinforces arterial stiffness via activation of the pro-

oxidant enzyme, NADPH oxidase [48]. AGEs interact with the receptor for AGEs to activate 

NFkB-regulated pro-inflammatory pathways and oxidative stress, which ultimately perpetuates 

arterial stiffening and further increases production of AGEs [51].  
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Mitochondrial dysfunction is emerging as a key source of vascular oxidative stress and 

contributor to age-related vascular dysfunction. The remaining sections of this article will focus 

on mitochondrial dysfunction as a driver of vascular aging and review current evidence for 

prevention/treatment of age-associated vascular dysfunction via lifestyle and pharmacological 

strategies that improve mitochondrial health. We will also discuss current “research gaps” and 

future directions for the field.  

 

VASCULAR MITOCHONDRIA, MITOCHONDRIAL DYSREGULATION AND ROS 

Mitochondria are cytoplasmic organelles that are present in the majority of cell types in 

the human body, including vascular endothelial and smooth muscle cells. Mitochondria are 

often referred to as the “powerhouse” of the cell for their role in ATP production by oxidative 

phosphorylation, which occurs via a series of electron transfers through the respiratory chain in 

the mitochondrial inner membrane that is coupled to ATP synthesis by the FoF1-ATP synthase 

by the protonmotive force across the inner membrane. However, mitochondria are also vital for 

a number of additional cellular processes, including regulation of metabolism, calcium 

homeostasis, immune function, cell growth and stem cell function, and cell death pathways. 

Although mitochondrial density in vascular tissues is considerably lower than other tissues 

such as skeletal muscle, liver and heart [52, 53], increasing evidence indicates that these 

organelles are critical for maintenance of cellular and tissue homeostasis in the vasculature. 

This topic has been reviewed in detail elsewhere [54-61], but below we briefly summarize 

some of the key roles of mitochondria in the vasculature.  

A first important distinction is to consider the vascular cell type in question, as the 

density and subcellular distribution of mitochondria vary between endothelial and vascular 
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smooth muscle cells, and indeed even among the same cell types in different vascular beds 

[54, 60]. In general, unlike in highly metabolically active tissues with greater ATP demand, the 

principal role of mitochondria in the vasculature appears to be cellular signaling rather than 

energy provision [54].   

Cellular energy demand is quite low in endothelial cells, and ATP demand is met 

primarily via glycolysis. However, endothelial mitochondria are critical in the regulation of 

calcium homeostasis, apoptosis/necrosis, cellular response to stress, and immune and 

inflammatory pathways. An essential feature of these roles is the regulated production of 

signaling molecules including redox-active molecules (reactive oxygen, nitrogen, and other 

species; mtROS), mitochondrial DNA, mitochondria-derived peptides and damage-associated 

molecular pattern molecules (DAMPs), which exert effects intra- and extra-cellularly [62]. 

Importantly, there is crosstalk between mitochondrial and nuclear signaling pathways, whereby 

mitochondria-derived signaling is both influenced by and can influence nuclear events 

including gene expression [63]. 

Similarly, in vascular smooth muscle cells, mitochondria have an important role in 

cellular signaling. Mitochondria are involved in signaling pathways for regulation of vascular 

smooth muscle cell growth and proliferation (e.g., TGF-beta activity) [64], as well as 

maintenance of the dynamic balance among synthesis and breakdown of extracellular 

structural proteins, including collagen and elastin (e.g., matrix metalloproteinase enzyme 

activities) [65]. There is also emerging evidence demonstrating interplay between mtROS 

signaling and inflammatory pathways known to be important for regulating vascular smooth 

muscle cell function, including those involving NFkB and the NLRP3-inflammasome [66-69], 

further highlighting the crucial role of mtROS in vascular homeostasis.  
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Mitochondrial ROS. The signaling functions of vascular mitochondria are thought to be 

mediated in large part by the production of ROS at low, physiological levels. However, the 

dysregulation of this mtROS production also has the potential to lead to pathophysiological 

sequelae that disrupt other mitochondrial functions, cellular homeostasis, and ultimately 

vascular function.  

The production of ROS by mitochondria can occur at several sites (Figure 2), including 

but not limited to the electron transport proteins, and this topic has been reviewed in detail 

elsewhere [54, 60, 70]. The most important sites for ROS production within mitochondria 

appear to be complexes I and III. These ROS are thought to be critical transducers of signaling 

mediated by mitochondria, leading to post-transcriptional modification of proteins and 

interactions with immune and inflammatory cellular pathways, although the mechanistic details 

are still uncertain. In the vasculature, the proximal mtROS species is superoxide, which is  

generated primarily at the electron transport chain in the mitochondrial inner membrane via 

interaction between oxygen and unpaired electrons, influenced by the proton motive force and 

the redox state of the coenzyme Q pool and integrity of intrinsic electron transport chain 

proteins [54, 58, 60, 70]. Superoxide is released into the matrix (complex I) or into both the 

matrix and intermembrane space (complex III); it can also undergo dismutation to hydrogen 

peroxide by the antioxidant enzyme manganese superoxide dismutase (MnSOD) [59, 60, 62, 

70]. Hydrogen peroxide is also generated de novo on the surface of the mitochondrial outer 

membrane or in the intermembrane space mitochondria by p66SHC, a growth factor adapter 

protein referred to as a sensor/marker and “master regulator” of mitochondrial redox signaling 

whose activity is indicative of the rate of mtROS production [71]. In addition, NADPH oxidase 4 

(NOX4) is viewed as a primarily mitochondrial isoform of the NOX monoamine oxidase family 
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of enzymes that contributes to mitochondrial hydrogen peroxide generation [72], although 

more research is needed to confirm the mitochondrial specificity of NOX4.  

Mitochondria as Source and Target of Oxidative Stress. Mitochondria are not only a 

key source of cellular ROS production but are also particularly vulnerable to potential damage 

caused by these molecules. The extensive lipid bilayer membranes, circular DNA lacking the 

protective histones of nuclear DNA, and numerous enzymes and proteins that characterize 

mitochondria all represent potential targets for ROS-induced damage, which, in turn, has 

adverse effects on mitochondrial function [73]. Although mitochondria have endogenous 

antioxidant defense mechanisms, including MnSOD, catalase, the glutathione/glutathione 

peroxidase systems and the thioredoxin/peroxiredoxin pathway [74], excessive levels of 

mtROS can overwhelm these defense systems, resulting in mitochondrial oxidative stress. As 

such, oxidative damage to mitochondria results in an abundance of less healthy mitochondria. 

Importantly, mitochondrial quality control mechanisms exist to degrade dysfunctional 

mitochondria/mitochondrial components by mitophagy (organelle-specific form of autophagy) 

and generate new mitochondria by mitochondrial biogenesis (e.g., by PGC-1α-regulated 

processes) [75]. In addition, a balance in the mitochondrial dynamics processes of fission and 

fusion is critical for maintaining mitochondrial health/function and regulating mtROS 

production, at least in part by effects on bioenergetic function and mitochondrial membrane 

potential (e.g., reducing hyperpolarization) [76]. Indeed, dysregulation of mitochondrial 

dynamics processes—characterized by excess fission relative to fusion—promotes endothelial 

inflammation in an NFkB-dependent manner [77] and is necessary for the cellular senescence-

associated inflammatory phenotype induced by angiotensin II [78]. All of these mitochondrial 

stress response/defense and quality control pathways become impaired in settings of excess 
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mtROS such as aging, ultimately resulting in a pool of less healthy mitochondria, which may 

perpetuate mitochondrial dysfunction in part by further increasing mtROS [79].  

In summary, due to the fundamental role of certain key mitochondrial processes as 

drivers of excess mtROS, they may be considered hallmarks of impaired mitochondrial health. 

Notable examples of this include: increased production of superoxide and other mtROS; 

mitochondrial DNA damage; decreased endogenous antioxidant defenses (e.g., MnSOD 

content/activity); dysregulated mitochondrial quality control (e.g., impaired mitophagy, 

decreased mitochondrial biogenesis and related PGC-1α signaling); impaired bioenergetic 

function with uncoupling of electron transport from ATP production; altered balance of 

mitochondrial dynamics resulting in excessive fission/insufficient fusion; and an overall 

reduction in the ability of mitochondria to adequately respond to stress (Figure 2). Therefore, 

interventions that target these processes and attenuate excessive mtROS have the potential to 

improve overall mitochondrial quality or “fitness,” with associated wide-ranging salutary effects 

on overall cellular function.  

Stress Response as an Indicator of Mitochondrial Fitness. Loss of the ability to 

respond to stress is a common feature of the aging process [80] and many disease states. 

Mitochondria are vital for the ability of cells to maintain or restore homeostasis following 

exposure to stress—termed resistance and resilience, respectively [81]. Robust cellular stress 

resistance mediated by mitochondria is well established in cardiac tissues in the setting of 

cardioprotection against ischemia/reperfusion injury, for example [82]. Mitochondria are also 

vital for cellular adaptation following exposure to mild stressors through a process termed 

“mitohormesis”, as in the case of exercise training [83]. In contrast, dysregulation of 

mitochondrial health can lead to inadequate stress response, resulting in cellular damage or 
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death. Indeed, impairment of mitochondrial stress resistance may be an integrative hallmark of 

mitochondrial dysregulation (Figure 2). Known vascular stressors, including hypoxia, 

inflammation, hyperglycemia, hyperlipidemia, oxidized low-density lipoprotein, and cigarette 

smoke, stimulate ROS production in mitochondria, activating signaling pathways that allow 

mitochondria-mediated adaptation to stress or initiation of cell death events [59, 61]. 

Importantly, robust mitochondrial stress response appears to be a feature of healthy vascular 

function, whereas vascular disease is characterized by impaired mitochondrial stress response 

[60, 84, 85]. 

Functional Implications of Vascular Mitochondrial Dysfunction and Excessive 

mtROS. Although vascular mitochondrial production of ROS at physiological levels is critical 

for maintenance of cellular homeostasis, excessive levels of mtROS have detrimental effects 

on key aspects of vascular physiology.  

Endothelial function. Excessive production of mitochondria-derived superoxide may 

contribute to vascular oxidative stress and reduce the bioavailability of NO, either directly via 

formation of peroxynitrite or indirectly by uncoupling of eNOS. These events are further 

propagated by peroxynitrite-mediated inhibition of an appropriate upregulation of the 

mitochondrial antioxidant enzyme MnSOD [86]. Decreased NO bioavailability leads to 

impairments in endothelial function (as described above) but may also contribute to further 

mitochondrial dysregulation. NO has a key regulatory role in PGC-1α signaling and 

mitochondrial biogenesis [87]. Moreover, NO acts as a tonic inhibitor of complex IV of the 

mitochondrial respiratory chain; as such, decreases in NO bioavailability may also augment 

mitochondrial superoxide production by the electron transport chain as this tonic inhibition is 

removed [60]. Mitochondria-derived hydrogen peroxide is a key signaling molecule in the 
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vasculature, as a compensatory vasodilatory mechanism for reduced NO bioavailability in the 

microvasculature and coronary arterioles in atherosclerotic heart disease [60]. However, as 

with superoxide, excessive levels of hydrogen peroxide production, either de novo or as a 

result of superoxide dismutation, can disrupt vascular homeostasis, including activation of 

NFkB with resultant prothrombotic and proinflammatory effects [60, 88]. 

Arterial stiffening. The majority of evidence suggests that oxidative stress is a critical 

upstream mechanism driving arterial stiffening with aging, although there is some indication for  

potential sex differences in the role of oxidative stress in this process [89, 90]. Regardless, 

there is growing evidence that mtROS are a key source of this oxidative stress [72, 91, 92]. 

Excessive mtROS in vascular smooth muscle cells may induce aberrant signaling in growth 

factor (e.g., transforming growth factor β1) and proteolytic enzyme (e.g., matrix 

metalloproteinase) pathways that leads to overproduction of collagen and accelerated elastin 

degradation [50, 65, 93]. Further, mtROS are now recognized as important activators of pro-

inflammatory signaling [67, 68] that in vascular smooth muscle cells that is also implicated in 

mediating structural changes in arteries [88, 91, 94]. Finally, excessive levels of mtROS may 

also contribute to oxidative stress-driven formation of AGEs and subsequent cross-linking of 

collagen in the arterial wall [95].  

Vascular disease is characterized by excessive mtROS production and altered 

mitochondrial health. Given the current understanding of mitochondrial biology and function 

specifically in vascular cells, the concept that excess mtROS and associated alterations in 

mitochondrial health may play an important causative role in vascular dysfunction and disease 

is compelling. In the following section, we outline current experimental evidence supporting a 
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link between mitochondrial dysregulation and vascular dysfunction across a range of 

experimental settings and disease states, with a focus on vascular aging.  

 The first line of evidence of an association between mitochondria and vascular 

dysfunction comes from cross-sectional studies in which chronic disease states characterized 

by vascular dysfunction are accompanied by elevated mtROS and/or markers of altered 

vascular mitochondrial health. Mitochondrial DNA damage is elevated in arteries from 

apolipoprotein E-null (to promote atherosclerosis) mice [96] as well as in plaques from human 

patients with atherosclerosis [97] and in circulating cells from patients with diabetes mellitus 

and atherosclerotic CVD [98]. Consistent with these observations, mitochondrial bioenergetics 

and mitophagy are impaired in naturally aged and aged atherosclerosis-susceptible mice [99], 

and excessive mtROS levels and disruption of mitochondrial dynamics are evident in 

endothelial cells from mice [100] and patients with diabetic vascular disease [101]. Moreover, 

rodent models of diabetic vascular disease demonstrate an impaired mitochondrial stress 

response to exercise [84, 85]. 

 These associations between mitochondrial oxidative stress and vascular dysfunction 

are corroborated by experimental approaches involving pharmacological manipulation and 

genetic knockout approaches to alter mtROS ex vivo and in vivo. For example, chronic low 

doses of angiotensin-II in mice elevate mtROS and induce endothelial dysfunction, at least in 

part by hyperacetylation-mediated impairment of MnSOD secondary to inactivation of the 

mitochondrial NAD+-dependent deacetylase sirtuin 3 [102, 103]. Heterozygous knockout of the 

key mitochondrial antioxidant MnSOD to experimentally increase mtROS results in endothelial 

dysfunction [104] and acceleration of arterial stiffening with age [50]. Knockouts of p66SHC 

[105] and NOX4 [72], which recapitulate settings of decreased mtROS, exhibit preserved 
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vascular function. Mice expressing a defective mitochondrial DNA polymerase with resulting 

excessive mitochondrial DNA damage exhibit accelerated aging, including development of 

vascular dysfunction [106]. In contrast, treating arteries ex vivo or supplementing rodents in 

vivo with mitochondria-targeted antioxidants to decrease mitochondrial oxidative damage 

ameliorates vascular endothelial dysfunction in spontaneously hypertensive rats and rats with 

angiotensin II-induced hypertension [107, 108]. Similarly, mitochondria-targeted antioxidant 

administration improves cutaneous microvascular function in patients with chronic kidney 

disease [109] and EDD of arterioles isolated from adipose tissue biopsies in patients with type 

2 diabetes [110]. Taken together, the evidence from multiple experimental approaches, 

including genetically manipulated rodents, disease models and clinical populations indicates 

that mitochondrial oxidative stress may be a key upstream mechanism underlying vascular 

dysfunction.  

Primary vascular aging is accompanied by elevated mtROS and reduced 

mitochondrial fitness. Accumulating evidence also indicates that mitochondrial oxidative 

stress and associated impairments in mitochondrial fitness underlie the vascular dysfunction 

accompanying primary aging in the absence of clinical disease. Arterial mtDNA quantity 

decreases with aging in mice and is associated with reduced mitochondrial respiration and 

arterial stiffening [106]. Excessive mtROS and activation of p66SHC in the face of reduced or 

unchanged abundance of MnSOD have been observed in vascular tissues from aged rodents 

(Figure 3) with corresponding impairments in vascular function [111, 112], decreased 

mitophagy, evidence of reduced mitochondrial quality control [112, 113], and greater 

susceptibility to acute mitochondrial stress [111, 113, 114]. In humans, expression of MnSOD 

is lower in vascular endothelial cells obtained by endovascular biopsies from older adults with 
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impaired FMD compared with a young adult reference group [115], and impaired mitochondrial 

bioenergetics, elevated mtROS and impairments in EDD have been observed in biopsied 

arterial segments from older vs. young adults [116, 117]. More direct evidence for excessive 

mtROS-mediated suppression of vascular function with primary aging comes from studies in 

which acute scavenging of mtROS ex vivo in arteries from old mice and older adult humans or 

in vivo (humans) with the mitochondria-targeted antioxidant MitoQ reverses age-related 

endothelial dysfunction [111, 117, 118].  

 Overall, there is strong observational and experimental evidence supporting a critical 

role for mitochondria in maintenance of vascular homeostasis. Vascular mitochondrial 

dysfunction, characterized by excessive production of mtROS and other markers of reduced 

mitochondrial health and fitness, is an important feature of vascular dysfunction and disease, 

including in the setting of primary aging. As such, interventions targeting excess mitochondrial 

oxidative stress and mitochondrial dysfunction hold strong promise for preserving vascular 

function with aging. In the following section, we discuss interventions for the prevention and 

treatment of age-associated vascular dysfunction and their effects on mitochondrial oxidative 

stress and mitochondrial fitness arteries.  

 

Prevention and Treatment of Vascular Aging by Improving Mitochondrial Health. In this 

section we will discuss prevention and treatment strategies that may modulate mitochondrial 

fitness. Our focus will be on lifestyle-based approaches and compounds supported by 

translational evidence of efficacy in the context of vascular aging. We will discuss: 1) strategies 

with evidence of mitochondrial effects in the vasculature, starting with aerobic exercise and 

then emerging pharmacological approaches, including “nutraceuticals” (natural compounds), 



 17 

which target many of the pathways and processes thought to mediate the beneficial effects of 

aerobic exercise; 2) approaches documented to improve vascular function with aging for which 

direct evidence of mitochondria-specific effects in the vasculature are currently lacking; and 3) 

promising therapies that have not yet been tested for treating vascular aging.  

 

Aerobic Exercise  

Regular aerobic exercise is advanced as a “first-line” healthy lifestyle strategy for 

reducing CVD risk with aging. It is likely that much of the beneficial effects of aerobic exercise 

on CVD risk – after accounting for its effects on traditional risk factors [119, 120] -- are 

mediated by the ability of exercise to counteract the adverse effects of aging on arteries [24]. 

Indeed, both cross-sectional comparisons of exercising and non-exercising adults and 

intervention studies of previously sedentary individuals support an overall protective effect of 

aerobic exercise for vascular aging [10, 17, 121, 122]; effects that are largely attributed to its 

suppression of oxidative stress and inflammation (see [24, 123]). We will next summarize the 

evidence for mitochondria-related mechanisms as mediators of the effects of aerobic exercise 

on vascular function with aging.  

  Mitochondrial mechanisms of aerobic exercise in the vasculature. Aerobic 

exercise has well-documented effects on mitochondrial health and homeostasis in non-

vascular tissues. Evidence that similar beneficial mitochondrial adaptations may occur in the 

vasculature in the setting of prevention of age-related vascular dysfunction is derived from the 

observation that habitually exercising older men do not exhibit a decline in EDD with aging and 

this preservation of EDD is associated with expression of endothelial cell MnSOD similar to 

young adult controls [115]. Regular aerobic exercise also enhances resistance to potentially 
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harmful/adverse factors (i.e., stress resistance), many of which act on mitochondria [124]. For 

example, older exercising adults are protected, in part, against the decline in EDD in response 

to experimental ischemia-reperfusion injury [125], which can drive mtROS production [126]. 

Collectively, these data are consistent with beneficial effects of aerobic exercise on 

mitochondria in the vasculature observed in pre-clinical models of disease [84, 85] and young 

healthy animals [127].  

The vascular mitochondrial effects of exercise in the setting of primary aging have been 

determined in lifelong and late-life intervention studies in mice with and without access to a 

running wheel, a translational approach to simulate voluntary aerobic exercise. Lifelong 

aerobic exercise initiated at three months of age prevented age-associated declines in EDD by 

increasing NO bioavailability and suppressing mtROS, as indicated by the absence of 

improvement in EDD isolated carotid arteries in response to incubation with a mitochondria-

targeted antioxidant in exercise-trained but not sedentary animals [128]. Lifelong exercise also 

prevented the increase in aortic mitochondrial superoxide production with aging observed in 

sedentary mice [128].  

As a late-life intervention, voluntary aerobic exercise restored NO-mediated EDD in old 

mice to young adult levels [114, 129], which was associated with a suppression of aortic 

mitochondrial superoxide production [114] (Figure 4). In addition, voluntary aerobic exercise 

reversed age-associated impairments in mitochondrial stress resistance. Incubation of arteries 

with the mitochondrial stressor rotenone, a complex I inhibitor which can induce mtROS, 

(further) impaired EDD in old control mice, which was completely prevented in old exercising 

mice [114]. Moreover, intra-luminal exposure of arteries to a simulated Western diet – high 

glucose, high palmitate – mtROS-mediated stress exacerbated endothelial dysfunction in 
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arteries from old mice; these effects were ameliorated in old exercised mice [114]. Consistent 

with an overall improvement in mitochondrial health, voluntary aerobic exercise normalized 

aortic protein markers of mitochondrial biogenesis, dynamics and stress resistance/metabolism 

and mitochondrial quality control processes [114] (Figure 4). Interestingly, data from 

genetically eNOS deficient young mice and mice treated with the eNOS inhibitor L-NAME while 

undergoing chronic exercise training suggest that NO plays a permissive role in vascular 

mitochondrial adaptations to exercise [130], in line with evidence for NO as a key regulator of 

PGC-1α. How NO-mitochondrial signaling is altered by aging, and whether an improvement in 

NO bioavailability is a requisite “upstream” factor for vascular adaptations to exercise with 

aging, remains to be determined.  

Improvements in aortic mitochondrial health also are associated with the beneficial 

effects of aerobic exercise training on age-related arterial stiffening. In old rats, chronic 

exercise training via forced treadmill exercise reduced aortic stiffness (aortic PWV) to young 

adult levels, attenuated age-associated increases in mtROS and mitochondrial swelling (an 

indicator of mitochondrial permeability transition pore opening/calcium handling), and 

normalized mitochondrial bioenergetics/ATP production and mtDNA content to levels similar to 

young controls [131]. These changes were associated with lower collagen content and 

preserved elastin abundance in aortas from old exercise-trained rats, suggesting a link 

between improved mitochondrial health and the structural composition of the arterial wall [131].  

Collectively, these data implicate improvements in vascular mitochondrial health as a 

primary mechanism underlying the favorable effects of aerobic exercise on endothelial function 

and arterial stiffening with aging. It remains to be determined whether novel “time-efficient” 

forms of exercise (e.g., high-intensity interval training, inspiratory muscle strength training) or 
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other aerobic exercise-inspired lifestyle strategies (e.g., heat therapy) [28, 132-134] transduce 

beneficial effects on vascular function by improving mitochondrial health, which has been 

suggested to be a primary mechanism of action of these therapies in other tissues [135, 136]. 

Additionally, the mitochondria-related mechanisms by which aerobic exercise improves 

vascular function are incompletely understood. As such, more research is needed to assess 

contributions of associated molecular and cellular processes, including autophagy, calcium 

handling and mito-nuclear communication (see “Research Gaps”).  

 

Pharmacological Compounds Studied in the Context of Vascular Aging 

Aerobic exercise activates numerous mitochondrial signaling pathways and processes 

to ultimately improve vascular function with aging. These individual pathways induced by 

aerobic exercise can be considered therapeutic targets, which can be activated (or 

suppressed) by specific pharmaceutical or nutraceutical compounds. In this section, we will 

discuss examples of this general approach with compounds supported by translational (pre-

clinical to clinical) evidence of efficacy for healthy vascular aging.   

Mitochondria-targeted antioxidants. Due to the centrality of mtROS- and 

mitochondrial oxidative damage-linked mediators of age-associated vascular dysfunction and 

the ability of aerobic exercise to counteract mtROS-related vascular aging, decreasing 

vascular mtROS is an attractive therapeutic option. The development of mitochondria-targeted 

antioxidants, such as MitoQ, offers an innovative therapeutic strategy for decreasing mtROS 

and associated oxidative damage to ultimately improve vascular function with aging. MitoQ is a 

compound consisting of a derivative of the naturally occurring antioxidant ubiquinol conjugated 

to a lipophilic cation, triphenylphosphonium (TPP) [137]. The lipophilic nature and positive 
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charge of the compound enables MitoQ to cross cell membranes and accumulate at the matrix 

face of the mitochondrial inner membrane, where it is well-positioned to decrease 

mitochondrial oxidative damage [137]. These features of the compound circumvent limitations 

of traditional exogenous antioxidants (e.g., vitamins C and E) such as inefficient cellular uptake 

and an inability to accumulate at the cellular sources of ROS, which likely contributed to their 

lack of efficacy in large-scale clinical trials [138]. Many traditional antioxidants also typically 

have very short half-lives, whereas MitoQ is a recyclable antioxidant: the active (reduced) form 

of MitoQ is regenerated via reaction with complex II in the electron transport chain, allowing for 

sustained antioxidant activity [137].  

The primary antioxidant effects of MitoQ are attributed to its ability to act as a chain 

breaking antioxidant, blocking lipid peroxidation [137, 139, 140]. MitoQ may also affect 

(decrease) superoxide production by reverse electron transport at complex I of the electron 

transport chain, although this mechanism is less well established [141, 142]. Although some ex 

vivo data suggest MitoQ may be pro-oxidant [143], this is likely a consequence of the 

experiments being performed in water-based tissue culture medium, in which any quinol will 

“redox cycle” and generate ROS/hydrogen peroxide [139, 143]; the amount of MitoQ that is 

free in water in vivo is negligible, so redox cycling does not seem to occur in this biological 

setting [137, 139, 144]. The precise sites of mtROS and oxidative damage affected by MitoQ in 

vivo remain to be fully characterized, particularly in humans.  

 Initial evidence for the efficacy of MitoQ for reducing mitochondrial oxidative 

stress/damage and improving age-associated vascular dysfunction was determined with 

chronic administration of MitoQ to young and old mice for 4 weeks in the drinking water [111]. 

MitoQ supplementation completely reversed age-related endothelial dysfunction by restoring 
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NO bioavailability, with no effects in young adult mice [111] (Figure 5). The benefits of MitoQ 

were attributable to the antioxidant moiety of the compound, as supplementation with the 

mitochondria-targeting TPP moiety alone had no effects on EDD [111]. The primary 

mechanism responsible for the beneficial effects of MitoQ on endothelial function was a 

decrease in mtROS bioactivity, as evidenced by MitoQ treatment-associated abolition of tonic 

mtROS-associated suppression of EDD in old mice, i.e., in old mice treated with MitoQ there 

was no improvement in EDD with acute MitoQ incubation, as was observed in arteries from old 

control mice [111]. Consistent with an overall improvement in mitochondrial homeostasis in 

arteries, MitoQ supplementation normalized expression of p-p66SHC, MnSOD, mitochondrial 

electron transport chain complex IV and PGC-1α in aortas from old mice to those of the young 

controls [111]. MitoQ also reversed the aging-induced decrease in mitochondrial resistance to 

stress, as shown by protection against rotenone-induced impairment in ex vivo EDD in old 

MitoQ-supplemented mice [111].  

These effects were recently translated to older adult humans with impaired endothelial 

function at baseline in a small, randomized control (crossover design) pilot study [118]. Oral 

supplementation with MitoQ (20 mg/day) was well-tolerated without serious adverse effects 

over 6 weeks, consistent with other clinical trials with MitoQ up to 1 year in length [118, 145, 

146]. MitoQ supplementation increased NO-mediated endothelial function, assessed by 

brachial artery flow mediated dilation, by 42% over placebo conditions [118] (Figure 5). As in 

old mice, the primary mechanism responsible for the improvement in endothelial function was 

decreased mtROS-associated suppression of endothelial function, as shown by an acute 

increase in FMD in response to a single supratherapeutic dose of MitoQ (160 mg) after 

placebo treatment, but not after chronic MitoQ supplementation [118] (Figure 6). MitoQ 
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supplementation also decreased levels of plasma oxidized low-density lipoprotein, a circulating 

marker of oxidative modification of lipids [118].   

In mice, MitoQ supplementation completely ameliorated age-associated increases in 

aortic stiffness without affecting (the already normal) aortic stiffness in young adult mice [147] 

(Figure 7). Consistent with this finding, MitoQ supplementation decreased aortic stiffness in 

older humans exhibiting age-related increases in aortic stiffness assessed at baseline (i.e., 

subjects with carotid-femoral PWV values >2 standard deviations from the group mean of 

young subjects in the Framingham Heart Study [148]), but had no effect in subjects with 

normal (low) levels of aortic stiffness [118] (Figure 7). The aortic de-stiffening effects of MitoQ 

were associated with an attenuation of declines in aortic elastin content and function in old 

mice. It is unlikely that structural changes in the arterial wall would occur over 6 weeks in 

humans, suggesting mechanisms other than changes in elastin content contributed to the 

decrease in aortic stiffness in humans. Rather, reduced vascular smooth muscle tone and/or 

stiffness secondary to enhanced NO signaling, i.e., effects on “functional” determinants of 

arterial stiffening, presumably mediated these beneficial effects in older humans. As 

mitochondrial ROS appear to stimulate sympathetic vasoconstrictor nerve activity [149], it is 

possible that MitoQ may also have decreased aortic stiffness through reductions in alpha-

adrenergic mediated vascular smooth muscle tone. Collectively, these observations suggest 

that MitoQ and potentially other strategies directly targeting mitochondrial oxidative stress may 

be viable options for treating vascular dysfunction with aging; however, the pilot study findings 

must first be confirmed in a larger and longer duration clinical trial.  

In addition to its effects in primary aging, there is some evidence from animal studies of 

beneficial effects of supplementation with MitoQ in disease settings. MitoQ prevents the 
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development of endothelial dysfunction in spontaneously hypertensive stroke-prone rats [107, 

150] and improves endothelial function and arterial stiffness in doxorubicin-treated mice, a 

model of chemotherapy-associated accelerated vascular aging. In humans, clinical trials are 

ongoing investigating the efficacy of MitoQ for improving vascular function in populations with 

clinical diseases/disorders of aging, including chronic kidney disease, heart failure, peripheral 

artery disease, mild cognitive impairment and chronic obstructive pulmonary disease (COPD), 

with some evidence of an improvement in endothelial function in patients with COPD following 

acute and chronic MitoQ supplementation [151].  

The therapeutic potential of targeting mitochondrial oxidative damage to ameliorate 

vascular dysfunction is consistent with the findings of randomized clinical trials (see [152] for 

meta-analysis) in a variety of patient populations showing beneficial vascular effects of 

ubiquinol and ubiquinone, which, although not biochemically modified to target mitochondria, 

are thought to act, at least in part, on mitochondria. Indeed, improved mitochondrial fitness and 

reduced oxidative stress with ubiquinol/ubiquinone as a mechanism is supported by 

experimental evidence in some, albeit not all, clinical studies [153]. Moreover, in old mice, the 

mitochondria-targeted peptide SS-31 improved cerebrovascular function by improving NO 

bioavailability and reducing mtROS [154]. However, as discussed below, this compound likely 

acts on mitochondrial function via multiple mechanisms. 

Activators of autophagy, mitophagy and mitochondrial quality control 

Mitochondrial quality control – the aforementioned collection of molecular processes by which 

new, healthy mitochondria are produced (mitochondrial biogenesis) and damaged 

mitochondria are degraded by mitophagy -- becomes dysregulated with aging in the 

vasculature [99, 113, 155] resulting in an accumulation of dysfunctional mitochondria. Exercise 
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activates mitochondrial quality control processes (e.g., biogenesis, mitophagy), and the 

beneficial effects of exercise on vascular mitochondria may be partially attributable to improved 

quality control.  

Several small molecules appear to improve mitochondrial quality control in the setting of 

vascular aging. For example, trehalose, a disaccharide found in mushrooms and honey, is 

known to enhance autophagy and mitophagy [113, 155, 156]. Four weeks of oral trehalose 

supplementation reverses age-associated declines in NO-mediated EDD by decreasing 

oxidative stress and reduces aortic stiffness in old mice [113, 155] (Figure 8). Although aspects 

of the improvements in vascular function can be attributed to a global (vs. organelle-specific) 

induction of autophagy [155], trehalose reversed age-related decreases in aortic Parkin and 

SIRT3 and increased abundance of BNIP3 (a Bcl-2 family protein that primarily localizes to the 

mitochondrial outer membrane) and PGC-1α, indicating specific activation of mitochondrial 

quality control pathways [113]. These changes were accompanied by normalization of the 

mitochondrial redox/stress sensor p66SHC in aortas from old trehalose-supplemented mice, 

indicating improved mitochondrial health with trehalose treatment [113] (Figure 8). Recent 

evidence suggests that trehalose supplementation also improves NO-mediated EDD in middle-

aged and older adults, but the role of enhanced mitophagy and/or mitochondrial quality control 

in this improvement in endothelial function is unknown [157] (Figure 8). In models of 

accelerated vascular aging, trehalose supplementation also improved endothelial function and 

reduced stiffness of resistance vessels (mesenteric arteries) in spontaneously hypertensive 

adult rats [158] and improved mesenteric artery endothelial function in obese diabetic mice 

[159].  
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The natural polyamine spermidine is another autophagy/mitophagy-activating dietary 

compound that extends lifespan and healthspan in lower organisms [160, 161], and dietary 

intake of spermidine is inversely associated with all-cause mortality and CVD risk in humans 

[162]. Spermidine delays cardiac aging in rodents, which is attributed to activation of 

autophagy and mitophagy in cardiomyocytes [162]. In terms of vascular aging, spermidine 

restores age-related impairments in NO-mediated endothelial function and reverses age-

associated aortic stiffening [163]. The improvements in vascular function in old mice are 

mediated by reductions in oxidative stress and cross linking of structural proteins, as shown by 

decreases in aortic abundance of AGEs [163]. Although the vascular effects of spermidine 

were shown to be dependent on the activation of autophagy, the contribution of mitophagy per 

se was not fully elucidated in this study [163]. More recently, spermidine supplementation in 

late middle-aged (18 month) hyperlipidemic mice was shown to reverse age-associated 

declines in aortic mitochondrial respiration and reduce inflammation and atherosclerosis by 

enhancing mitophagy [99]. Spermidine also restores NO signaling ex vivo in endothelial cells 

isolated from veins of patients with diabetes [164]. Although chronic spermidine 

supplementation is reported to be safe in humans and may improve cognitive function in older 

adults [165, 166], there currently are no clinical trials in older adults focused on vascular 

function.  

Modulators of cellular energy sensing pathways. Another mitochondria-focused 

therapeutic approach involves strategies to increase cellular levels of NAD+, which are 

decreased with aging and increased by exercise (and caloric restriction, described below). The 

primary goal of increasing NAD+ levels is activation of sirtuins, which, in turn, deacetylate 

histones and other proteins to alter gene expression and promote mitochondrial biogenesis, 
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antioxidant defenses and cellular stress resistance, while also decreasing carbon stress within 

mitochondria [167]. Of particular note, NAD+ is also an activator of the mitochondrial sirtuin, 

SIRT3, which targets mitochondrial proteins such as MnSOD [102, 103]. Levels of NAD+ can 

be increased by oral supplementation with NAD+ precursors such as nicotinamide 

mononucleotide (NMN) and nicotinamide riboside (NR), which are intermediates of an 

endogenous NAD+ salvage pathway [168].  

Supplementation with NMN increases aortic NAD+ production and SIRT1 abundance, 

improves endothelial function by increasing NO bioavailability and reducing oxidative stress 

[169, 170] and reduces aortic stiffness in old mice [169]. Increases in aortic MnSOD were also 

observed with acute NMN incubation of arteries, supporting a benefit of NAD+-boosting on 

mitochondrial antioxidant defenses [169]. The mitochondria-specific effects of NMN were also 

shown in the cerebrovasculature, where NMN improved cerebral blood flow by suppressing 

mtROS [170]. Moreover, in primary cerebrovascular endothelial cell cultures from old rats, 

NMN administration normalized NO production, which was accompanied by decreased mtROS 

production and improved mitochondrial membrane potential, ATP production and respiration 

[170]. All of these effects were abrogated by shRNA-mediated knockdown of SIRT1 and 2, 

indicating sirtuin activation is necessary for the beneficial mitochondrial effects of NMN on 

endothelial cells [170]. Interestingly, NMN supplementation did not appear to affect 

mitochondrial biogenesis, but did rescue age-related reductions in gene expression of subunits 

of the electron transport chain encoded by the mitochondrial genome, which may have 

explained improved electron transport chain function and decreased mtROS production [170, 

171].  
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  There are currently limited data in humans regarding the effects of NAD+ precursors on 

vascular aging. Greater dietary intake of niacin, another NAD+ precursor, is associated with 

higher endothelial function and lower oxidative stress in older adults [172]. A small pilot study 

in middle-aged and older adults showed that chronic supplementation with NR increased 

circulating NAD+ levels and reduced aortic stiffness and blood pressure, particularly in subjects 

with elevated blood pressure [173]. No effects on endothelial function were observed in this 

pilot study, although a longer and larger clinical trial is currently underway to establish the 

cardiovascular effects of NR in older adults (NCT03821623). The effects of NMN 

supplementation in humans is currently unknown, but clinical trials are ongoing 

(NCT03151239). No studies have investigated vascular mitochondrial effects of NR or NMN 

supplementation in humans. However, a recent clinical trial in insulin-resistant obese men 

reported that NR did not affect skeletal muscle mitochondrial parameters, including 

mitochondrial respiration, content and morphology, although NR did not effectively increase 

NAD+ metabolite concentration in skeletal muscle this study [174]. It remains to be determined 

if NR (or other NAD+-boosting approaches) increases vascular NAD+ in humans and if this 

impacts mitochondrial and/or vascular function with aging.  

 

Prevention and Treatment of Vascular Aging: Strategies Currently Lacking Direct 

Evidence for Mitochondrial Effects. A number of lifestyle and pharmaceutical or 

nutraceutical approaches with clearly established effects on mitochondria in non-vascular 

tissues have been assessed for improving vascular function with aging. Presently, however, 

direct evidence supporting the vascular mitochondria-specific effects of these strategies as 

mediators of improvements in vascular function is lacking. These interventions will be reviewed 
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next, with a focus on observations pointing to the possible mitochondrial effects of these 

strategies.  

Diet composition. There are clear, well-established benefits for reducing CVD risk of 

certain broad dietary patterns, which are typically high in fruits and vegetables, whole grains, 

low-fat dairy and associated with low to moderate consumption of lean meats and fish [175, 

176]. The CVD risk-reducing effects of these dietary patterns may be attributed, in part, to 

improvements in vascular function. For example, the DASH and Mediterranean diets improve 

both endothelial function and arterial stiffness through mechanisms involving decreased 

oxidative stress and inflammation [177, 178]. Although many components (i.e., specific foods 

and/or bioactive ingredients) of these diets, such as dietary nitrates, co-enzyme Q10, omega-3 

or other fatty acids, are thought to modulate mitochondrial function, it is currently uncertain if 

the beneficial effects of broad dietary patterns are dependent on these individual components 

and/or their effects on mitochondria. For example, the Mediterranean diet is rich in 

monounsaturated fatty acids, which modulate SIRT1 to activate PGC-1α signaling and 

increase mitochondrial biogenesis [179], but whether these effects contribute to improved 

vascular function with a Mediterranean diet is unknown. As such, more research is needed to 

determine the direct mitochondrial health-promoting effects in the vasculature of certain dietary 

patterns and/or specific components of these dietary patterns, several of which are discussed 

in more detail below.  

In contrast to healthy dietary patterns, “sub-optimal” dietary patterns are associated with 

elevated CVD risk and accelerated vascular aging. In older adults with CVD risk factors, diets 

high in saturated fats further impair endothelial function [180, 181] and may promote arterial 

stiffening. Moreover, a Western diet (high in saturated fats and sugar, low in fiber) reduces 
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endothelial function and increases arterial stiffening with aging in mice [182-184]. These 

adverse effects of a Western diet on vascular function are mediated by increased superoxide-

associated suppression of endothelial function [184], and the primary source of superoxide 

may be mitochondria [128]. Indeed, cell culture studies have demonstrated that glucose and 

palmitate – two key compounds which may be elevated in the circulation in the setting of 

Western diet consumption – induce mtROS production and dysfunction in endothelial cells 

[185, 186]. In agreement with these observations, aortic mtROS bioactivity is higher and EDD 

is lower across the lifespan in mice fed a Western diet vs. age-matched mice. EDD is 

completely restored with ex vivo incubation of arteries with a mitochondrial antioxidant, 

indicating the Western diet-associated endothelial dysfunction is mediated by excess mtROS 

[128]. Interestingly, the adverse effects of the Western diet on endothelial function and mtROS 

are prevented in mice given access to a running wheel, consistent with the mitochondrial 

stress resistance-enhancing effects of regular aerobic exercise discussed previously [128]. 

Whether aerobic exercise also protects against Western diet-induced arterial stiffening by 

reducing mtROS and/or other mitochondrial mechanisms is currently unknown (see Research 

Gaps). 

Energy intake. Caloric restriction, characterized by a sustained 10-40% reduction in 

caloric intake without malnutrition, is the most well studied lifestyle strategy for extending 

maximal lifespan and healthspan in model organisms. Caloric restriction also promotes healthy 

vascular aging. In older adult humans, caloric restriction-based weight loss improves 

endothelial function [187] and reduces carotid artery and aortic stiffness [188]. Lifelong caloric 

restriction preserves EDD by maintaining NO bioavailability and prevents aortic stiffening [189, 

190]. Moreover, later life caloric restriction restores NO bioavailability and endothelial function 
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in old mice [191] and rats [192] to levels observed in young adult controls. The primary 

mechanisms responsible for the effects of CR include a decrease in oxidative stress and 

inflammation, likely via modulation of cellular energy sensing pathways dysregulated with 

aging, including adenosine AMP-activated protein kinase (AMPK)-, sirtuin- and mammalian 

target of rapamycin (mTOR)-regulated cellular signaling cascades [193]. 

Mitochondria are integral to many of these energy sensing pathways, as effectors (e.g., 

activation of cell death pathways) and for coordination of cellular responses (e.g., via mito-

nuclear communication). Accordingly, CR has been reported to have numerous effects on 

mitochondria in non-vascular tissues (primarily skeletal muscle) in rodents and humans, 

including decreased mtROS production, increased mitochondrial antioxidant defense, 

improved mitochondrial bioenergetic function and efficiency, increased mtDNA quantity and 

quality and enhanced resistance to apoptosis. CR may also increase mitochondrial biogenesis, 

although results are equivocal [194, 195]. These CR-induced improvements in mitochondrial 

function are thought to be accomplished by activation of mitochondrial quality control 

processes, such as autophagy and mitophagy, secondary to activation of AMPK and sirtuins 

and inhibition of mTOR in response to reduced nutrient availability. Specifically, low levels of 

glucose, amino acids and insulin downregulate mTOR and insulin-like growth factor 1 (IGF-1) 

signaling pathways, decreasing protein synthesis and stimulating autophagy in the cell. Low 

nutrient levels also increase the AMP to ATP ratio, which, in turn, stimulates AMPK-regulated 

energy producing (catabolic) processes, while inhibiting anabolic metabolism.  Bioavailability of 

NAD+ (relative to NADH) and acetyl CoA (relative to CoA) also increase during fasting/CR, 

activating sirtuins, which deacetylate transcription factors such as FOXOs and PGC-1α, 
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controlling the expression of genes regulating cellular stress resistance and mitochondrial 

biogenesis.   

Despite the clear connections between CR and mitochondrial health, the direct effects 

of CR on mitochondria in the vasculature are not well established. Lifelong and short-term later 

life CR increase aortic abundance and/or activity of MnSOD [189-191], consistent with 

improved vascular mitochondrial antioxidant defenses. In addition, CR prevents the increase in 

mtROS bioactivity in cerebrovascular endothelial cells from old rats [196]. These changes in 

mitochondrial redox state are associated with evidence of increased SIRT1 and reduced 

mTOR signaling with lifelong CR, supporting CR-associated modulation of nutrient sensing 

pathways as upstream mechanisms [190]. Additional support for vascular mitochondria 

modulation by CR comes from work with alternative CR-mimicking pharmaceutical and/or 

nutraceutical compounds targeting energy sensing pathways [193] (discussed next). There is 

also growing evidence that at least some of the benefits of CR can be achieved by lifestyle-

based CR-mimicking strategies, collectively referred to as intermittent fasting [193]. Whether 

intermittent fasting is effective for reversing vascular dysfunction in older adults and the 

potential (mitochondrial) mechanisms involved remain to be determined. Initial observations 

suggest that time-restricted feeding (a form of intermittent fasting) without weight loss does not 

improve vascular function in healthy late middle-aged and older men and women. Thus, the 

mitochondria-specific effects of CR on vascular function have not yet been fully elucidated and 

the efficacy of lifestyle-based CR-mimicking strategies for age-associated vascular dysfunction 

remains under investigation. 

Pharmaceutical CR-mimetics. CR-mimicking strategies are typically pharmaceutical 

(synthetic) or nutraceutical (natural) modulators of the energy sensing pathways thought to be 
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responsible for the beneficial effects of CR. The NAD+-boosting/sirtuin-activating strategies 

discussed previously is an example of this approach.  

Resveratrol.  The naturally occurring polyphenol resveratrol is another putative CR-

mimicking approach, which is often attributed to the ability of the compound to activate sirtuins, 

although this compound is non-specific with several off-target effects. Indeed, chronic 

resveratrol administration in mice elicits many physiological and molecular changes 

characteristic of chronic CR in non-vascular tissues including improved insulin sensitivity and 

mitochondrial biogenesis [197]. Resveratrol also improved endothelial function in middle-aged 

and old rodents [198, 199], which was associated with increased expression of eNOS and 

decreased superoxide generation by NADPH oxidase [199]. Moreover, resveratrol prevented 

the “aging-like” increase in aortic stiffness with a high-fat/high-sugar diet in non-human 

primates [200]. Incubation with resveratrol of arterial segments from older adults with 

hypertension and dyslipidemia improved EDD via a mechanism involving activation of eNOS 

and decreased oxidative stress, accompanied by enhanced mitochondrial antioxidant defense 

(increased MnSOD expression) [201]. Acute and/or chronic resveratrol supplementation 

improved endothelial function in healthy estrogen-deficient postmenopausal women [202] and 

middle-aged and older overweight/obese adults  [203-205]. More recently, in glucose-intolerant 

older adults, 6 weeks of resveratrol supplementation improved reactive hyperemia, which is 

partly influenced by endothelial function, while also favorably modulating skeletal muscle 

mitochondria-related gene transcripts associated with mitochondrial dysfunction and oxidative 

phosphorylation and increasing mitochondrial number [206]. These effects are consistent with 

the notion of enhanced mitochondrial biogenesis with CR/sirtuin activation and suggest the 
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vascular benefits of resveratrol might be related, at least in part, to enhanced mitochondrial 

function, although more research is needed.   

AMPK and mTOR. Modulation of other energy sensing pathways via activation of AMPK 

or inhibition of mTOR have also been shown to affect vascular aging. Sustained activation of 

AMPK with AICAR, which can stimulate mitochondrial biogenesis in a PGC-1α-dependent 

manner [207], improves endothelial function by decreasing oxidative stress but without 

affecting NO bioavailability in old mice [208]. The anti-inflammatory drug salsalate also 

activates AMPK, which may be one of multiple mechanisms by which this compound improves 

endothelial function and reduces aortic stiffness in older mice and humans [209-212]. Inhibition 

of mTOR with rapamycin ameliorates age-related impairments in NO-mediated endothelial 

function by suppressing oxidative stress and reverses aortic stiffening, which is associated with 

reductions in collagen abundance [213]. More research is needed to translate these findings to 

humans and delineate the role of changes in mitochondrial function in response to 

pharmacological modulation of these energy sensing pathways in the aging vasculature.  

Nitrates/nitrites/NO-boosting. Reversing declines in NO bioavailability holds great 

promise as a strategy for prevention and treatment of vascular dysfunction with aging. NO 

bioavailability can be enhanced by increasing NO production via upregulation of eNOS 

activity/expression and/or increasing flux of the nitrate-nitrite-NO (eNOS independent) pathway 

[214, 215]. Targeting the nitrate-nitrite-NO pathway is considered a more promising and 

effective approach because of eNOS dysfunction with aging and chronic disease, and the fact 

that supplementation with inorganic nitrites and nitrates improves endothelial function and 

arterial stiffness in both pre-clinical models and human subjects, including healthy older adults 

[36, 215-219]. Although the predominant mechanism for the beneficial effects of nitrates and 
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nitrites is the serial conversion of these precursor molecules to NO, nitrite and/or nitrate also 

suppress oxidative stress and inflammation independent of NO [215]. One mechanism by 

which nitrites and nitrates exert these effects may be via improved mitochondrial function 

[220]. Indeed, accumulating evidence suggests that restoration of NO signaling induces 

mitochondrial biogenesis and improves mitochondrial function [84, 85, 130]. In terms of 

vascular aging, oral sodium nitrite supplementation reverses age-related reductions in EDD in 

old mice by restoring NO bioavailability, which may be mediated by a suppression of mtROS 

and other favorable effects on mitochondrial health [221]. However, whether nitrite and/or 

nitrate improve vascular function by reducing mtROS and/or improving mitochondrial function 

in humans is currently unknown.  

Polyphenols/flavonoids. As described above, mitochondrial dysfunction is a driver of 

age-associated increases in pro-inflammatory signaling, primarily via excessive production of 

mtROS, release of mtDNA (i.e., damage-associated molecular patterns) and as an inducer of 

cellular senescence [222]. Polyphenols/flavonoids are a class of compounds with potent anti-

inflammatory properties that may represent a viable strategy for treating vascular dysfunction 

with aging by enhancing mitochondrial fitness. For example, curcumin, a naturally occurring 

phenol with anti-inflammatory (and antioxidant) properties found in the Indian spice turmeric, 

rescues age-related impairments in endothelial function by increasing NO bioavailability and 

decreasing oxidative stress and normalizing age-associated increases in aortic stiffness [223]. 

Curcumin supplementation also increases aortic MnSOD expression in old mice [223], 

suggesting improved mitochondrial antioxidant defenses and decreased mtROS, which are 

consistent with findings in liver and kidney tissue from curcumin treated diabetic obese mice 

[224, 225]. Curcumin was recently shown to improve endothelial function in older adults by 
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increasing NO bioavailability and lowering oxidative stress [226]; however, it is currently 

unknown if decreased mtROS contributed to the overall decrease in oxidative stress in the 

curcumin-treated group. Other agents with anti-inflammatory action have also been found to 

favorably modulate vascular dysfunction in humans with aging and/or age-associated chronic 

diseases, including TNFa antagonists [227, 228] and IL-1 [229] and NFkB [209-212] inhibitors, 

but additional research is needed to determine the mitochondrial effects of these and other 

such compounds.  

 

Emerging Mitochondrial Therapies and Targets to Improve Vascular Function. This 

section of the review will highlight examples of promising therapies that have not yet been fully 

explored but hold promise for improving mitochondrial function to promote healthy vascular 

aging.  

Mitochondrial cardiolipin. Cardiolipin is a key inner mitochondrial membrane 

phospholipid, which plays important roles in a variety of mitochondrial functions including 

calcium handling, import of proteins into the mitochondria, mitochondrial dynamics and 

assembly/stabilization of complexes of the electron transport chain [230]. Regarding the latter, 

cardiolipin is thought to enable a favorable organization of the electron transport chain 

complexes and the cristae for optimal electron transport chain function (e.g., supercomplex 

formation), which has been claimed to be associated with lower mtROS production. Cardiolipin 

is particularly vulnerable to damage due to lipid peroxidation being initiated by mtROS, which 

decreases function and content of cardiolipin and exacerbates mitochondrial dysfunction 

including increasing mtROS production. Cardiolipin content decreases with aging [231, 232] 

and in peripheral blood mononuclear cells is positively correlated with endothelial function in 
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diabetic and non-diabetic humans [110]. Szeto-Schiller tetra-peptides (e.g., SS-31) are an 

emerging therapy which have been proposed to act by concentrating at the mitochondrial inner 

membrane and stabilizing cardiolipin, potentially decreasing mtROS production. These 

peptides have documented efficacy for improving physiological function in a variety of pre-

clinical settings [233]. Regarding vascular aging, SS-31 treatment improved cerebrovascular 

EDD by increasing NO availability in old mice [154]. SS-31 also normalized mtROS production 

and restored basal respiration in cerebrovascular endothelial cells from old rats to levels 

observed in cells from young animals (92). Early phase clinical trials in humans have shown 

mixed results on various physiological functions, but SS-31 or related compounds targeting 

cardiolipin have not yet been assessed for improving vascular function in older adults. 

Gut microbiome. Unfavorable age-related changes to the gut microbiome promote 

endothelial dysfunction and arterial stiffening, likely via production of adverse, gut microbiota-

derived metabolites such as trimethylamine oxide [234]. Conversely, metabolites derived from 

microbiota metabolism may also have health-promoting effects, some of which occur via 

mitochondrial mechanisms. One such metabolite is ellagitannin-derived urolithin A, which 

activates mitophagy [235]. Urolithin A treatment preserved mitochondrial function with aging 

and extended lifespan of C. elegans and improved skeletal muscle function in rodents [235]. 

Moreover, acute and chronic administration of the compound appears to be safe and well-

tolerated in sedentary older adults and modulates plasma acylcarnitine and skeletal muscle 

gene expression profiles consistent with effects on mitochondria [236]. More research is 

needed to determine the physiological effects of urolithin A and other gut microbiome-

associated compounds for treating vascular dysfunction with aging.  
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Metformin and other pharmaceuticals. Many existing pharmaceutical agents have 

“off-target” mitochondrial effects and show potential for being “repurposed” for treatment of 

vascular dysfunction. For example, metformin is a first line clinical therapy for lowering blood 

glucose levels in type 2 diabetes. Metformin reduces CVD risk at least in part through 

mechanisms independent of its effects on blood glucose, including potentially enhancing 

vascular function [237]. Indeed, metformin improves endothelial function and reduces arterial 

stiffness in a number of clinical populations. Although several mechanisms, including anti-

inflammatory actions [238], may contribute to the beneficial effects of metformin on vascular 

function, metformin acts in part by interacting with complex I in mitochondria [239], so 

improved mitochondrial health/function appears to be important in its mode of action. For 

example, in diabetic mice, metformin improved endothelial function by modulating dynamin-

related protein 1-associated mitochondrial fission and decreasing mtROS in an AMPK-

dependent manner [240]. Other pharmaceuticals with efficacy for improving vascular function 

by mechanisms involving modulation of mitochondrial function include diabetes drugs such as 

the thiazolidinediones rosiglitazone and pioglitazone [241, 242], which stimulate peroxisome 

proliferator-activated receptor gamma, and antihypertensive agents including angiotensin-

converting enzyme inhibitors and angiotensin II receptor blockers [243].   

 

Interactions Among Mitochondria-Targeted Therapies and Other Interventions. Although 

therapeutic strategies that decrease mitochondrial oxidative stress and augment mitochondrial 

health hold promise for enhancing vascular function with aging, it is important to consider how 

free-living conditions differ from carefully controlled experimental settings. Older adults are 

commonly prescribed multiple medications, and many, although not enough, engage in various 
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healthy lifestyle strategies that modulate vascular health. As discussed previously, physiologic 

levels of mtROS are critical transducers of the signaling events necessary for adaptations to 

stress, including responses to exercise training [83]. For example, hormetic mtROS levels (i.e., 

mitohormesis) are now recognized as important signals for exercise training-induced 

mitochondrial biogenesis, antioxidant enzyme upregulation, immune system responses, insulin 

responsiveness, growth factor signaling, angiogenesis, and vascular reactivity [83, 244-246]. 

As such, it is possible that dampening or completely eliminating mtROS via supplementation 

with mitochondria-targeted compounds might prevent some of these beneficial adaptations. It 

is therefore important to understand how mitochondria-targeted therapeutic strategies may 

interact with lifestyle and other pharmacologic and nutraceutical interventions.  

There are mixed data regarding the interaction between general antioxidant compounds 

and exercise training, with some studies finding that supplementation with general antioxidants 

(e.g., such as vitamins C and E) and compounds with antioxidant effects (e.g., resveratrol) 

blunt exercise-induced physiological adaptations, and other studies finding no negative 

interaction between antioxidant supplementation and exercise [83, 247]. In contrast, some 

nutraceutical approaches such as dietary nitrate supplementation may enhance adaptations to 

exercise training [248]. Some of the differences among studies have been attributed to 

variations in dose, duration, and timing of antioxidant administration relative to exercise, 

supporting the importance of hormetic levels of mtROS for adaptation to exercise. There is 

limited evidence investigating the interaction between mitochondria-targeted antioxidants and 

exercise training, but a study by Shill et al. found that MitoQ supplementation in healthy young 

adults did not alter exercise-training adaptations at the whole-body, skeletal muscle, and 

circulating angiogenic cell levels [249]. Future work is needed to determine how vascular 
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adaptations to exercise in the setting of primary aging are influenced by concomitant 

administration of mitochondria-targeted compounds.  

 

CONCLUSIONS, RESEARCH GAPS AND FUTURE DIRECTIONS 

 Aging is the major risk factor for CVD due importantly to the development of vascular 

dysfunction, in particular endothelial dysfunction and large elastic artery stiffening. In this 

review we have discussed the central role of mitochondrial dysregulation as a key 

pathophysiological substrate in mediating age-associated vascular dysfunction. We have also 

reviewed mitochondrial targets of established therapies and novel, emerging treatments 

directly targeting mitochondrial health/function for preventing and/or reversing age-related 

vascular dysfunction. There remain several important knowledge gaps in the field; the following 

represent some potential future, biomedically significant directions for research related to 

mitochondria and vascular aging (Figure 9). 

  

1) Mitochondrial mechanisms of vascular aging: More research is needed to determine the 

influence of dysregulation of specific mitochondrial functions with aging on age-associated 

vascular dysfunction. Additional insight into the mitochondrial mechanisms underlying vascular 

aging would facilitate the development of new therapies. Notable mechanisms deserving 

further study include impaired mito-nuclear communication, calcium handling, mitochondrial 

membrane potential and mitochondrial dysfunction-associated cellular senescence. 

 

2) mtROS production and signaling: The identity of the mitochondrial ROS and associated 

signaling pathways responsible for promoting vascular aging have not been fully elucidated. 

For example, it remains to be determined if and how superoxide is released into the 

mitochondrial matrix and/or intermembrane space exits the mitochondria (e.g., via anion 
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channels) to react with NO in the cell to reduce NO bioavailability. Alternatively, superoxide 

may not actually exit the mitochondria, but NO may diffuse into the mitochondria and react with 

superoxide there, leading to a decrease in NO in the rest of the cell. The relative contributions 

of other mitochondrial ROS (e.g., hydrogen peroxide) to vascular aging (vs. acting as signaling 

molecules) also remains to be fully characterized. 

  

3) Mitochondrial mechanisms of established therapies for vascular aging: There are 

number of established therapies for healthy vascular aging with documented, beneficial effects 

on mitochondrial function in other tissues (e.g., skeletal muscle); whether these mitochondrial 

effects are also observed in the aging vasculature requires confirmation. Encouraging 

evidence exists for caloric restriction, select dietary patterns, novel modes of exercise training 

and exercise-inspired lifestyle and pharmacological approaches, but more research is needed 

to establish the safety and efficacy of these strategies.  

 

4) Translation of promising mitochondrial therapies: Pre-clinical and early phase clinical 

(translational) results support the potential efficacy of a number of promising mitochondria-

acting pharmaceutical and nutraceutical approaches (e.g., mitochondria-targeted antioxidants, 

NAD+-boosting supplements, autophagy/mitophagy activating compounds). However, larger 

clinical trials (e.g., phase II and possibly multicenter trials) are needed to confirm these 

preliminary observations and fully translate these interventions to inform public health/clinical 

guidelines. 

  

5) Development of new mitochondria-targeted therapies: New therapies targeting 

established “hallmarks” of mitochondrial dysfunction such as impaired stress 



 42 

resistance/resilience should be developed; promising compounds in development should be 

assessed in the context of vascular aging (e.g., mitophagy activation with urolithin A). 

   

6) Extension to clinical populations: Promising existing strategies for improving 

mitochondrial health and promoting healthy vascular aging should be translated to other 

clinical populations characterized by elevated CVD risk (e.g., chronic kidney disease, type II 

diabetes) or “accelerated” vascular aging (e.g., chemotherapy-treated cancer survivors). 

  

7) Role of sex differences: Potential sex differences in responsiveness to both lifestyle and 

pharmacological strategies must be determined [202, 250-252] and the role of vascular 

mitochondria in mediating sex differences should be established. Appropriate pre-clinical 

approaches and experiments and/or large, properly powered clinical trials are needed to 

accomplish this goal. 

  

8) Interactions between different prevention and treatment strategies: It remains to be 

determined whether there are interactions among mitochondria-targeted therapies and other 

health promoting medications, supplements, and lifestyle factors, and if such interactions are 

beneficial or detrimental. Pre-clinical models could provide valuable initial insights, but large 

clinical studies will ultimately be needed to more fully elucidate these complex, but clinically 

important, issues in order to promote the public health benefits of these strategies in the most 

evidence-based and informed manner.  
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FIGURE LEGENDS 

Figure 1. Mechanisms of age-associated vascular dysfunction and related clinical 

disorders. Aging is associated with mitochondrial dysfunction-induced increases in reactive 

oxygen species (ROS) and oxidative stress and increases in pro-inflammatory cytokine 

signaling and chronic low-grade inflammation. Together, these processes induce vascular 

dysfunction, featuring: (lower left) large elastic artery stiffening mediated by degradation of 

elastin fibers (blue), increased deposition of collagen (brown), and greater crosslinking of 

structural proteins by advanced glycation end-products (dashed connecting lines); and (right) 

vascular endothelial dysfunction characterized by reduced nitric oxide (NO) bioavailability and 

endothelium dependent dilation. These and other changes to arteries, in turn, increase the risk 

of developing cardiovascular diseases, chronic kidney disease, and Alzheimer’s disease and 

related dementias.  

 

Figure 2. Mechanisms of age-associated mitochondrial dysfunction. Aging is associated 

with dysregulated mitochondrial quality control featuring reduced mitochondrial biogenesis 

(upper left) and reduced mitophagy (upper right), increased mitochondrial fission (upper middle 

right), reduced mitochondrial fusion (lower middle right), reduced mitochondrial stress 

resistance (lower right), increased mitochondrial DNA damage (middle left of mitochondria 

image) and increased bioactivity of mitochondrial reactive oxygen species (e.g., superoxide 

and other reactive oxygen species [ROS], middle of mitochondria image) relative to antioxidant 

defenses (e.g., manganese superoxide dismutase [SOD], lower right of mitochondria). 
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Figure 3. Aging is associated with excess vascular mitochondrial superoxide 

production and lower mitochondrial superoxide dismutase. Vascular (A) mitochondrial 

superoxide production and (B) p66SHC are higher in old (Old Control) relative to young 

(Young Control) mice. The mitochondrial isoform of superoxide dismutase (SOD), manganese  

SOD (MnSOD), is lower in (C) aorta from old control compared with young control mice and 

(D) arterial endothelial cells from healthy older adult humans relative to young adult controls. 

Data are mean ± SEM. *P < 0.05 YC vs. OC. Data from [111] and [115]. 

 

Figure 4. Voluntary aerobic exercise-associated improvement in vascular endothelium 

dependent dilation is associated with favorable changes in markers of mitochondrial 

biogenesis, bioenergetics, dynamics, superoxide bioactivity and stress resistance in 

arteries of old mice. Ten weeks of voluntary aerobic exercise in old mice: restores (A) 

vascular endothelial function and aortic abundance of markers of (B) mitochondrial biogenesis 

(PGC-1α) and (C) mitochondrial energy sensing (SIRT3), accompanied by lower abundance of 

(D) a marker of mitochondrial fission (Fis-1) and (E) mitochondrial superoxide bioactivity; and 

increases (F) mitochondrial stress resistance (rotenone-induced suppression of endothelial 

function). Data are mean ± SEM. *P < 0.05 Young Control vs. Old Control. Data from [114]. 

 

Figure 5. Chronic oral MitoQ supplementation improves vascular endothelial function in 

both old mice and older adult humans. Oral MitoQ supplementation improves vascular 

endothelial function in (A) old mice and (B) healthy older adult humans. Data are mean ± SEM. 

*P < 0.05 Young Control vs. Old Control; #P < 0.05 Old Control vs. Old MitoQ or Older Adult 

Placebo vs. Older Adult MitoQ. Data from [111] and [118]. 
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Figure 6. Chronic oral MitoQ supplementation improves vascular endothelial function 

by decreasing mitochondrial oxidative stress-related suppression of endothelial 

function in both mice and humans. Oral MitoQ supplementation improves vascular 

endothelial function by reducing mitochondrial oxidative stress-related suppression of EDD as 

indicated by no further improvement in EDD following (A) ex vivo treatment of mouse carotid 

arteries with MitoQ and (B) a single supra-therapeutic oral dose of MitoQ in humans. Data are 

mean ± SEM. *P < 0.05 Young Control (- acute MitoQ) vs. OC (- acute MitoQ) or Older Adult 

Placebo (- acute MitoQ) vs. Older Adult MitoQ (- acute MitoQ); #P < 0.05 Old Control (- acute 

MitoQ) vs. Old Control (+ acute MitoQ) or Older Adult Placebo (- acute MitoQ) vs. Older Adult 

Placebo (+ acute MitoQ) . Data from [111] and [118]. 

 

Figure 7. Chronic oral MitoQ supplementation reduces arterial stiffness in old mice and 

in older adult humans with elevated arterial stiffness. Data from our laboratory 

demonstrating that oral MitoQ supplementation reduces arterial stiffness in (A) old mice and 

(B) older healthy humans with normal age-related increases in aortic stiffness (PWV > 7.6 m/s; 

right-hand panels [148], red shading) but not in young mice or older adults without normal age-

related aortic stiffening at baseline (green shading) (left-hand panels). Data are mean ± SEM. 

*P < 0.05 Pre MitoQ Supplementation vs. Post MitoQ Supplementation. Data from [147] and 

[118]. 

 

Figure 8. Oral trehalose supplementation is associated with improvements in vascular 

endothelium dependent dilation, aortic superoxide bioactivity, arterial stiffness, human 
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microvascular endothelial function and markers of mitochondrial quality control in the 

vasculature of old mice. Four weeks of oral trehalose supplementation results in (A) 

improved vascular endothelium dependent dilation, (B) decreased aortic superoxide 

bioactivity, and (C) reduced age-related arterial stiffness in old mice, (D) improved 

microvascular function in humans, and changes in markers of mitophagy Parkin (E) and BNIP 

(F), (G) mitochondrial bioenergetics (SIRT3), and (H) mitochondrial oxidative stress 

(phosphorylated p66SHC) in vascular tissue from mice indicative of enhanced mitochondrial 

fitness. Data are mean ± SEM. *P < 0.05 Young Control vs. Old Control or Baseline vs. 12 

weeks of trehalose supplementation. Data from [155], [113] and [157]. 

 

Figure 9. Research gaps and future directions.  NAD, Nicotinamide Adenine Dinucleotide; 

NO, Nitric Oxide; RCTs, Randomized Controlled Trials. 
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