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This paper provides an extended exploration of the inverse-chirp gravitational-wave signals from
stellar collapse in massive scalar-tensor gravity reported in [Phys. Rev. Lett. 119, 201103]. We
systematically explore the parameter space that characterizes the progenitor stars, the equation of
state and the scalar-tensor theory of the core collapse events. We identify a remarkably simple and
straightforward classification scheme of the resulting collapse events. For any given set of parameters,
the collapse leads to one of three end states, a weakly scalarized neutron star, a strongly scalarized
neutron star or a black hole, possibly formed in multiple stages. The latter two end states can lead
to strong gravitational-wave signals that may be detectable in present continuous-wave searches with
ground-based detectors. We identify a very sharp boundary in the parameter space that separates
events with strong gravitational-wave emission from those with negligible radiation.

I. INTRODUCTION

Black holes (BHs) and neutron stars (NSs) populate the
graveyard of massive stars. As the star’s iron core exceeds
its effective Chandrasekhar mass, gravitational instability
causes collapse to a NS. Collapse is initially halted by
the repulsive character of nuclear interactions, causing
the inner core to bounce. This bounce may liberate a
hydrodynamical shock that will propagate through the
star’s envelope and eventually result into a supernova.
For some progenitors, further accretion from the star’s
outer layers, can then turn the NS into a BH.
The formation of BHs and NSs via stellar collapse

naturally involves strong, dynamical gravitational fields,
thus constituting a precious tool to investigate the na-
ture of gravity [1]. In particular, core collapse is ideal to
constrain those generalizations of Einstein’s General Rela-
tivity (GR) where compact objects present a substantially
different structure. Examples of these are spontaneously
scalarized NSs [2–5] and BHs [6, 7] in some classes of
scalar-tensor (ST) theories, universal horizons in theories
with Lorentz violation [8], or the spontaneous growth of
vector or tensor fields around compact objects in modified
gravity [9–11].
Probing the dynamics and gravitational-wave (GW)

emission of compact objects undergoing such dynamic
processes requires a well-posed formulation of the under-
lying theory that allows for implementation in numerical

∗ rr417@cam.ac.uk
† u.sperhake@damtp.cam.ac.uk
‡ cmoore@star.sr.bham.ac.uk
§ magathos@damtp.cam.ac.uk
¶ d.gerosa@bham.ac.uk
∗∗ christian.d.ott@gmail.com

evolution codes. The demonstration of the well-posedness
of GR by Choquet-Bruhat [12, 13] represents a milestone
in the mathematical understanding of Einstein’s theory
and the corresponding problem is now being tackled for
some of the most popular alternative theories of grav-
ity [14–18].
ST theories, where gravity is mediated by the usual

graviton and an additional scalar field, are arguably the
simplest and most intensively studied generalization of
GR. Extending early seminal work by Brans and Dicke
[19], the theory’s most general formulation was first writ-
ten down by Horndeski [20]. These theories have been
strongly tested in the weak-field regime by the Cassini
mission [21], Lunar Laser Ranging [22], and binary pulsars
[23]. ST theories of gravity are now being severely con-
strained by GW observations [24, 25]. In particular, the
multi-messenger observation of GW170817 [26] has ruled
out all variants of Horndeski theory where the speed of
photons and gravitons differs by more than∼ 5×10−16 [27–
29]. For some Horndeski theories, gravity has a dispersion
relation (i.e. waves with different frequencies travel at dif-
ferent speed) which provides a further handle to constrain
the nature of gravity with GW signals.
In this paper, we study BH and NS formation in a

particular sub-class of massive scalar-tensor (MST) grav-
ity and explore its consequences for current and future
GW observations. We note in this context that the above
mentioned constraints on the propagation of GWs ap-
ply to the spin-two modes but do not, as yet, constrain
the propagation speed and, hence, the mass of scalar
degrees of freedom. In particular, the ST formulation
by Refs. [2, 30, 31] with the addition of a mass term
(e.g. [3]) constitute an ideal playground for probing addi-
tional physics with stellar collapse [32–40]. This class of
ST theories presents three crucial features:

1. The Einstein frame reduction (see, e.g., [41]) im-
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mediately proves that the theory is well-posed and
thus suitable to be tackled by numerical integration.

2. A new family of stationary NS solutions is present,
which are macroscopically different from their GR
counterparts [2].

3. The presence of a non-zero scalar-field mass intro-
duces a dispersion relation, with a consequent new
phenomenology for the emitted GW signal.

With these ingredients in the blender, our previous contri-
bution [35, 37, 39] has presented a limited suite of simula-
tions of NS and BH formation from realistic pre-supernova
stellar density profiles and highlighted the presence of
characteristic “inverse GW chirp” signals. Encoded in
the oscillation of the scalar field, high-frequency GW sig-
nals reach the detector sooner compared to low-frequency
modes. Signals might still be present for decades, or even
centuries, after the core collapse event, thus providing
us with the tantalizing possibility of testing massive ST
theories with GW observations of historic supernovae.

In this paper, we extend our previous work by present-
ing a systematic exploration of the phenomenology of core
collapse in massive ST gravity. In Sec. II, we review the
complete formalism used in this study, including equations
of motions in flux-conservative form and details on the
equation of state. In Sec. III, we summarize our numerical
implementation, including initial data and the evolution
scheme. Section IV presents a complete taxonomy of the
collapse process and its endpoints.

A surprisingly simple picture emerges: despite the large
dimensionality of the problem, the collapse dynamics can
always be classified as one of only five possible scenarios.
These are: (i) single-stage collapse to GR-like NSs, (ii)
collapse to a BH following one accretion episode, (ii)
collapse to a BH following multiple accretion and proto-
NS stages, (iv) collapse to a strongly scalarized NS via
accretion onto a GR-like proto-NS, and (v) direct collapse
to a strongly scalarized NS.
We then proceed by analyzing the GW consequences

of our findings. Section V provides a careful derivation
and analysis of the inverse-chirp signal morphology. In
particular, we argue that the features depend only on
the mass of the scalar field and not the details of the
source dynamics. Moreover, the main characteristics of
the GW signal, its frequency and amplitude as functions
of time, depend (to good accuracy) on the scalar mass
only through a remarkably simple rescaling. In Sec. VI
we present the relevance of our simulations to current and
future GW searches. Finally, in Sec. VII we draw our
conclusions. To streamline the flow of the paper, several
details are postponed to the appendices. In particular,
Appendix A provides a more detailed description of each
collapse scenario through the analysis of a representative
example. Appendix B illustrates more results on the
impact of the equation of state and progenitor model on
the degree of scalarization. The accuracy of the stationary-
phase approximation in describing the propagation of

massive scalar waves is verified through a numerical test
in Appendix C, and Appendix D provides more results
on the LIGO detectability of the inverse-chirp signal.
Overall, this paper contains the results of O(4× 103)

1-dimensional core-collapse simulations for a total com-
putational time of O(2× 106) CPU hours. Throughout
this paper we use geometric units c = G = 1.

II. SCALAR-TENSOR THEORY

In this work we consider the class of scalar-tensor theo-
ries of gravity first studied by Bergmann [30] and Wag-
oner [31], which satisfy the following assumptions.

1. The equations of motion are derived from the varia-
tion of an action S = SG + SM where SG consists
exclusively of the gravitational fields and SM rep-
resents the interaction of gravity with all matter
fields.

2. All long-range forces are mediated by the three
lowest-spin bosons. Electromagnetism is the only
spin one interaction and the spin zero contribution
is described by a single real scalar field.

3. Variation of the action results in at most two-
derivative field equations, i.e. terms linear in second
derivatives or quadratic in first derivatives or of
lower order.

4. The theory is diffeomorphism invariant, i.e. formu-
lated in terms of tensorial equations.

5. The weak equivalence principle is satisfied.

Using the above principles, we can formulate the action
in the Jordan-Fierz frame [1]:

S =

∫
dx4√−g

[
F (φ)

16π
R− 1

2
gµν(∂µφ)(∂νφ)−W (φ)

]

+SM [ψm, gµν ] , (1)

where gµν represents the metric (from now on referred to
as the Jordan metric), g is its determinant, R is the Ricci
scalar corresponding to gµν , φ represents the scalar field,
F andW are functions of φ, and SM represents the action
of the matter fields ψm. A particularly convenient (and in
some instances preferable [42]) formulation of this class of
theories is obtained in the so-called Einstein frame. This
is achieved through a conformal transformation

ḡµν ≡ F (φ)gµν , (2)

and a redefinition of the scalar field according to

∂ϕ

∂φ
=

√
3

4

F,φ2

F 2
+

4π

F
; (3)
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for an exploration of the regime of viability of this trans-
formation see [43]. The action of Bergmann-Wagoner
scalar tensor theory is then given by [1, 44],

S =

∫
d4x

√−ḡ
16π

[
R̄− 2ḡµν∂µϕ∂νϕ− 4V (ϕ)

]

+SM

[
ψm,

ḡµν
F

]
, (4)

where V (ϕ) is the scalar potential and R̄ and ḡ, re-
spectively, denote the Ricci scalar and determinant
constructed from the conformal metric. Note that
we recover Brans-Dicke theory [19] with the choice
F = exp

(
−2ϕ/

√
3 + 2ωBD

)
while general relativity corre-

sponds to the trivial case ϕ = const.
In this work we choose the matter part of the action SM

such that the physical energy momentum tensor describes
a perfect fluid with baryon density ρ, pressure P , internal
energy ε, enthalpy H and 4-velocity uα,

Tµν ≡ 2√−g
δSM
δgµν

= ρHuµuν + Pgµν . (5)

The equations of motion are obtained through variation
of the action (4) with respect to the metric, the scalar
and the matter fields, as well as the continuity equation
for baryon conservation in the physical frame,

Ḡαβ = 2∂αϕ∂βϕ− ḡαβ∂µϕ∂µϕ+ 8πT̄αβ − 2V ḡµν , (6)

∇̄µ∇̄µϕ = 2π
F,ϕ
F
T̄ + V,ϕ , (7)

∇̄µT̄µα = −1

2

F,ϕ
F

T̄ ḡαµ∇̄µϕ , (8)

∇µ(ρuµ) = 0 . (9)

Here T̄αβ = Tαβ/F is the conformal energy momentum
tensor, ∇̄ and ∇ are the covariant derivative associated
with ḡµν and gµν , respectively, and the subscript , ϕ de-
notes differentiation with respect to ϕ.
The specific scalar-tensor theory of gravity is deter-

mined by the choice of the potential function V (ϕ) and the
conformal factor F (ϕ). Here we consider a non-interacting
scalar field with mass parameter µ, so that the potential
is given by

V (ϕ) =
µ2ϕ2

2~2
. (10)

The scalar mass introduces a characteristic frequency

ω∗ = 2πf∗ =
µ

~
. (11)

Finally, we write the conformal factor as

F (ϕ) = e−2α0ϕ−β0ϕ
2

, (12)

where α0 and β0 are dimensionless parameters. This
choice for the conformal factor (sometimes also written
as A ≡ F−1/2; cf. [45]) is very common in the literature

and motivated by the fact that in this form α0 and β0

completely determine all modifications of gravity at first
post-Newtonian order [45–47].

Henceforth, we consider spherical symmetry and impose
polar slicing and radial gauge [48] in the Einstein frame,
so that the line element takes on the form,

ds̄2 = ḡµνdxµdxν = −Fα2dt2 +FX2dr2 + r2dΩ2 , (13)

where α and X are functions of (t, r). Following common
practice, we introduce for convenience the potential Φ(t, r)
and the mass function m(t, r) through

Fα2 = e2Φ , FX2 =

(
1− 2m

r

)−1

. (14)

The four velocity in spherical symmetry is

uµ =
1√

1− v2

[
1

α
,
v

X
, 0, 0

]
, (15)

where the velocity field v as well as the matter variables
ρ, P , H, ε of Eq. (5) are functions of (t, r). By inserting
the expressions of Eqs. (5) and (13)-(15) into the field
equations (6)-(9), we obtain the set of equations that
govern the dynamics of spherically symmetric fluid config-
urations in Bergmann-Wagoner ST theory of gravity. In
order to accurately model discontinuities arising through
shock formation in the fluid profiles, however, we require
high resolution shock capturing and, hence, a flux conser-
vative form of the matter equations. This is achieved by
converting the primitive variables (ρ, v, H) to their flux
conservative counterparts [35, 49],

D =
ρXF−3/2

√
1− v2

, Sr =
ρHvF−2

1− v2
, τ =

Sr

v
− P

F 2
−D .

(16)
Finally, we convert the wave equation (7) for the scalar
field into a first order system by defining

η =
1

X
∂rϕ , ψ =

1

α
∂tϕ . (17)

The final set of equations can then be written in the form,

∂rΦ = X2F

[
m

r2
+ 4πr

(
Srv +

P

F 2

)
+

r

2F
(η2 + ψ2)

]

− rFX2V , (18)

∂rm = 4πr2(τ +D) +
r2

2F
(η2 + ψ2) + r2V , (19)

∂tϕ = αψ , (20)

∂tη =
1

X
∂r(αψ)− rXαη (ηψ − 4πF Sr) +

F,ϕ
2F

αηψ ,

(21)

∂tψ =
1

r2X
∂r(r

2αη)− rXαψ(ηψ − 4πF Sr) +
F,ϕ
2F

αψ2

+ 2πα

(
τ − Srv +D − 3

P

F 2

)
F,ϕ − αFV,ϕ , (22)
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∂t



D

Sr

τ


 =

1

r2
∂r


r2 α

X




fD

fSr

fτ





 =




sD

sSr

sτ


 , (23)

with fluxes and sources given by,

fD = Dv , (24)

fSr = Srv +
P

F 2
, (25)

fτ = Sr −Dv , (26)

sD = −DF,ϕ
2F

α(ψ + vη) , (27)

sSr = (Srv − τ −D)αXF

(
8πr

P

F 2
+
m

r2
− F,ϕ

2F 2X
η

− rV
)

+
αX

F
P
m

r2
+ 2

αP

rXF 2
− rαX P

F
V

− 2rαXSrηψ − 3

2
α
P

F 2

F,ϕ
F
η

− r

2
αX(η2 + ψ2)

(
τ +

P

F 2
+D

)
(1 + v2) , (28)

sτ = −
(
τ +

P

F 2
+D

)
rαX [(1 + v2)ηψ + v(η2 + ψ2)]

+
α

2

F,ϕ
F

[
Dvη +

(
Srv − τ + 3

P

F 2

)
ψ

]
. (29)

Note that these equations differ from Eqs. (2.21), (2.22),
(2.26)-(2.28) and (2.33)-(2.39) in Ref. [35] through the
presence of the potential terms involving V in our
Eqs. (18), (19), (22) and (28). In particular, the principal
part and the characteristic structure of the equations are
identical to those in the case of a massless scalar field and
we consequently inherit the well-posed character of the
evolution equations of the massless case.
In order to close the system of differential equations

(18)-(29), we need to prescribe an equation of state (EOS)
that provides the pressure as a function of ρ and ε. Here
we use a so-called hybrid EOS introduced in Ref. [50]
that captures in closed analytic form the stiffening of the
matter at nuclear densities and models the response of
shocked material through a thermal pressure component;
see also Refs. [51–54] for comparisons with modern finite-
temperature EOSs. The hybrid EOS consists of a cold
and a thermal pressure component given by,

P = Pc + Pth . (30)

The cold component has piecewise polytropic form

Pc =

{
K1ρ

Γ1 if ρ ≤ ρnuc

K2ρ
Γ2 if ρ > ρnuc

, (31)

and the thermal contribution is given by

Pth = (Γth − 1) ρ (ε− ε
c
) , (32)

EOS1 EOS3 EOS5 EOS8 EOSa
Γ1 1.30 1.32 1.30 1.30 1.28
Γ2 2.50 2.50 3.00 2.50 3.00
Γth 1.35 1.35 1.35 1.50 1.50

TABLE I. Parameters for different hybrid equations of state.
The non-contiguous EOS labels are due to the fact that we have
also explored collapse configurations with EOSs using different
combinations of the given parameter values. These simulations,
without exception, fit into the classification scheme of Sec. IV
and are therefore not reported here.

where ε is the internal energy and εc follows from the first
law of thermodynamics for adiabatic processes,

εc =

{
K1

Γ1−1ρ
Γ1−1 if ρ ≤ ρnuc

K2

Γ2−1ρ
Γ2−1 + E if ρ > ρnuc

, (33)

Prior to core bounce, the flow is adiabatic which implies
ε ≈ εc, but at core bounce the shocked material becomes
non-adiabatical and thus subject to a non-negligible ther-
mal pressure component.

We set the nuclear density ρnuc = 2× 1014 g cm−3 [52]
and K1 = 4.9345×1014 [cgs] as predicted for a relativistic
degenerate gas of electrons with electron fraction Ye = 0.5
[55]. The constants K2, and E follow from continuity
at ρ = ρnuc. The EOS given by Eqs. (30)-(33) is thus
determined by the the three adiabatic indices Γ1, Γ2,
and Γth. A gas of relativistic electrons has an adiabatic
index of 4/3, but electron capture during the collapse
phase reduces the effective adiabatic index Γ1 to slightly
lower values in the range Γ1 ≈ 1.28 to Γ1 ≈ 1.32 [53, 54,
56]. At densities ρ > ρnuc, however, the repulsive core
of the nuclear force stiffens the EOS which leads to a
larger adiabatic index Γ2. Reference [54] find Γ2 ≈ 2.5
and Γ2 ≈ 3 to approximate well the finite-temperature
EOSs of Lattimer–Swesty [57, 58] and Shen et al [59, 60],
respectively. Finally, the thermal adiabatic index Γth

models a mixture of relativistic and non-relativistic gas
which leads to the bounds 4/3 < Γth < 5/3.

Our hybrid EOS is therefore determined by three pa-
rameters. Motivated by the above considerations, we
select values Γ1 ∈ {1.28, 1.3, 1.32}, Γ2 ∈ {2.5, 3} and
Γth ∈ {1.35, 1.5} with (Γ1, Γ2, Γth) = (1.3, 2.5, 1.35)
as our fiducial model. In particular, we pick 5 different
combinations of the EOS parameters as listed in Table I.

III. COMPUTATIONAL FRAMEWORK AND
INITIAL DATA

We evolve the set of differential equations (18)-(23)
with an extended version of the open-source code gr1d
[49] originally developed for modelling stellar collapse in
general relativity. gr1d has been generalized to massless
scalar-tensor gravity in Ref. [35] and we have merely added
to this version of the code the potential terms involving
V or V,ϕ in Eqs. (18)-(29). As mentioned above, these
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FIG. 1. The central density (top) and maximal scalarization (bottom panels) are shown for representative examples of the five
collapse configurations summarized in Sec. IVA. On the left, we show three evolutions of progenitor s39 with EOS3 for different
ST parameters corresponding to the NS formation scenarios 1 (single-stage low-compactness NS), 4 (multi-stage NS) and 5
(single-stage high-compactness NS), respectively. On the right, we show the evolution of progenitor z39 with EOS3 for different
ST parameters corresponding to scenarios 2 (two-stage BH formation), 3 (multi-stage BH formation), 4 (multi-stage NS), and 5
(single-stage high-compactness NS), respectively. For comparison, we display with solid black curves the corresponding evolution
of the progenitors in GR which result in a NS in the left ’s39’ case and a BH in the right ’z39’ case. All curves have been
obtained for a scalar mass µ = 10−14 eV.

terms do not change the characteristics of the differential
equations and thus allow us to use the shock-capturing
scheme in the very same form as in [35].

In order to capture the vastly different lengthscales en-
countered in our simulations, we employ a computational
grid consisting of an inner grid with uniform resolution
∆r1 out to r = 40 km and an outer component with loga-
rithmic spacing up to r = 9× 105 km, resulting in a total
of N grid points. In Ref. [37], some of the authors have
analyzed the convergence of the resulting core collapse
simulations and found a discretization error in the wave
signal of about 4 % for a grid setup using ∆r1 = 250 m
and N = 10 000. This is the minimum resolution used
for all the simulations of this work. Finally, we have
verified that the error due to extracting the wave signal
at large but finite radius is negligible compared with the
discretization error and we therefore estimate the total
numerical uncertainty as ∼ 4 %.

All simulations presented in this work start with the
non-rotating models of the catalog of spherically symmet-
ric pre-supernova stars provided by Woosley and Heger
[61]. These models have been obtained by evolving stars in
Newtonian gravity up to the moment of iron core collapse
and provide profiles for stars with zero-age-main-sequence

(ZAMS) masses from 10.8 to 75 solar masses and three
different metalicities: solar, 10−4 times solar, and pri-
mordial metallicity. Throughout this work, we denote
the progenitor models by a prefix “s”, “u” or “z”, respec-
tively for the three metalicities, followed by the ZAMS
mass. With this notation, for instance, “u39” denotes a
progenitor with 10−4 times solar metallicity and mass
MZAMS = 39M�. In the weak-gravity regime of these
low-density progenitor stars (their central density is a
factor about 105 below nuclear density), the scalar field is
negligible and we therefore set ϕ = 0 initially. The initial
metric variables can then be computed directly from the
matter profile using quadrature in Eqs. (18) and (19).

IV. PHENOMENOLOGY OF STELLAR
COLLAPSE

A. Classification

Stellar core collapse and supernova explosions are highly
complex processes and the dynamics in numerical simula-
tions can depend sensitively on the level of detail included
in the modeling. The focus of our study is an explo-
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FIG. 2. A graphical illustration of the main collapse scenarios identified in our simulations. All stellar progenitors collapse into
a weakly scalarized (GR like) NS, a strongly scalarized NS or a BH. As indicated in the diagram the outcomes may be reached
promptly or in two or more stages. The two-stage formation of a strongly scalarized NS has been marked by a dashed arrow
because this case appears in our set of simulations only a handful of times and we suspect numerical noise to have impeded the
occurrence of new stages. In the multi-stage NS category we count the simulations where all stages remain distinct, even if they
happen on a short time scale.

ration of the parameter space through a large number
[O(4 × 103)] of long simulations (several seconds). For
computational feasibility, we consider non-rotating stars
in spherical symmetry with piecewise polytropic EOS and
do not consider neutrino transport. We characterize the
progenitor stars in terms of their ZAMS mass and metal-
licity (the grid used in the progenitor catalog of [61]), but
note the strong correlation of the outcome of a collapse
event with the compactness of the stellar core at bounce
[62]. While the qualitative picture from our simulations
is robust, some caution is advised on the quantitative
details; in particular the location of the boundaries be-
tween strongly and scalarized configurations in Figs. 3
and 4, may change under a refinement of the modeling
framework.
Within our framework, a given stellar collapse model

is characterized by eight parameters:

• The EOS is characterized by two polytropic expo-
nents Γ1, Γ2, and the thermal pressure coefficient
Γth.

• The stellar progenitors are characterized by metal-
licity Z and zero-age-main-sequence mass MZAMS.

• The ST theory of gravity is determined by the mass
of the scalar field µ and the coefficients α0 and β0

entering the conformal factor.

Such a vast parameter space allows for an enormous
phenomenology and, through sheer numbers, represents a
major challenge for a numerical exploration; surmounting
this challenge is the central goal of this section. More
specifically, we will see that within our modeling frame-
work, the phenomenology of the different collapse scenar-
ios reveals distinct patterns and systematics that enable
us to provide a remarkably comprehensive description of
core collapse in massive ST gravity.
For this purpose, we first consider the possible end

products of our collapse simulations. There are only three
qualitatively different end states we have obtained in all
of our simulations: (i) A weakly scalarized neutron star
where ϕ = O(α0), (ii) a strongly scalarized neutron star

with ϕ = O(1), or (iii) a black hole. The latter two
endstates, however, may be reached either directly or
through several stages. This observation leads to our
main classification scheme of five qualitatively different
collapse scenarios.

(1) Single-stage collapse to a weakly scalarized neutron
star.

(2) Two-stage formation of a black hole. Here the con-
figuration temporarily settles down into a weakly
scalarized neutron star. As the continued accre-
tion of matter exceeds a threshold mass, the star
undergoes a second collapse phase into a BH.

(3) Formation of a black hole through multiple stages.
Here the configuration undergoes at least two ap-
proximately stationary neutron star phases; the
first is weakly scalarized, later phases are strongly
scalarized.

(4) Collapse to a strongly scalarized neutron star
through multiple stages. Here the configuration
intermittently forms one or more approximately
stationary neutron star stages with ever increasing
central density. The transition from weak to strong
scalarization always occurs in the second collapse
phase.

(5) Single-stage collapse to a strongly scalarized neu-
tron star.

These five different scenarios are most conveniently vi-
sualized in terms of the central baryon density ρc and
the central value of the scalar field ϕc as functions of
time. We plot these quantities for a set of representative
configurations in Fig. 1. A more detailed discussion of the
five scenarios is given in Appendix A and a diagram-style
visualization in Fig. 2.

The strength of the GW signal depends on the max-
imum scalarization achieved during the time evolution.
This is not necessarily the degree of scalarization at the
end of the simulation since black holes will descalarize
in agreement with the no-hair theorems for BHs [63, 64].
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FIG. 3. We consider a fixed progenitor star with ZAMS mass 39M�, equation of state EOS3 of Table I, and fix the scalar mass
at µ = 10−14 eV. The progenitor ‘s39’ in the left panel has solar metallicity Z� and the progenitor ‘z39’ in the right panel has
primordial metallicity. Top row: For selected values of α0, we plot the maximal scalarization of the collapsing star as a function
of β0. The middle row provides a color (or “heat”) map of the same quantity in the (α0, β0) plane; “Red” = strong scalarization,
“Blue” = weak scalarization. The bottom row presents a color code of the five qualitatively different collapse scenarios listed
in Sec. IVA. Note that the ‘s39’ progenitor exclusively collapses to a neutron star whereas ’u39’ collapses to a black hole for
β0 & −8 and to a neutron star for β0 . −8. We find that every progenitor model results in heatmaps in the (α0, β0) plane
qualitatively equal to that on the left (the ‘neutron star’ case) or that on the right (the ‘black hole’ case).

For1 α0 � 1, this implies that case (1) always leads to a
negligible GW signal whereas cases (3), (4), and (5) always
lead to strong signals. For the two-stage BH formation of
case (2), we find that either weak or strong gravitational
radiation is possible, depending on the degree of scalariza-
tion that can be achieved during the rapid collapse from
a weakly scalarized neutron star to a BH. This sensitively
depends on the parameters of the configuration.
In summary, for any given set of parameters, the col-

lapse proceeds according to one of the five scenarios listed
above. The question that remains is to establish a map-
ping between the parameter space and the possible out-
comes. For this purpose we separate the parameters into
two sets. The first consists of the EOS and progenitor pa-
rameters (MZAMS, Z, Γ1, Γ2, Γth) and the second of the
ST parameters (α0, β0, µ). Let us then consider a given
stellar progenitor with fixed ZAMS mass, metallicity and
EOS and consider the fate of this progenitor as a function
of the ST parameters. Our first observation, which will
be discussed in further detail below in Sec. VD, is that
over a wide range of values the scalar mass µ does not
affect the outcome qualitatively, but merely rescales the
frequency of the GW signal and modifies its amplitude by
a factor of order unity. In the remainder of this section,
we set µ = 10−14 eV.

This leaves α0 and β0 and we now explore the main

1 For α0 = O(1) the scalar field will always reach a large amplitude
ϕmax = O(α) = O(1) and the distinction between weak and
strong scalarization disappears. We only consider α0 ≤ 0.1.

properties of the collapse scenarios in the plane spanned
by these two parameters.

The resulting pattern is best understood by considering
two examples, the progenitors s39 and z39 for EOS3 of Ta-
ble I. These stellar models differ in their metallicity which
leads to a different compactness of the core at bounce
and, hence, significantly different collapse scenarios as
shown in Fig. 3. In this figure, we display the maximal
scalarization defined as

ϕmax = max(|ϕc(t)|) . (34)

In all of our simulations, the extremal value of the cen-
tral ϕc is negative; hence the modulus sign in Eq. (18).
(The overall sign of ϕ is merely a matter of convention;
inspection of the action in Eq. (4) reveals that it is in-
variant under the simultaneous redefinitions ϕ → −ϕ
and α0 → −α0.) In the top row of Fig. 3, we plot ϕmax,
in logarithmic measure, as a function of β0 for selected
values α0 and in the middle row it is shown in the form
of a heatmap in the (α0, β0) plane. Note that ϕmax ∝ α0

for weakly scalarized configurations whereas all strongly
scalarized stars reach a comparable ϕmax = O(1). The
measure ϕmax furthermore determines the strength of the
GW signal emitted in the collapse; ϕmax = O(1) always
implies a strong GW signal and ϕmax = O(α0) a corre-
spondingly weaker one by a factor α0 � 1. Finally, we
display in the bottom row of Fig. 3 in the form of an (arbi-
trarily chosen) color code which of the above five collapse
scenarios is realized for the ‘s39’ or ‘z39’ progenitor for ST
parameters (α0, β0). Clearly, the two progenitors result
in qualitatively different color maps. All our simulations
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of progenitor ‘s39’ result in a neutron star: for mildly
negative β0, a weakly scalarized NS is formed in a single
stage. For moderate β0, a multi-stage collapse leads to
a strongly scalarized NS and for highly negative β0 a
strongly scalarized NS forms without intermediate stages.
In contrast, we encounter for progenitor ‘z39’ the follow-
ing scenarios as β0 becomes more negative: two-stage BH
formation, multi-stage BH formation, multi-stage forma-
tion of a strongly scalarized NS, single-stage formation of
a strongly scalarized NS. The parameter α0 only weakly
affects the respective threshold values of β0.
In principle, we could now construct heatmaps analo-

gous to those in Fig. 3 for any possible progenitor, i.e. for
every massMZAMS, metallicity Z and EOS. We have done
this for about 20 additional cases and always obtained a
set of maps qualitatively equal to either the left ‘neutron
star’ case of Fig. 3 or the right ‘black hole’ case in the
figure. The boundaries of the different regions vary with
EOS, MZAMS and Z, but we always get one of the two
maps. In consequence, the question which of the two
qualitatively different maps of Fig. 3, the ‘neutron-star’
or the ‘black-hole’ case, applies to a given progenitor (and
EOS) is completely determined by its fate in GR!

B. Dependency on the equation of state and
progenitor model

The classification of the collapse scenarios has given us
a qualitative picture of the possible outcomes of a stellar
core collapse in ST gravity. The main task that remains
is to understand more quantitatively how the boundaries
in the diagrams of Fig. 3 depend on the choice of the EOS
and the progenitor. Here we are particularly interested in
the strength of the GW signal and will therefore focus on
the sharp transition between weakly scalarized (blue) and
the strongly scalarized (red) regions in the central panels
in Fig. 3. Our strategy for this purpose is as follows. We
consider EOS3 and EOSa from Table I as representative
examples of a soft and a stiff EOS, respectively. Next,
we note in Fig. 3 that the parameter α0 only mildly
affects whether or not a configuration is weakly or strongly
scalarized; the corresponding β0 threshold in the center
panels of the figure varies by a few units but no more.
Bearing in mind this variation, we fix in our analysis
α0 = 10−2.
We then have six combinations with different EOS

and/or metallicity of the progenitor. For each of these
cases we plot in Fig. 4 the maximum scalarization ϕmax as
a function of the progenitor mass MZAMS for selected val-
ues of β0; these β0 values have been chosen such that they
bracket the threshold between weak and strong scalariza-
tion. The results of the figure are summarized as follows.

• The transition between weak and strong scalariza-
tion is abrupt, occurring in a brief interval around
a threshold value β∗0 . Without fine tuning β0, we
obtain either weakly or strongly scalarized configu-
rations but rarely cases in between.

• For β0 values close to the threshold, the degree of
scalarization can be highly sensitive to the ZAMS
mass. Such a sensitive dependence on the param-
eters is reminiscent of the critical phenomena well
known in gravitational collapse [65] and is also ex-
pected from the phase-transition character of the
spontaneous scalarization phenomenon [2].

• Besides this sensitive dependency near the critical
β∗0 , the only significant variation of the degree of
scalarization with the ZAMS mass occurs at the on-
set of BH formation in the center-right and bottom-
right pannels of Fig. 4. Here the scalarization in-
creases visibly at MZAMS ≈ 30 M� and 35 M�,
respectively. Progenitor masses below the threshold
value result in weakly scalarized NSs and higher
masses lead to BH formation and stronger scalar-
ization. Note, however, the logarithmic scaling of
the vertical axis, so that even in these cases, the
strong variation of ϕc with MZAMS is restricted to
β0 values close to the critical threshold β∗0 .

• For β0 values significantly below or above the thresh-
old, our simulations show only a mild dependence
of the scalarization on the progenitor mass MZAMS.
The same holds for the metallicity Z.

• Stiff EOSs result in less compact neutron stars and
correspondingly more negative threshold values β∗0
for strong scalarization. For soft EOSs, highly com-
pact neutron stars can form even for mild β0 values
and lead to strong scalarization.

In summary, we observe strong scalarization when β0

becomes more negative than a threshold value β∗0 . This
threshold is ≈ −25 for a stiff EOS but drops to the well
known limit β0,thr − 4.35 observed for the spontaneous
scalarization of stationary neutron-star models in massless
ST theory [2, 32]. This threshold varies only mildly with
the mass or the metallicity of the progenitor model.
Throughout this analysis, we set the scalar mass pa-

rameter µ = 10−14 eV. As it turns out, the degree of
scalarization barely changes even when we vary µ over
several orders of magnitude. This insensitivity to µ of the
strong scalarization effect is not only supported by our
simulations, but can also be understood at the analytic
level. This will be done in the next section where we also
discuss in more detail the propagation of the wave signal
to astrophysically large distances.

V. WAVE EXTRACTION AND PROPAGATION

In this section, the extraction of the scalar field from
the core collapse simulations is described along with a
procedure for converting this into a prediction for the
GW signal at astrophysically large distances, potentially
observable by LIGO/Virgo. The latter step is complicated
by the dispersive nature of wave propagation for massive
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FIG. 4. Each panel shows the maximum scalarization of a core collapse as a function of the ZAMS progenitor mass for selected
values of β0 that bracket the transition from weak to strong scalarization. The left column represents EOSa and the right
column EOS3. The rows represent a different metallicity as labelled in the panels. The right panels and the top-left panel
exclusively contain collapse scenarios forming NSs. In the center-right and bottom-right panel, we distinguish NS cases from
those forming BHs by using empty or filled symbols, respectively. Note that for primordial metallicity, the catalog of stellar
progenitors contains models up to MZAMS = 40 M� only.
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fields; it will be shown how this dispersion generically
leads to the inverse chirp described in [37].

There are two natural lengthscales relevant to the prob-
lem: the gravitational radius associated with the mass of
the remnant NS, rG = GMNSc

−2; and the reduced Comp-
ton wavelength for the massive scalar field, λC = c/ω∗
where ω∗ = µc2~−1. The remainder of this section again
uses natural units in which G = c = 1.

At large distances from the star (r � rG) the dynamics
of the gravitational scalar are, to a good approximation,
governed by the flat-space Klein-Gordon equation,

∂2
t ϕ−∇2ϕ+ ω2

∗ϕ = 0 . (35)

In spherical symmetry (using coordinates {t, r, θ, φ}) the
field depends only on time and radius (ψ = ψ(t; r)), the
Laplacian is given by∇2· = r−2∂r(r

2∂r·), and the rescaled
field σ ≡ rϕ satisfies a 1D wave equation,

∂2
t σ − ∂2

rσ + ω2
∗σ = 0 . (36)

Consider first the behaviour of a single Fourier mode,
σ ∝ e−i(ωt−kr); Eq. (36) gives the dispersion relation

ω2 = k2 + ω2
∗ . (37)

The wavenumber, k, is real for high frequencies (|ω| > ω∗)
and the solution describes a propagating wave. For low-
frequencies (|ω| < ω∗; including the static case ω = 0)
the wavenumber is imaginary leading to solutions which
decay exponentially over a characteristic length λC. The
critical frequency ω∗ associated with the scalar field
mass acts as a low frequency cutoff in the GW spec-
trum. For propagating solutions, the phase velocity
(vphase = ω/k = [1− (ω∗/ω)2]−1/2) is superluminal, while
the group velocity (vgroup = dω/dk = [1 − (ω∗/ω)]+1/2)
is subluminal.
In the massless case (ω∗ = 0), the general solution

to Eq. (36) can be written as the sum of ingoing and
outgoing pulses travelling at the speed of light. This
makes interpreting the output of core collapse simulations
particularly simple. Firstly, one extracts the field as a
function of time at a fixed extraction radius, σ(t; rex).
This radius must be sufficiently large that (i) the flat
space Eq. (35) holds, and (ii) rex is in the wave zone
so that the signal has decoupled from the source and is
purely outgoing. In the massless case both (i) and (ii)
are satisfied by choosing rex � rG. Then, the signal as
a function of time at some larger target radius, σ(t; r), is
simply obtained via σ(t − [r − rex]; r) = σ(t; rex). The
only change in the signal between rex and r is a time
delay and a reduction in the amplitude of the field ϕ by
a factor (r/rex).

We seek an analogous method in the massive case (ω∗ >
0) for relating the signal at the extraction radius to the
signal at the much larger target radius. The extraction
radius is chosen to satisfy the two conditions as before,
but now (ii) requires rex � λC. This is generally a stricter
condition than rex � rG; for µ = 10−14 eV the Compton

FIG. 5. A sketch of the coordinates used in the numerical
evolution. The main axes show the standard {t, r} coordinates
and the inset arrows show the {u, r} coordinates. The vertical
blue line indicates the signal as a function of time at the
extraction radius, σ(t; rex), and the shading indicates the
region where the signal propagates to dispersively. A numerical
grid based on the {u, r} coordinates can cover the shaded
region with less redundant space than one based on {t, r}.

wavelength is λC ≈ 107 m whereas the gravitational radius
for NSs is typically only rG ∼ 103 m. In this paper the
extraction radius is taken to be rex = 7.0× 107 m. The
target radius, the distance of the supernova from Earth,
is very much larger; e.g. ∼ 10 kpc.
The remainder of this section describes two methods

for evolving signals from the extraction radius out to
large radii. Firstly, a numerical evolution of Eq. (36) in
the time domain is described. This numerical method,
while very accurate at short distance, is of limited use in
practice because it struggles to cope with the very large
astrophysical distances. Secondly, an analytic method for
solving Eq. (36) in the frequency domain is described. The
two methods are validated by comparing them against
each other in the regime where both can be evaluated.
Finally, the analytic method is used to study the asymp-
totic behaviour at large distances using the stationary
phase approximation (SPA).

A. Numerical Evolution in the Time Domain

Given suitable initial data it is possible to numerically
evolve Eq. (36). Here it is necessary to evolve some
given outgoing data on a timelike surface out to larger
radii (see Fig. 5). Equation (36) is written in a manner
that makes a 1 + 1 dimensional split obvious using the
coordinates {t, r}. However, these coordinates are not
well adapted for signals travelling at, or near, the speed
of light. Alternatively, and much more efficiently, a 1 + 1
split can be implemented based on coordinates {u, r},
where u ≡ t − r is the (null) retarded time coordinate.
Using these coordinates the wave equation becomes

2∂u∂rσ − ∂2
rσ + ω2

∗σ = 0 . (38)
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By defining the conjugate momentum Πu ≡ ∂uσ(u; r)
Eq. (38) can be reduced down to first order form.
Given an initial signal on the extraction sphere,

σ(u; rex), it is straightforward to solve Eq. (38) using
standard techniques; in our case a method of line integra-
tion with the iterated Crank-Nicholson scheme [66]. From
this numerical solution, we directly extract the signal at
some larger target radius, σ(u; r) .

B. Analytic Evolution in the Fourier Domain

We now revert to coordinates {t, r} in Eq. (36). With
the Fourier transform conventions

σ̃(ω; r) =

∫ ∞

−∞
dt σ(t, r)eiωt , (39)

σ(t; r) =

∫ ∞

−∞

dω
2π

σ̃(ω, r)e−iωt , (40)

the Fourier transform of Eq. (36) yields the simple har-
monic motion equation for σ̃(ω; r),

∂2
r σ̃(ω; r) = −

(
ω2 − ω2

∗
)
σ̃(ω; r) . (41)

Defining k+ ≡ +
√
ω2 − ω2∗ as the positive root of the

dispersion relation in Eq. (37), the solution to Eq. (41)
can be written in terms of two arbitrary functions,

σ̃(ω; r) = f(ω)eik+(r−rex) + g(ω)e−ik+(r−rex) . (42)

The radial coordinate has been shifted to the extraction
radius for later convenience. Taking the inverse Fourier
transform to convert back into the time domain gives

σ(t; r) =

∫ ∞

−∞

dω

2π

[
f(ω)eik+(r−rex) (43)

+g(ω)e−ik+(r−rex)
]
e−iωt .

The fact that the field ϕ is real imposes some constraints
on the otherwise arbitrary functions f and g;

(a) σ(t; r) ∈ R ⇒ σ̃(ω; r) = σ̃∗(−ω; r) ⇒ (44)
{
f(ω) = g∗(−ω) if |ω| > ω∗
f(ω) = f∗(−ω) and g(ω) = g∗(−ω) if |ω| < ω∗.

A further constraint on the function g is obtained by
imposing boundary conditions at infinity. The field ϕ
must decay as 1/r (or faster) which implies that σ̃(ω; r)
remains bounded at large radii. From Eq. (43), and
recalling that k+ is imaginary for |ω| < ω∗, gives the
constraint

(b) g(ω) = 0 if |ω| < ω∗ . (45)

The constraints (a) and (b) can be used to eliminate
g(ω) in favour of f(ω). Furthermore, the symmetries
implied by the constraint (a) allow the Fourier integral

in Eq. (43) to be written over positive frequencies; the
general solution in Eq. (43) now becomes

σ(t; r) = 2 Re

{∫ ω∗

0

dω

2π
f(ω)eik+(r−rex)e−iωt+ (46)

∫ ∞

ω∗

dω

2π

[
f(ω)eik+(r−rex) + f∗(−ω)e−ik+(r−rex)

]
e−iωt

}
.

From Eq. (46), and considering the sign of k+, it can be
seen that the high frequencies f(ω > ω∗) represent out-
going modes, the large negative frequencies f(ω < −ω∗)
represent ingoing modes, and the intermediate frequencies
f(|ω| < ω∗) represent non-propagating modes.
It only remains to relate the unknown function f(ω)

to the (purely outgoing) scalar profile at the extraction
radius obtained from the core collapse simulation, σ(t; rex).
The function f(ω) is given by

f(ω) =

{
0 if ω ≤ −ω∗
σ̃(ω; rex) if ω > −ω∗

}
. (47)

Substituting into Eq. (46), and returning to writing the
integral over both positive and negative frequencies, gives

σ(t; r) =

∫
dω
2π

σ̃(ω; rex)× (48)
{

e−ik+(r−rex) if ω ≤ −ω∗
e+ik+(r−rex) if ω > −ω∗

}
e−iωt .

This shows that the frequency domain signal at the target
radius is related to that at the extraction radius via

σ̃(ω; r)= σ̃(ω; rex)×
{

e−ik+(r–rex) if ω≤−ω∗
e+ik+(r–rex) if ω>−ω∗

}
. (49)

Note that the effect of the dispersion enters only in the
complex phase of the Fourier transform. Therefore, the
effect of the dispersion is to disperse the signal, rearrang-
ing the frequency components in time, while leaving the
overall power spectrum invariant for all |ω| > ω∗. Lower
frequencies, |ω| < ω∗, are exponentially suppressed during
propagation and are not observable at large distances.

We now have a prescription for analytically propagating
signals out to larger radii. Firstly, numerically evaluate
the fast Fourier transform of the scalar profile on the
extraction sphere; σ̃(ω; rex). Secondly, use Eq. (49) to ob-
tain the Fourier domain signal at the target radius; σ̃(ω; r).
Finally, numerically evaluate the inverse Fourier trans-
form to obtain the desired signal; σ(t; r). In Appendix
C we compare the results of analytically propagating sig-
nals in this way with the results obtained via numerical
evolution described in Sec. VA and find good agreement.
Unfortunately, neither of the methods described (in

their current form) is suitable for propagating the signal
to astrophysically large distances (e.g. rex = 10 kpc). The
unavoidable problem is that as the signal propagates
further, the longer (i.e. containing more cycles) it becomes
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due to the dispersive stretching. This poses two problems
for the time domain numerical integration: firstly, the
evolution becomes increasingly expensive due to the large
numerical grids required; and secondly the numerical
errors tend to grow as the signal is propagated over greater
distances. The analytic frequency domain method can
be pushed to somewhat larger radii; however, even this
fails when the signal eventually becomes longer than the
largest array for which the fast Fourier transform can be
numerically evaluated. The next section describes how
the behaviour of the scalar field at very large distances
may be studied.

C. Asymptotic Behaviour: The Inverse Chirp

As the signal is stretched out it becomes ever more
oscillatory, and the amplitude varies more slowly relative
to the phase. Therefore, in the large distance limit the
stationary phase approximation (SPA) may be used to
evaluate the inverse Fourier transform in Eq. (48). It
should be noted that the SPA becomes valid at large
radii regardless of whether or not it was initially valid
for the signal at the extraction radius. As will be shown
below, dispersive signals tend to “forget” the details of
their initial profile as they propagate over large distances
and always tend to a generic “inverse chirp” profile.
The initial Fourier domain signal on the extraction

sphere may be decomposed into its amplitude and phase;

σ̃(ω; rex) = A(ω; rex)eiΨ(ω) . (50)

As noted above, at large radii frequencies |ω| < ω∗ do not
contribute to the signal because they decay exponentially
with r. It will be convenient to write the time domain
solution at large radii in Eq. (48) as an integral over
positive frequencies only;

σ(t; r) = 2 Re

{∫ ∞

ω∗

dω
2π
A(ω)eiψ(ω,t)

}
. (51)

where the modified complex phase is defined as ψ(ω, t) ≡
Ψ(ω) + k+(r − rex) − ωt. This phase has a stationary
point when ∂ψ(ω, t)/∂ω = 0 which is satisfied by

t =
dΨ(ω)

dω
+
ω(r − rex)√
ω2 − ω2∗

. (52)

Note that the final term in Eq. (52) can be written as
(r − rex)/vgroup. In the limit r � rex the final term in
Eq. (52) becomes dominant and the dΨ/dω term can be
neglected. In this approximation, it is straightforward to
invert Eq. (52) which gives us the frequency of the signal
at r as a function of time, ω = Ω(t), where

Ω(t) =
ω∗t√

t2 − (r − rex)
2
, for t > r − rex . (53)

This frequency varies as an inverse chirp (see Fig. 6) with
low frequencies arriving after high frequencies. The origin

FIG. 6. A sketch plot showing the time-frequency structure
of the “inverse chirp” in Eq. (53). The frequency decays over
time; the high frequency components (traveling at almost
the speed of light) arrive first, followed by the slower low
frequency components. Frequencies below ω∗ are exponentially
suppressed and never reach large radii.

of the inverse chirp is easily understood as the modes of
each frequency arriving at a time corresponding to the
group velocity of that frequency.
All that remains is to evaluate the amplitude as a

function of time. This can also be done via the SPA. The
integrand in Eq. (51) is highly oscillatory when r − rex

is large, except for frequencies near Ω(t) which therefore
dominate the result. Expanding the amplitude to zeroth
order, and the phase to quadratic order, about ω = Ω(t)
and substituting into Eq. (51) gives

σ(t; r) = 2 Re

{
A
[
Ω
]
eiψ(Ω,t)× (54)

∫ ∞

ω∗

dω
2π

e
i
2 (ω−Ω)2ψ′′

}
,

where ψ′′ ≡ ∂2ψ/∂ω2|ω=Ω. The integrand in Eq. (54) is
dominated by frequencies near ω = Ω; at the current ap-
proximation order, the integration limits can be changed
to
∫ Ω+b

Ω−a dω for any a, b > 0. Choosing a, b → ∞, and
changing variables to u2 = (ω − Ω)ψ′′ gives

σ(t; r) = Re

{A(Ω)eiψ(Ω,t)

√
π2 |ψ′′|

∫ ∞

−∞
du e

i
2u

2sign(ψ′′)

}
. (55)

The integral in Eq. (55) is a standard Gaussian integral
which may be readily evaluated to give

σ(t; r) = Re

{
A(t; r) eiφ(t;r)

}
, (56)

where the amplitude and phase are given by

A(t; r) =

√
2
[
Ω2 − ω2∗

]3/2

πω2∗(r − rex)
A(Ω) , (57)

φ(t; r) = Ψ(Ω) +
√

Ω2 − ω2∗(r − rex)− Ωt− π

4
, (58)
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where Ω(t) is given in Eq. (53) (c.f. Eq. (11) in [37]). At
each instant the signal is quasi monochromatic with a
frequency Ω(t) and an amplitude, A(t; r), proportional
to the square root of the power spectrum of the initial
(extraction radius) signal evaluated at that frequency
divided by a factor to account for the dispersive stretching
of the signal.
The inverse chirp profile described by Eq. (58) (see

Fig. 6) is an extremely robust prediction for the signal
observed at large distances. The signal frequency as a
function of time depends only on the distance to the
source and the mass of the scalar field (and there is a
near universal scaling behaviour with the scalar mass,
as described in the next section). The frequency as a
function of time is completely independent of the details
of the original signal near the source. The signal ampli-
tude as a function of time does retain some information
about the original source, through its dependence on the
spectrum A(ω), although even this gets highly smeared
out by the dispersion. The inverse chirp waveforms can be
extremely long and highly oscillatory; for the scalar field
masses and distances of interest here (i.e. µ ≈ 10−14 eV
and rex ≈ 10 kpc) the signals can retain frequencies and
amplitudes potentially detectable by LIGO/Virgo for cen-
turies! These signals are best visualized by plotting the
amplitude and frequency separately as functions of time
(see Fig. 2 and the accompanying discussion in [37]).

D. Approximate universality under changes of the
scalar mass

1. Theoretical considerations

The asymptotic behaviour of the wave signal under
its dispersive propagation is determined by Eq. (53) for
the frequency and Eq. (57) for the amplitude of the sig-
nal. The dependence of the propagated signal on the
scalar mass µ through its associated frequency ω∗ becomes
clearer if we rewrite the solution in terms of dimension-
less quantities. For this purpose, we define the rescaled
frequency, radius and time by

Ω̄ =
Ω

ω∗
, r̄ex = ω∗rex ,

t̄ = ω∗t , r̄ = ω∗r . (59)

In this notation, Eqs. (53), (58), (57) become

Ω̄(t̄, r̄) =
t̄√

t̄2 − (r̄ − r̄ex)2
,

φ(t̄, r̄) =
√

Ω̄2 − 1(r̄ − r̄ex)− Ω̄t̄− π

4
+ Arg[σ̃(Ω; rex)] ,

A(t̄, r̄) =

√
2

π

ω∗(Ω̄2 − 1)3/4

(r̄ − r̄ex)1/2
Abs[σ̃(Ω; rex)] . (60)

We have thus been able to absorb much of the dependence
on the scalar mass in terms of a simple rescaling of radius,

time and frequency. But two issues remain: (i) a factor
of ω∗ is present in the amplitude A(t̄, r̄) and (ii) the
phase and amplitude implicitly depend on the scalar mass
through the phase and amplitude of the Fourier transform
σ̃(Ω, rex). Further progress requires information about
the signal at rex. More specifically, we can exploit two
features that we find to be satisfied approximately in the
generation of scalar radiation in stellar collapse in ST
theory.

The first observation is that the scalar field at the centre
of the star evolves largely independently of the scalar
mass. Likewise, the scalar profile ϕ(r) at late stages in
the evolution is independent of the scalar mass (always
assuming that the other parameters of the configuration
are held fixed). This suggests that in the region of wave
generation σ(t, r) [rather than σ(t̄, r̄)] is approximately
independent of the scalar mass. Let us take this as a
working hypothesis and compute its implications.

From the definition of the Fourier transform we obtain

σ̃(Ω; rex) =

∫ ∞

−∞
σ(t; rex)eiΩtdt

=
1

ω∗

∫ ∞

−∞
σ(t̄/ω∗; rex)eiΩ̄t̄dt̄ . (61)

Now we employ the second empirical observation. Near
the star, the dynamics in the scalar field are dominated
by the sudden transition from weak (or zero) to strong
scalarization. The time dependence of the scalar field
at given radius is therefore approximated by a Heaviside
function, σ(t, rex) ∼ f(rex)H(t). The Heaviside function
satisfies H(t) = H(at) for a real constant a, and we can
use σ(t̄/ω∗; rex) = σ(t̄; rex) in Eq. (61), so that

σ̃(Ω; rex) =
1

ω∗

∫ ∞

−∞
σ(t̄; rex)eiΩ̄t̄dt̄ =

1

ω∗
σ̃(Ω̄; rex) . (62)

We thus acquire a factor 1/ω∗ in the amplitude of σ̃(Ω; rex)
and no change in its phase and Eq. (60) becomes

Ω̄(t̄, r̄) =
t̄√

t̄2 − (r̄ − r̄ex)2
,

φ(t̄, r̄) =
√

Ω̄2 − 1(r̄ − r̄ex)− Ω̄t̄− π

4
+ Arg[σ̃(Ω̄; rex)] ,

A(t̄, r̄) =

√
2

π

(Ω̄2 − 1)3/4

(r̄ − r̄ex)1/2
Abs[σ̃(Ω̄; rex)] . (63)

This gives us a universal expression for the wave sig-
nal which depends on the scalar mass ω∗ only through
the rescaling of time, radius and frequency according
to Eq. (59). In other words, if we know the signal
[Ω(t, r), φ(t, r), A(t, r)] of a configuration with mass pa-
rameter ω∗,1, we obtain the signal for the same configura-
tion in ST theory with ω∗,2 by replacing t→ λt, r → λr,
Ω→ Ω/λ, (φ,A)→ (φ,A) with λ = ω∗,1/ω∗,2.
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FIG. 7. GW signal σ(t, rex) extracted from the collapse of
an s12 (i.e. 12 M�, solar metallicity) progenitor model with
α0 = 10−2, β0 = 20, using EOS5 at ω∗rex = 5.07 for different
values of the scalar mass µ ∈ [2× 10−15 eV, 10−12 eV]. The
overall amplitude increases monotonically with decreasing µ.
For reference, we also show the wave signal obtained for µ = 0
(dashed curve). In this case, we cannot rescale the time with
ω∗; and instead measure time in seconds as labeled on the
upper horizontal axis.

2. Results

The universality under changes in the scalar mass ω∗
will only hold approximately for a number of reasons.
(i) At least at small radii, the wave propagation will be
governed by the field equations (18)-(22) rather than
the Klein-Gordon equation underlying the calculations
of this section. (ii) The time dependence of the scalar
field near the source is only approximately of Heaviside
shape. (iii) Especially for large scalar mass parameters,
we expect the function σ(t, r) no longer to be independent
of the value ω∗ as the Compton wavelength approaches the
size of the stellar core. For example, a reduced Compton
wavelength λc < 100 km corresponds to a scalar mass µ >
1.97×10−12 eV and frequency ω∗ > 3 000 s−1. (Note that
such large values of the scalar mass are no longer ideal for
tests with GW observations as the contributions relevant
for LIGO-Virgo partially fall inside the exponentially
suppressed regime ω < ω∗).
So how well is the universality predicted by Eq. (63)

satisfied in practice? To address this question we have
numerically explored a range of configurations. For each
of these, we have fixed α0, β0, the EOS and the progenitor
model and then performed a one-parameter study varying
µ in the range 2× 10−15 eV ≤ µ ≤ 10−12 eV. All of these
cases exhibit the characteristic behaviour we illustrate in
Figs. 7 and 8 for the specific case of an s12 progenitor
star, EOS5 and ST parameters α0 = 10−2, β0 = −20.
The wave amplitude σ in Fig. 7 has been extracted

from the core collapse simulations at rescaled extraction
radius r̄ex = 5.07 = (µ/10−14 eV)−1 × 105 km. We
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FIG. 8. The wave signals of Fig. 7 propagated according to
Eqs. (53), (57) to ω∗r = 1.56× 1013 = (µ/10−14 eV)−1 10 kpc.
As expected, the curves for the rescaled frequency Ω/ω∗ overlap
in the upper panel. The amplitude in the lower panel shows a
mild increase as we decrease the scalar mass µ.

have shifted the signals in time such that their peaks
align at t̄ = 0. The main difference of the signals is a
monotonic drop in amplitude as µ increases; the strongest
signal (for µ = 2 × 10−15 eV) exceeds the weakest one
(for µ = 10−12 eV) by a factor of about 5. For scalar
mass values µ < 2 × 10−15 eV, simulations over several
wave cycles become prohibitively costly (recall that the
corresponding physical time scales ∝ 1/µ). We have,
however, performed short simulations up to the first strong
peak in the signal. This peak, shifted to t̄ = 0 in Fig. 7,
corresponds to the core bounce at t = O(0.1) s and can
be computed in shorter simulations lasting up to about
t ≈ rex. We find the monotonic trend in the amplitude to
continue with an upper bound given by the limiting case
µ = 0. The wave signal σ(t) resulting from this limit can
no longer be rescaled according to Eq. (59) since ω∗ = 0;
instead, we have included it in Fig. 7 (black dashed curve)
as a function of physical time t denoted on the upper
horizontal axis.
Amplitude and frequency of the corresponding

waveforms propagated to ω∗r = 1.56 × 1013 =
(µ/10−14 eV)−1 10 kpc are shown in Fig. 8. We find the
same monotonic increase of the wave amplitude as µ de-
creases from 10−12 eV to 2 × 10−15 eV with, again, an
overall factor of about 5 between the extreme cases. We
furthermore notice an additional reduction in the high-
frequency contributions for µ = 10−12 eV which manifests
itself in the reduced signal strength at early times in Fig. 8.
As expected from Eq. (63), the rescaled frequencies Ω̄(r̄)
agree exactly. We have explored in the same way other
configurations differing from this case in the ST or EOS
parameters or the mass of the stellar progenitor model.
All cases show the same behaviour: the rescaled frequency
is independent of the scalar mass µ when plotted as a
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function of rescaled time t̄ whereas the amplitude shows
a monotonic increase by an overall factor of about 5 as µ
decreases from 2× 10−15 eV to 10−12 eV.
Finally, we have explored whether the onset of strong

scalarization as shown in the heat maps in Fig. 3 de-
pends on the scalar mass µ. The answer is no for all
configurations we have tested; while the degree of strong
scalarization mildly weakens for larger µ, the transition
occurs at the same β0 independent of the value of µ.
In summary, once we have computed a wave signal

from a configuration for some value of µ, the signal for
the (otherwise) identical configuration with a different
scalar mass µ̂ can be obtained by a linear rescaling of
the argument and result of the frequency Ω(t) while an
approximate estimate of the amplitude A(t) can be ob-
tained by a rescaling of the time (but not of A). The
frequency scaling is exact within the SPA whereas the
amplitude scaling is approximate to within an order of
magnitude and we cannot rigorously exclude exceptions
from its rule.

VI. GW OBSERVATIONS

Core collapse in massive scalar tensor (MST) gravity
can lead to the emission of large quantities of scalar radi-
ation which becomes highly stretched out in time, during
the dispersive propagation to Earth. As observed from a
detector on Earth, the GW signal is quasi-monochromatic
with slowly evolving frequency and amplitude given by
Eqs. (53) and (57) respectively. In this section we dis-
cuss the detectability of these signals by ground-based
GW detectors such as LIGO [69] and Virgo [70]. This
should help guide future efforts to search for such signals
thereby testing MST gravity. Additionally, and as will be
shown below, the absence of any current detection may
already be sufficient to place more stringent constraints
on the parameters of MST gravity than existing tech-
niques. (For a discussion of existing constraints see, for
example, Ref. [35] and references therein.) However, a
detailed analysis of the constraints implied by existing
measurements is deferred to a future study.

Ground-based GW detectors routinely search for quasi-
monochromatic, continuous GW signals (for a recent re-
view, see [71]). The primary motivation for such searches
is the possibility of detecting GWs from rapidly rotat-
ing, asymmetric neutron stars. Here we hope to leverage
these efforts for another purpose, to test a specific class
of modified theories of gravity, namely MST gravity. Con-
tinuous GW searches fall into three broad classes: (i)
all-sky searches (see, e.g. [72–74]), (ii) directed searches,
fixing the sky location to that of a known source (see,
e.g. [75–77]), and (iii) targeted searches fixing the sky
location, the frequency and possibly its time derivative
to the corresponding values of a known source (see, e.g.
[78]). All of (i), (ii) or (iii) can be adapted to search
for scalar polarized GWs instead of the usual tensorial
polarizations (see, e.g. [79, 80]). However, only methods
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FIG. 9. Signal amplitudes
√
So for quasi-monochromatic GWs

emitted during stellar collapse for several (α0, β0) values with
µ = 10−14 eV using progenitor s39 with EOS1 (top) and
EOS3 (bottom). These are compared against the expected
noise curves

√
Sn(f) of LIGO [67], the Einstein Telescope

and Cosmic Explorer [68]. The ratio of
√
So to

√
Sn(f) gives

the SNR which is calculated assuming a 2 month period of
observation. Results are shown for observations performed
different times after the original supernova; t = 1, 3, 10, 30,
100, 250, 500, and 1000 years increasing from right to left
on the plot. The signal frequency decreases slowly with t
(inverse chirp) while the amplitude remains at the same order
of magnitude for up to t = 1000 years. These results were
computed for a galactic supernova at a distance D = 10 kpc
from the Earth.

(i) or (ii) can be used for our present purpose; we could
either search the whole sky for or target the location of
a historical supernovae in the hope that the signal has
been dispersively stretched to such an extent that it still
retains a detectable amplitude. Method (ii) is computa-
tionally cheaper than (i) and can be sensitive to quieter
signals, although method (i) has the obvious advantage
of covering the whole sky. As for method (iii), fixing the
signal frequency is not applicable here without further
theoretical assumptions (this is because the frequency
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Ω(t) depends on the unknown mass of the scalar field;
see Eq. (53)). However, one may instead fix the relation
between Ω and Ω̇ so as to increase the sensitivity of the
search.

In this section we calculate the single-detector optimal
signal-to-noise ratio (SNR) of our highly dispersed inverse
chirp signals. To estimate the SNR for a network of de-
tectors, the individual SNRs can be added in quadrature.
We point out the significance of a multi-detector network
for being able to distinguish between the polarizations of a
scalar signal and a standard tensorial GW. The dispersed
scalar field signal at the detector is modelled as a simple
sine wave,

ϕ(t) = A sin(Ωt+ φ0) . (64)

Any evolution in the amplitude and frequency is neglected
in our SNR estimates as such changes typically occur
on timescales much longer than a typical LIGO/Virgo
observation run, and (save for strong resonances in the
noise spectrum) variations of the noise spectral density
over a short frequency interval are smaller than temporal
variations due to nonstationarity of the instrument. The
scalar field is coupled to the physical metric gµν via Eq. (2);
therefore, oscillations in the scalar field source oscillations
in gµν , i.e. GWs. In massless ST theory these GWs are
transverse scalar polarized with strain amplitude

hB(t) = 2α0ϕ(t) , (65)

sometimes called a breathing mode. In MST theory, there
is an additional longitudinal polarization with a smaller
amplitude,

hL(t) =
(ω∗

Ω

)2

2α0ϕ(t) . (66)

The response of a GW interferometer is given by

h(t) = F
(
θ(t), φ(t)

)
[hB(t)− hL(t)] , (67)

where F (θ, φ) = −1
2 sin2 θ cos 2φ is the interferometer an-

tenna pattern which depends on the sky location (θ, φ)
of the source in a coordinate system attached to the de-
tector [81, 82]. The antenna pattern is identical (up to
a sign) for both polarizations implying that they cannot
be distinguished. As the detector rotates diurnally due
to the motion of the Earth, the coordinates (θ, φ), and
hence the antenna response, changes with time. This peri-
odic dependence of the antenna pattern tends to have an
averaging effect; sometimes the source is in a favourable
location while later it may cross a zero in the antenna
pattern. Therefore, for our simple SNR estimates we
use the constant, sky averaged rms value for the antenna
pattern,

F̄ =

√∫∫
dθ dφ sin θ F 2(θ, φ) =

√
4π/15 . (68)

Combining Eqs. (64)-(68) together, the effective strain
h(t) appearing in the interferometer’s output is given by

h(t) = 2Aα0F̄ [1− (ω∗/Ω)2] sin(Ωt+ φ) . (69)

Here we neglect any Doppler shift in the source frequency
caused by the motion of the Earth as this has a negligible
effect on the SNR.

The noise in the instrument (commonly assumed to be
stationary and Gaussian) is described by the (one-sided)
noise power spectral density Sn(f). The optimal SNR ρ
is defined in the Fourier domain by the following integral
over frequency f [83];

ρ2 = 4

∫ ∞

0

df
|h̃(f)|2
Sn(f)

. (70)

For an (approximately) sinusoidal signal h(t), the inte-
grand in this equation has support only at f = Ω/(2π),
so that the denominator can be pulled out of the integral
as a constant Sn(Ω/(2π). In the limit T � 1/Ω, the inte-
gral in Eq. (70) can be approximated by a time domain
integral (using Parseval’s theorem) and evaluated to give

ρ≈
√

So

Sn( Ω
2π )

, where So=T (Aα0F̄ )2

[
1−

(ω∗
Ω

)2
]2

.

(71)

In Fig. 9 we plot the quantity
√
So (cross symbols) at

specific frequencies as a measure of the signal amplitude
for two months of observation, and the quantity

√
Sn(f)

(solid curves) as a measure of the instrumental noise; the
height of the cross above the curve gives a visual measure
of the SNR, cf. Eq. (71) with f = Ω/(2π). For each
simulation a sequence of crosses are plotted corresponding
to the same source observed at different (retarded) times t
after the original supernova; results are shown for t =1, 3,
10, 30, 100, 250, 500 and 1000 years. Results are shown for
several core collapse simulations using the s39 progenitor
for different values of the MST theory parameters α0

and β0 and for two different choices for the equation of
state (EOS1 and EOS3). The general trend is that as
time passes the frequency slowly decreases following the
inverse chirp formula in Eq. (53) while the amplitude can
remain at the same order of magnitude for a very long
time after the original supernova. This trend is extremely
robust to changes in the properties of the progenitor star;
additional results for the progenitors u39 and z39 (both
with EOS1 and EOS3) are shown in Appendix D.

The results in Fig 9 and Appendix D show that if, for
example, (α0, β0) = (10−2,−20) then with the current
LIGO capabilities a galactic supernova at D = 10 kpc
could have a SNR of ρ ∼ 30 at ∼ 200 Hz in 2 months
of observation if observed t = 3 years after core collapse.
Furthermore, such a source remains detectable in LIGO
continuous wave searches for t ∼ 300 years after the orig-
inal supernova. With the Einstein Telescope or Cosmic
Explorer some signals may reach SNRs of ∼ 1000 in just
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2 months of observation and remain observable for up to
1000 years after the original supernova. Note that the
SNR scales with the duration of observation as

√
T and

with distance to the source as 1/D.
These results are obviously promising for the prospects

of making a detection or constraining α0, β0, and µ.
Because the signals remain detectable for such a long
time, it will be worthwhile carrying out directed searches
for continuous, scalar-polarised, inverse-chirp signals at
the locations of historical supernovae. If such searches
yielded no detection, it seems likely that this could be used
to place the tightest current constraints on the (α0, β0, µ)
parameter space of MST gravity. Supernova 1987A in the
large Magellanic cloud is an example of a recent, nearby
core-collapse supernova. A detailed projection of the
possible constraints are complicated by the µ dependence
of the inverse-chirp profile in Eq. (53); we defer a careful
analysis of this question to a future study.

VII. CONCLUSIONS

We have performed the first extensive study of spher-
ically symmetric core-collapse in massive scalar-tensor
(MST) theory in which we cover a wide range of equa-
tions of state and progenitor models, as well as a vast
section of the scalar parameter space centred around the
threshold for hyperscalarization. A stronger scalar field
delays gravitational collapse to the point of impeding BH
formation.
For mildly negative values of the quadratic coefficient

β0 in the conformal factor, we recover the two well-known
collapse scenarios in GR, the formation of a neutron star
(NS) and the formation of a black hole (BH) resulting
from continued accretion onto a proto NS. For sufficiently
negative values of β0, we encounter three collapse scenar-
ios qualitatively different from those in GR, the formation
of a BH following multiple NS stages, the multi-stage
formation of a strongly scalarized NS and the single-stage
formation of a strongly scalarized NS.
The fate of a progenitor (with fixed equation of state)

in GR dictates the distribution of these five collapse sce-
narios as we vary the scalar parameters. As we change
β0 from zero towards negative values, only two possible
successions of collapse scenarios are possible. The first
sequence is: 2-stage BH formation, multi-stage BH for-
mation, multi-stage formation of a strongly scalarized
NS, single-stage formation of a strongly scalarized NS.

The second sequence is single-stage formation of a low-
compactness weakly scalarized NS, multi-stage formation
of a strongly scalarized NS, single-stage formation of a
strongly scalarized NS. The boundaries between the dif-
ferent classes can vary with the equation of state, the
metallicity or the mass of the progenitor, but for every
progenitor we encounter either or the other sequence,
depending on whether the star forms a BH or a NS in
GR.
The different scenarios are reflected in the scalar field

(which mirrors the matter density evolution) and, as a
consequence, in the scalar radiation. The scalar mass
causes the GW signal to disperse as it propagates and by
the time it would reach a detector the signal will retain
little information with regard to its source, but it carries
a highly characteristic imprint of the MST theory. Over a
wide range of MST parameters, we find that the resulting
gravitational-wave signals will be strong enough to reach
SNRs & 20 over long periods of time, even up to several
centuries. This implies potential detection through the
study of historical supernovae or, through non-detection,
the most stringent constraints on the (α0, β0) parameter
space of MST theory.
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Appendix A: Collapse scenarios

In this appendix, we discuss in more detail the five
qualitatively different collapse scenarios listed in Sec. IVA
by analysing for each case a prototypical example. For all
configurations discussed in this section, we use a scalar
mass µ = 10−14 eV.

1. Single-stage collapse to a weakly scalarized
neutron star

The formation of a weakly scalarized neutron star is
the scenario realized for weakly (or non-) negative values
of β0 and for equations of state and progenitor models
that result in a neutron star in GR. The dynamics of this
scenario barely differ from the corresponding collapse in
GR and result in a weak GW signal as long as α0 � 1.
As an example, we plot in the top row of Fig. 10 as

functions of time the central baryon density ρc, the central
scalar field value ϕc and the wavesignal σ = rexϕ at
rex = 3 × 104 km for the collapse of an s39 progenitor
with EOS3 and ST parameters α0 = 10−3, β0 = −2.
This example displays all the characteristics we observe
in configurations collapsing in a single stage into a weakly
scalarized NS. The central density abruptly increases in
one jump up to a few times 1014 g/cm

3. For nonzero α0

the jump in density is accompanied by a sudden change
in the central scalar field away from zero, but the scalar
field only reaches an amplitude ϕc = O(α); cf. the top
center panel in Fig. 10. This weak scalarization leads to
a correspondingly weak GW signal as shown in the top
right panel of the figure.

2. Two-stage formation of a black hole

In the GR limit, a larger ZAMS mass, a lower metallic-
ity or a softer equation of state may result in the forma-
tion of a BH instead of a NS. For nonnegative or mildly
negative values of β0, this occurs in two stages; the con-
figuration briefly settles down into a weakly scalarized
NS before a second contraction phase results in the fi-
nal BH (as in GR). In the top row of Fig. 11, we show
as an example the progenitor u39 with EOS1 and ST
parameters α0 = 10−3, β0 = −2. The upper left panel
illustrates that the central density first jumps to nuclear
values O(1014) g/cm

3 and briefly levels off before a second
jump signals the formation of a BH at t ≈ 0.35 s. The
first contraction phase only leads to a weak scalarization
and a correspondingly weak GW signal in the center and
right panels. The scalarization in the second contraction
phase is more complicated; as the stellar compactness
increases, the scalar field rapidly strengthens. This in-
crease is halted, however, once a horizon forms and the
BH descalarizes in accordance with the no-hair theorems.
The maximal degree of the scalarization critically depends
on how rapidly a BH forms and, thus, exhibits sensitive

dependence on the configuration’s parameters. In our set
of simulations, we have found that all degrees from weak
to strong scalarization and GW emission are possible in
the two-stage BH formation category and that even tiny
changes in a parameter can drastically modify the ensu-
ing GW signal; see for example the right panel in Fig. 3
where the dark “2-stage BH” region in the (α0, β0) plane
of the bottom plot covers the entire range of scalarization
displayed in the center plot. Among the five qualitatively
different collapse scenarios, the two-stage BH formation
is the only one that exhibits such a sensitive dependence
on the parameters.

3. Multi-stage collapse to a black hole

This scenario also leads to the formation of a BH, but
the collapsing star settles down into at least two temporar-
ily stationary neutron-star configurations with increasing
central density. Furthermore, all but the first neutron-star
stages are strongly scalarized, so that this scenario always
generates a strong GW signal. As an example, we show
in the bottom row of Fig. 11 for a progenitor u39 with
EOS1 and ST parameters α0 = 10−3, β0 = −5 the central
density ρc, the central scalar field ϕc and the wave signal
σ = rexϕ at rex = 3× 104 km as functions of time. Note
the similarity at early times to the otherwise identical
configuration with β0 = −2 shown in the upper panel of
the same figure. The key difference is that the second
contraction phase around t ≈ 0.35 s promptly results in
a BH if β0 = −2 but leads to an intermittent strongly
scalarized NS phase if β0 = −5.
In Fig. 12 we show snapshots of the radial profiles of

the baryon density ρc and the scalar field ϕ for this model
with β0 = −5. Each contraction to a temporarily NS stage
is accompanied by the formation of an outgoing shock
through core bounce; these are visible at times t ≈ 0.086 s
and t ≈ 0.356 s in the profiles ρ(r) in the left panel of
the figure. The first NS is weakly scalarized and we only
see a significant increase in the scalar field amplitude in
the right panel following the second contraction phase
at t ≈ 0.356 s. The third and final contraction at t ≈
0.537 s leads to a BH and, in accordance with the no-hair
theorems, the descalarization of the compact star. This
strong scalarization and ensuing descalarization results
in the two peaks in the GW signal of this configuration
in the bottom right panel of Fig. 11.

4. Multi-stage collapse to a neutron star

This scenario resembles in many ways the multi-stage
formation of a BH discussed in the preceding subsection.
Again, we observe a first contraction phase resulting in
a weakly scalarized NS followed by one or more further
contraction stages. The key difference is that the end
product is a highly compact, strongly scalarized NS rather
than a BH. An example of this scenario is given by the
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FIG. 10. The central baryon density ρc (left), the central scalar field value ϕc (middle) and the wavesignal σ = rexϕ extracted
at rex = 3× 104 km (right column) are shown as a function of time for three configurations. Top: Progenitor s39 with EOS3
and scalar parameters α0 = 10−3, β0 = −2 promptly forms a weakly scalarized NS. Center: Progenitor s39 with EOS1 and
α0 = 10−1, β0 = −7 undergoes a multi-stage collapse to a strongly scalarized NS. Bottom: Progenitor z39 with EOS1 and
α0 = 10−3, β0 = −20 promptly collapses into a strongly scalarized NS. The Roman numerals label separate stages in the time
evolution.
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FIG. 11. The central baryon density ρc (left), the central scalar field value ϕc (middle) and the wavesignal σ = rexϕ extracted
at rex = 3× 104 km (right column) are shown as a function of time for two configurations. Top: The progenitor u39 with EOS1
and scalar parameters α0 = 10−3, β0 = −2 temporarily forms a weakly scalarized NS before it collapses to BH at t ≈ 0.35 s.
Bottom: The same configuration with β0 = −5 also collapses into a BH eventually, but not before briefly settling down into a
strongly scalarized NS phase between t ≈ 0.35 s and t ≈ 0.54 s. For comparison, the scalar field and wavesignal of the second
configuration are also displayed as dashed lines in the upper panels. Note how the additional strongly scalarized NS stage leads
to an increase in the GW signal by several orders of magnitude.
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at t ≈ 0.086 s. The second contraction leads to a second core bounce at t ≈ 0.356 s and this time the scalar field also increases in
amplitude (left panel), signalling the temporary formation of a strongly scalarized NS. At t ≈ 0.537 s, the baryon density once
again starts increasing sharply, this time leading to the formation of a BH and the corresponding descalarization.
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at t ≈ 0.072 s. The second contraction leads to a second core bounce at t ≈ 0.116 s and this time the scalar field also increases in
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dotted black line respresents the initial profile. In this case, core bounce occurs at t ≈ 0.087 s which leads to a shock propagating
outwards. Over the remaining duration of the simulation no further shocks appear and the central density barely changes.

collapse of the s39 progenitor with EOS1 and ST param-
eters α0 = 10−1, β0 = −7 in the center row of Fig. 10.
This configuration reveals three contraction phases that
are also visible in the snapshots of the radial profiles of
the baryon density ρ and the scalar field ϕ in Fig. 13.
Again, we observe each contraction phase to result in

a core bounce and an outgoing shock, visible in the left
panel of Fig. 13: The first shock forms at t ≈ 0.072 s, the
second at t ≈ 0.117 s while the third discontinuity is weak
and barely visible at t = 0.345 s around r ≈ 15 km. As
in the case of a multi-stage BH formation, the significant
jumps in the scalar field may result in multiple peaks
in the wave signal as shown in the center-right panel of
Fig. 10.

5. Single-stage collapse to a strongly scalarized
neutron star

The single-stage formation of a strongly scalarized NS
can be regarded as the limit of the preceding multi-stage
NS formation with the duration of all intermediate quasi-
stationary NS configurations shrinking to zero. This is
indeed what is observed if we start with a given multi-
stage NS model, such as the one discussed in the previous
subsection, and then amplify β0 to increasingly negative
values; the lifetime of the intermittent stages decreases
and we approach a single contraction phase to a strongly
scalarized NS. Over the parameter range we have consid-
ered, this scenario ubiquitously represents the limiting
scenario for highly negative values of β0; cf. Fig. 3. The
wave signal always consists of a single strong peak for
these configurations.

Appendix B: Additional classification for several
equations of state and progenitor models

Figs. 15 and 16 show additional results to accompany
the discussion in Sec. IVA obtained with different stellar
progenitors and equations of state. The main conclusion
is that every progenitor model results in heatmaps in the
(α0, β0) plane qualitatively equal to that of the ‘neutron
star’ case (left panel of Fig. 3) or that of the ‘black hole’
case (right panel of Fig. 3).

Appendix C: Comparing the Methods

This appendix contains a test and comparison of the two
methods described in Secs. VA and VB for propagating
signals from the extraction sphere to larger radii. For this
test, consider a simple signal which, on the extraction
sphere, is a cosine-Gaussian wavepacket;

σ(u; rex)=cos

(
2π(u−rex)

T

)
exp

(−(u−rex)2

18T 2

)
. (C1)

The parameter T is an overall timescale which is set to
unity without loss of generality and the scalar field mass
was chosen to be ω∗ = 2/T . The signal was propagated
to larger radii using both of the methods described in
Secs. VA and VB and the results are summarized in
Fig. 17.

As can be seen from Fig. 17, there is excellent qualita-
tive agreement between the two methods. At the quanti-
tative level there are small errors (generally . 1%, as can
be seen from the lower panel) which are due to numerical
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FIG. 15. Similarly to Fig. 3, for each panel we consider a fixed progenitor star with ZAMS mass 12M�, solar metallicity and
several equations of state of Table I. Top rows: For selected values of α0, we plot the maximal scalarization of the star as a
function of β0. The middle rows provide a color (or “heat”) map of the same quantity in the (α0, β0) plane; “Red” = strong
scalarization, “Blue” = weak scalarization. The bottom rows present a color code of the five qualitatively different collapse
scenarios listed in Sec. IVA. Note that all progenitor models displayed here result in heatmaps in the (α0, β0) plane qualitatively
equal to that on the left side of Fig. 3 (the ‘neutron star’ case).
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FIG. 16. Similarly to Fig. 3, for each panel we consider a fixed progenitor star with ZAMS mass 39M�,all three metallicities
and equations of state EOS1 and EOS3 of Table I. Top rows: For selected values of α0, we plot the maximal scalarization of the
star as a function of β0. The middle rows provides a color (or “heat”) map of the same quantity in the (α0, β0) plane; “Red”
= strong scalarization, “Blue” = weak scalarization. The bottom rows present a color code of the five qualitatively different
collapse scenarios listed in Sec. IVA. Note that all progenitor models displayed here result in heatmaps in the (α0, β0) plane
qualitatively equal to that on the right side of Fig. 3 (the ‘black hole’ case).
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FIG. 17. The top panel shows the results of evolving an
initially sin-Gaussian waveform out to radii r1 = rex + 500cT
and r2 = rex + 1200cT using the time domain numerical
evolution of the wave equation (see Sec. VA). The evolution
to large radii was also performed using the analytic Fourier
domain approach (see Sec. VB) and the bottom panel shows
the differences, or residuals, between the two methods.
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FIG. 18. Similar to Fig. 9, but for stellar collapse of the u39
progenitor model.

errors in the 1 + 1 time domain evolution (this has been
checked by verifying the scaling of the errors with grid
resolution). As the signals propagate to larger radii the
peak lags at later retarded times due to the subluminal
wave propagation. Additionally, the variation in the group
velocity between the different Fourier components of the
wavepacket leads to a broadening of the peak; careful
inspection of the σ(u; r2) profile reveals the beginnings
of an inverse chirp profile (see Sec. VC) where the high
frequencies arrive first, followed by the low frequencies.

Appendix D: Additional SNR Results

Figs. 18 and 19 show additional results to accompany
the discussion in Sec. VI obtained with different stellar
progenitors. The main conclusion is that the properties
of the progenitor have only a mild effect on the SNR.

100 101 102 103

f [Hz]

10−25

10−24

10−23

10−22

10−21

10−20

10−19

√
S
(f
)
[H
z−

1/
2
]

ω∗/(2π)

LIGO

CE

ET

1000 yrs 1 yr

α0 = 10−2, β0 = −5

α0 = 10−3, β0 = −5

α0 = 10−4, β0 = −5

α0 = 10−2, β0 = −20

α0 = 10−3, β0 = −20

α0 = 10−4, β0 = −20

100 101 102 103

f [Hz]

10−25

10−24

10−23

10−22

10−21

10−20

10−19

√
S
(f
)
[H
z−

1/
2
]

ω∗/(2π)

LIGO

CE

ET

1000 yrs 1 yr

α0 = 10−2, β0 = −7.25

α0 = 10−4, β0 = −7.50

α0 = 10−1, β0 = −20

α0 = 10−2, β0 = −20

α0 = 10−3, β0 = −20

α0 = 10−4, β0 = −20

FIG. 19. Similar to Fig. 9, but for stellar collapse of the z39
progenitor model.
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