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Abstract  

Peptide presentation on MHC class I molecules (MHC-I) is central to mounting effective 

antiviral and antitumoral immune responses. The tapasin-related protein TAPBPR is an 

MHC-I peptide editor which shapes the final peptide repertoire displayed on the cell surface. 

Here, we review recent findings which further elucidate the mechanisms by which TAPBPR 

performs peptide editing on a molecular level, and how glycosylation on MHC-I influences 

the interaction with TAPBPR and the peptide loading complex. We also explore how the 

function of TAPBPR can be utilized to promote exogenous peptide loading directly onto 

plasma-membrane expressed MHC-I. This has led to the development of new assays to 

investigate TAPBPR-mediated peptide editing and uncovered translational opportunities of 

utilizing TAPBPR to treat human disease. 

  



Introduction 

MHC class I molecules (MHC-I) present fragments of the cellular proteome at the surface of 

cells for inspection by CD8+ T cells, thereby playing a crucial role in the immunosurveillance 

of intracellular infections and tumours. Peptide loading on MHC-I is modulated in the 

endoplasmic reticulum (ER) by the peptide loading complex (PLC). Within the PLC, tapasin 

bridges peptide-receptive MHC-I to the transporter associated with antigen processing (TAP), 

ensuring their proximity to the point of peptide influx in the ER [1-3], while also performing 

peptide editing to help select optimum peptide cargo [4-7] (Figure 1).  In 2002, a tapasin-

related protein termed TAPBPR was initially described [8]. The function and properties of 

TAPBPR remained undefined until its ability to interact with MHC-I was discovered [9]. 

Since then, the role of TAPBPR in the antigen presentation pathway has been extensively 

investigated, unveiling further complexities regarding how peptides are selected on MHC-I. 

 

The Ins of TAPBPR: Its natural role within an intracellular environment 

It is now apparent that TAPBPR is an intracellular chaperone for MHC-I and a component of 

the antigen processing and presentation pathway [9-11]. Below, we discuss some of the 

functions which TAPBPR performs and recent insights into the interaction between TAPBPR 

and MHC-I.   

 

Peptide Editing on MHC-I 

Structural predictions and site-directed mutagenesis experiments suggested that TAPBPR 

adopts a similar orientation on MHC-I to the one of tapasin, raising the intriguing possibility 

that it may be capable of performing peptide editing on MHC-I [12]. This hypothesis was 



supported a few years later following demonstration using in vitro assay that TAPBPR does 

indeed function as a peptide editor [13,14]. In contrast to tapasin, which requires artificial 

tethering to MHC-I or additional cofactors to facilitate peptide exchange [6,7], the luminal 

domain of TAPBPR alone is capable of modulating peptide editing on MHC-I [13,14]. 

Furthermore, alteration of TAPBPR expression in cells changes the peptide repertoire 

presented on MHC-I [13]. These discoveries established TAPBPR as a second peptide editor 

in the MHC-I antigen presentation pathway (Figure 1). While tapasin appears somewhat 

crucial for stable peptide:MHC-I presentation on the plasma membrane [5,15,16], TAPBPR 

depletion results in a more subtle phenotype on MHC-I surface expression, implicating 

TAPBPR in a fine-tuning or refining role of TAPBPR in the pathway [9,13]. The distinct 

environments within which the two peptide editors function represents one likely factor 

responsible for their differential effects on MHC-I. For example, tapasin performs peptide 

editing in a peptide-rich environment, which enables efficient peptide loading onto MHC-I. 

In contrast, peptide editing by human TAPBPR occurs more distally from the TAP 

transporters, presumably in an environment more devoid of optimal MHC-I binding peptides. 

Thus, peptide editing in the absence of incoming peptide would presumably result in a 

refining effect on the MHC-I immunopeptidome. 

 

Insights into the mechanisms of MHC-I peptide editing 

The discovery of TAPBPR provided a platform for the laboratories of David Margulies and 

Robert Tampe to independently solve the first crystal structures of MHC-I bound to a 

molecular chaperone [17,18]. Here, we only briefly touch on this insightful work as it is 

covered in depth in a complementary article by David Margulies in this issue of Current 

Opinion in Immunology [19]. Both published TAPBPR:MHC-I structures suggest that 



TAPBPR mediates peptide dissociation by sequestering the α2-1 region of MHC-I away from 

the peptide, consequently ‘flipping’ away residue Y84 of MHC-I which is involved in 

hydrogen bond formation with the C-terminus of the peptide [17,18]. This is similar to the 

mechanism previously proposed for tapasin [20]. However, one key difference in the reported 

structures was the localization of a loop of TAPBPR, composed of residues 22–36, which 

was modelled in the structure by Thomas and Tampe near the peptide binding groove of 

MHC-I, consequently suggesting its involvement in mediating peptide exchange [17].   

Our own recent biochemical exploration of the involvement of this loop region in peptide 

selection revealed that upon mutation of the K22-D35 loop, TAPBPR retained its capacity to 

bind to MHC-I, however lost its ability to facilitate efficient peptide exchange on HLA-

A*02:01, HLA-A*68:02 and H-2Kb molecules [21]. A leucine residue within the loop 

appears to be essential for promoting peptide dissociation from MHC-I that accommodate 

hydrophobic amino acids in their F pocket [21]. This work suggests that the loop region is 

crucial for TAPBPR-mediated peptide editing and peptide selection, at least for certain 

MHC-I variants. A similar, albeit shorter, loop is also present in tapasin and peptides 

comprising this sequence have recently been crystalized with MHC-I [22]. Using an NMR-

based approach, Skourgakis and colleagues have shown that TAPBPR senses peptide/MHC-I 

interactions along the entire length of the groove and proposed an allosterically driven release 

of the peptide in the presence of TAPBPR [23]. Together, these recent findings have revealed 

mechanistic insight into the processes involved in chaperone-mediated peptide editing. Since 

MHC-I are extremely polymorphic, it is important to consider that one rule might not fit all 

MHC-I, and multiple distinct mechanisms of peptide editing may be required to 

accommodate the high degree of variation in both the peptide and the MHC-I itself.  

 



  The glycan attached to MHC-I impacts its association with TAPBPR 

Given that TAPBPR apparently has a higher affinity for MHC-I than tapasin [14], and that 

both chaperones seem to reside in the ER [9], we have previously attempted to understand the 

reason for which TAPBPR does not outcompete tapasin for binding to MHC-I in a cellular 

environment [11]. There are several possible explanations for this phenomenon and 

subsequent findings from our laboratory suggest that the glycan attached to MHC-I is one 

important factor that influences the order in which MHC-I interacts with the two peptide 

editors [24]. While tapasin binds to mono-glucosylated MHC-I by virtue of its interaction 

with calreticulin and ERp57 [25-29] (Figure 1), the interaction of MHC-I with TAPBPR 

appears to occur in a glycan-independent manner [24]. This would permit TAPBPR to bind to 

MHC-I molecules containing a broad diversity of oligosaccharides attachments and may be 

responsible for TAPBPR interacting with MHC-I further along the secretory pathway, as 

compared to tapasin (Figure 1). That being said, tapasin appears to have “first dibs” at 

glycosylated MHC-I. Thus, when the Glc1Man9GlcNAc2 moiety is attached to MHC-I, the 

tapasin/calreticulin/ERp57 complex has greater accessibility to MHC-I than TAPBPR. These 

findings are consistent with the notion that MHC-I initially load peptides in the PLC, which 

subsequently undergo TAPBPR-mediated peptide selection (Figure 1).    

 

TAPBPR influences MHC-I recycling 

In 2011, UDP-glucose:glycoprotein glucosyltransferase (UGT1) was shown to be involved in 

MHC-I quantity control and optimal peptide selection [30,31]. By reconstituting the 

Glc1Man9GlcNAc2 moiety on MHC-I loaded with suboptimal peptides, UGT1 promotes 

recognition of these molecules by calreticulin, consequently causing their re-engagement by 

the PLC. Subsequent experiments demonstrated that TAPBPR can act as a bridge between 



UGT1 and MHC-I molecules, which are potentially peptide receptive [32] (Figure 1). Thus, 

in addition to directly functioning as a peptide editor [13,14], TAPBPR plays an additional 

role in shaping the MHC-I immunopeptidome, by recycling sub-optimally loaded MHC-I 

molecules back to the PLC [32](Figure 1). As the TAPBPR:UGT1 complex is involved in 

modifying the glycan attached to MHC-I, this may explain why the interaction of TAPBPR 

with MHC-I occurs in a glycan-independent manner.  

 

What else is TAPBPR capable of doing? 

Through its interaction with UGT1, TAPBPR is able to facilitate the re-glucosylation of 

MHC-I [32]. This raises the question of whether TAPBPR could adopt alternative functions 

through interactions with additional co-factors. Furthermore, despite current research having 

predominately focused on the effect of TAPBPR on classical MHC-I, could TAPBPR serve 

as a chaperone for other ligands as well, for example non-classical MHC-I or MHC-I-related 

molecules? Naturally, there is also speculation regarding whether TAPBPR could be involved 

in MHC-I cross-presentation.  

 

The Outs of TAPBPR: TAPBPR is capable of functioning on plasma membrane 

expressed MHC-I 

Although TAPBPR usually resides intracellularly, we recently discovered that it can promote 

peptide exchange on cell surface-expressed MHC-I molecules [33]. By either over-expressing 

TAPBPR in cells (which results in a low proportion of TAPBPR leaking to the plasma 

membrane) or by adding recombinant TAPBPR exogenously onto cells, we revealed that 

TAPBPR could efficiently promote exogenous peptide loading directly onto surface 

expressed MHC-I [33](Figure 2). The ability of TAPBPR to function on surface-expressed 



MHC-I is consistent with other previously discovered properties of TAPBPR, including its 

binding to MHC-I in a glycan independent manner [24] and its ability to mediate peptide 

editing in the absence of other cofactors [13,14]. This discovery has led to a number of 

interesting developments and opportunities.   

   

New assays to explore TAPBPR function 

The ability of TAPBPR promote peptide exchange on plasma membrane expressed MHC-I 

has permitted the development of new assays to explore TAPBPR-mediated peptide editing. 

Prior to this, the only other available assay relied on assessing the effect of the luminal 

domain of TAPBPR on recombinant MHC-I refolds, using fluorescence polarization 

measurements [13,14]. This system was based on the pre-existing assay designed by Chen & 

Bouvier for tapasin [6]. From a biological perspective, the new experimental systems offer 

several advantages, as the MHC-I are in their naturally occurring transmembrane 

conformations, thus presenting a wide repertoire of peptides (albeit those which have passed 

through quality control mechanisms), containing a glycan (although a more mature 

oligosaccharide than would be found in the ER/Golgi) and abiding by the natural restrictions 

imposed by a cellular membrane. From a practical point of view, these assays represent high-

throughput tools for measuring TAPBPR-mediated peptide editing. They rely on the cellular 

machinery to express, fold and load membrane bound MHC-I molecules and thus circumvent 

the need to perform laborious refolding reactions with recombinant MHC-I expressed in 

bacteria. 

 

These newly established assays enabled us to explore whether the K22-D35 loop of TAPBPR 

was involved in mediating peptide exchange [21] as well as to determine which MHC-I 



allotypes are subjected to TAPBPR-mediated peptide editing [34]. Our findings suggest that 

TAPBPR displays a clear functional preference for HLA-A molecules, particularly for 

members of the A2 and A24 superfamilies, over HLA-B and -C molecules. Furthermore, this 

work revealed that molecular features of the HLA-A F pocket, specifically residues H114 and 

Y116, drive the propensity of MHC-I to undergo TAPBPR-mediated peptide exchange. The 

development of new systems to explore peptide selection on MHC-I widens our scope of 

experimentation which will ultimately lead to a better understanding of the processes 

involved.   

 

Potential use in Immunotherapy 

Intriguingly, recombinant TAPBPR can be used to decorate cells with antigenic peptides, 

including viral peptides and neo-epitopes [33] (Figure 2). Once loaded onto MHC-I, these 

peptides also appear to be available for recognition by antigen-specific CD8+ T cells [33], 

providing promising  translational opportunities for using TAPBPR to increase the 

immunogenicity of tumours. A key issue currently faced regarding the efficiency of 

immunotherapies is the low immunogenicity of tumours [35]. Recent discoveries suggest that 

even tumours displaying highly immunogenic peptides can avoid immune detection provided 

that only a small fraction of the tumour cells present the antigen [36]. Therefore, it will be 

interesting to explore whether the function of TAPBPR can be utilized in vivo to load 

immunogenic peptides of choice specifically onto tumours to increase the percentage of cells 

within a tumour that CTLs can detect and destroy, therefore turning immunologically ‘cold’ 

tumours into ‘hot’ tumours.   

 

Concluding remarks 



The discovery that TAPBPR can facilitate peptide exchange on cell surface expressed MHC-

I, if given access to the plasma membrane, raises queries regarding in which cellular 

localization TAPBPR naturally assists in peptide selection. While TAPBPR is present in the 

ER and Golgi, its fate post medial-Golgi remains largely enigmatic. While it does not appear 

to be present on the plasma membrane when expressed at physiological levels, it remains 

undetermined whether it localizes into the endosomal system. With its ability to dissociate 

high-affinity peptides from mature MHC-I, representative of MHC-I found in recycling 

endosomes, there is speculation whether TAPBPR may help facilitate MHC-I cross-

presentation by increasing the efficiency of peptide exchange, as occurs on MHC class II 

molecules via HLA-DM [37]. 
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Figure legends 

Figure 1 – The Ins of TAPBPR: Its natural role within an intracellular environment. 

Within the PLC, tapasin assists in loading peptides onto MHC-I. These MHC-I may then 
either be transported through the Golgi for presentation on the cell surface or undergo 
TAPBPR-mediated peptide editing. If peptide editing occurs in the absence of a suitable 
incoming peptide, the MHC-I may become peptide-receptive.  UGT1 associated with 
TAPBPR can reglucosylate MHC-I, a modification which restores their recognition with 
calreticulin and recycling to the peptide loading complex.         

 

Figure 2 - The Outs of TAPBPR: TAPBPR is capable of functioning on plasma 
membrane expressed MHC-I. 

(A) When TAPBPR is over-expressed in mammalian cells by transduction or transfection, a 
small proportion of TAPBPR traffics to the plasma membrane. Due to its ability to interact 
with MHC-I in a glycan-independent manner, TAPBPR is capable of binding to, and 
performing peptide editing on, cell surface expressed MHC-I.  In the presence of high affinity 
peptides, including those derived from viruses or tumour-antigens, TAPBPR can efficiently 
promote exogenous peptide loading directly into plasma membrane expressed MHC-I.  (B) 
Treatment of mammalian cells with recombinant TAPBPR can also be used to promote 
exogenous peptide loading directly on plasma membrane expressed MHC-I.    
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