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ABSTRACT 

 

Replacive symplectites (vermicular intergrowths of two or more minerals) are an important 

feature of layered igneous intrusions, recording evidence of late-stage reactions between 

interstitial liquid and crystals. They are common throughout the Layered Series of the 564 Ma 

Sept Iles layered intrusion in Quebec, Canada, and fall into three types: oxy-symplectites, 

‘Type I’ symplectites, and ‘Type II’ symplectites. Oxy-symplectites are comprised of 

magnetite and orthopyroxene, nucleate on olivine primocrysts, and form via the reaction 

Olivine + O2  Orthopyroxene + Magnetite; Type I symplectites (of which there are 3 

distinct categories) are comprised of anorthitic plagioclase with pyroxene, amphibole, or 

olivine vermicules, grow from primocryst oxide grains, and replace primary plagioclase; and 

Type II symplectites (of which there are 2 distinct categories) are comprised of anorthitic 

plagioclase with orthopyroxene ± amphibole vermicules, grow from primocryst olivine 



grains, and replace primocryst plagioclase. Rare symplectites composed of biotite and 

plagioclase are also present. 

Symplectite growth occurred at 700-1030°C with pressure constraints of 1-2 kbar. We 

propose that Type I symplectites, and some Type II symplectites, formed from interaction of 

primocrysts with residual Fe-rich liquid as a consequence of differential loss of an immiscible 

Si-rich liquid conjugate from the crystal mush. However, redistribution and concentration of 

hydrous fluids in incompletely solidified rock, or an increase in water activity of the 

interstitial melt, may be more plausible processes responsible for the formation of replacive 

symplectites comprising abundant hydrous mineral assemblages.  

KEY WORDS: Crystal Mush; Layered Mafic Intrusions; Microstructures; Sept Iles; 

Symplectites  



INTRODUCTION 

 

Detailed studies of volcanic rocks worldwide show that crystals found in lavas are often in 

disequilibrium with their carrier melts (Passmore et al., 2012). This, together with theoretical 

modelling (Huber et al., 2010), was used to argue that crustal magma reservoirs are long-lived 

features dominated by crystal mushes rather than by large, melt-rich, magma chambers 

(Cashman et al., 2017). The presence of several crystal populations in lavas can thus be 

explained by the disaggregation of crystal mushes by injection of primitive melt, leading to 

the possibility of complex chemical interactions between existing mush and the incoming 

magma (Huber et al., 2010; Kent et al., 2010; Passmore et al., 2012; Neave et al., 2014). 

Additionally, although some mafic layered intrusions such as Skaergaard in East Greenland 

most likely crystallized from a large magma body (McBirney, 1996), other mafic intrusions 

record evidence for multiple magma injections (e.g. Ashwal et al., 2005; Namur et al., 2010; 

Yuan et al., 2017). These injections are commonly associated with geochemical and textural 

evidence for interaction between existing crystals and the incoming magma, such as mineral 

dissolution ± recrystallization due to percolation of interstitial melt (Humphreys, 2011; 

Namur et al., 2013; Leuthold et al., 2014).  

In mafic intrusions crystallized from parent ferrobasalt, silicate liquid immiscibility is known 

to develop during differentiation (Holness et al., 2011; Charlier et al., 2011; Namur et al., 

2012a; Fischer et al., 2016). Although the effect of basaltic or rhyolitic melt percolation on 

crystal mush melting and disaggregation is fairly well known (Lissenberg et al., 2013; 

Bachmann & Huber, 2016; Yang et al., 2019), comparatively little information is known 

about the percolation of extremely Fe-rich melts formed by silicate liquid immiscibility 

(Holness et al., 2011; Namur et al., 2012a). This type of melt can, however, be in very strong 



chemical disequilibrium with the crystal matrix with an associated capacity for crystal 

dissolution, therefore promoting mush disaggregation and perhaps crystal entrainment.  

Here we report the results of a detailed microstructural and geochemical study of symplectites 

in the Sept Iles intrusion, which we argue shed light on the extent and nature of reactive 

dissolution and reprecipitation within the crystal mush in slowly-cooled intrusions, with 

implications for element mobility and magma differentiation.  

 

PREVIOUS CONSIDERATION OF SYMPLECTITE FORMATION   

 

Symplectites are “reaction microstructures characterized by fine-grained vermicular 

intergrowths of two or more minerals (Spruzeniece et al., 2017). Most research on 

symplectites has been conducted on metamorphic rocks, as symplectites are commonly 

formed in the sub-solidus at the interface of two reactive phases (e.g. Pitra & de Waal, 2001; 

Ikeda et al., 2007; Scott et al., 2013; Spruzeniece et al., 2017). Due to their abundance in 

metamorphic rocks, symplectites observed in unmetamorphosed igneous rocks are still 

usually described as sub-solidus reaction products (e.g. Turner & Stüwe, 1992; Scott et al., 

2013; Spruzeniece et al., 2017; Xie et al., 2017). However, symplectites have been 

documented in unmetamorphosed oceanic gabbros (Koepke et al., 2005a; b; 2014; Lissenberg 

& MacLeod, 2016); the Skaergaard intrusion, East Greenland (Holness et al., 2011); the 

Bushveld Complex, South Africa (Roelofse & Ashwal, 2008; Tanner et al., 2014); the Duluth 

Complex, Minnesota (Gál et al., 2011); the Panzhihua intrusion, China (Wang et al., 2018); 

and the Sept Iles intrusion of Quebec, Canada (Namur et al., 2012a).  

Detailed chemical and microstructural investigation of these previously neglected replacive 

microstructures led Holness et al. (2011) to argue that symplectites can provide a record of 



the extent of differential migration of immiscible interstitial liquids in gabbros. This is an 

important result because, despite much effort directed at understanding the liquid line of 

descent of basaltic magma during differentiation, little attention has been focussed on the 

evolution of the interstitial liquid within the crystal mush, particularly during the last stages of 

solidification when porosity and permeability are low (e.g. Boudreau et al., 1986; Boudreau 

& McCallum, 1989; Meurer et al., 1997; Meurer & Meurer, 2006; Humphrey, 2009; 2011; 

Namur & Charlier, 2012; Namur et al., 2014; Namur & Humphreys, 2018). In the following, 

we describe the common types of replacive symplectites found in igneous rocks.  

Oxy-symplectites 

 

Oxy-symplectites comprise vermicules of an oxide phase (magnetite ± ilmenite or other 

spinels) enclosed by a mafic phase, most commonly orthopyroxene, although amphibole and 

occasionally clinopyroxene may also be present (e.g. Ikeda et al., 2007; Holness et al., 2011). 

They have been documented in many igneous environments, but there is no general consensus 

on their formation. They have been ascribed variously to nucleation and growth during sub-

solidus cooling (Efimov & Malitch, 2012), exsolution (Moseley, 1984), metasomatic 

replacement reactions (Putnis & Austrheim, 2010), and late-stage magmatic (super-solidus) 

reactions with residual liquid during the latest stages of crystallization (Holness et al., 2011).  

Anhydrous Symplectites 

 

Anhydrous symplectites generated in the super-solidus may simply result from the 

crystallization of pockets of late-stage liquids saturated in multiple phases (i.e. not involving 

reaction with pre-existing solid phases; Morse & Nolan, 1984; Gál et al., 2011; Barnes et al., 

2017). Alternatively, they could form by reaction of infiltrating liquids with pre-existing 

phases (Irvine, 1980; Roelofse et al., 2009), possibly by the reaction of a dense Fe-rich 



immiscible interstitial liquid with the surrounding primocrysts caused by the preferential loss 

of the Si-rich conjugate (Holness et al., 2011; Humphreys, 2011; Namur et al., 2012a). 

Hydrous Symplectites 

 

Biotite- or amphibole-bearing symplectites are commonly observed in mafic igneous rocks. 

Although they have been attributed to post-magmatic (i.e. sub-solidus) hydration reactions 

(Turner & Stüwe, 1992; Xie et al., 2017), a super-solidus origin has also been proposed via 

either reactions between primocrysts and a late-stage volatile phase in the final stages of 

crystallization of silicate melt (i.e. reactive porous flow; Lissenberg & MacLeod, 2016; 

Barnes et al., 2017), or crystallization of partial melts triggered by hydrous fluid infiltration 

into partially solidified rocks (Koepke et al., 2005a; b; 2014; Wolff et al., 2013). 

 

GEOLOGICAL BACKGROUND 

 

The Sept Iles intrusion is a ferrobasaltic layered mafic intrusion located 500 km northeast of 

Quebec City in Quebec, Canada (Fig. 1; Higgins, 2005). It has a diameter of 80 km, a 

minimum thickness of 5.5 km, and an estimated magma volume of 20,000 km
3 

(Loncarevic et 

al., 1990), making it the third largest layered intrusion in the world after the Bushveld and 

Dufek intrusions (Namur et al., 2010; Namur et al., 2015). It formed contemporaneously with 

the opening of both the St. Lawrence rift system and the Iapetus Ocean (Kumarapeli & Saull, 

1966) and was intruded into high-grade gneisses of the Archean to Mesoproterozoic Grenville 

Province at 564 ± 5 Ma (Higgins & van Breemen, 1998). The Sept Iles intrusion crops out on 

the north shore of the present-day St. Lawrence River and is entirely undeformed and 

unmetamorphosed (Namur et al., 2010). Sr-Nd isotopic compositions are consistent with a 



mantle source for the magma (Higgins & Doig, 1981) with minor crustal contamination 

(Namur et al., 2011a).   

About 90% of the volume of the intrusion is hidden beneath the St. Lawrence River, but two 

sets of deep drill cores (drilled by Inco Inc. and curated by the Ministère des Ressources 

Naturelles et de la Faune du Québec; Namur et al., 2010) and the 30° dip of the margins of 

the intrusion towards the centre enable most of the stratigraphy of the intrusion to be accessed 

(Fig. 1; Namur et al., 2010). Three different magmatic series have been described: the 

Layered Series, the Upper Border Series, and the Upper Series (Higgins, 2005; Namur et al., 

2010). The Upper Series forms cupolas at the top of the intrusion and comprises mainly A-

type granite, likely to have resulted from fractional crystallization of the Fe-rich parent 

magma (Higgins, 2005; Namur et al., 2011a). The Upper Border Series sits below the Upper 

Series and comprises anorthosites with minor leucogabbros and leuco-troctolites, likely 

resulting from flotation of plagioclase to the intrusion’s roof (Namur et al., 2011b). The 

Layered Series, which is the focus of this study, is at least 4.7 km thick and consists of 

troctolites, Fe-Ti oxide-bearing troctolites, and layered gabbros (Namur et al., 2010). The 

layering in the Sept Iles is typical of layered mafic intrusions. The Layered Series, however, 

locally contains abundant centimeter- to meter-scale anorthosite blocks that deform the 

underlying layering (Namur et al., 2010).  

The Layered Series is subdivided into three megacyclic units: MCU I, MCU II, and MCU III, 

which show the following succession of cumulus assemblages (Namur et al., 2010; 2012a; 

Fig. 1): troctolite consisting of plagioclase and olivine (po-C; p = plagioclase; o = olivine; 

classification scheme from Irvine, 1982); Fe-Ti oxide-bearing troctolite consisting of 

plagioclase, olivine, and Fe-Ti oxides (pomi-C; m = magnetite; i = ilmenite); and gabbro 

consisting of plagioclase, Fe-Ti oxides, clinopyroxene, ± olivine, ± apatite (pmic-C, pomic-C, 

and pomica-C; c = clinopyroxene; a = apatite). Both MCU I and MCU II are topped by a layer 



of apatite-rich gabbro (Namur et al., 2010). The 200 m thick apatite-bearing layer near the top 

of MCU II contains nelsonite layers and is known as the “Critical Zone” due to the presence 

of potentially economic phosphorous and titanium (Cimon, 1998; Namur et al., 2010). In the 

Layered Series stratigraphy, the ‘0 metre’ reference level is defined as the lowermost apatite-

bearing level of the Critical Zone (Namur et al., 2010).  

MCU I is 1785 m thick and dominated by troctolites and Fe-Ti bearing troctolites (po-C and 

pomi-C). The lowest part of the unit (with its base at -4200 m) crystallized cotectic 

proportions of olivine and plagioclase (Toplis and Carroll, 1995; Thy et al., 2006). Magnetite 

and ilmenite become cumulus phases between -3600 m and -3400 m, followed by 

clinopyroxene at -3500 m. In the upper 200 m of MCU I, apatite becomes a cumulus phase. 

This apatite-bearing zone is 150 m thick and is composed of a unimodal, homogeneous 

apatite-bearing gabbro with plagioclase, olivine, clinopyroxene, magnetite, ilmenite, and 

apatite as cumulus phases (Namur et al., 2012a). At the base of MCU I there is a marginal 

reversal about 60 m thick in the plagioclase, olivine, and Ca-rich pyroxene compositions: 

An63-68, Fo68-72, and Mg# 76-69, respectively. Above this reversal all phases become 

progressively more evolved upwards in the stratigraphy, reaching An47, Fo55, and Mg# 68 at 

the top of MCU I. 

MCU II has a thickness of 2553 m and began crystallizing from a mixture of residual MCU I 

magma with a new injection of primitive parent magma (Namur et al., 2010). Unlike MCU I, 

the evolution trend is characterized by numerous reversals to more primitive mineral 

compositions, each inferred to mark an injection of new magma. After the last magma 

injection, the compositions of plagioclase, olivine, and clinopyroxene evolve to An34, Fo21, 

and Mg# 55, respectively, at the top of MCU II. These mineral compositions are the most 

evolved in the intrusion, and Namur et al. (2010) suggest this is due to a longer differentiation 

interval than that for MCU I. The appearance of cumulus apatite at the base of the Critical 



Zone occurs in the last 252 m of MCU II (Namur et al., 2010). The Critical Zone contains the 

same minerals as the uppermost cumulates in MCU I, but differs from MCU II cumulates in 

that they are strongly bimodal, with leucocratic gabbros interlayered with melanocratic 

gabbros dominated by Fe-Ti oxides. This zone also contains abundant pigeonite, which is 

absent in the apatite-bearing horizon of MCU I (Namur et al., 2012a). As described below, 

these rocks have been interpreted as having crystallized from alternating layers of Fe-rich (ca. 

40% SiO2, 20% FeOt) and Si-rich (ca. 60% SiO2, 40% FeOt) immiscible melts (Charlier et al., 

2011). 

The base of MCU III is thought to mark the arrival of a major batch of replenishing magma in 

the Sept Iles magma chamber (Namur et al., 2010). The upper contact of MCU III is not 

exposed, but occurs at a stratigraphic height of at least 396 m according to Namur et al. 

(2010). The lithologies of MCU III are more similar to MCU I than MCU II. Ca-rich 

clinopyroxene is not a cumulus phase and the cumulates are dominated by troctolites and Fe-

Ti oxide-rich troctolites. From the base to the top of the observed stratigraphy, plagioclase, 

olivine, and clinopyroxene show a progressive change to An70, Fo70, and Mg# 73, respectively 

(Namur et al., 2010). Namur et al. (2010) suggested that the hybrid magma was formed by a 

primitive magma reacting with a lower proportion of residual magma from MCU II, whereas 

the replenishing magma at the base of MCU II reacted with a higher proportion of residual 

magma from MCU I. 

Namur et al. (2012a) presented a forward model of the Sept Iles liquid line of descent for 

major elements in equilibrium with MCU I and MCU II cumulates. These authors argued that 

both these units formed from liquids which evolved towards enrichment in SiO2 and depletion 

in FeOt after saturation of Fe-Ti oxides. They also suggested that the melt in MCU I never 

unmixed, whereas the melt of MCU II entered a two-liquid field. The main reason why MCU 

I did not enter a two-liquid field is because the major event of magma replenishment that 



formed MCU II took place before the MCU I melt was sufficiently evolved to encounter the 

two-liquid field. In addition, the magma mixing events in MCU II changed the evolution 

trend, particularly as the concentration of some elements was sufficient to enlarge the two-

liquid field to enable the MCU II liquid to begin to unmix just before apatite saturation 

(Charlier et al., 2011; Namur et al., 2012a). After extensive fractionation associated with the 

formation of apatite-bearing cumulates (pomica-C), the bulk MCU II magma left the 

immiscible field, leading to the formation of a homogeneous melt only slightly more evolved 

than the immiscible liquids (Charlier et al., 2011; Charlier et al., 2013). This homogeneous 

melt was extracted from the Layered Series to form the granitic Upper Series (Namur et al., 

2011a). This suggests that some parts of the crystal mush were still highly porous and 

permeable after the magma left the two-liquid field.  

The record of immiscibility and unmixing in fully solidified mafic magma chambers is 

usually difficult to identify unambiguously and is commonly only represented by melt 

droplets trapped in (Jakobsen et al., 2005), or between (Holness et al., 2011; Humphreys, 

2011), crystals. In Sept Iles, however, immiscible melts in MCU II underwent large-scale 

unmixing and segregation, resulting in the formation of metre-scale bimodal layering of 

alternating melanogabbro and leucogabbro in the upper part of MCU II, as well as forming 

compositionally contrasting apatite-hosted melt inclusions (Charlier et al., 2011). This 

evidence for immiscibility of the bulk magma suggests that the interstitial liquid in the MCU 

II crystal mush likely encountered the binodal as well.  

Although the main magma body in MCU I did not unmix, mixing of interstitial melts at 

different stages of evolution in the crystal mush, as well as their extensive fractionation, may 

have also led the interstitial liquid in MCU I to locally encounter the binodal and form two 

immiscible conjugates.  



SAMPLES AND METHODS 

 

285 samples from the Sept Iles Layered Series were examined for this study. Most of the 

samples from MCU I and MCU II are derived from two drill cores (120 samples from core 

DC-9 and 93 samples from core DC-8), from which samples were taken every 10 or 40 m. An 

additional set of 42 samples was collected from the apatite-bearing gabbro horizon of MCU II 

(stratigraphic height of 0 to 193 m), sampled by drill core S-9 provided by Soquem Inc. 

(Namur et al., 2012a). The remaining samples were collected from surface outcrop in 2007, 

using precise GPS and altimeter data: these are currently curated by the Department of 

Geology at the University of Liège, Belgium.  

Petrography 

 

Polished thin sections were examined using a Nikon Eclipse E600 POL petrographic 

microscope at the Department of Earth Sciences at the University of Cambridge. 

Photomicrographs were obtained with a Nikon Coolpix 5000, using a Coolpix MDC Lens. 

Back-scatter electron (BSE) images were obtained using a JEOL 820 Scanning Electron 

Microscope (SEM) in the Department of Earth Sciences at the University of Cambridge. SEM 

operating conditions were 20 kV accelerating voltage with a 1 nA beam current at a working 

distance of 15 mm.  

Colour cathodoluminescence images were obtained using an in-house cold-cathode 

instrument. An accelerating potential of ~26 kV generated a gun current of 450-600 mA with 

an air chamber pressure of 0.01-0.05 Torr. The gun is equipped with a focussing coil to gain 

high magnification images. The chamber sits on a Nikon Optiphot optical microscope and is 

connected to an Optronics Magnafire peltier-cooled digital camera. Prior to the capturing of 

photographs, the white balance of the camera was adjusted using the program “MagnaFire” to 



give maximum definition. As a result, the images are not an accurate record of colour 

wavelength, but qualitatively demonstrate the different wavelengths of luminescence.  

Electron Microprobe Analyses 

 

Mineral compositions were determined using a Cameca SX-100 electron microprobe at the 

Department of Earth Sciences at the University of Cambridge. Operating conditions for 

feldspars were 15 kV accelerating voltage, 10 nA beam current, and a 1 µm beam size. 

Operating conditions for amphibole, biotite, pyroxenes, olivine, and oxides were 15 kV 

accelerating voltage, 20 nA beam current, and a 1 µm beam size. 

Standards used were diopside for Si and Ca, rutile for Ti, corundum for Al, fayalite for Fe, 

Mn for Mn, olivine (San Carlos) for Mg, jadeite for Na, K-feldspar for K, celestite for Sr, 

fluorite for F, halite for Cl, Cr for Cr, and NiO for Ni. Counting times were 20 seconds on 

peak and 10 seconds for background on each side of the peak for major elements, and 60 

seconds on peak and 30 seconds for background for minor elements. Raw data have been 

corrected with the CATZAF software, included in the Cameca software.  

Mass Balance 

 

Mass balance calculations to reconstruct average symplectite compositions were performed 

using compositions obtained with the electron microprobe, together with modal analyses 

obtained from BSE images. The volume percent of each mineral phase in the symplectite (± 

the surrounding rim) was calculated by averaging modes obtained by analysis of over 50 SEM 

images using the program ImageJ. Two-dimensional proportions were assumed to be 

representative of those in three dimensions. To convert volume percent into weight percent, 

we used densities of each mineral calculated from chemical compositions. Bulk symplectite 



compositions were determined by combining out volumetric measurements with the elemental 

oxide compositions of each mineral: results were compared to bulk rock compositional data. 

Thermometry 

 

We used the hornblende-plagioclase thermometer “Hb-Pl” from Holland & Blundy (1994) to 

determine the symplectite crystallization temperatures. Although designed for metamorphic 

rocks, the program works well for a broad range of compositions, and performs well (±40°C) 

in the range of 400-1000°C and 1-5 kbar (Holland & Blundy, 1994). The QUILF 

geothermometer (Andersen et al., 1993) was used to determine reaction temperatures for 

clinopyroxene-orthopyroxene symplectites, assuming pressures of 1-2 kbar (Namur et al., 

2010). Biotite laths rooted to oxide grains (some of them forming symplectic structures with 

plagioclase) were also used to determine temperatures: we used the method of Henry et al. 

(2005), which has been shown to be accurate for mafic rocks (Namur et al., 2009). The 

possibility of sub-solidus re-equilibration of co-existing phases means that calculated 

temperatures may represent the closing temperature of the system, and are therefore minimum 

estimates.  

SYMPLECTITE CLASSIFICATION AND STRATIGRAPHIC DISTRIBUTION IN 

THE SEPT ILES LAYERED SERIES 

 

In the Sept Iles Layered Series, the replacive symplectites vary in terms of the root 

primocryst, the presence and composition of a rim around the root primocryst, and the 

minerals comprising the symplectite. The symplectites were subdivided into three main types: 

oxy-symplectites that replace olivine (Table 1; Fig. 2); Type I symplectites that are rooted to 

oxide grains and replace primocrysts of plagioclase (Table 1; Fig. 3); and Type II symplectites 

that also replace primocryst plagioclase but are rooted to olivine grains (Table 1; Fig. 4; c.f. 



Holness et al., 2011). Most of these symplectites are similar to those described in the 

Skaergaard intrusion (Holness et al., 2011). There are also more uncommon symplectites 

observed in the Sept Iles intrusion, composed only of biotite and plagioclase (Table 1; Fig. 

4c). No equivalent symplectites were observed in Skaergaard. The Type I and Type II 

symplectites have been further subdivided to create five distinct categories. In all reactive 

symplectites, there is no textural evidence to suggest that phases other than plagioclase were 

replaced during the symplectite-forming process. The stratigraphic distribution of all 

symplectites is given in Figure 5.  

Oxy-symplectites 

 

Oxy-symplectites are composed of orthopyroxene enclosing individual magnetite (± ilmenite) 

vermicules, and replace primocryst olivine where adjacent to primocrysts of Fe-Ti oxide 

grains (Fig. 2). Oxy-symplectites are most common at the base of MCU I (po-C), becoming 

less abundant immediately after saturation in Fe-Ti oxides (pomi-C; Fig. 5). However, they 

are still present in small numbers throughout the upper part of MCU I and MCU II, where 

oxides are liquidus phases. They are slightly more common in MCU III, especially in the 

upper part, which is free of oxide primocrysts (po-C).  

Type I Symplectites 

 

Type I-a Symplectites 

 

Type I-a symplectites are rooted to Fe-Ti oxide grains and are predominantly composed of 

orthopyroxene (± rare clinopyroxene) vermicules in an anorthitic matrix (Fig. 3a). They 

consume primocryst plagioclase. Rims may be absent on the oxide root but, more commonly, 

there is an orthopyroxene rim in optical continuity with orthopyroxene forming symplectite 



vermicules. Biotite rims are commonly present at the margins of symplectite-bearing oxide 

grains (Fig. 3a), although there is no evidence that the mafic vermicules grow directly from 

the biotite rims. Similar symplectites were described in Skaergaard although they are not 

abundant (Holness et al., 2011).  

In Sept Iles, Type I-a symplectites are rare at the base of MCU I, but become abundant after 

saturation of Fe-Ti oxides (at a depth of ~-3680 m). They are abundant throughout MCU II 

but disappear near the base of the S-9 drill core (MCU II; pomica-C). They re-appear at the 

top of MCU II with a less organized structure, in which the mafic vermicules are variably 

sized and oriented, and are present throughout MCU III (Fig. 5).  

Type I-b Symplectites 

 

Type I-b symplectites differ from Type I-a in that they contain amphibole (magnesio-

hornblende), both as rims surrounding the oxides and as vermicules within anorthitic 

plagioclase in the symplectite itself (Fig. 3b). In some symplectites of this group, the 

amphibole grades out along the growth direction into orthopyroxene ± clinopyroxene. Unlike 

other Sept Iles symplectites, the amphibole vermicules in Type I-b symplectites commonly do 

not extend to the edge of their anorthitic plagioclase host (Fig. 3b). The grain size in Type I-b 

symplectite vermicules is generally coarse throughout.  

Type I-b symplectites are rare: they were found in three samples: ON-07-152 (pmic-C at -239 

m), ON-07-155 (pmic-C at -114 m), and ON-07-156 (pmic-C at -80 m) at the top of MCU II, 

below the appearance of cumulus apatite (Fig. 5). This type of symplectite appears to be 

absent in Skaergaard. 

Type I-c Symplectites 

 



Type I-c symplectites are composed of olivine (which is locally replaced by clinopyroxene at 

the outer margins) and anorthitic plagioclase, and grow from olivine rims surrounding Fe-Ti 

oxide grains (Fig. 3c). They are found only in the region of stratigraphy covering the upper 

part of pomica-C cumulates at the top of MCU II, near the top of the S-9 drill core, and into 

the base of MCU III (Fig. 5). These symplectites are very similar to the common Type I 

symplectites described in Skaergaard (Holness et al., 2011).  

Type II Symplectites 

Type II-a Symplectites 

 

Type II-a symplectites are rooted to olivine grains with variably sized orthopyroxene rims, ± 

laths of a hydrous phase (usually annitic phlogopite, particularly in MCU I) (Fig. 4a). The 

symplectite vermicules are composed predominantly of orthopyroxene, which may be 

replaced along the growth direction by clinopyroxene. Like most other symplectites in Sept 

Iles, the symplectite vermicules decrease in size along growth direction and terminate together 

with the anorthitic plagioclase host. Type II-a symplectites are similar to the Type 2 

symplectites described in Skaergaard (Holness et al., 2011).  

Type II-a symplectites have a similar stratigraphic distribution to that of the oxy-symplectites 

(Fig. 5). In the lowest section of MCU I, they are common and are associated with annitic 

phlogopite as well as orthopyroxene rims. Above -3619 m (pomi-C), they are extremely rare 

but generally have (variably altered) orthopyroxene rims. They appear, albeit rarely, 

throughout MCU II and into MCU III, where there are numerous Type II-a symplectites 

observed that show a more irregular structure (Fig. 5).  

Type II-b Symplectites 

 



Type II-b symplectites are also rooted to olivine and replace primocryst plagioclase, but 

contain amphibole in the rim assemblage as well as orthopyroxene (Fig. 4b). The amphibole 

rim is commonly in optical continuity with the thick amphibole vermicules of the symplectite. 

The general trend (from the olivine primocryst to the outer edge of the symplectite) is: 

orthopyroxene rim  amphibole rim  amphibole-anorthite symplectite  orthopyroxene-

anorthite symplectite  plagioclase primocryst (Fig. 4b). The amphibole vermicules, as in 

Type I-b symplectites, are wider and thicker than the orthopyroxene, clinopyroxene, or olivine 

vermicules in other symplectite types. They are also more irregular in shape and in spacing 

within the symplectic intergrowth. Type II-b symplectites contain a much larger amphibole 

fraction than any symplectite described in Skaergaard, including the Type 2 which may 

contain an amphibole rim (Holness et al., 2011).  

Type II-b symplectites are only found near the top of MCU III (Fig. 5). 

Biotite-Plagioclase Symplectites 

 

A rare type of symplectite in the Sept Iles intrusion is composed of biotite laths within 

anorthitic plagioclase, and replaces primocryst plagioclase. The biotite laths are usually rooted 

to Fe-Ti oxide grains, but they commonly appear with no oxide root (at least in the plane of 

the thin section) within plagioclase-rich areas, grading out into pyroxene-anorthite “Type I” 

symplectites along the growth direction (Fig. 4c). Biotite-plagioclase symplectites are 

common at around ~1000 m in MCU II (in pomi-C and pomic-C), and reappear sporadically 

throughout MCU III.  

 

SYMPLECTITE COMPOSITIONS 

 



Oxy-symplectites 

 

A single oxy-symplectite was analysed for orthopyroxene and magnetite compositions, as 

well as the surrounding olivine primocrysts (Fo64; Fo = molar Mg/(Mg + Fe). The symplectic 

orthopyroxene yields an Mg# of 70 [Mg# = molar Mg/(Mg + Fe)], whereas the orthopyroxene 

in the rest of the sample yields a similar average Mg# of 69 (Namur et al., 2010). No 

significant compositional variations were observed in the oxy-symplectites. The oxide in the 

symplectite is, on average, 85% magnetite and 15% ülvospinel, whereas in the rest of the 

sample the oxides are generally ~80% magnetite (Supplementary Information 1). Note that 

bulk oxide compositions were obtained by X-ray fluorescence on mineral separates rather 

than by electron microprobe analyses (Namur et al., 2010).    

Type I Symplectites 

Type I-a Symplectites 

 

The plagioclase composition in Type I-a symplectites averages An80 [An = molar Ca/(Ca + 

Na)] throughout the Layered Series, with compositions up to An96. There are no well-defined 

and consistent compositional spatial variations in anorthite content within each symplectite 

(Supplementary Information 2). Instead, the An-content varies in distinct “pulses” and can 

either monotonically increase or decrease, or oscillate along the growth direction. The 

composition can vary by up to 30 mol.% An within a symplectite (Fig. 6a).  

Unlike the plagioclase, the orthopyroxene in Type I-a symplectites shows consistent 

compositional trends. That in the symplectite has an initial composition similar to that of the 

orthopyroxene rim (if present), before decreasing systematically in Mg# by an average of 1-3 

mol.% (and maximum 5-6 mol.%) along the growth direction (Fig. 6a). If no rim is present, 



the initial Mg# of the symplectite orthopyroxene is within 1 mol.% of the orthopyroxene 

typical of that part of the Layered Series (Namur et al., 2010).  

Type I-b Symplectites 

 

Type I-b symplectites show similar patterns of An-content and Mg# to other types of 

symplectites. Symplectite plagioclase may be as anorthitic as An80 (with an average of An77) 

whereas the most anorthitic plagioclase in the surrounding primocrysts is An64. The largest 

observed difference between symplectic plagioclase and primocryst plagioclase is 27 mol.% 

(Fig. 6b). Plagioclase composition within the symplectite does not vary systematically along 

the growth direction, with irregular patches of variably anorthitic plagioclase.  

The Mg# of the amphibole in the symplectite generally decreases along the growth direction, 

although there are symplectites that maintain a similar Mg# along growth direction 

(Supplementary Information 3). At the start of growth, the Mg# is always the same as the rim 

on which it is rooted (ranging between 66-75). The decrease in Mg# is never more than 5 

mol.% (Fig. 6b; Supplementary Information 3).  

Type I-c Symplectites 

 

The plagioclase in Type I-c symplectites is highly anorthitic with no consistent spatial 

variations. Despite plagioclase primocrysts having average compositions of ~An45, the 

anorthite content in these symplectites can be as high as An88. Like Type I-b symplectites, 

irregular patches of variably anorthitic plagioclase occur throughout the symplectite, with the 

adjacent primocryst up to 48 mol.% poorer in anorthite than the symplectic plagioclase (Fig. 

6c).  



The olivine in the symplectite initially grows with a composition almost identical to that of 

the rim (Supplementary Information 4). As growth proceeds, the olivine composition 

generally becomes less forsteritic, but not as significantly so as in other symplectite types 

(ranging from Fo41-Fo37). Rarely, there is no systematic trend in Fo-content, with only a 

spatially random variation ranging around 2 mol.%, whereas in other Type I-c symplectites 

the Fo-content decreases by up to 4 mol.% along the growth direction (Fig. 6c).   

Where present, clinopyroxene vermicules always occur on the outer margin of the symplectite 

(i.e. they grow after the olivine vermicules). The Mg# of the clinopyroxene in the 

symplectites ranges from 64 to 69, either decreasing by up to 1 mol.% along the growth 

direction or remaining the same. Clinopyroxene is usually only present in the outermost 

margins of the symplectite and the vermicules are commonly too narrow for microprobe 

analyses (<1 µm), so no growth trends were analysed.  

Type II Symplectites 

Type II-a Symplectites 

 

Type II-a symplectites share similar trends to Type I symplectites. The symplectite 

plagioclase ranges from An73 to An95, with an average of An80. The difference in An-content 

between the symplectite and adjacent primocryst can reach up to 35 mol.%. Like the other 

symplectite types, plagioclase composition does not vary spatially in a systematic manner 

(Fig. 7a). Orthopyroxene, the most common mafic mineral in Type II-a symplectites, follows 

compositional trends similar to Type I symplectites, with decreasing Mg# along the growth 

direction. The decrease is usually on the order of 3-5 mol.% but can be up to 8 mol.% (Fig. 

7a). Although the composition at the start of growth is typically almost identical to that of the 

orthopyroxene rim on which it is rooted, rarely the symplectite orthopyroxene starts with a 



slightly lower Mg# than the rim (usually within ~0.5mol.%). Symplectite orthopyroxene 

ranges from Mg# 60 to 73. 

Clinopyroxene vermicules in Type II-a symplectites are commonly very fine-grained and are 

quite rare, so little compositional data was collected. However, like the Type I-c symplectites, 

the decrease in Mg# with growth is not prominent. In Type II-a symplectites, the Mg# varies 

from 76 to 83 (Supplementary Information 5). 

Type II-b Symplectites 

 

The anorthite content of plagioclase in Type II-b symplectites ranges between An80 and An92, 

with a difference of up to 35 mol.% compared to the adjacent primocryst (An55-61). The 

average composition of the symplectite plagioclase is An86. Although there are no well-

defined and consistent compositional trends, the An-content generally decreases along the 

growth direction (Fig. 7b).  

The orthopyroxene rims that surround the olivine root primocryst have an Mg# of 70-72. The 

Mg# of the amphibole vermicules varies from 67 to 71. A decrease in Mg# can occur with 

growth, but the maximum size of this decrease is only ~3 mol.% (Fig. 7b). The Mg# in those 

pyroxene vermicules large enough to analyse does not vary by more than 1 mol.% within the 

symplectite (Supplementary Information 6).  

Biotite-Plagioclase Symplectites 

 

The plagioclase within the biotite-plagioclase symplectites ranges from An71 to An95, with an 

average composition of An79. The adjacent primocrysts have compositions in the range An40-

65: the difference in anorthite content between the symplectite plagioclase and adjacent 

primocryst can reach 48 mol.%. The biotite vermicules in these symplectites do not show 



consistent compositional trends, with the Mg# varying by up to 5 mol.% with growth (Fig. 7c; 

Supplementary Information 7).  

 

CATHODOLUMINESCENCE IMAGES OF SYMPLECTITES AND PRIMOCRYSTS  

 

The composition of plagioclase crystals and its thin section scale variability can be 

qualitatively assessed using colour cathodoluminescence images. All types of replacive 

symplectite, with the exception of the uncommon Type I-c and biotite-plagioclase 

symplectites, were studied using colour cathodoluminescence. We examined one 

representative thin section from each of the three MCUs: sample 9-2087.5 from MCU I 

contains abundant Type II-a symplectites; sample 8-1838.5 from MCU II contains abundant 

Type I-a symplectites (Fig. 8a); and sample ON-07-102 from MCU III contains abundant 

Type I-b and II-b symplectites (Fig. 8b). Representative cathodoluminescence images from 

these samples can be seen in Supplementary Information 8.  

Two types of luminescence were observed: green luminescence that corresponds to high An-

content (as verified by microprobe analyses) and blue luminescence that corresponds to a 

much lower An-content. In MCU I and MCU II, anorthitic plagioclase in the reactive 

symplectites luminesces green. In the same rocks, the lower An cores of the primocrysts 

luminesce blue. However, the grain boundaries between plagioclase primocrysts commonly 

luminesce green (Fig. 8a), indicating that the marginal few microns of plagioclase crystals are 

highly anorthitic.  

The luminescent behaviour of plagioclase in MCU III is more complicated. Symplectite 

plagioclase in all types of symplectite commonly luminesces green due to high An-content, 

whereas the plagioclase primocrysts luminesce green or blue. Blue luminescence is mostly 



observed in the central parts of crystals, as irregular patches of low-An material (Fig. 8b). 

Green luminescence correlates with areas of clear, less turbid plagioclase, and is also found at 

crystal margins. The boundary between green and blue luminescence is irregular and fingered. 

All microprobe data for symplectite and primocryst compositions are presented in 

Supplementary Information 8.   

 

COMPARISONS BETWEEN SYMPLECTITES AND PRIMOCRYSTS 

 

Symplectite plagioclase in all Type I, Type II, and biotite-plagioclase symplectites is 

significantly more anorthitic than the adjacent primocrysts (Fig. 9a), but is similar in 

composition with respect to other elements. Symplectite plagioclase contains almost no TiO2 

and K2O (i.e. below microprobe detection limits or just above), compared to ~0.05-0.3 wt.% 

TiO2 (possibly due to inclusions of oxides) and up to 1 wt.% K2O in the primocrysts. The FeO 

content is slightly lower in primocrysts (average of 0.26 wt.% compared to 0.42 wt.% in 

symplectites). No spatial trends in symplectite plagioclase compositions, or in their 

relationship with primocryst compositions, occur on any scale, either within a single 

symplectite or on the scale of the Layered Series.  

For both clinopyroxene and orthopyroxene, the compositional variation within symplectites is 

larger than the variation observed in the primocryst or rim compositions. The distribution of 

Mg# for clinopyroxene is shown in Fig. 9b. Comparison between the composition of 

clinopyroxene in symplectites and in primocrysts is difficult because clinopyroxene-bearing 

symplectites are only observed in two stratigraphic intervals: in the lower part of MCU I 

where clinopyroxene is not a cumulus phase (po-C and pomi-C), and in the most evolved 

cumulates (pomica-C) of MCU II. As a consequence, very few primocrysts of clinopyroxene 



were present to measure in symplectite-bearing samples. In Fig. 9b, we therefore compare the 

compositions of clinopyroxene in symplectites with clinopyroxene primocrysts from the 

whole stratigraphic sequence as measured by Namur et al. (2010). We made two important 

observations: (1) clinopyroxene in symplectites from MCU I is more primitive (higher Mg#) 

than any clinopyroxene primocryst, consistent with these symplectites occurring in a 

stratigraphic unit without clinopyroxene primocrysts; (2) clinopyroxene in symplectites from 

the pomica-C cumulates of MCU II is evolved (Mg# 60-70) and identical to the compositions 

of the primocrysts observed in this stratigraphic unit (Namur et al., 2010; 2012a). Although 

there is no cumulus orthopyroxene in the Sept Iles intrusion, except perhaps at the top of 

MCU II, there are many orthopyroxene rims surrounding primocryst grains of olivine and Fe-

Ti oxides. These rims have a narrow compositional range, with Mg# of 69 to 74, whereas that 

of the symplectite orthopyroxene ranges from the same value as the rim down to Mg# 59 (Fig. 

9c).  

Primocryst olivine forms two populations, with one clustered around Fo45 (mostly from 

pomica-C samples from MCU II; Charlier et al., 2011; Namur et al., 2012a), and the other 

around Fo65 (from MCU I, II, and III: data from this study and from Namur et al., 2010). It is 

likely that intermediate compositions between two populations exist at the bottom of the 

pomica-C unit of MCU II but were not sampled by Namur et al. (2012a). This is because, in 

this part of the intrusion, mineral compositions change rapidly with increasing stratigraphic 

height. Symplectic olivine was only observed in Type I-c symplectites that occur in the 

pomica-C unit of MCU II where olivine primocrysts are highly evolved (Fo < 45). Symplectic 

olivine is initially the same composition as the rim from which it grows. There is a slightly 

wider spread in symplectite composition compared to the primocryst, as it generally decreases 

by a few mol.% with growth (Fig. 9d). Apart from Fo-content, no clear compositional 

differences are found between the primocrysts and the symplectites.  



No cumulus amphibole is present in the Sept Iles Layered Series, although this is a major 

phase in the Sept Iles Upper Series (granite). The Mg# of amphibole rims are in the range 63-

80, with most being 70-72, whereas the symplectites show a similar compositional range but 

with a slightly lower average Mg# for the symplectites compared to the rims (Supplementary 

Information 3; 6; 10). The compositional trends of all other major and minor elements in the 

rims and symplectites of the same samples are generally similar, varying only within 1 wt.%.  

 

MASS BALANCE 

 

In order to retrieve bulk compositions, mass balance calculations were performed on 37 

symplectites in which plagioclase primocrysts were replaced by anorthitic plagioclase and 

various mafic phases (pyroxene, olivine, or amphibole). The calculated symplectite bulk 

compositions were compared to the composition of the replaced plagioclase primocryst to 

determine which elements were gained or lost during reaction. Critical to these mass balance 

calculations is an accurate knowledge of the position of the original primocryst grain 

boundary. Although there is uncertainty in the position of the original primocryst boundary, 

and in the volume fraction of each mineral in the symplectites, we observe coherent results for 

all types of symplectites, suggesting that our mass balance calculations offer a relatively 

accurate estimate of bulk symplectite compositions. Note that the general trend in net gains 

and losses is relatively similar when calculations are performed with partial replacement of 

the root primocryst in addition to plagioclase (Supplementary Figure 1).  

For Type I-a, Type I-b, and Type I-c symplectites, the position of the original grain boundary 

was chosen as the inner margin of the orthopyroxene, amphibole, or olivine rim, respectively. 

These mafic rims were included in the mass balance analyses as part of the symplectite 



because the mafic mineral in the innermost part of the symplectite has the same composition 

as the rim, and the rims grade into the symplectite vermicules in most samples. For similar 

reasons to those described for the Type I symplectites, the inner boundary for both Type II-a 

and II-b symplectites was placed at the outer limit of the olivine primocryst.  

Growth of all Type I symplectites involves a net loss of SiO2, Al2O3, and Na2O, with a net 

gain of FeO and MgO and either a slight net gain or loss of CaO (Fig. 10a-c). TiO2, MnO, and 

K2O do not change significantly. This is similar to the results of Holness et al. (2011) for 

Type I symplectites in the Skaergaard intrusion. The same general trends are observed for 

Type II-a and Type II-b symplectites (Fig. 10d and e).  

Due to the scarcity of biotite-plagioclase symplectites and the small size of the biotite 

vermicules, only one symplectite of this type was analysed. It shows a net loss of SiO2, Al2O3, 

CaO, Na2O, and K2O compared to the primocryst plagioclase surrounding it, with a net gain 

of TiO2, FeO, and MgO.  

 

THERMOMETRY 

 

The compositions of amphibole rims and adjacent plagioclase primocrysts yield a temperature 

range of 737-932°C with an average of 852°C (48 pairs of points; Table 2; Supplementary 

Information 10) as calculated using the thermodynamic model of Holland & Blundy (1994). 

This model is expected to be accurate for temperatures in the range 400-900°C if the 

amphibole composition has Na > 0.02 pfu (per formula unit), Al
VI

 < 1.9 pfu, and Si in the 

range 6.0-7.7 pfu, associated with plagioclase with An < 0.90. These criteria are all fulfilled 

for the pairs of amphibole rims and adjacent plagioclase primocrysts studied here. Sixty-two 

calculations were performed for coexisting amphibole symplectites and anorthitic plagioclase, 



yielding a temperature range of 784-1007°C with an average of 899°C (Table 2). These 

results should be treated with caution, however, because some values are outside the 

recommended temperature range and some symplectites contain plagioclase more anorthitic 

than An90.  

Clinopyroxene-orthopyroxene solvus geothermometry was applied to 6 samples containing 

both orthopyroxene and clinopyroxene in the same symplectite. KD values for MgO-FeO 

exchange suggest that both phases are in chemical equilibrium (Toplis & Carroll, 1995). 

Temperatures obtained using the QUILF algorithm (Anderson et al., 1993) range of 751-

892°C with an average temperature of 821°C (average error of 32°C), whereas temperatures 

obtained with the model of Putirka (2008) range from 777 to 910°C with an average 

temperature of 835°C (Table 2). QUILF results should be treated with caution because 

QUILF is expected to be accurate for systems containing pyroxene, olivine, and quartz, but 

quartz is absent in the Sept Iles cumulates. However, we note that the results from QUILF are 

similar to those obtained with the model of Putirka (2008) for which equilibrium criteria 

(𝐾𝑑𝐹𝑒−𝑀𝑔
𝐶𝑝𝑥−𝑂𝑝𝑥

:1.09 ± 0.14) are fulfilled by Sept Iles clinopyroxene-orthopyroxene pairs. 

Temperatures were calculated at a pressure of 1 kbar, which Namur et al. (2011) estimated as 

the pressure at the top of the magma chamber. However, changing the pressure by 1 kbar 

changes the calculated temperatures by less than 3°C for either method.  

Thermometry using the compositions of biotite laths rooted to oxide grains and in symplectite 

intergrowths was performed using the model of Henri et al. (2005), which is accurate for 

samples containing ilmenite (Namur et al., 2009). This model yields temperatures ranging 

from 665°C to 980, with an average of 926°C (521 measurements) (Table 2). The lowest 

temperatures (in the 700-900°C range) are all from biotite rooted to olivine, regardless of their 



location in the stratigraphy. The highest temperatures (comprising the majority of the data) 

are from biotite laths rooted to Fe-Ti oxide grains.  

 

DISCUSSION 

 

The results of the present study demonstrate seven clearly distinguishable types of late-stage 

replacive symplectites in the Layered Series of the Sept Iles intrusion, each with a different 

stratigraphic distribution. In the Sept Iles Layered Series, oxy-symplectites are most abundant 

in the lower part of MCU I and occur in rocks with no oxide primocrysts, decreasing in 

abundance after saturation of the bulk magma in Fe-Ti oxides. A similar stratigraphic 

distribution was found in the Skaergaard intrusion by Holness et al. (2011), who interpreted 

their formation as the result of an increase in oxygen fugacity in the residual liquid during the 

last stages of solidification, triggering the following reaction: Olivine + O2  Orthopyroxene 

+ Magnetite. This reaction would form the mineral assemblages observed in oxy-symplectites 

from the Sept Iles intrusion, with textural and compositional relationships indicating the 

symplectites here formed in the same fashion as those at Skaergaard.   

All other symplectite types in the Sept Iles intrusion involve the loss of Si, Al, and Na, and 

the gain of Fe and Mg, and therefore must have grown in an open system. This is consistent 

with cathodoluminescence images from MCU I and MCU II that show green luminescent 

plagioclase along grain boundaries, whereas the centres of plagioclase primocrysts luminesce 

blue. Since only the marginal few microns of plagioclase grains luminesce green and contain 

high anorthite content, simple chemical zoning during late-stage crystallization of 

intercumulus melt is not an adequate explanation. Instead, we suggest that the process that 

formed the high-An plagioclase in the symplectites also affected the rims of the plagioclase 

primocrysts. The blue patches probably represent relics of primocrysts crystallized from the 



main magma body, whereas green areas are of anorthitic plagioclase that has grown via a 

replacement process similar to that which formed the symplectites. It is therefore likely that 

the distinct pattern of green luminescence demonstrates fluid or melt transport along grain 

boundaries in an open system.  

The reactions that formed the reactive symplectites of the Sept Iles most likely occurred in the 

super-solidus, with the lower temperatures associated with biotite (665-980°C) corresponding 

to sub-solidus re-equilibration. As the majority of relatively high temperature estimates for 

biotite thermometry were obtained from biotite laths rooted on Fe-Ti oxide grains, however, 

we cannot exclude the possibility that these are a consequence of Ti diffusion from the oxide 

into the biotite.   

The temperatures obtained by most of the thermometry calculations are at the boundary 

between super- and sub-solidus conditions (Thy et al., 2009; Charlier & Grove, 2012; 

Charlier et al., 2013). We do, however, note that at a pressure of 1-3 kbar, temperatures above 

850°C would be super-liquidus for melts with water contents of 4-5 wt.% H2O (Bogaerts et 

al., 2006), expected in the most evolved, amphibole-crystallizing, Sept Iles melts. 

Temperatures below 850°C could represent sub-solidus temperatures that are recorded due to 

sub-solidus re-equilibration of mafic phases containing fast-diffusing elements.  

Open-system behaviour in super-solidus magmatic systems may include addition or loss of 

chemical components. One example includes the loss of a buoyant immiscible Si-rich liquid 

from the interstitial melt (Holness et al., 2011; Humphreys, 2011; Namur et al., 2012a; 

Namur & Humphreys, 2018), a process that is thought to have taken place in the floor 

cumulates of the Skaergaard intrusion once the temperature in partially solidified crystal mush 

fell below 1020°C (Holness et al., 2011; Charlier & Grove, 2012; Hou et al., 2017; 2018). A 

further example is provided by the mobility of either hydrous fluids (Koepke et al., 2005a; b; 

2014; Wolff et al., 2013) or melts into incompletely solidified rocks: the latter is known as 



reactive porous flow (e.g. Lissenberg et al., 2013; Namur et al., 2013; Lissenberg & 

MacLeod, 2016).  

Critically, the open-system behaviour in Sept Iles (and, by extension, in the Skaergaard, 

Bushveld, Duluth, and Panzhihua intrusions) resulted in the formation of symplectites. 

Although Lissenberg & MacLeod (2016) documented clinopyroxene-amphibole symplectites 

replacing original clinopyroxene as a consequence of reactive porous flow in oceanic gabbros, 

the most common microstructural record of reactive porous flow they recognized is evidence 

of plagioclase dissolution. Plagioclase records irregular dissolution fronts within crystals, 

marked by compositional zoning and fingering, whereas other grains lose all semblance of 

original shapes formed during primary growth. We observed no comparable evidence of 

dissolution in the Sept Iles cumulates except, perhaps, in MCU III where plagioclase crystals 

contain irregular patches that luminesce blue.  

The formation of anhydrous (“Skaergaard-type”) symplectites 

 

The anhydrous symplectites of the Sept Iles intrusion (Types I-a, I-c, and some examples of 

Type II-a in which there are no hydrous phases in the rims) are essentially identical to those 

previously described from the Skaergaard intrusion (Holness et al., 2011), with similar 

relationships between symplectite abundance and the primocryst assemblage. The striking 

similarities, both physically and chemically, between the anhydrous Sept Iles symplectites 

and those of the Skaergaard suggest a similar history, with reaction triggered between a 

residual Fe-rich conjugate and the surrounding primocrysts, following the loss of the buoyant 

Si-rich conjugate (Holness et al., 2011; Humphreys, 2011; Namur et al., 2012a). Support for 

this hypothesis is provided by our temperature estimates, which fall slightly below the 

temperature of the onset of immiscibility in ferrobasaltic systems (~1020°C; Charlier & 

Grove, 2012). At this temperature, experiments from Charlier & Grove (2012) show that the 



Sept Iles magma splits into an Fe-rich immiscible melt (42 wt.% SiO2, 21.4 wt.% FeOt) and a 

Si-rich immiscible melt (60.4 wt.% SiO2, 10.3 wt.% FeOt). The compositions of the 

immiscible melts differ more widely with decreasing temperature. Modelling of the Sept Iles 

liquid line of descent indicates that immiscibility develops after ca. 50% of fractionation 

(Namur et al., 2012a). Assuming an initial porosity of the crystal mush of ca. 30% (Tegner et 

al., 2009; Namur & Charlier, 2012) we can confidently assume that the Sept Iles crystal mush 

at the onset of immiscibility was still sufficiently permeable to permit the escape of the 

buoyant Si-rich melt. As proposed for Skaergaard by Holness et al. (2011), we believe that 

separation between the two immiscible melts may have led to reaction between early-

crystallized plagioclase in the crystal mush (that crystallized from a single-phase melt prior to 

the development of immiscibility), and the remaining Fe-rich immiscible conjugate. We 

suggest that this reaction and the Fe-rich nature of the immiscible melt led to the 

crystallization of highly anorthitic plagioclase and the mafic minerals found in the 

symplectites.  

To test the hypothesis that the Sept Iles anhydrous reactive symplectites were generated by 

reaction of the mush with interstitial liquid after preferential loss of one of the immiscible 

conjugates, the bulk compositions of the Sept Iles replacive symplectites (with the exception 

of oxy-symplectites) were compared with the compositions of Si-rich and Fe-rich immiscible 

conjugates, together with that of the homogeneous liquid prior to the onset of unmixing in 

Fig. 11a and b. It is clear that the bulk compositions of some symplectites can be reproduced 

by mixing an Fe-rich endmember (assumed to be the Fe-rich immiscible conjugate liquid) 

with a plagioclase component (obtained by dissolution of primocrysts) (Fig. 11a and 11b), 

consistent with the model of Holness et al. (2011). However, this mixing model does not 

work for all symplectite bulk compositions, nor for some elements such as CaO (Fig. 11a). In 

addition, when plotted on a ternary diagram, and compared to the Sept Iles liquid line of 



descent from Charlier & Grove (2012), the bulk compositions of the symplectites all fall in 

the one-liquid field, regardless of the symplectite type (Fig. 11c).  

We therefore suggest the symplectites are to some extent the products of fractional 

crystallization in which the Fe-rich interstitial melt remaining after the loss of the Si-rich 

conjugate dissolved plagioclase to form a hybrid melt which then ultimately crystallized to 

form the symplectite, undergoing fractionation as it did so. Such a process is consistent with 

the progressive reduction of pyroxene Mg# and olivine Fo-content with crystallization in 

symplectite vermicules. Accordingly, the variability in symplectite bulk compositions 

represents the ratio of two components of the hybrid melt (dissolved plagioclase primocrysts 

and the Fe-rich conjugate liquid). This hypothesis explains why symplectite compositions plot 

on straight lines in CaO vs. FeO (Fig. 11a) and FeO vs. Al2O3 (Fig. 11b) diagrams.  

In order to explain the highly anorthitic nature of the plagioclase found in the Skaergaard 

symplectites, it was proposed that the symplectite-forming reaction involves dissolution of 

mafic phases in addition to plagioclase (Holness et al., 2011). In contrast, there is no 

petrographic evidence that minerals other than plagioclase dissolved prior to the 

crystallization of the Sept Iles symplectites, and we argue that crystallization of anorthitic 

symplectic plagioclase (resulting in bulk symplectite compositions with > 12 wt.% CaO) does 

not require dissolution of a mafic phase. Indeed, dissolution of primocryst plagioclase from a 

mafic magma leads to an increasing melt CaO/Na2O ratio, which would therefore be in 

equilibrium with a progressively more anorthitic plagioclase.  

Assuming symplectites formed from a hybrid liquid comprising the Fe-rich conjugate and a 

dissolved plagioclase component, we calculated the plagioclase composition expected to 

crystallize from this liquid, using the thermodynamic model of Namur et al. (2012b). We 

assumed the Fe-rich conjugate had the composition suggested by Charlier & Grove (2012) 



and iteratively added increasing amounts of plagioclase An60 component, typical of the 

primocrysts. Accordingly, a hybrid liquid comprising ~50% dissolved plagioclase and ~50% 

Fe-rich immiscible melt would crystallize plagioclase of An90, typical of that in reactive 

symplectites. Such dissolution would have no effect on the composition of associated mafic 

minerals, consistent with the observations in the Sept Iles intrusion.  

The formation of Type I-b symplectites 

 

We tentatively suggest that Type I-b symplectites are also related to this group of anhydrous 

symplectites: the amphibole vermicules in this rare group are replaced by pyroxene along 

their growth direction, and their location in the most evolved parts of the MCU II stratigraphy 

(pomica-C) is consistent with localized growth of amphibole instead of the more common 

pyroxene due to relatively high water contents of the interstitial liquid. Namur et al. (2011a) 

estimated that the melt in equilibrium with pomica-C cumulates that formed after ~50% of 

fractional crystallization of the Sept Iles parental magma may contain > 1.0-1.5 wt.% H2O. 

This melt was only slightly more primitive than the amphibole-bearing rhyolitic melt that 

formed the Upper Zone and that resulted from ~60-70% of fractional crystallization of the 

parental magma.   

Symplectite-free stratigraphy at the top of MCU II 

 

Interestingly, near the top of the S-9 drill core at the top of MCU II there is ~50 m of 

stratigraphy apparently containing no symplectites at all, despite tight sample spacing (Fig. 5). 

In the Skaergaard intrusion, replacive symplectites related to liquid immiscibility are absent in 

cumulates containing pockets of granophyre. This anti-correlation provides a strong argument 

in support of the hypothesis that symplectite growth was triggered by the loss of an Si-rich 

immiscible conjugate: when such loss did not occur, the trapped Si-rich conjugate crystallized 



as granophyre whereas the Fe-rich conjugate formed corresponding ilmenite-rich intergrowths 

(Holness et al., 2011). However, such paired intergrowths are not present in the Sept Iles 

stratigraphy and granophyres are absent in the upper part of MCU II – we cannot therefore 

appeal to the retention of Si-rich liquid in the mush to explain the absence of symplectites at 

the top of MCU II. 

Instead, the absence of symplectites in the pomica-C unit at the top of MCU II, which 

represents the most evolved cumulates observed in Sept Iles, may be because this is the only 

part of the stratigraphy that crystallized directly from immiscible melts (Charlier et al., 2011; 

Namur et al., 2012a). During crystallization of this unit, the main magma body developed 

immiscibility. In contrast, in all other parts of the stratigraphy, immiscibility developed only 

in the crystal mush after extensive crystallization of the interstitial melt. The effect is that the 

two immiscible conjugates in the pomica-C unit at the top of MCU II continuously 

maintained chemical communication during solidification, preventing the initiation of 

symplectite-forming reactions. Charlier et al. (2011) argued that the two immiscible 

conjugates formed alternating melt layers on a scale of only 50 cm to 1 m, which remained in 

physical contact and therefore also in thermodynamic equilibrium. As a consequence, no 

reactions were triggered by the breakdown of chemical equilibrium consequent to the loss of 

Si-rich melt. This means that primocrysts with identical compositions are present in layers 

crystallized dominantly from either the Fe-rich melt or the Si-rich melt because these two 

melts had similar activities of chemical components. However, crystallization of these two 

melts led to the formation of melanocratic layers (the crystallization product of the Fe-rich 

conjugate) alternating with leucocratic layers (the crystallization product of the Si-rich 

conjugate) on a scale of only 50 cm to 1 m.  

Summary of Immiscibility Model 

 



The formation of Types I-a, I-c, likely I-b, and some II-a symplectites by separation of 

conjugate immiscible melts provides an explanation for the relative scarcity of these 

symplectites in MCU I, where immiscibility was most likely of minor importance, compared 

to MCU II and/or MCU III where immiscibility developed in the bulk magma (Namur et al., 

2012a). This also explains the complete absence of symplectites in the upper part of MCU II 

in which cumulates crystallized from unmixed melts (Namur et al., 2012a). The development 

of immiscibility in the main magma body of MCU II (and probably MCU III) and the absence 

of large-scale immiscibility during the crystallization of MCU I is related to the different 

parental magma compositions of the various megacyclic units. As shown by Namur et al. 

(2012a), magma mixing between primitive melt and resident melt from MCU I formed the 

parental melt composition of MCU II, which by differentiation entered the two-liquid field 

experimentally determined by Charlier & Grove (2012). In contrast, the melts from MCU I 

never entered this field, partly because they are slightly poorer in elements enlarging the two-

liquid field (e.g. P2O5, Na2O + K2O) but also because the magma chamber was replenished 

before the melts of MCU I became highly differentiated (Namur et al., 2010; 2012a).  

As suggested above, the formation of highly anorthitic plagioclase in symplectites is due to 

reactive dissolution of plagioclase primocrysts by an Fe-rich immiscible melt followed by 

reprecipitation (Fig. 12). This reaction takes place during, or just after, gravitational loss of 

the conjugate Si-rich melt and is a result of the very different CaO/Na2O ratios in the two 

conjugate liquids and also in the homogeneous melt that crystallized the plagioclase 

primocrysts. In contrast, the Mg# of the symplectite mafic phases is relatively similar to that 

of the primocrysts. As an example, symplectites containing clinopyroxene in evolved 

cumulates from MCU II have a Mg# (60-70) identical to the primocrysts in the same samples 

(Fig. 9b). Note that the most primitive symplectite clinopyroxene (Mg# > 75) occurs in 

samples that do not contain clinopyroxene primocrysts (see above). In a similar way, olivine 



in symplectites has a low Fo-content (35-45), identical to the Fo-content of primocrysts in 

pomica-C samples containing olivine-bearing symplectites. The relatively similar Mg# (or 

Fo) between symplectites and primocrysts is explained by both the conjugate immiscible 

melts having almost identical Mg# (Charlier & Grove, 2012) and by the absence of significant 

evolution of the composition of mafic minerals throughout the Sept Iles stratigraphy, except 

in apatite-bearing cumulates (Namur et al., 2010). As a consequence, the loss of the Si-rich 

melt from the crystal mush does not create significant chemical disequilibrium between the 

primocrysts and the Fe-rich melt; the parental melt to the symplectites thus crystallize mafic 

rims and vermicules of a composition similar to that of the primocrysts. Even where 

dissolution of the mafic phases following the loss of the Si-rich conjugate is only minor, 

mafic rims and vermicules in the symplectites would still have a composition identical to that 

of the olivine and pyroxene primocrysts.  

The formation of hydrous symplectites in the Sept Iles intrusion 

 

Type II-b, biotite-plagioclase symplectites, and Type II-a symplectites that contain hydrous 

phases, are unlike any symplectites seen in the Skaergaard intrusion in that they contain a 

much larger fraction of hydrous minerals than any Skaergaard symplectites. The origin of 

these symplectites is unclear. Although they could originate via a process of differential loss 

of immiscible liquids similar to that proposed for hydrous symplectites (e.g. Wang et al., 

2018), they are much more H2O-rich than the dry, biotite-free, pomica-C cumulates 

crystallized from immiscible melts (Charlier et al, 2011; Namur et al., 2012a). This means 

that the symplectites have formed from a melt containing more water than either of the 

immiscible conjugates. As shown by Charlier et al. (2011) and Charlier & Grove 2012), the 

immiscible melts are only slightly more primitive (Mg# 15-20) than the residual rhyolitic melt 

(Mg# 5-22; Namur et al., 2011a) following fractionation of the pomica-C cumulates. 



Crystallization of these rocks drove the bulk liquid composition outside the two-liquid field 

and produced a rhyolite that ultimately formed the amphibole-rich granite of the Upper Zone. 

However, as shown by the pomica-C cumulates, the crystallization product of the immiscible 

melts (pomica-C cumulates) is dry, illustrating that the immiscible melts were never in 

equilibrium with hydrous phases. We therefore believe that a process other than reaction 

between plagioclase primocrysts and an Fe-rich immiscible liquid is needed to explain the 

formation of Type II-b and biotite-plagioclase symplectites.  

Natural and experimental studies on oceanic gabbros offer an alternative explanation for the 

origin of hydrous symplectites (Koepke et al., 2004; 2005a; 2005b; 2014; Wolff et al., 2013). 

It has been proposed that hydrous symplectites can be generated during partial melting 

reactions triggered by pervasive infiltration of hydrous fluids. Following this model, mafic 

phases (olivine, pyroxene) and moderately anorthitic plagioclase react with a water-dominated 

fluid to form pyroxene, amphibole, and highly anorthitic plagioclase. Several aspects of Type 

II-b (as well as perhaps I-b and some II-a) symplectites suggest that a process comparable, but 

not identical, to hydrous partial melting may have contributed to their formation.  

One of the major arguments for the mobility of reactive fluids in the Sept Iles cumulates is 

provided by cathodoluminescence imaging of plagioclase-plagioclase grain boundaries that 

luminesce bright green, in contrast to the blue luminescence of the centres of the plagioclase 

primocrysts. We thus suggest that anorthitic plagioclase rims formed as a result of hydrous 

fluid circulation. However, the process and reactions proposed by Koepke et al. (2004) do not 

fully account for Sept Iles symplectites in which only plagioclase was replaced.  

Instead, we propose that hydration occurred under super-solidus conditions, when exsolution 

of a hydrous volatile phase from deeper parts of the mush led to the migration of a free fluid 

phase in the upper part of the mush, perhaps accompanied by migration of a fluid-saturated 



melt. This led to significant plagioclase dissolution and the re-crystallization of more 

anorthitic plagioclase due to an increase of the CaO/Na2O ratio of the interstitial liquid. Some 

of the fluid phase may also have re-dissolved in the drier interstitial melt in the upper part of 

the fluid, resulting in an increase in water activity and the stabilization of highly anorthitic 

plagioclase (Lange et al., 2009). Where there was sufficient interstitial melt to permit 

convection within the mush, much more extensive plagioclase dissolution may have occurred, 

as shown in Fig. 8b, where only small amounts of blue relic plagioclase primocrysts are 

observed. We suggest that melt circulation, resulting in mixing between fluid-saturated melt 

from the deepest part of the mush and fluid-undersaturated melt in the upper part of the mush, 

may explain why amphibole vermicules of some Type II-b symplectites grade outward into 

pyroxene along the growth direction. Hornblende-plagioclase thermometry suggests the Sept 

Iles Type II-b symplectites formed at ~800-1000°C, consistent with the temperature of 

formation of water-saturated evolved residual rhyolitic melts (e.g. Bogaerts et al., 2006).  

Although fluid exsolution from deeper in the mush is the most likely source for hydrous 

fluids, other sources cannot be excluded. In the Sept Iles Layered Series, symplectites 

containing hydrous minerals occur in the upper parts of MCU II and are particularly abundant 

throughout MCU III. Near-surface alteration from meteoric water, infiltrating either along a 

system of fractures or along high-temperature shear zones (Koepke et al., 2014), could 

potentially account for the abundance of hydrous symplectites throughout MCU III, as well as 

the pervasive green luminescence of the plagioclase crystals. The Sept Iles Layered Series 

also contains many anorthositic fallen roof blocks (Namur et al., 2011b). Many such blocks 

contain evidence for hydrothermal alteration and, if some of this fluid were released after the 

blocks arrived on the intrusion floor, this could provide water to trigger melting reactions. A 

general model of the symplectite-forming process, involving dissolution-precipitation 

reactions, is shown in Fig. 13. 



 

CONCLUSIONS 

 

We have documented and classified seven different symplectite types in the Sept Iles 

intrusion, most of them replacing plagioclase. Oxy-symplectites resulted from oxygen 

fugacity differences in the residual liquid. Types I-a, I-c, and many Type II-a symplectites, are 

identical to those described in the Skaergaard intrusion (Holness et al., 2011): these are 

dominant in MCU II where the evolved bulk liquid entered the two-liquid stability field, and 

likely formed by reaction triggered by the differential loss of an unmixed Si-rich immiscible 

conjugate from the crystal mush. Type I-b symplectites contain amphibole, but their 

similarities to Type I-c symplectites suggest that they might also be connected to differential 

migration of immiscible interstitial liquids. Reaction occurred because the two immiscible 

conjugates have highly contrasted CaO/Na2O ratios which are also different from the 

CaO/Na2O ratio of the melt that crystallized plagioclase primocrysts. When immiscible melts 

are segregated, the Fe-rich melt that stays in the mush is in strong chemical disequilibrium 

with plagioclase primocrysts. This leads to plagioclase dissolution followed by 

reprecipitation, accounting for the highly anorthitic nature of the plagioclase in these 

symplectites.  

Type II-b and the biotite-plagioclase symplectites, as well as the Type II-a symplectites with 

hydrous phases, differ from those of the Skaergaard intrusion. Their hydrous nature and 

similarities with microstructures formed during hydrous partial melting experiments suggest 

that these types of symplectite may be related to the infiltration of hydrous fluids in the super-

solidus regime. We suggest that exsolution of volatiles from highly evolved melt increases the 

water activity of the intercumulus melt in the overlying mush, leading to the dissolution of 

plagioclase primocrysts and re-precipitation of anorthitic symplectite plagioclase. Such a 



process also formed anorthitic rims on some plagioclase crystals. The abundance of hydrous 

symplectites in MCU III, where the most hydrothermal circulation has occurred, is consistent 

with this hypothesis. 

All replacive symplectites in the Sept Iles formed from dissolution-precipitation reactions 

rather than by diffusion. As replacive symplectites are ubiquitous features in layered mafic 

intrusions, similar petrographic and compositional work on symplectites in different mafic 

intrusions can further refine the hypotheses developed in this study.  
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Table and Figure Captions 

 

Table 1. Classification of the main symplectite categories in the Sept Iles Layered Series, 

based on the root primocryst and the compositions of the phases involved in the symplectite. 

Fe-Ti Oxide = magnetite ± ilmenite, Opx = orthopyroxene, Cpx = clinopyroxene. 

Symplectite Type Root Primocryst Symplectite Composition 

Type I Fe-Ti Oxide Anorthitic plagioclase with Opx (± 

Cpx/Amphibole/Olivine) 

Type II Olivine Anorthitic plagioclase with Opx (± 

Cpx/Amphibole/Olivine) 

Oxy-Symplectite Olivine Orthopyroxene with magnetite (± ilmenite) 

Biotite-Plagioclase Fe-Ti Oxide Anorthitic plagioclase with biotite 

 

Table 2. Minimum, maximum, and average temperatures produced from thermometry 

calculations on both symplectite and rim phases from the Sept Iles Layered Series.  

Thermometer Reference Min. (°C) Max. (° C) Average (°C) 

Amphibole-plagioclase for 

amphibole rims/plagioclase 

primocrysts  

Holland & Blundy 

(1994) 

737 932 852 

Amphibole-plagioclase for 

symplectites 

Holland & Blundy 

(1994) 

784 1007 899 

Clinopyroxene-orthopyroxene 

in symplectite using QUILF 

Anderson et al. 

(1993) 

751 892 821 

Clinopyroxene-orthopyroxene 

in symplectite 

Putirka (2008) 777 910 835 

Ti content in biotite Henry et al. (2005); 

Namur et al. (2009) 

665 980 926 

 

 



 

Fig. 1. a) Geologic map of the Sept Iles layered intrusion, showing the three megacyclic units 

MCU I, II, and III. Locations of drill holes DC-8, DC-9, and S-9 are shown, along with the 

locations of sample sites. Inset shows the location of the Sept Iles intrusion in eastern Canada. 

“US” = Upper Series; “UBS” = Upper Border Series.” b) Stratigraphic section through all 

three megacyclic units of the Sept Iles layered intrusion (from Namur et al., 2012a), showing 

the various rock types observed: troctolites = “po-C”, Fe-Ti oxide-bearing troctolites = 

“pomi-C”, gabbros = “pomic-C”, “pmic-C”, and apatite-bearing gabbros = “pomica-C”, 

where p = plagioclase, o = olivine, m = magnetite, i = ilmenite, a = apatite, and C = cumulus. 

Classification from Irvine (1982). c) Schematic cross-section of part of the Sept Iles intrusion, 



showing the location of the drill cores where samples were collected from. Note the ~30° dip 

of the margins of the intrusion towards the centre. Modified from Namur et al. (2010). 

Adapted from Higgins (2005). 

 

 

Fig. 2. a) Schematic diagram of an oxy-symplectite, showing orthopyroxene and Fe-Ti oxide 

vermicules replacing primocryst olivine. The vermicules in oxy-symplectites can be linear or 

curved. b) Crossed polarized photo micrograph of an oxy-symplectite from sample 8-439, 

MCU II. Pl = primocryst plagioclase, Opx = orthopyroxene, Mag = magnetite. Scale bar is 1 

mm long. 

 



 

Fig. 3. a) Schematic diagram of a Type I-a symplectite (left), and plane polarized photo 

micrograph (right) of a typical Type I-a symplectite from sample 8-689, MCU II. b) 

Schematic diagram of a Type I-b symplectite (left), and plane polarized photo micrograph 

(right) of a typical Type I-b symplectite from sample ON-07-152, MCU II. c) Schematic 

diagram of a Type I-c symplectite (left), and crossed polarized photo micrograph (right) of a 

typical Type I-c symplectite from sample S9-33-3, MCU II. Fe-Ti Oxide = magnetite ± 

ilmenite, Mag = magnetite, Bt = biotite, Opx = orthopyroxene, Cpx = clinopyroxene, An = 



anorthitic plagioclase, Pl = primocryst plagioclase, Amp = amphibole, Ol = olivine. All scale 

bars are 1 mm long.  

 

 

Fig. 4. a) Schematic diagram of a Type II-a symplectite (left), and crossed polarized photo 

micrograph (right) of a Type II-a symplectite, rooted to phlogopite adjacent to an olivine 

primocryst from sample 9-2258, MCU I. b) Schematic diagram of a Type II-b symplectite 

(left), and plane polarized photo micrograph (right) of a typical Type II-b symplectite from 



sample ON-07-77, MCU III. c) Schematic diagram of a typical biotite-plagioclase symplectite 

(left), and crossed polarized photo micrograph (right) of a typical biotite-plagioclase 

symplectite from sample 8-689, MCU II. Opx = orthopyroxene, Cpx = clinopyroxene, An = 

anorthitic plagioclase, Pl = primocryst plagioclase, Phl = phlogopite, Ol = olivine, Amp = 

amphibole, Bt = biotite , Px = pyroxene (composition unknown). All scale bars are 1 mm 

long. 

 

 

Fig. 5. Schematic stratigraphic section of the Sept Iles Layered Series, showing the 

megacyclic units (MCU) on the left with the cumulus assemblages in various shades of grey 

(modified from Namur et al., 2012a). The 0 metre level corresponds to the lowest sample 



with cumulus apatite in MCU II. The stratigraphic positions of all data points collected in this 

study are present in green, with the different types of symplectites labelled in various colours. 

See text for abbreviations of cumulus assemblages. Bt = biotite, Pl = plagioclase.  

 

 



Fig. 6. 

BSE images of Type I symplectites. For all images, dots indicate microprobe data points (see 

graphs). Red dots = primocryst values, black dots = symplectite plagioclase values, white dots 

= symplectite orthopyroxene (a), amphibole (b), or olivine (c) values. 

a) Left: BSE image of a Type I-a symplectite from sample 8-689, MCU II. Note the wisps of 

fluctuating anorthite content (based on changes in grey scale) in the upper right of the image. 

Right: Graph of An-content of plagioclase (above) and Mg# of orthopyroxene (below) vs. 

distance along growth direction in the same sample. Note the difference of 29 mol.% between 

the most anorthitic symplectic plagioclase and the primocryst values, whereas the Mg# of the 

orthopyroxene only decreases by ~6 mol.% throughout growth of the symplectite. 

b) Left: BSE image of a Type I-b symplectite from sample ON-07-152, MCU II. Right: Graph 

of An-content of plagioclase (above) and Mg# of amphibole (below) vs. distance along 

growth direction in the same sample. Note the 27 mol.% difference between primocryst 

plagioclase and the highest symplectite anorthite content, but only a 5 mol.% difference in 

Mg# between the most primitive and the most evolved amphibole vermicule in the 

symplectite. 

c) Left: BSE image of a Type I-c symplectite from sample S9-57.5, top of MCU II. Right: 

Graph of An-content of plagioclase (above) and Fo-content of olivine (below) vs. distance 

along symplectite growth direction for the same sample. Note the significant 48 mol.% 

difference in An-content between primocryst and most primitive symplectite plagioclase, vs. 

the decrease of only ~4 mol.% in Fo-content of olivine in the symplectite along the growth 

direction. 



Ilm = ilmenite, Mag = magnetite, Bt = biotite, Opx = orthopyroxene, An = anorthitic 

plagioclase, Pl = primocryst plagioclase, Amp = amphibole (magnesio-hornblende), Ol = 

olivine, Ap = apatite, Cpx = clinopyroxene. 

 

 



Fig. 7.  

BSE images of Type II and biotite-plagioclase symplectites. For all images, dots indicate 

microprobe data points (see graphs).  Red dots = primocryst values, black dots = symplectite 

plagioclase values, white dots = symplectite orthopyroxene (a), amphibole (b), or biotite (c) 

values. 

a) Left: BSE image of a Type II-a symplectite from sample 9-2258, MCU I. The symplectite 

is composed of orthopyroxene + anorthite, and is rooted to either phlogopite (top right) or 

orthopyroxene rims around olivine primocrysts (bottom left). Right: Graph of An-content of 

plagioclase (above) and Mg# of orthopyroxene (below) vs. distance along growth direction 

for the same sample. Note the difference of ~24 mol.% in plagioclase composition between 

the symplectite and the primocryst, with only an 8 mol.% decrease in Mg# of the 

orthopyroxene along the growth direction of the symplectite. 

b) Left: BSE image of a Type II-b symplectite from sample ON-07-77, MCU III. Right: 

Graph of An-content of plagioclase (above) and Mg# of amphibole (below) vs. distance along 

growth direction for the same sample. Note the difference of 35 mol.% between the 

symplectic plagioclase and the primocryst plagioclase, whereas the Mg# of amphibole 

decreases only ~2.5 mol.% along the growth direction of the amphibole vermicules.  

c) Left: BSE image of biotite-plagioclase symplectites grading outwards into pyroxene-

plagioclase symplectites from sample 8-689, MCU II. Right: Graph of plagioclase anorthite 

content (above) and Mg# of biotite (below) vs. distance (from inside to outside) in a biotite-

plagioclase symplectite from the same sample. Note the difference of ~20 mol.% between the 

symplectic plagioclase and the primocryst plagioclase, whereas the Mg# of the biotite only 

varies by ~3 mol.%.  



An = anorthitic plagioclase, Pl = primocryst plagioclase, Opx = orthopyroxene, Phl = 

phlogopite, Ol = olivine, Amp = amphibole, Bt = biotite, Px = pyroxene (composition 

unknown).  

 

 

Fig. 8. a) Plane polarized photo micrograph (above) of a reactive Type I-a symplectite in 

sample 8-1838.5, MCU II. Below: Same area viewed under CL, showing green luminescing 

(anorthitic) plagioclase along grain boundaries as well as in the symplectite. b) Plane 

polarized photo micrograph (above) of sample ON-07-102 from MCU III, showing irregularly 

structured amphibole-rich symplectites. Below: Same image under CL, showing pervasive 

bright green luminescence throughout plagioclase primocrysts as well as along grain 

boundaries. Bt = biotite, Opx = orthopyroxene, An = anorthitic plagioclase, Symp = 



symplectite, Ox = Fe-Ti oxide (magnetite ± ilmenite), Pl1 = primocryst plagioclase, Pl2 = 

replacement (anorthitic) plagioclase, Amp = amphibole. 

 

 

Fig. 9. a) Histogram (normalized probability density) showing the variation in primocryst 

(red) and symplectite (green) plagioclase anorthite contents from the Sept Iles Layered Series, 

showing significantly more anorthitic plagioclase in the symplectites. b) Histogram showing 

the variation in clinopyroxene primocryst composition (red) and symplectite composition 

(green). c) Histogram showing the variation in compositions between orthopyroxene rims 

(red) and symplectites (green). Note that there were no orthopyroxene primocrysts to measure 

in the Sept Iles Layered Series. d) Histogram showing the variation in Fo-content from 

primocryst olivine (red) and symplectite olivine (green) from the Sept Iles Layered Series. 



Note that the olivine data between 35-45% was taken from very evolved rocks at the top of 

MCU-II and is therefore not representative of the Sept Iles Layered Series as a whole. 

 

 

Fig. 10. Average mass balance analyses for a) Type I-a; b) Type I-b; c) Type I-c; d) Type II-a; 

and e) Type II-b symplectites, showing net losses and gains of major elements. Error bars are 



1 standard deviation. For the mass balance analyses, bulk compositions of analysed 

symplectites were calculated based on averaged microprobe data. These compositions were 

then compared to the composition of the replaced plagioclase primocrysts to determine which 

elements were added or removed during reaction. 

 

 



Fig. 11. Plot of a) CaO vs. FeO and b) Al2O3 vs. FeO for bulk symplectite compositions 

(black circles), Si-rich immiscible melt compositions (orange stars), Fe-rich immiscible melt 

compositions (blue stars), and the homogeneous melt composition just before immiscibility 

(black star), from the Sept Iles Layered Series. Larger stars represent the immiscible melts 

produced at the highest temperature (onset of immiscibility) while the smaller stars represent 

subsequent melts produced at lower temperatures. The direction of evolution of the Si-rich 

and Fe-rich melts after liquid immiscibility are labelled with coloured arrows. Red circles 

represent average primocryst plagioclase compositions. Black dashed lines represent the 

mixing line if plagioclase primocrysts were mixed with various proportions of the Fe-rich 

liquid. Values for all melts are from Charlier & Grove (2012). c) Compositions of Si-rich and 

Fe-rich immiscible melts projected onto a ternary diagram, creating the division between the 

one-liquid and two-liquid fields, with bulk symplectite compositions from the Sept Iles 

Layered Series labelled as black circles. 

 



 

Fig. 12. Schematic diagram of a crystal mush undergoing separation into Si-rich and Fe-rich 

conjugates, resulting in the formation of symplectites. a) Primocryst grains accumulate and 

form a crystal mush at the bottom of the magma chamber. b) Si-rich liquid and Fe-rich liquid 

(yellow droplets) separate as a consequence of silicate liquid immiscibility. Driven by its low 

density, the more abundant Si-rich conjugate ascends and leaves the crystal mush. c) 



Formation of Type I-a (anhydrous) symplectites as a consequence of reaction between 

plagioclase primocrysts and the remaining Fe-rich immiscible conjugate. d) Schematic 

diagram of a Type I-a symplectite that forms as a result of the processes indicated in (a) 

through (c).  

 

 

Fig. 13. Schematic diagram of the general proposed process for reactive symplectite 

formation, showing formation of hydrous Type II-b and biotite-plagioclase symplectites. a) 



Fluid (in yellow), either melt or hydrous fluid, reacting adjacent to mafic primocrysts along 

grain boundaries. b) After reaction and dissolution of plagioclase, symplectites are formed 

from disequilibrium reactions in an open system. c)  Schematic diagram of a Type II-b 

symplectite that formed as a result of the process indicated above. Note: symplectites are not 

drawn to scale, but are drawn so the vermicules can be seen clearly. Also, symplectite types 

do not all occur in the same rock samples. Ol = olivine, Pl = plagioclase, Opx = 

orthopyroxene, Ox = Fe-Ti oxide (magnetite ± ilmenite), Bt = biotite, Amp = amphibole, An 

= anorthitic plagioclase. 

 

 

Supplementary Figure 1. An example of a Type I-c symplectite (sample S9-33.3, MCU II), 

measured with the original grain boundary a) at the edge of the olivine rim (where the 



symplectite replaces 100% plagioclase) and b) with the original grain boundary at the current 

oxide boundary (meaning it replaces 14% Fe-Ti oxide as well). c) Mass balance calculations 

for the sample in a) and b), showing the minimal differences between calculations when the 

original grain boundary is measured at the current oxide boundary vs. being measured at the 

edge of the olivine rim. Pl = plagioclase, Fe-Ti Oxide = magnetite ± ilmenite.  

 


