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We present a novel framework, Duplo, for the low-level post-link optimisation of OCaml programs, achieving

a speedup of 7% and a reduction of at least 15% of the code size of widely-used OCaml applications. Unlike

existing post-link optimisers, which typically operate on target-specific machine code, our framework operates

on a Low-Level Intermediate Representation (LLIR) capable of representing both the OCaml programs and any

C dependencies they invoke through the foreign-function interface (FFI). LLIR is analysed, transformed and

lowered to machine code by our post-link optimiser, LLIR-OPT. Most importantly, LLIR allows the optimiser

to cross the OCaml-C language boundary, mitigating the overhead incurred by the FFI and enabling analyses

and transformations in a previously unavailable context. The optimised IR is then lowered to amd64 machine

code through the existing target-specific code generator of LLVM, modified to handle garbage collection just

as effectively as the native OCaml backend. We equip our optimiser with a suite of SSA-based transformations

and points-to analyses capable of capturing the semantics and representing the memory models of both

languages, along with a cross-language inliner to embed C methods into OCaml callers. We evaluate the

gains of our framework, which can be attributed to both our optimiser and the more sophisticated amd64
backend of LLVM, on a wide-range of widely-used OCaml applications, as well as an existing suite of micro-

and macro-benchmarks used to track the performance of the OCaml compiler.
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1 INTRODUCTION
OCaml and C are two seemingly unrelated programming languages, yet all OCaml programs contain

a significant number of C methods. These implement vital features, including the runtime system

and performance-sensitive operations, invoked through OCaml’s foreign-function interface (FFI),

which cannot be expressed effectively in OCaml. While most of the functionality implemented in

C is transparent to OCaml users, such functions are prevalent and vital to performance, raising

interest in optimising them. Unfortunately, the compilation model of both languages and the FFI

mechanism raises a difficult barrier: intertwined functions originating from C and OCaml only

meet in the linker, in the form of machine code, which is well known to be difficult to optimise.

Typically, this issue would be addressed by link-time, post-link or dynamic runtime optimisers

operating on machine code. Existing optimisers, such as DynamoRIO [Bruening et al. 2003],

BOLT [Panchenko et al. 2019] or PLTO [Schwarz et al. 2001], are aimed towards binaries originating

from C and C++ for good reason: modifying hardware instructions while preserving the semantics

imposed by the garbage collector (GC) and adjusting the required metadata is a non-trivial challenge.

This motivated us to address the problem at a higher level, prior to assembly-code generation,

yet still on a representation containing whole-program information, which we call LLIR. Since at

such a stage an imperative representation is more suitable, we tackle the challenge of optimising

functional programs expressed in imperative form through our framework, Duplo.
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1.1 Motivation
To highlight the complexity inherent in using the FFI, consider the problem of creating a data

structure to represent complex numbers in OCaml with a pair of 32-bit floats. Where a loss in

precision is tolerable, using the single-precision floating-point representation could lead to a

significant reduction in memory usage, yet on a 64-bit platform OCaml only supports the double-

precision variant. In a low-level systems language, such as C or Rust, packing a pair of floats into a

64-bit structure is a trivial task. However, the OCaml heap and data layout is not flexible enough to

allow for a straightforward and effective implementation. The following definition, similar to that

provided by the OCaml standard library, is brief, but inefficient;

type Complex = float * float
let make_complex r i = (r, i)
let real (r, _) = r
let imag (_, i) = i

Such an implementation of complex numbers requires a pair of pointers to boxed doubles, each

occupying a header and a word, for a total of seven words, or 56 bytes, spread across three heap

blocks created using up to three invocations to the allocator in the worst case. This is neither

compact, nor fast: accessing an element requires chasing two pointers. A step towards a more

efficient, albeit less readable, solution would involve the use of an array of two real elements:

type Complex = float array
let make_complex r i =
let arr = Array.make 0 in
Array.set arr 0 r;
Array.set arr 1 i;
arr

let real arr = Array.get arr 0
let imag arr = Array.get arr 1

This approach is more compact, at three words for a total of 24 bytes, yet it is not optimal due

to the unavoidable use of double-precision floats. The implementation relies on the polymorphic

caml_make_vect runtime method, which decides the kind of array to allocate (array of values

or a specialised array of unboxed double-precision floats) based on the filler element provided.

Given that in this use case only two elements are allocated at a time, even simple array allocation

results in significant overhead. Furthermore, performance comes at the cost of increased complexity:

specialised arrays demand intrusive changes to the compiler. Extending this mechanism to support

fixed-point reals or other floating point representations, such as the recently popular bfloat16
[Tagliavini et al. 2018], would further burden the compiler. A solution, optimal from the perspective

of memory usage, that does not require modifications to the compiler has to rely on C and the FFI:

typedef struct { float i; float r; } complex_t;
#define Complex_val(block) ((complex_t *)block)
CAMLprim value complex_make(value i, value r) {

CAMLparam2(i, r);
value block = caml_alloc_small(2, 255);
Complex_val(block)->i = Double_val(i);
Complex_val(block)->r = Double_val(r);
CAMLreturn(block);

}
CAMLprim value complex_imag(value c) {

CAMLparam1(c);
CAMLreturn(caml_copy_double(Complex_val(c)->i));

}

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: January 2020.



Duplo: A Framework for OCaml Post-Link Optimisation 1:3

While this approach is succinct and compact, it is far from optimal in terms of performance. All

external calls allocate on the heap, requiring the compiler to emit expensive trampolines that

handle the context switching required by the garbage collector. Given the language barrier, the

OCaml compiler cannot inline any of the trivial field accessors, which will often redundantly box

and unbox floats. To illustrate the extent of the problem, we consider a typical short method that

operates on this data type and can be expressed purely in OCaml:

let magnitude_squared c =
let i = imag c in
let r = real c in
i * i + r * r

The execution of this method invokes two trampolines before reaching the implementation of

the accessors, which box the flat fields into the doubles required by OCaml. The blocks resulting

from these allocations are immediately unboxed and discarded by the OCaml computation, which

proceeds by computing the magnitude and boxing it through another heap allocation. Such a brief

method, which would lower to two loads and a few arithmetic instructions if implemented purely

in C, requires a significant number of heap allocations and a corresponding number of loads and

stores to memory, incurring an unacceptable overhead that would prohibit the use of this numerical

datatype in any long-running computation.

The aim of our post-link optimisation framework, Duplo, is to provide a platform for analyses and

transformations crossing the language boundary, ameliorating or eliminating the overhead imposed

by the redundant, but unavoidable allocations. As a starting point, we enable inlining C methods

into OCaml callers across the trampolines, while preserving all the information required for the

proper functioning of the garbage collector. Besides removing a potentially expensive indirect call,

the true value of inlining lies in the fact that it opens up opportunities for improvement.

A number of transformations need to follow before the allocations are eliminated. The type-

agnostic representation of OCaml natively supports only pointers and 63-bit integers. Other

primitive types, such as floats, are boxed into heap-allocated blocks, out of reach for simple constant

propagation. In this context, propagating primitives involves forwarding writes to memory locations

(boxing) to loads using them (unboxing): we achieve this through the use of a local points-to analysis.

Replacing loads with values does not yet leave the blocks unused: in some cases, such as the one

illustrated in Figure 9, the heap pointer is registered with a chain of local roots to allow the garbage

collector to keep track of roots in C code. While not yet implemented, we discuss the analyses

required by future transformations to eliminate allocations that are never used.

Improvements achievable by the framework we propose are not only limited to the efficient

implementation of specific numeric types and arithmetic operations: zero-cost FFIs are crucial for

a language to effectively interface with widely-used and well-tested libraries, such as zlib, gmp
or libpng, as well as core POSIX methods. Foreign methods presently need to unbox non-integer

values they receive from OCaml, boxing any returned structures, pairing them with methods to

hash and finalize them. The frequent use of such features suggests that eliminating this overhead is

valuable, yet existing toolchains cannot perform the required transformations.

While we show significant improvement on existing applications, we believe our optimiser has

the potential to encourage the use of language features and constructs that are underused due to

their high cost. A functional language such as OCaml undoubtedly has its benefits, however there

are constructs which limit the utility of the language, mainly due to the rigidity of the memory

model. Even though invoking C through the FFI is trivial and such a low-level language is well

suited towards providing these missing features, the overhead is often unacceptable, warranting the

specialisation of such data types inside the compiler, as is the case with floatarray. Through our
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Fig. 1. Intermediate forms in C and OCaml
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Fig. 2. Compilation of an OCaml executable

cross-language post-link optimiser, we aim to reduce the need for such extensions to the compiler,

instead encouraging the use of the FFI, which now should incur less of an overhead.

1.2 LLIR
Our platform is built around LLIR, the common representation for both C and OCaml. The challenge

in defining such a representation lies in the fact that OCaml and C take distinct routes while lowering

their sources to machine code, using intermediate forms that share little to no similarities.

Figure 1 illustrates the intermediate forms used in the compilation of both C and OCaml: clang
lowers C to LLVM IR, applying high-level optimisations such as inlining and loop unrolling. The IR

is then lowered to Machine IR by the instruction selector and scheduler through a SelectionDAG,
enabling a series of low-level target-specific peephole transformations, among other target-agnostic

passes running on machine code. On the other hand, OCaml compilation involves a significant

number of intermediate steps that progressively lower the high-level language to machine code.

The type-checked AST is lowered to Lambda, a high-level IR that supports closures and several

optimisations such as inlining and dead-code elimination. Clambda follows, exposing the construc-

tion of closure environments and adding them as an explicit argument to closures. This IR is then

lowered to the tree-like imperative and target-independent Cmm representation: at this stage, the
preserved type information only indicates whether a value is an integer, a pointer into the OCaml

heap or a naked address outside it. Before emitting machine code, instruction selection, scheduling

and allocation rely on two more representations, Mach and Linear, which explicitly reference

hardware registers. The former is tree-like, while the latter consists of a linear sequence of abstract

instructions that have direct assembly equivalents. When enabled, the flambda representation is

built between Lambda and Clambda, enabling more aggressive inlining across module boundaries.

While this choice of intermediate representations might be optimal for individual compilers, it

poses a barrier towards interoperability. Figure 2 illustrates the steps involved in building application

developed in both languages that relies on the FFI: the compiled sources originating from different

compilers meet at the latest stage of the pipeline, when the object files containing machine code

built from them are combined into an executable by the linker. At this stage, on this low-level

representation, only trivial transformations can be applied to eliminate the overhead incurred by

the abstraction of modularity: linkers treat functions as strings of bytes, without the possibility

of inlining or unreachable-code elimination. Traditional Link-Time Optimisations (LTO), which

rely on compilers passing the IRs to the linker alongside the object files, cannot be used since an

efficient representation that can be generated from both languages does not yet exist.
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The intermediate steps used in the compilation of OCaml are tailored for a high-level functional

language, while LLVM is aimed for optimising imperative languages without a garbage collector.

While technically possible, compiling LLVM IR to any of OCaml’s representations from Cmm onwards
would be counterproductive: Cmm has a limited set of data types and its lowering involves only

two optimisations, dead-code elimination and common-subexpression elimination, along with a

fairly basic instruction selector. On the other hand, LLVM is a production-grade compiler with

an effective instruction selector and an extensive battery of target-specific optimisation passes,

which we intend to exploit by lowering one of the OCaml IRs to a form that can be plugged into the

LLVM compilation pipeline. Thus, the search for a common point for further transformation starts

at the Clambda level, which is the first to turn closures into functions that could be represented

in an imperative form: at this stage, free variables are explicitly loaded from an environment,

allowing all functions to be hoisted to the global scope. Yet again, it is technically possible to lower

Clambda to LLVM IR, with some caveats: LLVM’s handling of exceptions and heap roots would

incur a severe overhead, as confirmed by existing attempts and analyses [Leroy 2009; Scherer 2015].

Unfortunately, GC support in LLVM requires roots to be located on a shadow stack, whereas OCaml

allows registers to be used across call sites, an optimisation crucial for performance [Lattner 2020a].

To address these shortcomings, we introduce a new intermediate representation, LLIR, described

in detail in Section 3.2. LLIR represents both OCaml and C efficiently, including exceptions and GC

roots. LLIR sits between the LLVM IR and the SelectionDAG used to lower it to machine code: it

can be generated from LLVM’s IR, but it can also be lowered to SelectionDAG in order to generate

machine code from it using LLVM’s existing target-specific backends. From a high-level perspective,

LLIR is almost machine code, except it provides explicit and compact call instructions, exception

landing pads, GC annotations and operates on virtual registers. While this IR could be generated

from Clambda, to avoid duplication we rely on information computed at the Mach level: this is the

first stage where locations storing heap roots are clearly identified. We also opt to reuse OCaml’s

existing facilities and drop one level, generating LLIR using a custom backend from Linear form.

1.3 LLIR-OPT
While the long-term goal is to mitigate, and potentially eliminate, the overhead of foreign-function

calls between OCaml and C through the FFI by exploiting optimisation opportunities opened by

LLIR, this paper is focused on introducing a framework to enable such optimisations, called Duplo.

Besides the post-link optimiser operating on LLIR, the framework also includes backends for LLVM

(described in Section 3.3.1) and the OCaml compiler (described in Section 3.3.2) to generate LLIR.

A crucial task for the post-link optimiser is machine-code generation: since the optimiser fits into

the OCaml toolchain right before executables are expected to be produced, the post-link optimiser

emits object files, lowering LLIR to machine code. We chose LLVM to perform this lowering: even

though the code generator is not explicitly exposed, nor intended for external use, we managed to

build a mapping from LLIR to SelectionDAG and adapt transformations operating on the Machine
IR generated from the DAG to respect the additional semantics imposed by the presence of GC

roots. Given that the optimiser links to LLVM, we decided to reuse as many facilities as possible,

shaping the design of the in-memory representation of LLIR. The similarities between the data

structures representing LLIR and LLVM IR/Machine IR allow for the reuse of several analyses and

transformations, including complex ones such as dominator-tree construction. The peculiarities

of this mapping, distinct from the challenges encountered by previous projects attempting to tie

LLVM to OCaml, are described in Section 3.5. As shown by our evaluation in Section 5 and in

contrast with previous attempts, we report a significant improvement in performance.
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Presently, the post-link optimiser is equipped with a set of fairly generic transformations typically

found in SSA-based optimisers, described in Section 4.4. While these passes exploit some opportu-

nities opened by the cross-language context, their main goal is to shape LLIR into a form that can

be optimally lowered by the code generator. Due to the presence of trampolines between OCaml

call sites and C callees, inlining is not straightforward, leading to the discussion in Section 4.1.

Opening up the possibility of inlining only solves part of the problem: given that LLIR represents

functional programs, indirect calls and heap-allocated objects containing closure environments

are prevalent, posing difficulties for further transformations. Points-to analyses are vital towards

understanding such programs, hence why we present a global analysis in Section 4.2, which we use

for unreachable-code elimination, along with a local analysis in Section 4.3, allowing the removal of

some redundant loads and stores. Future work will invest heavily in improving such information.

1.4 Contributions
The contributions outlined in this paper are:

• Anovel Low-Level Intermediate Representation (LLIR) capturing both OCaml and C semantics

• A post-link optimiser framework, Duplo, along with a complete toolchain to generate LLIR

from OCaml and C and emit machine code from LLIR, enabling cross-language optimisation

• A local and a global points-to analysis, tailored for the C andOCamlmemorymodels, presently

used for dead-store elimination, write propagation and unreachable-code elimination

• A comprehensive evaluation of the post-link optimiser on highly representative benchmarks,

including a comparison to an experimental OCaml LTO extension at the flambda level

Our implementation is available under the MIT license at https://github.com/nandor/llir-opt.

2 BACKGROUND AND RELATEDWORK
The difficulty of cross-language optimisation varies depending on the design implementation of the

languages involved. In order to exploit opportunities available across this boundary, all participating

sources need to be lowered to a common representation capable of representing the semantics of

all languages, which is then linked, analysed and optimised before emitting byte code or machine

code. In the context of certain JIT compilers, this is trivial and free: the Java Virtual Machine

(JVM) [Lindholm et al. 2014] or the Common Language Infrastructure (CLI) [ISO 23271:2012(E)

2012] optimise byte code merged from multiple source languages, such as Java, Scala or Groovy on

the JVM and C# , F# or Visual Basic on the CLI. Similarly, compiled languages supported by the

LLVM IR and infrastructure [Lattner 2008] also often benefit from Link-Time Optimisation (LTO)

provided by LLVM to optimise across language boundaries, albeit with occasional difficulty: while

all languages in an environment such as JVM or CLI share the same memory model and object

representation, such homogeneity is not guaranteed on the LLVM IR, reducing the effectiveness of

certain transformations. In our case of OCaml and C, which do not share a common representation

other than machine code, optimising across the language boundary proves to be more difficult.

Most recently, cross-language optimisationswere enabledwith positive results between Rust [Mat-

sakis and Klock 2014], compiled using the rustc compiler, and C/C++, compiled using clang [Lat-

tner 2008]. Since rustc targets LLVM in order to generate machine code, crossing this boundary

required only minor adjustments [Mozilla 2019]. The rustc frontend was equipped with a flag

instructing LLVM IR to be emitted from individual compilation units, which were then linked

into a module containing LLVM IR originating from both C++ and Rust. Such modules can be

optimised using the existing LTO linker plugin before machine-code generation. These changes

to the Rust compiler allowed cross-language optimisations to be enabled in the Firefox browser,

which already relied on LTO for C++ modules, achieving positive results. While the improvements
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were not explicitly quantified, cross-language optimisations reduced the overhead of method calls

between the two languages, allowing future features to be implemented in Rust. The possibility

of cross-language inlining also led to reduced code duplication, allowing several Rust methods

wrapping or re-implementing functionality already provided by C++ to be removed.

Another interesting pair of languages that both use the LLVM IR as a common representation at

a late stage in the compilation pipeline are Haskell and C [Terei and Chakravarty 2010]. Despite

the fact that Haskell is a high-level, lazy and garbage-collected language, it can be fairly easily

lowered to LLVM IR from its Cmm form. Unlike OCaml, the Glasgow Haskell Compiler (GHC) does

not require any additional metadata to describe root pointers. Instead, all live blocks are reachable

from a stack and a set of STG (one of the GHC IRs) registers [Jones 1992]. By adding an additional

calling convention to pin STG registers to hardware registers, Haskell can be efficiently lowered to

LLVM IR, resulting in improvements on certain workloads heavily reliant on numeric computation.

Since context switches between Haskell and C are simpler than with OCaml and avoid the use

of trampolines, the boundary is open to some optimisations provided by LLVM. Following the

implementation of the LLVM backend, cross-language LTO was also experimentally enabled, but

no quantifiable benefits were measured [Simmons 2019]. This could be attributed to the complexity

of the constructs prevalent in Cmm, especially those implementing laziness, which cannot be readily

optimised by existing LLVM transformations. Since our target is eagerly evaluated and relies on a

simpler object representation, it is expected to be more amenable towards optimisation.

In the context of OCaml [Leroy et al. 2014], we are not aware of anywork aiming to optimise across

FFI calls, but attempts have been made to cross this boundary at a different level. The construction

of type-safe wrappers over the FFI on the OCaml side is an active area of research [Yallop et al. 2016]

and type systems were also developed in order to verify the correctness of C callees [Furr and Foster

2005]. Such prior work is encouraging as it shows that a common ground exists and the memory

models and object representations of the two languages can be bridged by analyses. Similarly to

Haskell, LTO between OCaml modules was also experimentally implemented, employing the use of

the flambda optimiser to operate on modules containing whole programs [Chambart 2016]. Even

though the LTO fork is no longer maintained, we fixed bugs in order to evaluate it and compare it

to our cross-language post-link optimiser in Section 5. As previously mentioned, compiling OCaml

to LLVM IR proved to be problematic in the past, justifying our decision to pursue an alternative

approach towards finding a common representation for optimisations [Leroy 2009; Scherer 2015].

From the family of ML-like languages, OCaml is the optimal candidate for post-link optimisations

across the FFI boundary. While other ML implementations, such as MLton [Weeks 2006], implement

whole-program optimisations and type-directed compilation, they expose a very limited interface to

C programs. This limitation is the caveat of type-based representations: while individual structures

are encoded more efficiently in MLton, exposing them to C through a convenient interface is

difficult. In contrast, the object representation of OCaml is type-agnostic, relying on tagged blocks

that contain a fixed number of fields, either integers or pointers to other blocks. Such a simple

implementation allows C to easily interface with OCaml objects, leading to a powerful FFI that can

be further improved through cross-language optimisations.

OCaml and C already have a common representation, namely target-specific machine code, and

tools exist to optimise at this level. Unfortunately, such tools rarely support multiple targets and

limit optimisations to peephole or local transformations, performed either statically or at runtime.

BOLT is an example of a static optimiser that transforms the binary before runtime [Panchenko

et al. 2019] and DynamoRIO is a dynamic rewriter capable of transforming executables based on

valuable profile information gathered at runtime [Bruening et al. 2003]. Although these tools achieve

speedups on C/C++ applications, they are not suited to OCaml since preserving the semantics

of root pointers and adjusting the metadata required by the garbage collector at the binary level
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poses significant difficulty, especially in the context of a dynamic rewriter where the improvement

in running time needs to also offset the cost of analyses. In contrast, the additional information

required to correctly analyse and transform machine code originating from OCaml can be easily

generated by compiler backends and embedded into our LLIR.

Given the requirement for OCaml to box primitives into heap-allocated wrappers, we identify

the need for accurate points-to analyses in order to enable transformations. While such analyses

have been studied for a long time [Andersen 1994], the need to balance accuracy with performance

ensures this is still an active area of research. Based on context, points-to analyses try to account for

various parameters, such as flow-, field- and context-sensitivity, along with tweaking algorithms

for specific constructs [Johnson et al. 2017; Khedker et al. 2012; Lattner and Adve 2003; Pearce

et al. 2007; Sui et al. 2018; Wilhelm et al. 2000]. While most analyses are fine-tuned for specific

languages, algorithms were developed to operate at the assembly level, overcoming the lack of

type information [Guo et al. 2005]. The analyses we provide operate on a low-level representation,

adapting well-established methods for solving flow constraints [Hardekopf and Lin 2007a].

3 LLIR AND LLIR-OPT
Our method for cross-language optimisations is built around a novel Low-Level Intermediate

Representation (LLIR) that is a common form suitable for representing both C and OCaml programs.

As hinted by its name and the stage at which it is integrated into the compilation chain, LLIR is

an imperative, low-level, assembly-like representation. An LLIR program consists of a number

of data segments that define constants using syntax similar to typical assemblers, along with a

text segment split into functions, basic blocks and sequences of instructions operating on virtual

registers. Similarities with assembly are not coincidental: LLIR was designed to be easily generated

through target-specific backends in LLVM (Section 3.3.1) and OCaml (Section 3.3.2), which are

already equipped for emitting assembly.

a.ml

a.llir a.cmx
str.c

str.llir
startup.llir

a.opt.llir

array.c

array.llir

libasmrun.a

...
Runtimeffi.c

ffi.llir

clang

ocamlopt

llir-ar

llir-ld

llir-opt

a.opt.exe

Fig. 3. Compilation using the Duplo framework

The design of the representation is also in-

fluenced by the toolchains in which it inte-

grates. Figure 3 illustrates the tools and inter-

mediate files involved in the compilation of

an OCaml executable with our post-link op-

timiser: in order to be seamlessly embedded

into existing build systems and tools, LLIR files

need to behave like target-specific object files.

To achieve this, we provide a linker (llir-ld)
and an archiving tool (llir-ar) to link exe-

cutables and produce static libraries: they ac-

cept the same command-line arguments as the

GNU binutils equivalents, except our linker op-

erates on LLIR files and invokes the post-link

optimiser, LLIR-OPT, to emit executable machine code. To compile existing projects, we rely on

cross-compilation and we treat LLIR as a distinct target configured identically to the machine for

which assembly will be emitted, providing an additional LLIR implementation for any components

implemented in assembly. This effort also aids portability: while the OCaml compiler requires ~700

lines of assembly for each supported platform, we provide the same amount of LLIR once and

compile it to any target. Duplo-optimised binaries can also link to non-optimised libraries.

Figure 4 shows LLIR representing the OCaml and C implementation of the same function.

Functions are defined in the text segment using a simple label, followed by directives to specify

their attributes, such as the types of arguments, the size and alignment of stack-allocated objects, the
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type point = { x: float; y: float }
let norm pt =

sqrt (pt.x *. pt.x +. pt.y *. pt.y)

camlTest__norm:
.args 0, i64
.call caml
arg.i64 $0, 0 @caml_value
mov.i64 $1, 8
add.i64 $2, $0, $1
ld.8.f64 $3, [$2]
mul.f64 $4, $3, $3
ld.8.f64 $5, [$0]
mul.f64 $6, $5, $5
add.f64 $7, $6, $4
mov.i64 $8, sqrt
call.f64.c $9, $8, $7
mov.i64 $10, caml_alloc1
call.i64.caml_alloc $11, $10 @caml_frame @caml_value
mov.i64 $12, 0x4fd
mov.i64 $13, -8
add.i64 $14, $11, $13
st.8 [$14], $12
st.8 [$11], $9
ret $11

typedef struct { float x; float y; } point_t;
float norm(point_t p) {

return sqrt(p.x * p.x + p.y * p.y);
}

norm:
.args 0, i64
.call c
arg.i64 $0, 0
ld.f32 $1, [0]
mov.i64 $2, 4
add.i64 $3, $0, $2
ld.f32 $4, [$3]
mul.f32 $5, $1, $1
mul.f32 $6, $4, $4
add.f32 $7, $5, $6
mov.i64 $8, sqrt
call.f32 $9, $8, $7
ret.f32 $9

Fig. 4. LLIR representation of OCaml and C methods.

calling convention and inlining restrictions. While the two methods implement the same function,

the OCaml version highlights the additional features required to represent a garbage-collected

language: an allocation boxing a primitive is present, along with annotations carrying information

required to emit GC metadata. Section 3.2 provides further details on the semantics of instructions

and the memory organisation of programs expressed in LLIR.

LLIR is an SSA-based representation. While imperative SSA representations are largely equivalent

to the lambda calculus often used in the compilers of functional languages [Appel 1998], we chose

the former as it more closely resembles the low-level instructions and control-flow constructs

present at this stage of compilation. An imperative intermediate form also greatly simplifies the

translation to machine code through LLVM, since the Machine IR is also in SSA form.

Besides the textual representation, our framework provides a flexible in-memory representation

for LLIR in the post-link optimiser, as discussed in Section 3.4. The optimiser tool is also a code

generator: LLIR is lowered to machine code through LLVM’s SelectionDAG and existing Machine IR
pipeline. Since our representation is both generated from and lowered to SelectionDAG nodes, there

are close similarities between a large subset of the instructions and the DAG. However, in order to

implement garbage collection efficiently, we have extended the DAG with additional nodes and the

Machine IR representation with custom pseudo-instructions, as described in Section 3.5.

3.1 OCaml Runtime and Object Representation
Even though Duplo is a framework for OCaml and C cross-language optimisations, it implements

few OCaml-specific features. Most notably, the framework does not provide a runtime system, a

garbage collector or an OCaml-specific heap representation: all these components are implemented

by the standard runtime library bundled with the OCaml compiler, indicated in Figure 3, which is

compiled from C to LLIR and optimised along with the target OCaml executables.

In order to simplify the analyses required to enable optimisations, Duplo reasonably assumes

that the runtime implements garbage collection correctly, preserving an invariant: at any point in
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the program, heap roots are assumed to be pointing to valid objects. The transformation of code

sequences that do not contain any function calls does not require any OCaml-specific knowledge:

the preservation of all side effects, including writes to memory, ensures that the heap is correct at

any program point. Even though we presently target single-core OCaml 4.07.1, multi-core OCaml

[Sivaramakrishnan et al. 2020] will be supported by emitting the appropriate atomic instructions or

barriers and preserving their semantics. The assumption of correctness is exploited across function

calls: while heap roots might be altered, by heap compaction for example, they must point to an

object the same shape as before the function call. Using the annotation mechanism presented in

Section 3.2.3 to identify roots, transformations can hoist, remove or reorder them across call sites.

The changes to the OCaml runtime are intended to be minimal in order to mitigate incom-

patibilities between versions of OCaml and allow Duplo to be a drop-in replacement. The object

representation of OCaml is not altered, as such a change would break the entire ecosystem due to

the presence of a large number of libraries that rely on the FFI and assume a specific representation.

Furthermore, layout choices are more appropriate at earlier stages in the pipeline. More precisely,

Duplo is orthogonal to high-level language features: the only requirement from an object repre-

sentation is for pointers to be stored at correctly aligned locations, enforced on some hardware

and crucial for performance on others. The optimiser preserves the semantics of instructions that

build or inspect objects conforming to any representation respecting this criteria. Such a minimal

assumption is sufficient to enable transformations and greatly simplifies the optimiser, since passes

can handle both languages without requiring specific knowledge of either of them.

While a more complex representation could benefit OCaml, it would be transparent to Duplo,

which achieves gains independently at a lower level. A change to the object model might severely

limit the capabilities of the FFI by preventing C methods from easily allocating on the OCaml heap,

passing non-trivial types as argument or trivially serialising and de-serialising objects, as is the case

with Haskell
1
and MLton

2
. We consider the type-agnostic representation of OCaml to be a strength

of the language, as it enables objects to be trivially accessed, traversed and serialised, while more

complex representations require additional information to identify fields and heap pointers.

By design, our optimiser does not carry or exploit type information specific solely to a single

input language since a compiler or a link-time optimiser specialised for that language should have

already exhaustively optimised acting on it. Instead, LLIR targets the low-level common ground

between languages to find new opportunities beyond the limitations of prior stages.

3.2 Low-Level Intermediate Representation
3.2.1 Types. Each virtual register used in LLIR has a static type, expressed on the instruction that

defines it. With the exception of 128-bit wide types, which are broken down into 64-bit components,

virtual registers map directly to physical register classes available on modern hardware:

• i8 and u8 are used for condition codes and shift widths, besides byte-wide arithmetic

• i16, u16, i32, u32, i64 u64, i128 and u128 represent integers
• f32 and f64 are generic floating-point types
• f80 is required by x87 FPU instructions

The type system is simple, reflecting the constraints of the underlying hardware. While most

instructions expect all their operands to be of the same type or to match the bit width of the

hardware equivalent, some exceptions exist. For example, mov, sext, zext and fext are used to

cast types of different size or to convert floats to integrals; otherwise signed and unsigned types

can be used interchangeably. Comparisons are allowed to produce an integral flag of any width and

1
https://wiki.haskell.org/Foreign_Function_Interface#Foreign_types

2
http://mlton.org/ForeignFunctionInterfaceTypes
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Instruction Description amd64 Lowering
call.T.n.conv $r, args...

tcall.T.n args... Calls, tail calls and vararg calls callq or jmpq
invoke.T.n $r, args..., Lcont, Lthrow with explicit control flow after argument setup

tinvoke.T.n args..., Lcont, Lthrow

ret $r Return value from function mov to %rax, ret
trap Unreachable point ud2
arg.T $r, n Virtual register for argument Register, live on entry

frame.i64 $r, obj, off Index into the stack $rbp/$rsp offset

alloca.i64 $r, $s Dynamic allocation on stack $rsp adjustment

vastart $s Vararg structure setup register spills

cmp.T.cc $r, $lhs, $rhs Comparison test, cmp
jmp Lblock Unconditional jump jmp
jcc $cond, Ltrue, Lfalse Conditional jump jeq, jne, ...
ji $target Indirect jump to block jmpq $reg
switch $v, Li Jump to branch 𝑣 jmpq with jump table

select $r, $cond, $true, $false Ternary operator cmov or branches

ld.n.T $r, $m Load 𝑛 bytes and extend mov, movsx, movzx, ...
st.n $m, $v Truncate to 𝑛 bytes and store movq, movl, ...
xchg.T $r, $m, $v Atomic exchange lock xchg
add.i64 $r, $lhs, $rhs

sub.i64 $r, $lhs, $rhs

mul.i64 $r, $lhs, $rhs Arithmetic instructions Target equivalent

neg.i64 $r, $arg

...

rdtsc $r

clz $r, $v Target-specifc instructions Target equivalent

popcnt $r, $v

mov $r, $reg Read hardware reg

mov or lea
set $reg, $v Write hardware reg

undef.T $r Undefined value nothing

phi.T $r, Blocki, vregi SSA pseudo-instruction Replaced with copies

mov.T $r, value Introduce a constant value Folded into users

Table 1. LLIR Instructions

the shift or rotate amount can be an arbitrary integer as well. Even though functions specify types

for their arguments, which must be consistent with the arg instruction, mismatches are tolerated at

call sites, in accordance with the semantics of C. Memory operations, such as ld, st, xchg, frame,
vararg and alloca, use or define pointers, expecting to operate on an integral type that has equal

bits to the address width of the target.

3.2.2 Instructions. LLIR instructions are closely related to the instructions of the target architecture,

with the exception of some pseudo-instructions that either expand to complex sequences or have

no assembly equivalents. Table 1 summarises them and explains their use and lowering on amd64.
A typical LLIR instruction, such as ld.8.i64, consists of an opcode (ld), a type (i64) and

an optional size (8). Additionally, calls also encode a calling convention. The value defined by

an instruction is referenced through a virtual register, the first in the list. Based on their kind,

instructions accept multiple virtual registers, constants or labels as arguments. The size is used
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by calls to determined the number of fixed arguments (additional arguments are prepared for a

vararg call) and by loads and stores to determine the number of bytes to transfer, extending them or

truncating them to the argument or return type if necessary. LLIR is close to machine code: unlike

LLVM, instead of relying on intrinsics and inline assembly, all relevant instructions from the target

machine are exposed. Even though some hardware instructions are fixed to use specific registers,

all arguments and defined values are referenced through virtual registers, with the code generator

determining the optimal allocation to hardware registers. Certain registers (such as $rsp and $rip
on amd64) and special locations (return address, frame pointer) can be directly retrieved using the

mov pseudo-instruction, since they are required to effectively implement exception handling.

3.2.3 Annotations. Some instructions are tagged with annotations, required to correctly implement

garbage collection. @caml_value is used to identify all virtual registers that refer to heap-allocated

OCaml values, requiring transformations to carefully preserve this annotation when operating on

instructions producing them. The value annotation is used to identify set of heap pointers live out

of call sites annotated with @caml_frame: the OCaml garbage collector requires the return address

to be mapped to a block of metadata indicating the location of the live values, whether in registers

or on the stack. This system of annotations is more flexible than LLVM’s llvm.gcroot intrinsic
since it allows virtual registers storing heap roots to be mapped to physical registers, instead of

forcing them to be spilled to a shadow stack.

Even though annotations are currently limited to OCaml, the system can be extended to other

languages and collectors. If the OCaml runtime were to change fundamentally, introducing a vastly

different collector, the annotation mechanism would have to be adjusted, although such a scenario is

unlikely since we cover the design space that does not require sweeping changes to the ecosystem.
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Fig. 5. Stack Frame Layout

3.2.4 Stack. The hardware stack is used by both C and OCaml, although

only C accesses it explicitly. Figure 5 highlights the downwards-growing

stack layout, typical for the amd64 target, along with LLIR registers

addressing specific locations: $sp and $fp delimit the top of the stack

and the bottom of the frame, respectively. $sp always maps to $rsp,
but the frame pointer is usually omitted if no dynamic adjustments are

present, allowing $fp to be derived from $rsp. The $ret_addr pseudo-

register follows $fp to access the function’s return address. Arithmetic

on these pointers is banned: they can only be used to unwind the stack

while searching for GC roots and to locate a handler and restore a

previous stack frame while throwing an exception. While the stack

layout is transparent to C, the pseudo-registers are vital for the efficient

implementation of garbage collection and exception handling in OCaml.

$rsp can be restored to the same frame as long as it points into the

dynamically growing region, a feature required by C99 variable-length

arrays [ISO/IEC 9899:1999, 1999].While not yet implemented, LLIR could

support push/pop instructions analogous to their amd64 counterparts.
Local stack-allocated objects are specified using the .stack_object

id, size, align directive on each function. The frame.i64 $r, id, offset instruction derives

a pointer into a particular object, relative from $rsp or $rbp. The semantics of local pointers are

inherited from C since their use in OCaml is restricted to allocating storage for exception handlers.

Arithmetic is allowed as long as the pointer is at most 1 byte past the end of the object and pointers

can be arbitrarily tested for equality and compared to null. However, ordering is only defined

for pointers into the same object, as the LLVM backend is allowed to freely reorder them. The

StackSlotColoring pass on Machine IR is allowed to coalesce objects with disjoint live ranges.
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3.2.5 Static Data. The static-data sections describe the raw and type-less initial contents of global

data items from OCaml and C executables using simple labels and directives. LLIR directives are

largely identical to those used in typical assemblers, such as as, allowing the reuse of existing

backends to emit data sections. Besides the standard data, rodata and bss sections, LLIR supports a

caml section used for OCaml objects with permanent lifetime. Objects are built up using directives

specifying a few bytes of data at a time: .byte, .word, .long, .quad and .ascii. In addition,

.align introduces padding to align the following data item to a specific boundary and .space
reserves an arbitrary number of zero-initialised bytes, primarily for use in the .bss section.

.data caml

.align 8

.quad 3072
camlTest__a:

.quad 3

.quad 5

.quad b

.end

Fig. 6. let a = (1, 2, b)

While such a representation for static objects discards almost all

type information from the source languages, it does represent the

common denominator between OCaml and C and captures all the

relevant contents. As an example, Figure 6 shows a typical declaration

from an OCaml object, defined using a header with a tag preceding

a label and all fields following it. The .end delimiter carries useful

information, delimiting the boundaries between objects: according

to the semantics of both C and OCaml, given a pointer into a block,

arithmetic can only derive pointers within the bounds of that block.

The end delimiter is used by points-to analyses and various transformations; unlike existing binary

optimisers, which need to infer this information, our optimiser accurately captures it from source.

Unfortunately, our representation loses fine-grained read-only attributes, since the GC colour bits

in the headers of all OCaml objects, including immutable ones, are modified during collection, so

all objects are placed in a readable and writeable segment. Similarly, the lowering of C loses the

const attribute that might be present on individual fields. This places a burden on the optimiser, as

analyses need to prove whether individual addresses are mutated.

3.2.6 Heap. LLIR does not explicitly represent the heap and it does not enforce any constraints

beyond assuming that the addresses of blocks allocated are aligned to at least an 8-byte boundary

(on amd64). It is the responsibility of individual analyses to understand calls that represent allocation
sites, such as malloc and caml_alloc1. The models employed and the additional assumptions

made by the points-to analyses provided with the framework are detailed in Sections 4.2 and 4.3.

3.3 IR Generation
3.3.1 LLVM. LLIR is emitted from C using a custom backend mapping LLVM IR to LLIR through a

straightforward and well-documented process [Lattner 2020b]. Even though the code generator

targets a new architecture, the clang frontend reuses the headers, builtin methods, ABI and

configuration of the target machine (e.g. amd64), which is the final output of the framework. Unlike

other targets, the LLIR backend skips register allocation, using an infinite number of virtual registers

instead. The final assembly contains information in addition to that emitted for a typical target,

attaching the calling convention, argument types and stack-object layout through directives on each

function. Given that LLIR expects all virtual registers to be defined, the undef pseudo-instruction

is provided to introduce such values, which would be typically omitted on other platforms.

3.3.2 OCaml. The LLIR backend in the optimising ocamlopt compiler maps instructions from the

Linear representation to LLIR instructions, skipping register allocation altogether. While most

instructions involve a simple one-to-many mapping without pattern matching or scheduling, calls

require additional work because of exceptions. If exception handlers are present, LLIR imposes the

use of the invoke and tinvoke instructions. Unlike calls, these variants are basic-block terminators

and require an explicit continuation block and an exception handler to be specified, information

that is not readily available in Linear form. Our backend scans the Linear representation to find
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the exception handler for each call and emit the appropriate invoke instruction where necessary.

As LLIR supports an infinite number of virtual registers, register allocation between the Mach and

Linear stages is skipped: LLIR reuses the unique numbers Mach already assigns to values.

3.4 Optimiser Framework
The post-link optimiser is an executable invoked by the linker that reads an LLIR program expressing

an entire OCaml application and outputs an object file containing optimised machine code. It links

to LLVM, reusing its code generator and several other facilities. The optimiser applies a number of

passes, detailed in Section 4, which are enabled based on the selected optimisation level:

O0 does not enable any passes

O1 enables the bulk of all transformations, enumerated in Section 4.4

O2 in addition to O1, redundant load/store elimination is enabled, described in Section 4.3

O3 in addition to O2, global unreachable-code elimination is enabled, described in Section 4.2

Similarly to LLVM, passes can either apply transformations or perform analyses and expose their

results to downstream passes. An individual pass mutates a program, which contains all data

segments and functions. Functions are split into blocks, consisting of optional phi nodes followed

by multiple instructions and a single terminator, which can be a jump, return, tail call, invoke

or trap instruction. The types representing them implement the graph traits of LLVM, allowing

facilities such as dominator-tree construction and post-order traversals to be reused.

3.5 Machine-Code Generation
LLIR
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MachineLICM
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Fig. 7. LLIR-OPT Pipeline

Duplo currently supports only an amd64 backend. Machine code is gen-

erated from LLIR by first converting instructions to LLVM SelectionDAG
nodes and then passing the resulting Machine IR through the a slightly

modified version of the target-specific backend of LLVM. Even though

LLIR aims to be generic, several instructions (such as clz) and pseudo-

registers (such as $sp) expose details specific to the target hardware:

code can be generated through LLIR for multiple targets, but the IR

for each target must be separately compiled. At the moment, only an

amd64 lowering is implemented. While most of the LLIR instructions

map easily to existing DAG nodes, we extended Machine IR and asso-

ciated passes with an additional instruction, GC_FRAME, to compute the

metadata required by the garbage collector. The GC root mechanism,

including the changes it imposes on the passes highlighted in Figure 7,

could be upstreamed, but the patch exposing the SelectionDAG and

target-specific backends require a fork.

Across each call site, the OCaml garbage collector requires a descriptor

identified through the program counter to describe the set of locations

that are live out of the call and contain heap roots that must be rewritten

after compaction or promotion to the major heap. In LLIR, these values are identified by the

@caml_value annotation on the instructions producing them: while lowering to selection DAG, we

use live-variable analysis to identify those that should be added to the descriptor attached to each

call site [Boissinot et al. 2008; Havlak 1997] and generate a GC_FRAME instruction referencing all the

Machine IR virtual registers to which they are mapped. The register allocator replaces the virtual

registers with the actual physical location where the roots will be stored across a call, either on

the stack in a spill slot or in an architectural register. A custom pass emits the required descriptor

for each pseudo-instruction after all transformations have been applied. The register allocator and
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several passes were modified to respect the semantics of heap pointers and to avoid incorrectly

hoisting, altering or removing instructions operating on them.

By avoiding the use of LLVM IR, our lowering manages to efficiently handle heap roots while

adjusting only a small number of target-specific passes, instead of having to modify every single

high-level LLVM transformation. While we lose out on some high-level optimisations provided

by LLVM, because of the peculiarities of OCaml it is highly unlikely that they would provide

any benefit: the points-to analyses of LLVM are designed to run fast on a C-style memory layout,

sacrificing accuracy, without providing the information required to de-structure OCaml constructs.

Additionally, support for OCaml heap-root semantics would incur extensive changes to numerous

passes, such as Loop Invariant CodeMotion.We chose to re-implement these passes at the LLIR level

instead, in addition to transformations that specifically exploit the new cross-language opportunities.

We alter onlyMachine IR passes, which are less numerous than the LLVM IR ones. The code generator

and the low-level target-specific passes that are reused provide a significant boost to performance

on their own, compared to the amd64 backend of OCaml, as we observe and discuss in Section 5.

Presently, the performance of the LLVM backend is problematic on a very large method,

caml_program, responsible for calling methods initialising other modules. In some of the largest

OCaml applications, caml_program can contain basic blocks of 50,000 instructions, even before

inlining, which is problematic for LLVM passes that run on basic blocks in worse than linear

time. Since this method is generated in Cmm form at link time, Duplo is the first and only tool in

the pipeline to optimise it, exposing the performance bottleneck. This warrants further investi-

gation into the handling of blocks and functions of unusual size in LLVM, as methods of similar

scale could be produced by automatically generated C/C++ code or created by LLVM’s own LTO

implementation.

4 ANALYSES AND TRANSFORMATION
In order to prove the utility and feasibility of transformations at the LLIR level, we implemented

a number of optimisation passes within our post-link optimiser. LLIR transformations have two

goals. First, they transform LLIR to eliminate redundancies in the lowering of OCaml or C that were

introduced either by inefficiencies in the existing compilers or due to the requirements of targeting

LLIR. The pipeline composed of such transformations shapes the intermediate representation into a

form that can be lowered optimally using LLVM’s code generator. Second, the passes exploit global

information exposed in LLIR to apply transformations across the language boundary. While some

improvement is achieved, the purpose of the passes outlined in this paper is to enable efficient code

generation, hence we do not explore problems related to optimal ordering or tuning heuristics.

4.1 Inlining
caml_c_call:
.call caml_ext
.args 0, i64
mov.i64 $0, caml_last_return_address
st.8 [$0], $ret_addr
mov.i64 $1, caml_bottom_of_stack
st.8 [$1], $fp
arg.i64 $2, 0
tcall.i64.c $2

Fig. 8. OCaml-to-C trampoline

While external calls that cannot trigger garbage collection

can be inlined trivially on the common LLIR representation,

calls that allocate memory are executed through a tram-

poline, requiring additional adjustment. The trampoline,

shown in Figure 8 in LLIR form, saves the return address

and the stack pointer. The return address points to the GC

metadata attached to the bottommost frame, indicating the

starting point of the traversal, which identifies and adjusts roots. Besides embedding the callee into

the caller, inlining needs to ensure that the last return address and the bottom of the stack are valid.

The trampoline is not explicitly present in the IR: calls with the c calling convention annotated

with @caml_frame are instead re-routed by the code generator, which also emits the metadata.
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In addition to the annotated heap roots present in LLIR originating from OCaml, the garbage

collector keeps track of additional objects allocated and used in C methods by storing pointers to

them in a linked list rooted at caml_local_roots. An individual node in the list describes a single

frame, tracking incoming arguments and a fixed set of locals. Fortunately, this list is independent of

the stack described through descriptors, allowing annotated roots to coexist with pointers tracked

through caml_local_roots. Our inlining method exploits this: whenever a method is inlined at

a call site annotated with @caml_frame, the annotation is propagated to the relevant calls. The

additional annotations ensure that all heap roots are accounted for across the nested calls, either

through the local root chain or by a newly created descriptor. An inlined call requires the annotation

if it can trigger the garbage collector. To reduce the number of annotations and, implicitly, the

number of calls executed through the trampoline, we identify the set of functions which allocate:

TRAMPOLINE(𝑓 ) =


1, if f allocates or has indirect calls

0, if f is a leaf method∨
𝑐∈callees(𝑓 )

TRAMPOLINE(𝑐)

Since identifying the targets of indirect calls requires a potentially expensive points-to analysis,

for the purpose of inlining we over-approximate and assume that all indirect call sites allocate. The

predicate is then computed by propagating information across the topologically sorted graph of

the strongly connected components in the call graph restricted to C methods [Tarjan 1972].

Figure 9 illustrates a typical C method, which extracts the real component of a complex number

represented using two single-precision floats. The method is inlined into an OCaml call site. Since

the caml_copy_double method invokes the known caml_alloc_small allocation site on its own,

it is flagged as one of the methods that requires a trampoline, thus the @caml_frame annotation
is propagated to it. Any values that would have been live across the call in the original caller

will now be recorded in the frame for the copy method. Additionally, after inlining, the local root

management code is embedded in the caller, redundantly tracking the original argument to the

function. While not yet implemented, a future transformation could identify the set of pointers

reachable through the root chain and annotate them with @caml_value, eliminating the link.

4.2 Unreachable-Code Elimination
A typical C application relies on function pointers and indirect calls sparingly, yet these constructs

are ubiquitous in OCaml programs. Indirect calls pose a problem for unreachable-code elimination:

any function pointer in a data segment can potentially reach a call site, preventing the immediate

removal of functions that are referenced from a data segment. In the context of the OCaml FFI,

data-to-code references are quite common: when a wrapper is created for a C data type, methods

that serialise, deserialise, hash and finalise the object are registered in a global object referenced by

all boxed instances of the type. Since an OCaml program might not use all data types or use all

methods attached to a type, the post-link optimiser is uniquely qualified to remove such unused

callbacks. To achieve this goal, we provide a global unreachable-code elimination pass.

Global unreachable-code elimination removes functions that are never invoked directly, but are

referenced from either code or data by having their addresses taken. If a pointer to such a function

never reaches an indirect call site, it is never executed, thus its body can be eliminated. Even though

a function is never called, its address might be compared for equality. In order to preserve the

behaviour of function-pointer comparisons, the function pointers themselves cannot be replaced

with a null pointer; replacing the body of such a function with a single trap instruction suffices. To
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complex_re: # C method invoked from OCaml
.stack 0, 64, 16
.stack 1, 8, 16
.args 0, i64
.call c
arg.i64 $1, 0
# Setup of local root list
frame.i64 $14, 1, 0
st.8 [$14], $1
# Chain of local roots
mov.i64 $2, caml_local_roots
ld.8.i64 $3, [$2]
frame.i64 $5, 0, 16
st.8 [$5], 1
frame.i64 $8, 0, 8
st.8 [$8], 1
frame.i64 $17, 0, 0
st.8 [$2], $17
st.8 [$17], $3
frame.i64 $10, 0, 24
frame.i64 $20, 1, 0
st.8 [$10], $20
# Actual complex_re implementation
ld.8.f64 $11, [$1]
# Result is wrapped into a double
mov.i64 $12, caml_copy_double
call.i64.c $13, $12, $11
# Unlink C scope from GC chain
st.8 [$2], $3
ret $13

camlTest__entry: # Original Caller
...
mov.i64 $3, complex_re
call.i64.c $99, $3, $1 @caml_frame @caml_value
...
camlTest__entry: # After inlining complex_re
...
.stack 5, 64, 16
.stack 6, 8, 16
...
mov.i64 $3, complex_re
frame.i64 $34, 6, 0
st.8 [$34], $1
mov.i64 $2, caml_local_roots
ld.8.i64 $23, [$2]
frame.i64 $25, 5, 16
st.8 [$25], 1
frame.i64 $28, 5, 8
st.8 [$28], 1
frame.i64 $37, 0, 0
st.8 [$2], $37
st.8 [$37], $23
frame.i64 $30, 5, 24
frame.i64 $40, 1, 0
st.8 [$30], $40
ld.8.f64 $31, [$1]
mov.i64 $32, caml_copy_double
call.i64.c $99, $32, $31 @caml_frame @caml_value
st.8 [$2], $23
...

Fig. 9. Inlining of complex_re, which extracts the real part of a complex number. Red indicates the instruction
that performs all the useful work in the function, while the green registers highlight the inputs and outputs

prove that a function is never indirectly invoked, an Andersen-style point-to analysis [Andersen

1994] is used to identify all the functions in the points-to sets of indirect-call targets.

A typical low-level pointer analysis treats the static data segments as a contiguous chunk of

memory, relying on field-sensitivity to distinguish separate objects and data structures [Guo et al.

2005]. Instead of implementing field-sensitivity or offset-sensitivity, our analysis relies on .end
markers emitted by the backends to delimit individual objects in the data segment and to avoid

the use of a field- or offset-sensitive analysis. In a safe language such as OCaml, deriving a pointer

outside the bounds of an object is illegal, whereas in C a pointer can be derived at most one byte

past the end of the object. Dereferencing negative offsets or addresses beyond the end of the object

results in undefined or illegal behaviour in both C and OCaml. Given a pointer p into an object A
followed by B in memory, whenever an add instruction is encountered tbat offsets p, the semantics

of the source languages ensure that the pointer derived from p does not spill over into B. If object
boundaries were not known, a proof would be required to show that the offset from p does not

exceed the size of A for the pointer derived from p to still be limited to A.
The implementation of the analysis is split into two components: a constraint builder and a

constraint solver [Hardekopf and Lin 2007a]. The constraint builder first inspects the data segments

and builds a set for each object, recording pointers between objects in the sets. The control flow graph

of the program is then traversed starting at external entry points, typically main in an executable.

For each instruction in a function, flow- and context-insensitive subset inclusion constraints are

generated to model the flow of information through registers and memory. The traversal stops at
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indirect-call sites, which are recorded separately. Once all functions are explored and constraints

are recorded, the solver is invoked to propagate information, identifying indirect-call-site targets.

The indirect-call sites are then expanded and the traversal continues with the potential targets and

the process is repeated until the points-to sets of indirect calls converge.

We considered two different solvers, but the current implementation largely follows that of

Hardekopf and Lin [2007a]. The constraint solver builds a graph with set nodes and dereference

nodes: edges between set nodes represent subset inclusion, edges from dereference nodes indicate

reads, while edges into dereference nodes indicate writes. Pointers are propagated along edges

using a work queue and new edges are added when new values are propagated into sets that

are dereferenced. Strongly connected components, which indicate equivalent points-to sets, are

represented using a forest of disjoint trees and are collapsed using lazy cycle detection (LCD)

and hybrid cycle detection (HCD), both implemented using a variation of Tarjan’s algorithm

that discards the frequent components with a single node [Nuutila and Soisalon-Soininen 1993].

Points-to sets are stored in sparse bitsets, which offer a reasonable balance between performance

and memory usage. Despite the 𝑂 (𝑁 4) complexity, the analysis runs in a reasonable amount of

time on a wide range of applications: the order of magnitude is in line with that reported in

other low-level analyses [Guo et al. 2005]. Methods relying on global variable naming (GVN) to

further reduce the size of the graphs were also considered, however the cost of reducing the graphs

outweighed any performance improvements on some benchmarks, since the running time of the

simplification step itself is also 𝑂 (𝑁 4) [Hardekopf and Lin 2007b]. The linear-time Steensgaard’s

method was also considered, replacing inclusion constraints with equality constraints [Steensgaard

1996]. Unfortunately, the results were not accurate enough to remove any function bodies.

4.3 Local Points-To Analysis
C methods return values to OCaml by boxing primitives into heap-allocated objects, so points-to

information at the local level is crucial towards propagating values through memory, allowing

redundant allocations to be removed. Since the global algorithm outlined in Section 4.2 sacrifices

accuracy for performance, we outline another Andersen-style analysis whose scope is limited to

individual functions and exploits the pointer semantics of both OCaml and C in order to enable

field-sensitivity (more accurately, offset-sensitivity at the LLIR level). Table 2 shows the mapping

from LLIR to constraints, including the offset and range predicates, which compute individual

offsets or introduce imprecision by generalising a pointer to an entire object.

Both OCaml and C impose constraints on the alignment of heap-allocated blocks and the

locations where pointers can be stored: both malloc and the OCaml allocator align objects to

the word boundary and pointer values can be written to memory only at word-aligned addresses,

specifically 8 bytes on amd64. OCaml respects this constraint implicitly since blocks are essentially

arrays of 8-byte fields, while in C storing a value to an unaligned location results in undefined

behaviour. These constraints allow heap objects to be modelled as a sequence of 8-byte sets of

pointers: stores of pointers to unaligned locations are discarded. Unlike the global algorithm that

only considers pointers to allocation sites, the local analysis models the offset as well, storing values

to the appropriate field of a block. The model of individual blocks is truncated to 16 fields: this

applies to 0.2% of all allocations that have no size and the 3% that exceed it. Offset computation

by add and sub instructions is illustrated in Figure 11: green indicates known offsets into objects,

while purple represents the set of offsets that exceed the limits of the model.

Some operations result in offsets that cannot be determined, such as phi nodes joining dis-

tinct pointers, requiring loads and stores to be over-approximated, storing to and loading from

all fields. We implement this effectively through a pair of IN and OUT nodes, indicated in red:

stores to an entire object are linked to the IN node, while loads originate from the OUT node.
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Algorithm 1 Constraint solver with offsets

1: procedure SolveConstraints(G)
2: Q← empty()

3: for 𝑛 ∈ G do enqueue(Q, n)
4: while |𝑄 | > 0 do
5: from← dequeue(Q)

6: if d ← deref(s) then
7: for ⟨𝐴, index⟩ ∈ points-to(d) do
8: Connect(d, field(𝐴, index), field(𝐴, index))
9: for ⟨𝐴⟩ ∈ points-to(d) do
10: Connect(d, all-in(d), all-out(d))
11: for to ∈ range-edges(from) do
12: Propagate(Q, to, { ⟨𝐴⟩ | ⟨𝐴⟩ ∈ points-to(from) ∨ ⟨𝐴, i⟩ ∈ points-to(from) } )
13: for to, off ∈ offset-edges(from) do
14: Propagate(Q, to, {offset(𝐴, i, off) | ⟨𝐴, i⟩ ∈ points-to(from) })
15: Propagate(Q, to, { ⟨𝐴⟩ | ⟨𝐴⟩ ∈ points-to(from) })
16: for to ∈ set-edges(from) do
17: Propagate(Q, to, points-to(from))

18: procedure Propagate(Q, to, set)
19: if set ⊈ points-to(to) then
20: points-to(to)← points-to(to) ∪ set

21: enqueue(Q, to)
22: procedure Connect(d, in, out)
23: for 𝑠𝑡𝑜𝑟𝑒 ∈ in-edges(𝑑) do
24: if in ∉ set-edges(store) then
25: set-edges(store)← set-edges(store) ∪ {in}
26: enqueue(Q, store)
27: if out-edges(d) ⊈ set-edges(out) then
28: set-edges(out)← set-edges(out) ∪ out-edges(d)
29: enqueue(Q, out)

⟨E, rest⟩range

Fig. 10. Extern node

Both nodes transitively connect to all fields of the object; besides some

offset calculations, the range function also generates them. The other source

of uncertainty is the external node, shown in Figure 10. This node in the

constraint graph represents information flowing in and out of the function

and outside the scope of the analysis. Due to its link to a self-dereference

node, any escaping pointer is expanded to its transitive closure, consistent

with the conservative assumption that any derived pointer can be altered in an unknown context.

Algorithm 1 solves the constraints by propagating pointers and computing offsets in the corre-

sponding graph and is an extension of the global analysis outlined earlier. Line 12 over-approximates

all pointers in a set and propagates the range pointers, while line 14 applies the offset calculation.

On line 15, over-approximated pointers are forwarded. The expansion of dereferences is handled

on line 8 for known pointers, while line 10 adds edges to the IN and OUT nodes mentioned earlier.

Presently, the use of the results of this analysis is limited to the elimination of redundant stores

and the propagation of values through memory from stores to loads. Due to the simplicity of

inlining heuristics, not enough opportunities are exposed for these optimisations to be broadly

useful, resulting in only a small number of stores being removed in large applications.

4.4 Other Transformations
Our framework implements a number of typical transformations commonly used in compilers

relying on SSA-based intermediate representations, including LLVM. While some transformations

benefit from the global context in which the post-link optimiser operates, the main reason for
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Instruction Constraint Graph

frame.i64 $a, i ⟨F, 𝑖⟩ ∈ 𝑎 ⟨F, i⟩

call.i64 $a, malloc, $s ⟨𝐴, 0⟩ ∈ 𝑎, 𝐴 = new(𝑠) ⟨A, 0⟩

mov.i64
arg.i64

$a, S
$a, i

extern ⊆ 𝑎 ext a

add.i64
sub.i64

$a, $b, n
$a, $b, n

𝑎 = offset(𝑏, 𝑛)
𝑎 = offset(𝑏,−𝑛) b a±n

add.i64 $a, $b, $c 𝑎 = range(𝑏 ∪ 𝑐)
b

c

arange

or.i64
and.i64
select.i64

$a, $b, $c
$a, $b, $c
$a, $cond, $b, $c

𝑎 = 𝑏 ∪ 𝑐
b

c

a

sub.i64 $a, $b, $c 𝑎 = range(𝑏) b arange

ld.8.i64 $a, [$b] ∗𝑏 ⊆ 𝑎 b *b a

st.8 $a, [$b] 𝑎 ⊆ ∗𝑏 b*ba

xchg.i64 $b, $a, [$c] 𝑎 ⊆ ∗𝑐 ∧ ∗𝑐 ⊆ 𝑏

c

*c ba

phi.i64 $a, [BB0, b0], ... 𝑏𝑖 ⊆ 𝑎

b b b

a

...
0 1 n

call
call.i64

f, $𝑎0, ...
$r, f, $𝑎0, ...

𝑎𝑖 ⊆ extern

𝑎𝑖 ⊆ extern ∧ extern ⊆ 𝑟

a a a

ext

...
0 1 n

r

Table 2. Constraint generation

One-Past-End

i

Invalid

i + off = n

i + off > n

0 ≤ i + off < n

i + off < 0

off > 0
off < -n

-n ≤ off < 0

off=0

(a) Object of known size 𝑛

Invalid

i

rest

All Fields

off < 0

off ≥ 0

i + off ≥ s

i + off < 0

0 ≤ i + off < s

(b) Object truncated to 𝑠

IN

0 s rest...

OUT

load from all

store to all

store to element

load from element

store to rest

load from rest

(c) Sets referenced by offset

Fig. 11. Calculation of offset(𝐴, 𝑖, off) and sets referenced through known or unknown offsets
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their presence is to ameliorate inefficiencies present in the OCaml compiler, the LLIR backend or

redundancies introduced when lowering from C, leaving the IR in a form that can be optimally

lowered by LLVM’s target-specific code generator. These passes complement the OCaml compiler

by providing transformations that would be awkward to implement at any existing stage.

Copy Propagation removes redundant copies introduced by the backends when they decon-

struct SSA or assign virtual registers. While the mov instruction can appear anywhere, it is

only relevant when it introduces annotations that are different to the operand’s annotations.

Sparse Conditional Constant Propagation (SCCP) [Wegman and Zadeck 1991] is a typical

pass for SSA-based IRs. Similarly to LLVM, our implementation also propagates relevant

annotations and extends the lattice of values with an undefined value, which is propagated

respecting the semantics of C. SCCP often folds redundant address calculations (replacing

add.i64 $0, ptr, 5 with mov.i64 $0, ptr+5) and simplifies conditional jump conditions.

Dead-Code Elimination is based on reverse dominance frontiers and removes instructions

without side effects that do not produce results that escape the scope of the function through

a store, return instruction or as an argument. This pass eliminates instructions redundantly

emitted from OCaml’s linear IR that could not be easily eliminated otherwise: since LLIR

represents jumps to exception handlers from function calls explicitly through a invoke
instruction, this pass manages to remove redundant exception landing pads.

CFG Simplification alters jump instructions and removes unreachable basic blocks. If the

condition of a jump is known, it is turned into an unconditional jump, allowing the unused

branch to be eliminated. This pass also performs jump threading by following and skipping

sequences of basic blocks containing a single unconditional jump. Along with dead-code

elimination, this pass manages to fully eliminate loops present in certain benchmarks.

Dead-Function Elimination automatically removes functionswith no references, eliminating

a large number of extern functions from C modules, along with a large number of C methods

from OCaml libraries that are never invoked through the FFI. When points-to information is

available, methods that never reach an indirect-call site are also eliminated.

Tail-Recursion Elimination turns tail-recursive methods into iterative loops, enabling our

optimiser and LLVM to improve them. The lowering of loops in OCaml is not particularly

effective, but its optimiser and code generator handle tail recursion well. The opposite is true

of LLVM and our post-link optimiser, which are based on SSA: most optimisation passes

target loops and prologue/epilogue insertion is not optimal on tail-recursive methods. In

addition, transforming tail recursion into a loop aids register allocation, since arguments are

no longer fixed to specific registers at the point of the backwards jump.

Higher-Order Specialisation identifies functions that take an argument and pass it directly

to an indirect-call site, then identify the functions that are mapped to that argument across

the whole program. A specialised version is created for each function, turning the indirect

call into a direct one and allowing the inliner to embed the callee into the call site.

5 EVALUATION AND RESULTS
We evaluated our post-link optimiser on a wide range of executables from the opam reposito-

ries, along with a suite of open-source micro- and macro-benchmarks maintained by the OCaml

community for the purpose of monitoring the performance of the OCaml compiler. We compare

binaries produced by the post-link optimiser (built on LLVM 8) using the four different optimisation

levels (O0, O1, O2, O3) to baselines produced by a slightly modified version of the default amd64
backend of OCaml 4.07.1 (O3 is only included in the discussion of code size since it does not affect

performance). We discuss the impact on performance in Section 5.1, while Section 5.2 shows the
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code-size reduction achieved. Since the number or size of allocations is not altered by the post-link

optimiser in its current form, there is no impact on memory usage to analyse.

We also consider the experimental high-level LTO implementation patched on top of OCaml
3
,

which stacks with our post-link optimiser, enabling comparisons of the amd64 reference backend
and all optimisation levels with and without the transformations applied at the flambda level.

Since LTO mostly performs unreachable-code elimination and we found no statistically relevant

difference in running times, we only report the effect on code size. The experimental LTO patch does

not support shared libraries, thus Section 5.3 reports separately on the performance of the entire

toolchain by benchmarking the build times and execution times of widely used OCaml applications

that rely on them to compile or to run, comparing the reference to optimised toolchains.

In order to establish a fair baseline for comparison, some transformations that are not yet

supported by the post-link optimiser have been disabled in the amd64 OCaml backend:

• %r14 does not cache the exception handler’s address (caml_exception_pointer)
• %r15 does not cache the allocation pointer (caml_young_ptr)
• Basic blocks that are never reached by a fall-through are not aligned

While these transformations could be performed in the post-link optimiser, the present implemen-

tation and evaluation focuses on optimisations that are beneficial at the post-link stage. In addition,

to minimise differences, all variants were adjusted to build the runtime using the same version of

clang and to produce static ELF executables linked to the musl [Felker 2019] standard C library,

excluding any inline assembly from C dependencies.

5.1 Standard Benchmarks
Our first performance evaluation relies on standard tests collected by OCamlPro, operf-micro and
operf-macro 4

, which are commonly used to test the OCaml compiler and its variants [Sivaramakr-

ishnan et al. 2020]. Although there is an overlap between the two sets of benchmarks, we present

them separately in Sections 5.1.1 and 5.1.2 since we execute them using separate harnesses.

We repeated the experiment on two different systems, both running Ubuntu 18.04 on amd64
processors: a server based on a single-socket Intel Xeon W-2195 with 256GB of RAM and a mini

computer equipped with an Intel Pentium Silver J5005. Despite the fact that these two systems only

cover the extremes of amd64 implementations, we do not explicitly report results from mid-range

desktop-grade processors as we found them to perform similarly to Xeons on single-threaded

applications in terms of relative performance. Both microarchitectures are superscalar and out-of-

order, but the server-grade W-2195 is significantly more complex, has more execution units and

issues more instructions compared to the J5005, which also completely lacks an L3 cache.

Unlike the default harnesses provided with the benchmarks and maintained by the OCaml

community, we account for measurement bias. Initially, we noticed that the running time of some

benchmarks was dominated by a single short, hot loop. Manual inspection of the emitted code

revealed that in most cases our backend chose better instructions (movl $n, %eax instead of

movq $n, %rax, for example), but aligned loop entry points to a different offset inside a cache

line. While loop alignment only slightly affected performance on the simpler J5005, we found

measurements reported on the W-2195 to be unreliable. Optimal block layout is outside the scope

of this paper: given that most benchmarks are dominated by such loops and neither OCaml, nor

our backend lays them out based on informed decisions, we view them as opportunities for future

improvement. To discard the effect of loop alignment, we follow a previously proposed mitigation

3
https://github.com/ocaml/ocaml/pull/608

4
https://github.com/OCamlPro/operf-micro, https://github.com/OCamlPro/operf-macro,
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and built ten different versions, disabling all code alignment and randomising the order of the

functions [Mytkowicz et al. 2009]. Outside benchmarks, functions are aligned to a 16-byte boundary.

5.1.1 operf-macro. The operf-macro suite of benchmarks contains 191 individual tests: a mix of

small programs measuring the performance of methods from widely used libraries, including

the OCaml stdlib, along with benchmarks of commonly-used applications executed on typical

inputs, such as the menhir parser generator [Pottier and Régis-Gianas 2016] and js_of_ocaml
compiler [Vouillon and Balat 2014]. The relative running times, reported by the wait4 system call,

are illustrated in Figure 12. Benchmarks were executed sequentially, pinned to a single core while

all others were idle and, whenever possible, inputs were adjusted such that running times were

above 1 second. The speedup reported on the 𝑦 axis is computed by dividing the mean running time

of 50 executions, measuring five runs of each randomised variant. All tests with no statistically

significant difference were excluded, as identified by a Welch t-test with a p-value of 0.01. For
brevity, each column represents the geometric mean of a group of tests: either the same executable

invoked with different parameters or a single program testing different methods in a library.

While the running time of large applications (indicated in bold) and some benchmarks is no-

ticeably improved, by up to 7%, some smaller benchmarks suffer from degraded performance.

Manual inspection of the generated machine code reveals the culprit to be LLVM: even though the

DAG-based instruction selector consistently picks better instructions and finds improved schedules,

the greedy register allocator sometimes fails to find the optimal spill or live-interval split points.

These issues will be fixed over time by tweaking the heuristics used in the LLVM’s greedy register

allocator and implementing more aggressive instruction folding.

The capi benchmark, measuring the overhead of calls fromOCaml to C, satisfies our expectations

and proves the utility of optimising across the language boundary. The short external C methods,

which may or may not allocate on the heap, are effectively inlined into OCaml closures, allowing

further passes to reduce them to constants, sometimes eliminating entire loops, resulting in a

speedup of up to 200% (clamped in the graph) starting at the O1 level.While some closures originating

from OCaml are not yet eliminated in this particular benchmark, six others were folded into

constants and are excluded from the plot as their running time is zero.

Tail-recursion elimination (TRE) is responsible for significant differences between O0 and O1 in

benchmark groups such as big_array and alloc. LLVM’s Machine IR does not handle tail recursion

particularly well, including a costly prologue and epilogue in loops expressed as tail-recursive

functions, a pattern OCaml programs heavily rely on. The amd64 backend treats self-recursive

methods separately, excluding the prologue and epilogue from the loop body. Our TRE achieves the

same effect, turning tail-recursive methods into loops that lower to machine code similar to that

generated by ocamlopt. As an added bonus, since in loop form variables are not pinned to particular

argument registers and loops have a pre-header, the register allocator has more freedom to find a

better assignment and the loop-invariant code-motion pass can hoist redundant computations.

5.1.2 operf-micro. Micro-benchmarks are executed using a simplified version of the core-bench
framework. Unlike macro benchmarks, which rely on wall time, this test harness uses the Time

Stamp Counter (TSC) provided by amd64 processors and measures the running time of a varying

number of iterations, yielding a noisy plot. We use RANSAC on the points correlating iteration

counts with execution times to find the best robust parameters for 𝑡 = 𝑡iter ×𝑛 + 𝑡overhead and use 𝑡iter
as an estimate of the running time of a single iteration. Since the running time of these benchmarks

is by design dominated by a single loop, we apply the mitigation mentioned previously and report

the geometric mean of the ratios computed from ten executables with randomised layout.

Figure 13 reports the geometric mean of the ratios of running times of groups of similar bench-

marks, excluding those that did not report a statistically significant change according to the Welch
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Fig. 14. Code size reduction with -O3

test. In general, our optimiser delivers significant improvements across the board. Given that there

is no relevant difference in performance between the different compiler optimisation levels, and

there are few opportunities for cross-language inlining on these benchmarks, the improvements

can be attributed to better code generation achieved by the LLVM backend. Manual inspection of

the disassembly of the lens test reveals only minor differences in the generated code. Due to the

complexity of the target processor, selection and scheduling sometimes fail, but our benchmarks

still show that on average LLVM outperforms the existing OCaml amd64 backend.

5.2 Code Size
The post-link optimiser reduces the size of the text segment of binaries by 14% to 54%, as indicated

in Figure 14, which shows the ratios of text segment sizes encoded in the ELF headers. Additionally,

Figure 15b plots the mean and the distribution of improvements achieved at each optimisation

level: while on average the unreachable-code elimination pass enabled by -O3 reduces code size by

around 8% on its own, a significant reduction of around 20% is noticeable even at -O0, which only

enables a handful of passes and only minimally exploits the global and cross-language context on

which the optimiser operates. A number of factors contribute to this improvement:

Amelioration of compiler inefficiencies The OCaml compiler often emits unreachable ex-

ception landing pads that are trivially eliminated by the control-flow-graph simplification.

Amelioration of linker deficiencies The dead-function elimination pass trivially removes

C and OCaml symbols that are marked as extern in their modules, but have no actual uses

and cannot be removed by the linker (without -ffunction-sections, at least).
Better instruction selection and register allocation by LLVM Even though the backend

is instructed to optimise for performance, it often manages to choose more compact instruc-

tions, minimises stack spills and reloads, and merges spills and reloads into instructions that

take memory operands. These choices allow for the better use of instruction caches.

The effect of other transformations is not as noticeable. Inlining, enabled at the -O1 level, in its

present form is quite conservative, yet responsible for a minimal increase in code size. -O2 makes

some use of local points-to information by removing a small number of unused load and store

instructions, shrinking binaries by a few hundred bytes.

Figure 15a correlates the original and optimised binary sizes on a logarithmic plot. The binaries

situated on the red dashed 𝑦 = 0.8𝑥 line are those that consistently benefit from the previously

mentioned optimisations, while those underneath are further reduced through unreachable-code

elimination based on points-to analysis. The executables smaller than 400KiB are C programs

included in the OCaml distribution (ocamlyacc, ocamlrun), which are transformed similarly to a

traditional C LTO tool. Since higher-order functions and callbacks are sparsely used in C, points-

to analysis does not provide any benefit on them. On the other hand, applications larger than
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400KiB are effectively minimised using such information, although the effect tapers off as they

grow larger, especially after 2MiB. In its present form, unreachable-code elimination eliminates

an OCaml module if none of its methods are ever indirectly invoked or used as a functor. As

binaries grow larger and use more modules, the more likely it is that at least one function from

each library (especially the standard library) is used. The transformation seems to be most effective

on executables less than 1MiB in size, including ocamlc, ocamllex and cpdf. The ocamlopt.opt
benchmark compares the compiler with the amd64 and the LLIR backends, which differ by a few

KiB. While this does not affect the size comparison, it prevents performance benchmarks. Because

of difficulties with the bootstrapping process of OCaml, a Duplo-optimised compiler targeting

amd64 cannot be built for comparison.

Figure 15b also reports results achieved by LTO on its own and combined with all levels of the

post-link optimiser. While LTO on its own outperforms the optimiser without unreachable-code

elimination enabled, -O3 obtains significantly better results. The largest reduction is achieved by

running both optimisers, although -O3 stacked with LTO does not lead to a significant improvement

over -O2 anymore. The distributions indicate that there is significant overlap between the functions

targeted by unreachable-code elimination provided by -O3 and functions eliminated by LTO, while

other transformations performed by the optimiser, especially those that ameliorate inefficiencies

present in OCaml’s backend, exploit opportunities unavailable on the intermediate representations

of OCaml. -O3 still manages to remove functions that cannot be proven unreachable by flambda.
Enabling LLVM LTO while building the runtime broke the bytecode interpreter during our

attempt, suggesting that extensive changes outside the scope of our project are required. Assuming

LTO was enabled, dead-code elimination would not have been any more effective since functions

can be removed if they have no references from OCaml and such information is available only after

linking the runtime, with the OCaml program relying on it in the linker, at the machine code level.

5.3 OCaml Applications
We also evaluated performance on widely used OCaml applications that require shared libraries to

build or run. Table 3 reports the build times of the projects that provide the executables, the sizes of

their text sections reported by readelf and their running times on the longest-running test from

operf-macro or large examples of our own design.

Build times represent the wall time while the build system was executing 24 jobs in parallel to

better quantify the impact on the critical path, more relevant than total time spent on the CPU. A

comparison at the O3 level is excluded since builds are an order of magnitude slower, as expected

from a global points-to analysis. Projects with few dependencies (ocamlc) suffer less of an impact:
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Tool Reference -O0 -O2
build size exec build size exec build size exec

ocamlc.opt 1m48s 1.97 6.03𝑠 2m28s +37.0% 1.78Mib -9.3% 5.78s -4.1% 2m58s +64.8% 1.92Mib -2.4% 5.60s -7.2%

coqc 1m36s 6.04 6.02𝑠 2m26s +52.1% 5.49Mib -9.0% 5.83s -3.1% 2m53s +80.2% 5.97Mib -1.1% 5.75s -4.5%

coqchk 1m36s 1.60 13.46𝑠 2m26s +52.1% 1.43Mib -10.6% 12.62s -6.3% 2m53s +80.2% 1.60Mib -0.3% 12.34s -8.3%

ccomp 2m48s 1.97 12.68𝑠 3m02s +8.3% 1.68Mib -14.4% 12.54s -1.1% 3m06s +10.7% 1.78Mib -9.4% 12.18s -3.9%

alt-ergo 0m04s 1.49 2.37𝑠 0m14s +250.0% 1.31Mib -12.5% 2.08s -12.1% 0m17s +325.0% 1.42Mib -5.0% 2.06s -13.0%

ocamlformat 0m04s 4.72 12.79𝑠 0m47s +859.2% 4.27Mib -9.5% 12.51s -2.2% 3m57s +4736.7% 5.28Mib +11.8% 12.41s -3.0%

js_of_ocaml 0m04s 2.71 7.92𝑠 0m45s +878.3% 2.45Mib -9.9% 7.30s -7.8% 1m00s +1204.3% 2.61Mib -3.9% 7.16s -9.7%

Table 3. Benchmark of large and widely used OCaml applications, including the build times of the containing
projects text section sizes of individual executables and running times averaged over 10 runs on large inputs,
executed on a desktop-class AMD Ryzen 3900X pinned to 4.1GHz. The independence of the samples was
confirmed by a Welch t-test with 𝑝 = 0.01

since Duplo is a link-time optimiser, it must lower and optimise all functions from libraries when

building an executable, which are otherwise readily available in binary form to a traditional linker.

ocamlformat is an outlier since aggressive inlining produces functions that are large enough to hit

various edge cases in LLVM; such issues can be mitigated.

Performance improvements are consistent, however the code size of ocamlformat is an outliner

since the inliner increases it while improving performance. This application uses base, a standard
library replacement: future work will consider reducing the impact of such duplication.

6 CONCLUSION AND FUTUREWORK
Duplo, the framework we describe in this paper, provides a common representation to enable

post-link optimisations on OCaml applications using the FFI. We evaluated the performance of the

optimiser and the new code generator on a wide range of OCaml applications and benchmarks,

measuring both code size and running time on three modern amd64 processors. While the bulk of

the gains in performance can be attributed to the improved backend, the optimisation passes on

LLIR deliver some improvements on their own. LLIR is a crucial step in the process: by comparing

our post-link optimiser to existing attempts of lowering OCaml through LLVM, we establish that

the use of the improved code generator would not be possible without our intermediate step.

In addition to the initial set of optimisations that yield the reported results, we also highlight

redundant constructs exposed by certain transformations, such as inlining, that are not yet optimised

away. Future iterations of the optimiser will target such redundancies in order to exploit information

in the cross-language context and reduce the FFI overhead. We hope to enable novel use cases,

such as the development of libraries introducing novel data types, especially numerical ones,

implemented over the FFI without incurring an overhead for its use.

The future of the project is focused on understanding interactions between C and OCaml through

the heap in order to further eliminate redundancies imposed by the FFI, exposed by the inliner in

the form of unnecessary boxing and unboxing constructs. The simplification of such constructs

will enable existing transformations to optimise further and reduce the FFI overhead.
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