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Abstract—Barrier primitives provided by standard parallel
programming APIs are the primary means by which applications
implement global synchronisation. Typically these primitives are
fully-committed to synchronisation in the sense that, once a
barrier is entered, synchronisation is the only way out. For
message-passing applications, this raises the question of what
happens when a message arrives at a thread that already resides
in a barrier. Without a satisfactory answer, barriers do not
interact with message-passing in any useful way.

In this paper, we propose a new refutable barrier primitive
that combines with message-passing to form a simple, expressive,
efficient, well-defined API. It has a clear semantics based on
termination detection, and supports the development of both
globally-synchronous and asynchronous parallel applications.

To evaluate the new primitive, we implement it in a prototype
large-scale message-passing machine with 49,152 RISC-V threads
distributed over 48 FPGAs. We show that hardware support for
the primitive leads to a highly-efficient implementation, capable
of synchronisation rates that are an order-of-magnitude higher
than what is achievable in software. Using the primitive, we
implement synchronous and asynchronous versions of a range
of applications, observing that each version can have significant
advantages over the other, depending on the application. There-
fore, a barrier primitive supporting both styles can greatly assist
the development of parallel programs.

I. INTRODUCTION

Message-passing and global synchronisation are powerful
abstractions in parallel computing, especially when used in
combination [1]. Both are supported by MPI, the standard API
for message-passing applications in HPC domains. However,
versions 1 and 2 of the MPI standard do not define any useful
form of interaction between the two. In particular, a thread
entering a synchronisation barrier becomes blocked and unable
to react to further incoming messages. The major drawback of
this approach is that threads must know how many messages
they are going to receive before entering, but in general this is
not easily predictable (without introducing overheads) because
the decision of whether to send or not is made by the sender,
not the receiver. Furthermore, if a thread does enter a barrier
before receiving all the messages destined for it, the system
is likely to deadlock.

To overcome this problem, MPI 3 introduces a new non-
blocking barrier primitive which allows threads to remain
active while present in a barrier. However, this leads to a
complex semantics, as well as a number of limitations:

• Any attempt by a thread to send a message after entering
a non-blocking barrier can lead to a race between the

barrier and the send operation: it is not defined which
will complete first.

• Since a non-blocking barrier cannot be cancelled, a thread
cannot usefully send after entering, without introducing
non-deterministic behaviour. This means there are restric-
tions on the kind of asynchronous computation that can
occur within each synchronous time-step.

• To achieve a useful, deterministic interaction between
message-passing and non-blocking barriers, synchronous
send operations must be used. A synchronous send is one
where the receipt of the message is implicitly acknowl-
edged by the receiver. This allows a message to be sent
by a thread not residing in a barrier to one that is, while
ensuring the message is received before the barrier can
possibly complete. However, synchronous sends are ex-
pensive, requiring a two-way exchange. For fine-grained
parallel applications (consisting of large numbers of small
processes), synchronous sends can increase communica-
tion traffic significantly, harming performance.

Whether blocking or non-blocking, MPI barriers are fully-
committed to synchonisation in the sense that once a barrier
is entered, synchronisation is the only way out. In this paper,
we explore a different path and propose a refutable barrier
primitive with a number of attractive properties: (1) it has
a simple semantics based on termination detection [2]; (2)
it does not introduce race conditions or non-determinism;
(3) it does not depend on the use of costly synchronous
send operations; and (4) it allows an arbitrary asynchronous
computation to occur within each synchronous time-step of a
parallel application. Our contributions are as follows.

• We present a hardware extension to an asynchronous
message-passing machine that detects termination, i.e. the
situation in which every thread has indicated a desire
to terminate and there are no undelivered messages in-
flight. It enables a globally-synchronous execution model
in which a new time step may start every time termination
of the previous time step is detected. It is also useful
in asynchronous applications, to detect convergence. To
our knowledge, custom hardware support for termination
detection has not been explored before.

• We measure the hardware cost and performance of termi-
nation detection in a message-passing machine consisting
of 49,152 RISC-V threads distributed over 48 FPGAs.
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This includes a quantitative comparison of hardware and
software approaches to termination detection.

• We show how our barrier primitive can be exploited
by a high-level vertex-centric software API, generalising
Google’s Pregel model [3] to support development of both
synchronous and asynchronous applications at a high
level of abstraction.

• We run a range of standard vertex-centric benchmarks,
demonstrating the strengths of the approach for fine-
grained parallel applications, such as graph processing
and spiking neural networks, where the cost of sending
additional messages to assist synchronisation can be high.

II. BACKGROUND

Today’s general-purpose processors rely on elaborate hard-
ware features such as superscalar execution and cache co-
herency to automatically infer parallelism and communication
from general workloads. But for inherently-parallel workloads
with explicit communication patterns, which are common in
HPC domains, these costly hardware features become much
less valuable. Instead, processors consisting of larger numbers
of far simpler cores, communicating by message-passing, can
potentially achieve more performance from a single chip, and
scale more easily to large numbers of chips.

This is the hypothesis of the POETS project (Partial Ordered
Event Triggered Systems [4]), which forms the wider context
for the work described in this paper. On the project, we
have constructed a research platform consisting of a 48-FPGA
cluster and a manycore RISC-V overlay called Tinsel [5]
programmed on top. This serves both as a rapid prototyping
environment for computer architecture research and, for certain
applications, a genuine hardware accelerator. For example, in
previous work [5] we have shown the potential for significant
performance improvements over a standard Xeon cluster for
HPC applications written using the vertex-centric program-
ming model popularised by Google’s Pregel [3]. Below, we
outline the design of the research platform, and its asyn-
chronous message-passing primitives, before presenting our
termination-detection extension in the next section.

A. Research platform

The Tinsel overlay has regular structure, consisting of a
scalable grid of tiles connected by a reliable communication
fabric that extends both within each FPGA and throughout
the FPGA cluster. By default, a tile consists of four RV32IMF
cores sharing an FPU, a data cache, and a mailbox:

• The core is heavily multithreaded, supporting 16 hard-
ware threads by default. As a result, it can tolerate sev-
eral cycles of latency, e.g. arising from deeply-pipelined
FPGA floating-point operations, or cache misses that
lead to off-chip memory accesses. Threads are barrel-
scheduled (a context switch is performed on every clock
cycle) so pipeline hazards are easily avoided, leading to
a small, fast design.

• The mailbox contains a memory-mapped scratchpad stor-
ing up to 64KB of incoming and outgoing messages,
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Fig. 1. Default configuration of our overlay on a single DE5-Net FPGA board.
Mailboxes in tiles are connected together using dimension-ordered routers to
form a NoC. Inter-FPGA links are connected to the NoC rim. A separate
network is used to connect caches in tiles to off-chip memories. Each off-chip
RAM component contains a DDR3 controller and two QDRII+ controllers.
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Fig. 2. Our FPGA cluster is composed of multiple boxes (shown in light gray).
Each box contains an x86 server and 7× DE5-Net FPGA boards. One FPGA
board in each box serves as a bridge between the x86 server (PCI Express)
and the FPGA network (10G SFP+). The x86 servers provide command-
and-control facilities, such as data injection and extraction. The full cluster
contains a 2× 4 mesh of boxes, and a 6× 8 mesh of worker FPGAs.

which can also be used as a small general-purpose local
memory. Messages are variable-length, containing up to
four flits, with each flit holding 128 bits of payload. The
mailbox allows threads to trigger transmission of outgo-
ing messages, to allocate space for incoming messages,
and to consume those messages when they arrive, all
via custom RISC-V CSRs (control/status registers). The
mailbox API is outlined in Section II-B.

• The cache is a non-blocking 16-way set-associative write-
back cache that optimises access to the large off-chip
memories available on each FPGA board. It is 128KB in
size and is partitioned by thread id so that cache lines
are not shared between threads. This means there are
no hazards in the cache pipeline, which again leads to
a small, fast design.

• The FPU supports IEEE single-precision floating-point
operations. On the Stratix V FPGAs we are using, these
are expensive in both area and latency, which we mitigate
through sharing and multithreading respectively.

A single-FPGA view of the overlay is depicted in Fig-
ure 1. On the DE5-Net FPGA board, the overlay contains 64
RV32IMF cores (1,024 hardware threads), clocks at 240MHz,
and utilises 67% of the board’s Stratix V logic blocks.



The FPGA cluster comprises a 6 × 8 grid of DE5-Net
boards connected together using 10G reliable links, as shown
in Figure 2. The overlay distributes naturally over this cluster
to yield a 3,072 core system (49,152 hardware threads), where
any thread can send messages to any other thread.

B. Asynchronous message-passing API

Threads send and receive messages using custom RISC-V
CSRs. These raw CSR accesses are abstracted by a very thin
software API, which we outline below.

To send a message residing in the mailbox scratchpad, a
thread first ensures that the network has capacity by calling
bool tinselCanSend();

and if the result is true, the thread can call
void tinselSend(uint32_t dest, void* msg);

where dest is a global thread identifier, and msg is a message-
aligned address in the scratchpad. The message is not guaran-
teed to have left the mailbox until tinselCanSend() returns
true again, at which point data pointed to by msg can safely
be mutated, e.g. by writing a new message.

To receive a message, a thread must first allocate space
in the scratchpad for an incoming message to be stored.
Allocating space can be viewed as transferring ownership of
that space from the software to the hardware. This is done by
a call to
void tinselAlloc(void* msg);

where msg is a message-aligned address in the scratchpad.
Space for multiple messages can be allocated in this way,
creating a receive buffer of the desired size. Now, when a
thread wishes to receive a message it can call
bool tinselCanRecv();

to see if a message is available and, if so, receive it by calling
void* tinselRecv();

which returns a pointer to the received message. Receiving a
message can be viewed as transferring ownership of the space
it occupies from the hardware back to the software.

A key property of this message-passing interface is that it is
non-blocking. This is necessary for asynchronous applications
to avoid deadlock and meet the consumption assumption [6],
i.e. that threads are always willing to receive, and do not block
on a send operation that prevents them from doing so. In
return, the hardware guarantees delivery of all messages sent.

III. HARDWARE TERMINATION-DETECTION

We now extend the hardware with a new refutable barrier
primitive, with a semantics based on termination detection.
This is achieved through the addition of single new custom
RISC-V CSR. As above, the CSR access is abstracted by a
thin API:
uint32_t tinselIdle(bool vote);

When called by a thread, this function blocks until either (1) a
message is available for that thread to receive, or (2) all threads
in the entire system are blocked on a call to tinselIdle and
there are no undelivered messages in the system. The function
returns zero in the former case and non-zero in the latter. A
return value > 1 denotes that all callers voted true. The voting

mechanism is a simple form of aggregation that is useful
for detecting termination in globally-synchronous applications,
e.g. all threads agreeing they are stable since the previous time
step.

In the remainder of this section, we present the imple-
mentation details underpinning the above feature. We start
by looking at a classic termination-detection algorithm, and
then describe how we refine this algorithm to an efficient
hardware implementation. After that, in Section IV, we look
at the influence of this primitive on higher-level APIs.

A. Safra’s algorithm
Safra’s algorithm, as presented by Dijkstra [2], is a classic

solution to the problem of detecting termination in distributed
systems. It considers a set of machines, each of which is either
passive, if it has indicated that it has no further messages
to send, or active, otherwise. A machine in the passive state
automatically transitions to the active state upon receipt of a
message. The algorithm detects the case in which all machines
are passive and there are no undelivered messages.

The basic operation of the algorithm is as follows:
1) Each machine maintains a local count of the number of

messages it has sent minus the number it has received.
2) A termination token containing an accumulator, initially

zero, is passed from machine to machine in a ring pattern.
3) Each machine holds on to the token until it becomes

passive, at which point it adds its local count to the
accumulator in the token and forwards the token to the
next machine in the ring.

4) When the token completes a full iteration of the ring, and
the final accumulator is zero (i.e. all the local counts sum
to zero) then the conditions for termination may be met.

The case in which the final accumulator is zero, but termina-
tion has not occurred, is as follows. Suppose a machine M ,
which has already forwarded the token, receives a message and
transitions to the active state. On its own, this is acceptable
because the final accumulator will exceed zero: M ’s count
has already been sampled before receiving this latest message,
and the sender’s count is still to be sampled. However, the
now-active machine M can send a new message to a machine
that has not yet forwarded the token, meaning that the final
accumulator may well be zero for the opposite reason: M ’s
count has already been sampled before sending this latest
message, and the receiver’s count is yet to be sampled. This
situation is remedied as follows:

5) Each machine, and the token, are initially coloured white.
On receipt of a message, a machine turns black. When a
black machine forwards a token, the token is blackened.

6) Termination is detected when the token completes a full
iteration, and its final accumulator is zero, and its final
colour is white.

This remedy catches the situation in which a machine receives
a message before its count is sampled. When termination is
not detected, a new iteration of the ring is started. Of course, a
new iteration can only succeed if black machines are somehow
whitened again, leading to one final case:



7) When a machine forwards a token, it whitens itself.

B. Choosing the granularity

Safra’s algorithm is a natural fit for our platform, with ma-
chines corresponding to RISC-V threads, and the passive state
corresponding to a thread blocked on a call to tinselIdle.
However, there are two main efficiency concerns when using
the algorithm at such a fine granularity: (1) we have tens of
thousands of threads in our cluster, which is thousands of times
more than the number of FPGAs; and (2) if implemented in
software, the token would incur the latency of passing through
the software stack running on each thread.

Therefore, we implement the termination-detection algo-
rithm in hardware at the granularity of FPGAs rather than
threads, with the aim of achieving greater scalability. To
determine a machine’s message count and passive/active status
at the FPGA level (cumulatively with respect to the individual
threads) we use the following hardware structures.

• Each core outputs a pair of wires: one that is pulsed when
a thread on that core sends a message, and one that is
pulsed when thread on that core receives a message. A
pipelined adder tree reduces these wires to a single signed
number that is added to the FPGA’s message count on
every clock cycle.

• Each core also emits a wire indicating whether all threads
on that core are in a call to tinselIdle. A pipelined con-
junction tree reduces these wires to a single active/passive
wire for the whole FPGA.

These reduction networks are non-blocking and have the same
depth, which means that the states of all the threads are always
sampled at a consistent point in time. If this were not the
case, and the count was sampled at a different time to the
active/passive status, then a token could be forwarded with an
invalid count.

C. Scalable topology

The best-case run-time performance of a single iteration of
Safra’s algorithm is proportional to the number of machines
N multiplied by the inter-machine latency L, i.e. O(L · N).
For efficiency, we exploit parallelism and use a star topology
instead of a ring: a single master sends a token to each
machine in parallel, and each machine forwards its token
directly back to the master, which sums the individual counts
and combines the individual colours accordingly. With all
other aspects remaining the same, the algorithm continues
to function correctly: the order in which the machines are
sampled is not important, and a black token will be produced
by any machine that receives a message before it is sampled.

In our cluster, we use one of the FPGA bridge boards (see
the FPGAs connected to the x86 servers in Figure 2) at the
origin of the FPGA mesh, as the master. In the worst case, a
token from the master will travel along each dimension of the
mesh, to reach the FPGA at the far corner, and return back
again. For an almost-square mesh like ours, this will result in
a best-case run-time of O(4 ·L ·

√
N) for a single iteration of

the algorithm. This could be halved by placing the master in

the centre of the mesh, but for now we have chosen to avoid
putting the master logic on the homogeneous worker FPGAs.

D. Barrier release

Safra’s algorithm is only concerned with a single machine
in the system detecting global termination. To implement the
tinselIdle, all threads need to be notified. Therefore we
introduce an additional phase to the algorithm that is triggered
when termination is detected at the master:

• Once termination is detected, the master sends a “termi-
nation detected“ notification to each FPGA. Each FPGA
releases all its threads from the tinselIdle call (with
each call returning non-zero), and responds to the master
with an acknowledgement.

Unfortunately, this new phase introduces a race: a released
thread can potentially send a message to another thread that
has not yet been released, which would result in the receiving
thread returning zero from tinselIdle. To remedy this, we
disable the sending of messages when releasing the calls to
tinselIdle, and introduce a third and final phase:

• Once the master has received all acknowledgements to the
release phase, it sends a “re-enable sending” notification
to each FPGA. Each FPGA responds to the master with
an acknowledgement.

The end result is a three-phase procedure, where each phase
involves a round-trip from the master to the FPGAs (in
parallel) and back again. The final two phases only come into
play when the first phase successfully detects termination.

IV. HIGH-LEVEL API

Termination detection is a key component of our high-
level API that maps arbitrary task graphs onto the overlay.
Behaviours of vertices in the graph are defined by event
handlers that update the vertex state when a particular event
occurs, e.g. when a message arrives on an incoming edge, or
the network is ready to send a new message, or termination
is detected. It is similar to the vertex-centric paradigm [3, 7],
but supports both synchronous and asynchronous execution.

Using the API, vertex behaviour is defined by inheriting
from the PVertex class:

template <typename S, typename E, typename M>
struct PVertex {
// Vertex state
S* s;
PPin* readyToSend;

// Event handlers
void init();
void send(M* msg);
void recv(M* msg, E* edge);
bool step();
bool finish(M* msg);

};

Fig. 3. Essential structure of a task/vertex. It is parameterised by the task
state type S, the edge weight type E, and the message type M.

Each vertex has access to local state s, and a readyToSend

field whose value is one of:



• No – the vertex doesn’t want to send.
• Pin(p) – the vertex wants to send on pin p.
• HostPin – the vertex wants to send to the host.

A pin is an set of outgoing edges, and sending a message on
a pin means sending a message along all edges in the set. A
vertex can have any number of pins. Vertices should initialise
*readyToSend in the init handler, which runs once for every
vertex when the application starts. After that, the other event
handlers come into play:

• Send handler Any vertex indicating that it wishes to send
will eventually have its send handler called. When called,
the send handler is provided with a message buffer,
to which the outgoing message should be written. The
destination is deduced from the value of *readyToSend

immediately before the send handler is called.
• Receive handler A message arriving at a vertex causes

the recv handler of the vertex to be called with a pointer
to the message and a pointer to the weight associated with
the incoming edge along which the message has arrived.
The edge weight is passed to the recv handler rather than
the send handler because it is associated with a particular
edge, not a pin capturing multiple edges.

• Step handler The step handler is called when termina-
tion is detected, i.e. no vertex in the entire graph wishes to
send, and there are no messages in-flight. The return value
indicates whether or not the vertex wishes to continue
executing. Typically, an asynchronous application will
simply return false, while a synchronous one will do
some compute, perhaps requesting to send again, and
return true to start a new time step.

• Finish handler If the conditions for calling the step

handler are met, but the previous call of the step handler
returned false at every vertex, then the finish handler
is called. At this stage, each vertex may optionally send
a message to the host by writing to the provided buffer
and returning true.

To illustrate the API, Figure 4 shows an asynchronous
solution to the single-source shortest paths problem. Each
vertex maintains an int representing the shortest known path
to it (initially the largest positive integer), and a read-only
bool indicating whether or not it is the source vertex. When
the application starts, only the source vertex requests to send,
but this triggers further iterative sending until the shortest
paths to the all vertices have been determined. Finally, when
termination is detected, each vertex sends its distance back
to the host. In this example, a single pin (pin 0) on each
vertex, holding the set of neighbouring edges for that vertex,
is sufficient to solve the problem.

V. EVALUATION

A. Synthesis results

Figure 5 shows the FPGA synthesis results for our overlay
with and without hardware termination-detection enabled. To
counter natural variations in synthesis quality, we take aver-
ages from 16 separate synthesis runs using Quartus Design

// Vertex state
struct SSSPState {
// Is this the source vertex?
bool isSource;
// The shortest known distance to this vertex
int dist;

};

// Vertex behaviour
struct SSSPVertex : PVertex<SSSPState,int,int> {

void init() {
*readyToSend = s->isSource ? Pin(0) : No;

}
void send(int* msg) {
*msg = s->dist;
*readyToSend = No;

}
void recv(int* dist, int* weight) {
int newDist = *dist + *weight;
if (newDist < s->dist) {

s->dist = newDist;
*readyToSend = Pin(0);

}
}
bool step() { return false; }
bool finish(int* msg) {
*msg = s->dist;
return true;

}
};

Fig. 4. Asynchronous single-source shortest paths using our high-level API.

Before After Difference
Mean area (ALMs) 154,263 155,789 +1,526
Mean area (%) 65.7 66.3 +0.6
Mean Fmax (MHz) 226 (±8) 223 (±14) -3
Best Fmax (MHz) 240 242 +2

Fig. 5. FPGA synthesis results for our overlay before and after enabling
hardware termination-detection. Results were taken from a batch of 16
synthesis runs using Quartus Design Space Explorer.

Space Explorer. The results show that hardware termination-
detection requires only a small amount of logic (0.6% of
the FPGA) and has no significant impact on the maximum
clocking frequency of the design.

B. Round-trip time

The key factor limiting the performance of our termination
detection procedure is the round-trip time. That is, the time
taken for the master to send a token to every FPGA and receive
back all acknowledgements. With the master at the origin of
the FPGA mesh, the longest round-trip time (rtt) is via the
FPGA in the far corner, which we estimate as

rtt = 2 ∗ L ∗ (x+ y − 1)

where L is the inter-FPGA hop latency, and x and y are
the dimensions of the FPGA mesh. We have measured the
single-hop latency L, including the time to pass through our
reliability layer, as 150 cycles at 240MHz, i.e. 625ns.

Figure 6 shows both the estimated and measured round-
trip performance of the hardware for a range of FPGA mesh
sizes. The measured time closely follows the estimated time
(although the estimated time is slightly optimistic in assuming



Fig. 6. Number of round-trips per second achieved using termination detection
in hardware and an asynchronous clock tree in software. A round-trip consists
of a master sending a token to every FPGA (hardware) or thread (software),
and receiving back all acknowledgements.

that all tokens pass over a link simultaneously, rather than one-
at-a-time). The plot shows that the round-trip performance of
hardware termination-detection is 6 – 13 times faster than that
of an asynchronous clock tree implemented in software. As
discussed in Section III-C, the performance of the hardware
could be doubled by placing the master at the centre of the
mesh rather than the origin. The plot includes the predicted
round-trip performance of this potential optimisation.

C. Benchmark applications and graphs

In the remainder of this section we evaluate termination-
detection using benchmark applications written using our high-
level vertex-centric API from Section IV. The five applications
are: PR (page rank) for ranking webpages [8]; SSSP (single-
source shortest paths) for weighted graphs; MSSP (multiple-
source shortest paths) for unweighted graphs; SNN (spiking
neural network) simulation using the Izhikevich model [9]; and
HT (heat transfer) simulation using Newton’s law of cooling.

All of the applications operate on arbitrary input graphs. We
use a geometric random graph generator to produce graphs for
benchmarking purposes. This generator gives us control over
the amount of locality in the graphs, so we can explore the
limits of the communication subsystem. To counter variations
in run-time performance, we generate five versions of each
graph (varying the random seed) and average the results.

We have three separate implementations of each application:
1) A synchronous version, in which each vertex sends at

most one message to each neighbour in each time step.
The beginning of a new time step is determined using
hardware termination detection.

2) An asynchronous version, in which there is no global
synchronisation barrier. For all applications except SSSP,
we use a GALS approach (globally asynchronous, locally
synchronous) whereby each vertex does not proceed to
its next time step until it receives messages for the
current time step from all its neighbours. This means that
each vertex may be at most one time step ahead of any
neighbour, but may be up to n time steps ahead of any

Fig. 7. Speedup of hardware termination-detection (measured) over software
termination-detection (predicted) in the synchronous heat transfer application
applied to a random graphs, and running on the 48-FPGA cluster.

vertex that is n hops away. For the SSSP application,
we use a fully asynchronous approach where a vertex v
sends a distance to its neighbours as soon as a shorter
path to v has been found. Termination detection is used
to determine completion in each asynchronous version.

3) A single-threaded x86 version, running on an Intel i9-
7940X PC. This is only intended as a simple baseline;
here, we do not compare the performance of our research
platform against conventional compute clusters (some
such comparisons can be found in a previous paper [5]).
For the PR application, we reuse the implementation from
the GAP benchmark suite [11]. For the other applications,
we use our own optimised C++ implementations.

All the graphs and application implementations that we use are
available in the data package accompanying this paper [10].

D. Hardware versus software termination-detection

Having measured the round-trip times using both hardware
(rtth) and software (rtts) approaches, we can predict the
performance difference between using hardware and software
termination-detection in an actual application. First, we take
the run-time t of the application using hardware termination-
detection, count the number of times n that termination is
detected, and then subtract 3 × n × rtth from t and add
3×n× rtts (to account for the three phases of our termination
detection procedure).

Figure 7 shows such a comparison for the synchronous
heat transfer application. The benefit of hardware termination-
detection is significant for small graphs but reduces as the
amount of compute per time step increases, either by mapping
more vertices to each thread, or by increasing the fan-out and
hence the number of messages processed by each thread. Vice-
versa, if the amount of compute per time step decreases, for
example by adding more cores, then we would expect the
benefit of hardware termination-detection to increase.

E. Synchronous versus asynchronous execution

Figure 8 compares the runtime performances and message
counts of synchronous and asynchronous implementations



of each application. All applications have been applied to
geometric random graphs containing 6M vertices and 600M
edges. Our main observations from these comparisons are
outlined below.

In PR and HT, vertices exchange messages with their
neighbours unconditionally on each time step. Comparing
the synchronous and asynchronous versions, the number of
messages sent is identical, but the runtime performance of
the asynchronous version is slightly worse. This is because an
additional buffer is required at each vertex to handle messages
from a neighbour that could be one time step ahead.

In MSSP and SNN, vertices do not need to exchange
information on every time-step, e.g. when the set of reaching
vertices does not change (in MSSP), or when a neuron doesn’t
fire (in SNN). The synchronous version exploits this fact to
significantly reduce the number of messages that need to be
sent. The asynchronous version needs to send a far greater
number of messages because it must maintain the invariant
that neighbouring vertices are within one time step of each
other. This is particularly problematic in SNN where neurons
fire relatively rarely, and the directed neural graph must be
augmented with additional zero-weight back-edges to maintain
local synchronisation. This is a key strength of our barrier
primitive: it avoids communication overheads when vertices
interact optionally and dynamically on each time step.

In SSSP, each vertex in the synchronous version blocks
until all vertices that wish to propagate new distances for the
current time step have done so. In the asynchronous version,
vertices can receive and propagate distances immediately,
without blocking, leading to better runtime performance.

F. Worst-case versus average-case complexity

It is worth noting that the worst-case complexity of our
asynchronous SSSP application is exponential. Indeed, if one
assumes that the order of message arrival in the communi-
cation network is arbitrary, then it is possible to exhibit a
graph comprising N identical components and a sequence of
message arrivals such that the k-th component will receive
2k distance updates. However, while the order of message
arrival is not deterministic, it is also not entirely arbitrary:
the closer the two nodes are topologically, the faster is the
expected message delivery time from one to the other. This
makes the average-case complexity of the asynchronous SSSP
running on our platform polynomial.

On the other hand, the worst-case complexity of our syn-
chronous SSSP algorithm is linear in the size of the graph, yet
it has worse runtime performance in the experiments we’ve
conducted so far. This highlights the importance of studying
the statistical properties of asynchronous algorithms, instead
of relying on classic worst-case complexity bounds.

VI. RELATED WORK

SpiNNaker is a million ARM-core machine constructed at
the University of Manchester [12]. It has been a great source
of inspiration for our work. Similar to our overlay, it consists
of a large number of small cores communicating purely by

(a) Performance relative to single-threaded x86 baseline.

(b) Total number of messages sent per time step. This
metric is not applicable for the fully-asynchronous SSSP
application.

Fig. 8. Comparison of runtime performance and number of messages sent
for synchronous and asynchronous implementations of each application.

message-passing. Unlike our overlay, it is designed specifically
for spiking neural network simulation and has no support for
global synchronisation. Instead, SpiNNaker employs a per-
chip real-time clock to advance the millisecond time-step of
the neural simulation. The clocks on each chip are not synchro-
nised and are therefore subject to drift. Furthermore, there is
no guarantee that messages will reach their destinations before
the end of each time step, and no guarantee that messages will
not be dropped if the communication fabric is overwhelmed.
As a result, emergent behaviours from the hardware can affect
the correct operation of software in subtle ways, making it
challenging to reason about the correctness of the simulation.

A number of other architectures consisting of large numbers
of small cores communicating explicitly have been proposed
over the years. Some of the most notable are: RAMP Blue [13]
(which is able to run off-the-shelf parallel applications ex-
pressed in the Unified Parallel C framework), GRVI Pha-
lanx [14] (which packs a remarkable 1,680 RISC-V cores on a
single Xilinx XCVU9P FPGA), and Adapteva Epiphany [15,
16] (which achieves high floating-point performance-per-watt).
The trend in all these architectures is to support the parti-
tioned global address space (PGAS) model of computation,
where cores communicate by performing remote loads and
stores to the memories of other cores. Compared to a pure
message-passing machine, where a message is transferred in a
single phase, PGAS can require multiple phases. For example,



sending an optional message in a synchronous application
could require a request, a response, and then another request
to implement a remote store where the address is specified
dynamically by the receiver (three phase push). Another trend
in these architectures is to provide barrier synchronisation as
the means to support global synchronisation.

MPI (Message Passing Interface) is a standard API for
writing parallel applications, and is supported by a wide range
of architectures including the majority of supercomputers over
the past few decades [17]. Version 3 of the standard introduces
a non-blocking MPI_Ibarrier() function which, combined
with synchronous sends (i.e. two-way send operations with
an implicit acknowledgement), can express a limited form
of termination detection [18]. In particular, it requires that
threads, within a time step, do not decide to send a new
message as a result of receiving a message (non-blocking bar-
riers cannot be cancelled). Therefore, this approach would not
be sufficient to capture our asynchronous SSSP application,
which involves an fully-asynchronous computation occurring
before the barrier. Furthermore, while it would be sufficient
to capture our synchronous SNN application, the overhead of
synchronous sends means that the approach is unlikely to be
as efficient as true termination detection. MPI applications
requiring true termination detection tend to implement ad-
hoc versions of classic algorithms on top of MPI [19, 20].
Hardware support for the blocking MPI_barrier() function
on an FPGA cluster has been explored by Gao [21].

VII. CONCLUSIONS

Message passing and global synchronisation are key con-
cepts in parallel computing. In this paper, we have seen
that termination detection is a powerful way to combine the
two, through our proposed refutable barrier primitive. This
has a number of advantages over standard barrier primitives
provided by mainstream message-passing APIs such as MPI,
with respect to ease-of-use, expressiveness, and efficiency. In
particular, it allows an arbitrary asynchronous computation
to occur within each synchronous time-step, and it avoids
communication overheads that are often needed to assist
synchronisation in applications with dynamically-changing
communication patterns.

We have extended an asynchronous message-passing ma-
chine with hardware support for termination detection, adapt-
ing Safra’s classic algorithm for improved performance on a
multi-chip cluster. This requires very few hardware resources
and offers significant speed-ups in cases where synchronisation
time is the bottleneck (we measured a 6-13x improvement in
synchronisation rate over software, with potential for twice
that). For applications with large parallel slack, i.e. containing
much more parallelism than the physical parallelism available,
sufficient performance may be achievable from a pure software
implementation of termination detection, if synchronisation
is sufficiently infrequent. But such cases will become less
common as machines scale up to ever-larger numbers of cores.

Finally, we have explored some of the trade-offs between
asynchronous and globally-synchronous algorithms running

on a fine-grained message-passing architecture. The results
show that each approach can be more effective than the other,
depending on the workload. Therefore, developers of message-
passing APIs and architectures should consider support for
both – and termination detection is a powerful way to do so.

A. Future work
Aggregators are a useful extension of barriers to support

global communication [3]: values provided by each thread on
entry to a barrier are reduced by an aggregator to a single
value that is distributed to all threads on barrier release. In this
paper, we have only considered a single aggregator for boolean
conjunction. Furthermore, standard barrier primitives often
have a configurable granularity: they can apply globally over
all threads, or locally to a specified group of threads. In future,
it would be desirable to extend our barrier primitive with
support for thread groups and a greater range of aggregators.
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