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Abstract: 44 
Response and resistance to anticancer therapies vary due to inter- and intra-tumor 45 
heterogeneity1. Here, we map differentially enriched G-quadruplex (G4) DNA structure-46 
forming regions (∆G4Rs) in 22 breast cancer patient-derived tumor xenograft (PDTX) models. 47 
∆G4Rs are associated with the promoter of highly amplified and expressed genes, and with 48 
somatic single-nucleotide variants. Specific ∆G4Rs reveal 7 transcription factor (TF) programs 49 
across PDTXs. ∆G4R abundance and locations stratify PDTXs into at least three G4-based 50 
subtypes. ∆G4Rs in most PDTXs (14/22) associated with more than one breast cancer subtype, 51 
which we also call an integrative cluster (IC)2. This suggests the frequent coexistence of 52 
multiple breast cancer states within a PDTX model; the majority displaying aggressive triple-53 
negative IC10. Short-term cultures of PDTX models with increased ∆G4R levels are more 54 
sensitive to small molecules targeting G4 DNA. Thus, G4 landscapes reveal additional IC-55 
related intra-tumor heterogeneity in PDTX biopsies, improving breast cancer stratification and 56 
potentially new treatment strategies. 57 
 58 
Main: 59 
G-quadruplexes are four-stranded secondary structures that can form in certain G-rich DNA 60 
sequences3,4. We previously used in vitro sequencing (G4-seq) to establish where endogenous 61 
G4s could form in the human genome5. Qualitative profiling of endogenous G4 DNA in 62 
chromatin by G4-ChIP-seq revealed prominence of their formation in promoters of highly 63 
expressed cancer genes6–8. Computational predictions of G4s in eukaryotic genomes have 64 
linked G4 motifs to genomic instability9–11, suggesting that G4-selective helicases maintain 65 
genome stability during DNA replication and transcription3,4. Supporting this, we have recently 66 
reported the prevalence of endogenous DNA double-strand breakage (DSB) in G4-seq derived 67 
sequences that are found in nucleosome-depleted regions (NDRs) of highly expressed human 68 
cancer genes12. Fundamental mechanisms including DNA transcription and replication are 69 
endogenous sources for DSBs and genome instability13. Computational predictions of DNA 70 
motifs14 have suggested that human G4s may be associated with pan-cancer somatic copy 71 
number aberrations (CNAs), which we previously confirmed by G4-seq15. CNA landscapes 72 
impact gene expression and shape breast cancer heterogeneity2. Our analysis of 2,000 primary 73 
breast cancers previously revealed 11 different subgroups, called integrative clusters (ICs)16–74 
18. 75 
 76 
To establish how G4 DNA structures may relate to breast cancer biology, we developed and 77 
applied a quantitative, comparative G4-ChIP-seq (qG4-ChIP-seq) methodology to map G4 78 
DNA structure formation in 22 breast cancer PDTX models that retain their original inter- and 79 
intra-tumor heterogeneity17. We adapted the ChIP-Rx approach19 and employed Drosophila 80 
melanogaster chromatin as an internal reference to normalize the ChIP-seq data and reduce 81 
technical variability to enhance the characterization of true biological variation (Fig. 1a and 82 
Methods). Improvement in experimental reproducibility can be evaluated by analyzing the 83 
similarity between four repeated measurements of one PDTX sample vs. four repeated 84 
measurements acquired from a different PDTX sample; either from the same or a different 85 
PDTX model (Fig. 1b-d, Extended Data Fig. 1a). Normalization increased the reproducibility 86 
of our human cancer qG4-ChIP-seq data across technical and biological replicates. We derived 87 
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a coefficient termed improvement factor (IF) whereby IF > 0 indicates increased 88 
reproducibility, whereas IF < 0 signifies decreased reproducibility after normalization (Fig. 1b-89 
d, see Methods). We applied qG4-ChIP-seq to profile the G4 landscape in estrogen receptor-90 
positive (ER+) or triple-negative (ER-, HER2-, PR-) PDTX models representing most 91 
integrative clusters (IC 1, 5, 8, 9 and 10)17. We assessed the reproducibility of qG4-ChIP-seq 92 
by processing different parts of the same tumor on a different day with different reagents, while 93 
keeping the reference chromatin batch constant (Fig. 1d and Supplementary Table 1). 94 
Overall, across all studied PDTX models, qG4-ChIP-seq identified ~26,000 reproducibly 95 
enriched regions of which 97% comprised a G4 sequence motif (Extended Data Fig. 1b). 96 
Comparative qG4-ChIP-seq analysis of 22 PDTX models revealed differentially enriched G4 97 
regions (~700-17,000), hereafter called ∆G4Rs, and constant G4 regions (~100), hereafter 98 
called CG4Rs (see Methods for detailed description). We found that some ∆G4Rs are unique 99 
to a given PDTX (Fig. 1e, f) whilst others are common to more than one PDTX model 100 
(Extended Data Fig. 1c), suggesting that ∆G4R loci may relate to differences in intrinsic 101 
cancer biology. 102 
 103 
To explore whether the ∆G4Rs are coupled to the underlying PDTX biology, we performed a 104 
pairwise comparison of the ∆G4Rs in all PDTX models and stratified them according to their 105 
similarity (Fig. 2a). Without consideration of the annotated PDTX IC or ER status (Extended 106 
Data Fig. 2a), hierarchical clustering of the ∆G4R similarity alone revealed the existence of 107 
three PDTX clusters (Fig. 2a). To explore the relationship between CNAs and ∆G4Rs or 108 
CG4Rs, we determined CNAs in the PDTX models20 by comparing the data from sequenced 109 
input libraries with the corresponding qG4-ChIP-seq data for each PDTX sample (see 110 
Methods). Examination of highly amplified (AMP), amplified (GAIN), neutral (NEUT), 111 
heterozygous deletions (HETD) and homozygous deletions (HOMD) across all PDTX models 112 
revealed a significant enrichment (P < 0.0001, Fig. 2b) of ∆G4Rs, but not CG4Rs, in AMPs 113 
relative to the other CNA categories. ∆G4Rs are also more abundant (P < 0.0001, Extended 114 
Data Fig. 2b) in amplified regions (AMP + GAIN) in comparison to the other CNA categories. 115 
Notably, the number of observed AMPs does not explain the ∆G4R abundance or enrichment 116 
in AMPs since ∆G4R and AMP levels vary independently (Extended Data Fig. 2c). We also 117 
explored a possible connection of G4 structure with the occurrence of single-nucleotide 118 
variants (SNVs); we previously derived SNVs for some of the PDTXs used here17. Notably, 119 
∆G4Rs, but not CG4Rs, are significantly (P < 0.0001) enriched in SNVs of the PDTXs relative 120 
to random permutation, implying a potential role of G4 formation in the formation of breast 121 
cancer point mutations (Fig. 2b). In agreement with our previous observations in cell lines6–122 
8,21, G4 structures in the PDTXs are highly enriched in gene promoters, including 5'UTR 123 
regions (Fig. 2c). We find that in the tumor material derived from PDTXs, ∆G4Rs are also 124 
significantly enriched (P < 0.0001) in promoters of highly expressed genes when compared to 125 
medium and lowly expressed ones (Fig. 2d, for gene expression classification see Methods). 126 
Strikingly, regardless of IC or ER classification, highly expressed promoters show significantly 127 
(P < 0.05) greater qG4-ChIP-seq signal in highly amplified (AMP) CNAs relative to other 128 
promoters (Fig. 2e). Thus, G4 structures are more prevalent in promoters of highly expressed 129 
and amplified genes in a way that cannot be explained by a single IC and/or ER status. To 130 
explore whether ∆G4Rs of a particular PDTX associate with its anticipated IC gene signature, 131 
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we systematically overlapped promoter regions of the 10 different IC gene sets with the 22 132 
different ∆G4Rs. Across all PDTXs, ∆G4Rs associate more (P < 0.001) with the signature gene 133 
promoter of IC10 than with IC1-9 (Extended Data Fig. 2d). These results suggest that the 134 
majority of PDTXs in our cohort display aggressive triple-negative IC10-related breast cancer 135 
gene activity. While the individual ∆G4Rs of the 22 PDTXs generally associate with their 136 
anticipated IC status, most (14/22) models display the existence of multiple or distinct IC-137 
related signature genes (Fig. 2f and Extended Data Fig. 2e). For example, integrative CNA 138 
and expression profiling of ‘+/1/HCI005’ and ‘-/10/VHIO179’ stratifies these PDTXs as IC1 139 
and IC10, yet their ∆G4Rs predominantly associate with at least two different IC-defining 140 
promoter sets that are highly expressed (Fig. 2f). This suggests ∆G4Rs provide additional 141 
information relative to CNA/expression profiling and revealed the coexistence of multiple 142 
cancer states, thus more intra-tumor heterogeneity with respect to ICs for the majority of PDTX 143 
models (Extended Data Fig. 2e). The analysis of 2,000 primary breast tumors revealed 45 144 
common driver regions that are characteristic for CNA-induced gene expression alterations2. 145 
∆G4Rs, but not CG4Rs, associate with the 45 common breast cancer driver regions (Fig. 2g), 146 
highlighting ∆G4Rs as a genomic marker of breast cancer driver regions. 147 
 148 
While pioneering factors such as FOXA1 establish nucleosome-depleted regions (NDRs), TFs 149 
bind to NDRs, thereby mediating transcriptional activity, e.g. through promoter enhancer 150 
interactions22. Importantly, TFs can co-target a particular NDR via interactions with other TFs, 151 
thus they can bind DNA independently of their primary consensus binding motif23. As ∆G4Rs 152 
are prevalent in NDRs6, we hypothesized that any ∆G4R association with TF binding sites 153 
(TFBS) might reveal TFs that differentially regulate breast cancer development in the PDTX 154 
models. To address this hypothesis, we extracted TF binding sites (TFBS) (see Methods) from 155 
breast cancer TF ChIP-seq datasets (ChIP-ATLAS)24 and computed fold-enrichment over 156 
random in the different ∆G4Rs of all the 22 PDTX models (see Methods). Hierarchical 157 
clustering of ∆G4R fold-enrichments in TFBS revealed increased similarity among some 158 
PDTX models (Extended Data Fig. 3a, b), suggesting that some PDTX models share the same 159 
TF activities while others do not. Considering the similarity of ∆G4R fold-enrichments in 160 
TFBS across the 22 PDTX models, we identified 7 distinct TF programs that are differentially 161 
active across the PDTXs (Fig. 3, Extended Data Fig. 3c). Strikingly, ∆G4R – TFBS 162 
enrichments of 4/7 TF programs were significantly higher in either IC10/9, IC8/1, ER-negative 163 
or -positive stratified PDTX models, suggesting that these TF programs are more active in 164 
certain breast cancer subtypes. We found that differential TF expression levels of a TF program 165 
can coincide with the ∆G4R fold-enrichments in TFBS of particular PDTXs. For example, the 166 
TLE3-GATA3 TF cluster is significantly more expressed and enriched for ∆G4Rs in PDTXs 167 
that are ER-positive or IC 8/1 but not ER-negative or IC10/9 (Fig. 3, Extended Data Fig. 3c). 168 
Importantly, all TF programs are expressed (Extended Data Fig. 3c), suggesting that ∆G4R 169 
fold-enrichments in TFBS may infer differential TF activity in cancer tissues. 170 
 171 
To characterize pharmacogenomic correlations and enable strategies for precision medicine, 172 
we established short-term cultures of PDTX-derived tumor cells (PDTC). Importantly, PDTCs 173 
preserve the intra-tumor heterogeneity of the PDTX models17. Our high-throughput drug 174 
screens, deposited in the Breast Cancer PDTX Encyclopedia (BCaPE), revealed substantial 175 
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differences in PDTC response, importantly, even among PDTCs derived from models stratified 176 
into the same integrative cluster (Extended Data Fig. 4a). This suggests the need to consider 177 
additional approaches to decode pharmacogenomic correlations. We previously demonstrated 178 
that human immortalized keratinocytes displayed ~7-fold more G4 regions than normal 179 
keratinocytes by G4-ChIP-seq6 and exhibited a corresponding increase in sensitivity (~7-fold) 180 
to G4-ligand treatment by pyridostatin (PDS)25. This led us to hypothesize that models with 181 
higher ∆G4R levels would respond better to G4-ligand treatment, because they are a 182 
quantitative measure of differences in the number of G4 regions. To explore this, we evaluated 183 
G4 ligand-sensitivity in PDTC derived from models with qG4-ChIP-seq data. We evaluated 184 
two established, yet structurally distinct, small molecules with high G4 DNA selectivity; PDS25 185 
and CX-546126. As a negative control, we synthesized an isomer of PDS (i-PDS) that shows 186 
substantially reduced G4 affinity (Extended Data Fig. 4b, Methods and Supplementary 187 
Data 1). We found that PDTCs with an increased level of ∆G4Rs were significantly (P < 0.05, 188 
r = 0.5-0.8) more sensitive to PDS and CX-5461 but not control i-PDS G4-ligand treatments 189 
(Fig. 4). Since PDTX ∆G4Rs are highly enriched in amplified CNAs, we asked whether CNA 190 
amplification level alone was sufficient to predict G4 sensitivity. Notably, we found that 191 
amplified CNA levels lacked a positive correlation with PDTC responses to all G4-ligands 192 
(Fig. 4, Extended Data Fig. 4c). Taken together, these findings highlight the potential of 193 
∆G4R mapping as a predictive biomarker for G4-ligand therapy26. 194 
 195 
By developing quantitative G4-ChIP-seq, we have obtained G4 DNA maps in chromatin from 196 
patient-derived models, which substantially advances previous qualitative methods using 197 
established cell lines in 2D culture or tissue immunohistochemistry6,27. We have generated G4-198 
DNA maps for 22 PDTX breast cancer models and revealed how they reflect the underlying 199 
breast cancer biology, such as the relationship with TF occupancy and highly expressed driver 200 
genes in amplified CNAs. Our matched integrative analysis of PDTX-derived somatic 201 
mutations, CNAs and SNVs, and endogenous G4 DNA landscapes highlight a link between 202 
cancer genome instability and G4 structure formation. Overall, we discovered that G4 DNA 203 
regions are highly associated to critical drivers of triple-negative breast cancer models and/or 204 
IC9-10 relative to ER+/IC1-8 PDTX models. While strategies are currently under development 205 
to identify cancers that respond to G4 ligand treatment based upon their BRCA1/2 status26,28,29, 206 
our results indicate that G4 profiling alone can identify sensitive cancers, which may or may 207 
not be related to their BRCA status. By integrating PDTX ∆G4Rs with established gene 208 
signatures of 10 different breast cancer subtypes (IC), we discovered that the majority of the 209 
22 PDTX models have G4 patterns that associate with more than one IC, providing an added 210 
layer of intra-tumor heterogeneity. Our interrogation of breast cancer TF ChIP-seq profiles 211 
with the ∆G4Rs has highlighted the existence of at least seven distinct TF programs that are 212 
mostly dominant in either ER+/IC1-8 or triple-negative/IC9-10 breast cancers. This supports 213 
that many TFs, instead of a single, defined TF or TF-complex, co-target and -regulate breast 214 
cancer gene activity. Quantitative profiling of G4 structures adds information to conventional 215 
copy number aberration and expression profiling, potentially increasing resolution up to 216 
~1000-fold (~100-500 bp vs. ~100 kb), hence helping in the identification of specific drivers 217 
within large amplicons. We also provide evidence that ∆G4Rs, in combination with established 218 
knowledge on subtypes, can refine the genomic, transcriptomic and regulatory classification of 219 
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breast cancer. Finally, G4 levels in cancer models are sufficient to predict response to treatment 220 
by small molecules that target G4 DNA structures, highlighting G4s as genomic features with 221 
potential for future diagnostics and therapeutics. 222 
 223 
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 321 
Figure 1 | Quantitative G4-ChIP-seq of PDTX reveals differentially enriched G4 DNA 322 
regions. a, Quantitative G4-ChIP-seq (qG4-ChIP-seq), exemplified with two different PDTX 323 
models (brackets: estrogen receptor status/integrative cluster status/PDTX model name). Blue 324 
and red indicates chromatin isolated from two different PDTX models, which is combined with 325 
D. melanogaster (reference) chromatin (black). b, Normalization strategy: technical and 326 
biological replicates of the same condition (nodes of the same color) get closer in space after 327 
normalization and samples of different PDTX models become more separated in space. c, 328 
Estimation of normalization factors using reference read coverage. To derive normalization 329 
factors, either all (Total recovery) reference sequencing reads are considered or only the ones 330 
in a predefined set of enriched regions (G4 region). Subsequent rescaling of the cumulative 331 
human cancer signal by the normalization factors is done across all experiments (see Methods 332 
section). d, Barplot of the improvement factors (IF) quantifying normalization performance for 333 
all 22 PDTX models considering the reads in the enriched (G4 regions) and all recovered reads 334 
(Total recovery). Improvement factor evaluates the level of increased similarity (positive 335 
values) between technical replicates (black) and biological replicates (grey) (see Methods). e, 336 
Heatmap of human cancer normalized (reference normalized and input subtracted counts per 337 
million) qG4-ChIP-seq data for ∆G4Rs of two PDTX models -/10/AB863M (red) and 338 
+/8/STG143 (blue). f, Example genome browser views showing ∆G4Rs and normalized qG4-339 
ChIP-seq track intensities of four technical replicates qG4-ChIP-seq for two PDTX models 340 
(red -/10/AB863M, blue +/8/STG143). PDTX annotation: estrogen receptor status/integrative 341 
cluster status/PDTX model name. 342 
 343 
Figure 2 | G4 DNA prevalence in the genomic and transcriptomic architecture of PDTX 344 
breast cancer models. a, Heatmap visualizing similarity of ∆G4Rs from 22 different PDTX 345 
models. Hierarchical clustering is shown (Euclidean distance, ward.d2); color intensity and the 346 
size of the circle are proportional to the correlation coefficients. b, Left: Distribution of PDTX 347 
median fold-enrichments for ∆G4Rs and CG4Rs (common or unchanged qG4-ChIP-seq 348 
regions) in copy number aberrations (CNAs) relative to random permutation (n = 10 349 
permutations for each of the 23 independent ∆G4R and CG4R maps); AMP = highly amplified 350 
regions, GAIN = amplified, NEUT = unchanged or neutral regions, HETD = heterozygous 351 
deletions, HOMD = homozygous deletions. Right: Distribution of ∆G4R and CG4R 352 
enrichments for single-nucleotide variants (SNVs) within the PDTX samples relative to 353 
random permutation (n = 10 permutations for each of the 16 independent ∆G4R and CG4R 354 
maps). Significances were calculated using a t test (Mann-Whitney) **** P < 0.0001 (exact, 355 
two-tailed). c, Genome annotation of ~26,000 PDTX G4-ChIP-seq regions. Black bars: 356 
proportion of G4 regions in particular genomic annotation, red bars: fold-enrichment over 357 
random (n = 5 permutations) genomic regions. Data are presented as mean values ± SD. d, Y-358 
axis: high (blue), medium (red) and low (black) expressed genes. X-axis: For each PDTX, 359 
percentage of ∆G4Rs in the expressed promoters. Brackets indicate significant differences of 360 
∆G4Rs spanning promoters of different expression levels. N = 20 PDTX ∆G4Rs were 361 
associated with n = 20 PDTX promoter expression levels. Significant differences were 362 
calculated using a Tukey multiple comparison test **** P < 0.0001 (adjusted P value). e, 363 
Distribution of the integral of ∆G4R signal intensities (median of cpm) in high, medium or low 364 
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expressed gene promoters (± 1 kb TSS) that are in AMP, GAIN, NEUT or HETD regions. N 365 
= 22 PDTX ∆G4R ChIP intensities measured in n = 22 PDTX promoter expression levels in 366 
the different CNA categories. Significances were calculated using a t test (Mann-Whitney) ** 367 
P < 0.01, * P < 0.05 (P values are exact, two-tailed). f, Scatter plots of four individual PDTX. 368 
Y-axis: Overlap of gene promoters (%) for distinct gene signatures of the 10 different 369 
integrative clusters2 with ∆G4Rs. X-axis: the significance of the overlap relative to chance 370 
(Fisher). The expected IC classification for each PDTX model is highlighted in red. g, Fold-371 
enrichment over random (bar plot) of ∆G4Rs or CG4Rs in 45 common breast cancer driver 372 
regions2 relative to chance. Significance (color code): empirical P value (exact, two-tailed) 373 
obtained with 1,000 randomizations. Red dashed line indicates threshold of fold-enrichment 374 
over random. Box plot elements: center line, median; box limits, lower and upper quartiles; 375 
whiskers, lowest and highest value. 376 
 377 
Figure 3 | G4 DNA regions reveal the activity of distinct transcription factor programs. 378 
Transcription factor correlation matrix heatmap (134 × 134). obtained by starting from the 379 
matrix of fold-enrichments over random of 22 ∆G4Rs at 134 breast cancer ChIP-seq 380 
transcription factor binding regions (TFBS) from ChIP-ATLAS database. Hierarchical 381 
clustering (ward.d2) of the correlations identifies TF sub-groups with similar correlation values 382 
across the 22 PDTX models; TF subgroups are highlighted by dashed line. Color intensity and 383 
the size of the circle are proportional to the correlation coefficients. Name of each TF subgroup 384 
relates to first and last TF within each subgroup. For each subgroup, there are boxplots of 385 
∆G4R/TFBS fold-enrichments (blue) and of TF expression levels (TPM, red) stratified by 386 
various classifications of the PDTX models (ER+, ER-, membership to IC8/1, membership to 387 
IC10/9). N = 22 PDTX models were used to derive 22 ∆G4R maps and ChIP-ATLAS fold-388 
enrichment values. Significances illustrated in box plots were calculated using the Mann-389 
Whitney test **** P < 0.0001, ** P < 0.01, * P < 0.05 (exact P values, two-tailed). Box plot 390 
elements: center line, median; box limits, lower and upper quartiles; whiskers, lowest and 391 
highest value. 392 

 393 
Figure 4 | G4 DNA levels predict response to G4-ligands. Scatterplots of ∆G4Rs (left-top, 394 
left-bottom, right-top) or highly amplified regions (AMP, right-bottom) levels (x-axis) against 395 
PDTC response (Area under the curve; AUC, y-axis) of PDTC models to G4-ligands with 396 
enhanced (PDS, CX-5461) and reduced (i-PDS) G4 affinities, see also Methods. Error bars 397 
reflect mean, upper and lower limit AUCs. N = 9 PDTC samples. Additionally, N = 3 PDTC 398 
samples were independently investigated. Spearman correlation (r) and significance (exact 399 
two-tailed P value for nonparametric correlation) are shown. 400 
 401 
Methods: 402 
Quantitative G4-ChIP-seq (qG4-ChIP-seq). 403 
G4-ChIP-seq was performed as previously described7 with the following adaptions for PDTX 404 
tissue. Briefly, D. melanogaster S2 cells were cultured in Schneider's Drosophila Medium 405 
(Thermo Fisher Scientific, cat no. R69007) containing 10% fetal bovine serum (FBS) Medium 406 
(Thermo Fisher Scientific, cat no. 10500064). To prepare spike-in Drosophila chromatin, 100 407 
million cells were i) harvested by centrifugation, ii) fixed for 10 min in a solution of media 408 
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containing 10 % FBS, 1% formaldehyde (Thermo Fisher Scientific, cat no. 28908) and iii) 409 
quenched for 5 min by addition of 125 mM glycine (Fisher Scientific, cat no. 11545005). The 410 
cell pellet was washed with 10 ml PBS, pelleted by centrifugation and subsequently stored on 411 
ice for the lysis procedure. The 2-step chromatin lysis procedure was performed according to 412 
the Chromatrap procedure ("Spin column ChIP kit for qPCR v6.4"). 500 µl intact chromatin 413 
was sonicated into 100-500 bp fragments using a Bioruptor Plus (Diagenode cat. no. 414 
B02010003 with cooling) at 4°C. Sonicated chromatin was diluted with 1.5 ml lysis buffer 415 
(Chromatrap cat no. 100005) before snap-freezing as 25 µl aliquots. PDTX chromatin was 416 
prepared essentially as described in Schmidt et al. (Methods 2009)30. Briefly, a snap-frozen 417 
PDTX biopsy, ~1 cm3, was transferred into a 50 ml falcon tube, on dry-ice, and crushed into 418 
smaller chunks on dry-ice using a scalpel followed by fixation for 20 min in 30 ml solution A, 419 
containing 1% formaldehyde, and then quenched for 5 min by adding 125 mM glycine. The 420 
supernatant of the pelleted tissue was discarded, and the pellet washed twice with 10 ml ice-421 
cold PBS before resuspending in 1 ml PBS and transferred to a 1 ml glass Douncer (Fisher 422 
scientific, cat no. 11591295). 10 strokes were employed for each douncing step with a loose 423 
and then tight pestle, and the remaining tissue slurry was transferred to a 15 ml tube, 424 
centrifuged for 5 min at 2,500×g and subjected to lysis according to Schmidt et al.30. Briefly, 425 
after the 10 ml LB2 treatment and nuclei pelleting step, the pellet was resuspended in 500 µl 426 
LB3 and LB3-chromatin solution split into two Bioruptor TBX (Diagenode, cat no. 427 
C30010010-300) sonication tubes. The samples were sonicated until the desired fragment 428 
length (100-500 bp) was achieved. Finally, 50 µl of a 10% Triton X-100 LB3 solution was 429 
mixed with the sonicated solution and aliquoted into 50 µl aliquots before snap-freezing in 430 
liquid nitrogen. 5 μl of PDTX chromatin was quantified by Qubit using the "broad range kit" 431 
(Thermo Fisher Scientific, cat. no. Q32853). In each qG4-ChIP-seq reaction, 225 ng of PDTX 432 
chromatin, 102 ng of spike-in Drosophila chromatin and 2% RNaseA (Invitrogen, cat. no. 433 
AM2271) in blocking buffer (25 mM HEPES, pH 7.5, 10.5 mM NaCl, 110 mM KCl, 1 mM 434 
MgCl2 and 1% BSA (Merck, cat. no. A7030) in Milli-Q water were mixed and incubated at 435 
37°C for 30 min at 800 rpm. All PDTX chromatin batches containing a different concentration 436 
than 30 ng/μl were balanced to the same level, either by dilution with LB3 containing 1% 437 
Triton X-100 or by up-scaling the ChIP reaction. For PDTX chromatin with a concentration of 438 
30 ng/μl, 7.5 μl of the PDTX chromatin was added to a solution containing 270 μl blocking 439 
buffer including 2% RNase A and 7.5 μl spike-in Drosophila chromatin. After RNaseA 440 
treatment, 15 μl of 2 µM BG4, prepared as described previously31, was added to each qG4-441 
ChIP-seq reaction and the reaction mixture shaken at 1,400 rpm at 16°C for 1 hour. Meanwhile, 442 
65 μl of anti-FLAG magnetic beads (Sigma-Aldrich, cat. no. M8823) were washed three times 443 
with 650 μl of blocking buffer and resuspended in 1,300 μl blocking buffer. The pre-washed 444 
beads were incubated at 16°C at 1,400 rpm and 300 μl of pre-washed beads added to the 445 
reaction mixture after BG4 incubation. The reaction mixture with beads was incubated at 16°C 446 
for 1 hour at 1,400 rpm. Then, the beads were washed four times in 400 μl cold wash buffer 447 
(100 mM KCl, 0.1% Tween 20 and 10 mM Tris, pH 7.4 in Milli-Q water) in the cold room and 448 
twice at 37°C for 15 min at 1,400 rpm, followed by one cold wash on magnetic stand. The 449 
enriched chromatin on beads was resuspended in 75 μl TE buffer and 1 μl Proteinase K 450 
(Invitrogen, cat. no. AM2546) added. 6 μl Proteinase K was added to input sample which refers 451 
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to a qG4-ChIP-seq reaction mixture without BG4 and beads. The reaction mixture was 452 
incubated at 65°C for 3 hours at 1,400 rpm and purified using QIAGEN MinElute Kit 453 
(QIAGEN, cat. no. 28206). 454 
 455 
Library preparation and sequencing. For 40 μl library preparation reaction, 3-5 ng of the ChIP 456 
or input DNA (Qubit high sensitivity kit, Thermo Fisher Scientific, cat. no. Q32854), 20 μl 2× 457 
tagmentation buffer (Illumina, cat. no. 15027866), 1.25 μl Tn5 enzyme (Illumina, cat no. 458 
18027865) and nuclease-free water was incubated at 37°C for 20 min at 800 rpm. The reaction 459 
mixture was purified using QIAGEN MinElute Kit (QIAGEN, cat. no. 28206) according to the 460 
manufacturer’s instruction and eluted in 20 μl EB buffer. To amplify the library, 20 μl of the 461 
DNA was then mixed with 25 μl NEB Next High Fidelity 2× PCR Master Mix (New England 462 
Biolabs, cat. no. N0541S), 2.5 μl Nextera index kit i5 primer (Illumina, cat. no. 15055290) and 463 
2.5 μl Nextera index kit i7 primer (Illumina, cat. no. 15055290). The PCR program was as 464 
follows: 72°C for 5 minutes, 98°C for 30 seconds, followed by 8 cycles of 98°C for 10 seconds, 465 
63°C for 30 seconds and 72°C for 1 minute. Libraries were quantified using a Bioanalyzer 466 
(Agilent) to estimate the average library size and concentration determined via Qubit HS. The 467 
library concentration was corrected for the library size using the following relationship: 1 ng/µl 468 
= 3nM = 500 bp. Samples were subjected to single-end sequencing with a read length of 75 bp 469 
on an Illumina NextSeq instrument. 470 

 471 
Mapping, peak calling and peak processing. Fastq files were trimmed from adapters using 472 
cutadapt (options: -q 20 -O 3 http://dx.doi.org/10.14806/ej.17.1.200, ver: 1.16) and aligned32 473 
to a combined genome consisting of hg19 (Homo sapiens), dm6 (D. melanogaster) and mm10 474 
(Mus musculus) with bwa-mem (ver. 0.7.17-r1188). Bam files were generated from the 475 
alignment with samtools view (options: -Sb -F2308 -q 10, ver: 1.8) and subsequently split by 476 
organisms to obtain 3 bam files for each sample. Duplicated reads were marked and removed 477 
using picard MarkDuplicates (ver: 2.20.3). For all organisms, the total sequencing coverage 478 
(total recovery) was quantified as the total number of unique reads aligning to the respective 479 
genome. Standard peak calling was performed for each sample using MACS2 (ver. 2.1.2) with 480 
default options. For each human PDTX model, peak regions were considered positive if 481 
confirmed in 2 out of 4 technical replicates (multi2) with bedtools v2.27.1 multiinter (see 482 
Supplementary Table 2). All human confirmed G4-ChIP-seq peak files (multi2) of the 22 483 
models were merged (bedtools merge) and regions more than 99 bp long retained to generate 484 
a single G4 DNA consensus of 26,103 G4 regions. Finally, the coverage of the samples was 485 
quantified using a consensus human set (bedtools coverage). 486 
 487 
Reference normalization factor estimation and human ChIP signal normalization. For each 488 
PDTX biopsy, four technical qG4-ChIP experiments were performed and sequenced alongside 489 
one input chromatin (control), see also Life Sciences Reporting Summary. In each experiment, 490 
a similar amount of reference (D. melanogaster) chromatin from the same batch was added. 491 
To estimate PDTX normalization factors, reference coverage was determined at a pre-defined 492 
consensus consisting of 1,367 intervals (see Supplementary Data 2). The reference consensus 493 
set was defined from, and covers, G4-enriched regions observed in more than 110 pull-down 494 



 12 

experiments. The normalization factor of each ChIP sample has been defined as the ratio 495 
between the maximum observed coverage (across all ChIP samples) and the individual sample 496 
coverage. Note that only ChIP experiments were used for this step (i.e. inputs are excluded and 497 
forced to 1). In turn, the outcome of the normalization approaches were tested using either the 498 
total recovery or the recovery at the G4 reference consensus regions. The normalization factors 499 
were then exported and used as input for a customized R script performing the normalization 500 
of the human signal. For each G4-ChIP-seq experiment, human signal (i.e. read coverage 501 
within human G4 consensus) was quantified by performing input subtraction and normalization 502 
with their respective reference reads and human library sizes. To assess if the normalization 503 
step has globally improved the experimental reproducibility, a quantitative parameter, the 504 
Improvement Factor IF, was devised that measures both the increase (i.e. improvement) in data 505 
similarity between experiments corresponding to the same technical and biological samples 506 
and the increase dissimilarity between different samples. Specifically, the improvement factor 507 
of each biological sample has been estimated as: 508 
 509 

 510 
 511 

 512 
Where: 513 

o N: ChIP  samples 514 
o : Euclidean similarity matrix computed on input 515 

subtracted, library size adjusted, drosophila normalized data and rescaled to its 516 
maximum value;  517 

o : Euclidean similarity matrix computed on input 518 
subtracted, library size adjusted data and rescaled to its maximum value;  519 

o : similarity values among samples belonging to the same technical or 520 
biological group; 521 

o : similarity values among samples not belonging to the same 522 
technical or biological group; 523 

 524 
135 individual samples (ChIP + Input) were processed from 22 different PDTX models. Some 525 
PDTX models have more than one biological sample (Supplementary Table 1). 526 
 527 
Guidelines to normalize G4-ChIP-seq data. During the optimization of the normalization 528 
procedure, we identified some general empirical criteria that can guide in deciding whether the 529 
reference (D. melanogaster) G4-ChIP-seq data can be used to normalize the human G4-ChIP-530 
seq data, and whether it reduces technical noise and therefore has a beneficial outcome for the 531 
reproducibility of the replicated experiments. 532 

1. Sequencing depth of the reference data per G4-ChIP-seq library should be around 5 M 533 
reads (after alignment and duplicate removal). 534 
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2. The number of detected peaks in the reference data of the 4 G4-ChIP-seq replicates 535 
(merge of confirmed peaks) should be in the range of several hundreds - 1,000. If no 536 
peaks are detected, it is not reliable to use the reference signal for normalization 537 
purposes. 538 

3. The fraction of reads in the consensus reference peaks should exceed 0.5% of the total, 539 
ideally 1%. Consensus reference peaks are high-confidence regions that were 540 
consistently detected across many experiments (> 100) and are provided with this study. 541 

4. Each G4-ChIP-seq library must have a fraction of reads at the consensus reference 542 
peaks at least 2x greater than the respective input library. 543 

5. Technical and biological IF (average) should be positive, which indicates that 544 
reference normalization has improved the experimental reproducibility of the human 545 
G4-ChIP-seq replicates.  546 

 547 
∆G4Rs and CG4Rs. After the normalization step, differential G4-binding analysis was 548 
employed to identify differentially enriched G4 regions (∆G4Rs), as described6,7. Both 549 
normalization and differential analysis are integrated into our workflow (see 550 
https://github.com/sblab-bioinformatics/qG4-ChIP-seq-of-breast-cancer-PDTX/).  551 
Differential G4-binding was carried out with edgeR33. Initially, library size and Drosophila-552 
normalized (human) read coverage within human G4 consensus regions were computed. Then, 553 
a generalized linear model with default parameters (negative binomial log-linear distribution 554 
of read counts) were used to assess regions with differential binding signal.  555 
Specifically, the differential binding analysis compared each PDTX model to all the others. 556 
For each comparison, differential DNA G4 regions ∆G4R (i.e., regions specifically present in 557 
a given PDTX model) were defined as those satisfying the following criteria: log2(CPM) ³ 0.6 558 
and FDR < 0.05. Constant G4 regions CG4Rs were defined as those that did not show any 559 
significant differential binding in any model i.e. regions that did not pass the filter in any of the 560 
individual comparisons.  561 
 562 
PDTX gene expression data. Gene expression profiling of the individual PDTX models, except 563 
for STG316 for which part of the primary, patient-derived, tumor was used, was acquired via 564 
RNA-seq. For the AB863M model, a PDTX and a primary tumor sample were separately 565 
processed to generate RNA-seq data. Normalized TPMs have been quantified as explained in 566 
Georgopoulou & Callari et al., in preparation (EGA accession: EGAS00001001913) in all 567 
PDTX models except for PAR1006, PAR1022. For each model, expressed genes were 568 
stratified in 3 groups: high-, medium- and low-expression if they were belonging to the top, 569 
middle or bottom expression tertile, respectively. 570 
 571 
∆G4R PDTX stratification. Similarity across all the 22 PDTX ∆G4Rs was estimated using 572 
bedtools jaccard. Jaccard indexes of all pairwise comparisons resulted into a 22 × 22 matrix 573 
that have been explored with the Shiny-based web application 574 
https://asntech.shinyapps.io/intervene34. After loading the data, a pairwise intersection 575 
heatmap has been generated with the following settings: plot type: corrplot; correlation 576 
coefficient: Spearman; Agglomerative method: ward.d2; N. of cluster:3; distance matrix 577 
computation: Euclidean. 578 
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 579 
Somatic copy number aberration regions identification. Copy number segmentation was 580 
performed using the R package QDNAseq20,35 on input (genomic background of qG4-ChIP-581 
seq) BAM files sub-set to 5 million reads. A customized R script binned the genome into 100-582 
kb windows, extracted the read-counts (binReadCounts), applied the QDNAseq filters, 583 
calculated (estimateCorrection), applied GC correction (correctBins), and then normalized and 584 
smoothed outliers. Finally, the copy-number profile of each PDTX model was segmented and 585 
exported. The copy number alterations regions were classified according to the following 586 
filtering criteria:  587 

o highly amplified regions AMP: log2(fold ratio)  > 0.75; 588 
o amplified regions GAIN : 0.25 < log2(fold ratio)  £ 0.75;  589 
o neutral regions NEUT : -0.3 < log2(fold ratio)  £ 0.25  590 
o heterozygous deletions HETD: -1.4 < log2(fold ratio)  £ -0.3 591 
o homozygous deletions HOMD: log2(fold ratio)  £ -1.4. 592 

 593 
∆G4R and CG4R enrichment in CNA regions relative to random. The fold-enrichment of 594 
∆G4R and CG4R was empirically estimated over randomly permutated genomic regions. First 595 
∆G4Rs and CG4Rs were 10 times randomly shuffled across the genome (bedtools shuffle); 596 
then the number of PDTX ∆G4Rs and CG4Rs overlapping each of the CNA type was counted 597 
in the actual case and in the randomized case. For all CNA types in each PDTX model, the 598 
fold-enrichments were estimated as the ratio of the actual case over each of the ten random 599 
cases, see Supplementary Table 3. The distribution of all PDTX models’ median fold-600 
enrichments were then visualized in all individual CNA regions as a combined boxplot (Fig. 601 
2b).  602 
 603 
∆G4R and CG4R enrichment for single nucleotide variants SNV relative to random. As in 604 
the case of CNA, the fold-enrichment of SNV at ∆G4R and CG4R was empirically estimated. 605 
After 5 random shufflings of the ∆G4R across the genome, we computed the fold-enrichment 606 
as the actual number of overlaps of G4 regions with SNVs over the average random case (i.e. 607 
average of number of overlaps obtained in each randomization) (see Supplementary Table 608 
4). For all PDTX models, the analysis was conducted by comparing the model specific ∆G4R 609 
and SNVs maps. CG4Rs were compared to all PDTX SNV individually. 610 
  611 
Genomic and G4-motif annotation and enrichment analysis of PDTX qG4-ChIP-seq peaks. 612 
PAVIS36 was used to annotate 26,103 PDTX G4 human consensus regions. Fold-enrichment 613 
analysis was performed as described6. The consensus peaks were randomly shuffled across the 614 
genome 5 times. Fold-enrichments were computed as the ratio between the fraction of overlaps 615 
with each genomic feature in the actual case versus the corresponding average random 616 
fractions. G4 motifs were predicted and the presence in the PDTX G4 human consensus regions 617 
measured as previously reported6. 618 
 619 
Promoter - ∆G4R - gene expression. Promoter transcription start site (TSS) coordinates, 1 kb 620 
(±) from TSS, were generated for 22,483 genes using hg196 621 
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https://www.gencodegenes.org/human/release_19.html. The fraction of ∆G4Rs overlapping 622 
high-, medium-, low-expression gene promoters was estimated. Significance was tested using 623 
the Tukey multiple comparisons test (GaphPad Prism7). 624 
 625 
Promoter - G4 intensity - Gene expression - CNA analysis. For this, the human G4 drosophila-626 
normalized intensity at ∆G4R overlapping promoters was considered. The distribution of this 627 
signal was visualized after stratifying promoter by CNA alteration (promoters overlapping to: 628 
AMP, GAIN, NEUT, HETD) and gene-expression groups (promoters belonging to: High-, 629 
Med.- Low- expression group). 630 
 631 
∆G4R and CG4R - Association to upregulated genes from integrative cluster signature IC. 632 
Promoter coordinates of differentially upregulated genes (Adjusted P value < 0.05; log2(fold-633 
change) > 0.6) of each integrative cluster IC1-102 were extracted. For each PDTX model the 634 
association of ∆G4Rs and CG4Rs to upregulated promoters was quantified by computing the 635 
corresponding P value (-log10 P value) from the fisher test (intervene pairwise option fisher). 636 
For high significant associations, resulting in P values of 0, -log10 P value was set to 300. In 637 
addition, the fraction of the IC promoters having a ∆G4R overlapping was estimated (intervene 638 
pairwise option fraction). Fractions were transformed into percentage overlap and visualized 639 
together with P values as scatter plots (Fig. 2f, Extended Data Fig. 2e).  640 
 641 
∆G4R and CG4R – Association to 45 common driver regions. The genomic coordinates of 45 642 
common breast cancer driver regions were taken from Curtis et al.2 and lifted to hg19 (UCSC 643 
liftover tool) for assessment of the fold-enrichments of each PDTX ∆G4Rs and CG4Rs at those 644 
genomic locations using the Genomic Association Tester (GAT, 645 
https://gat.readthedocs.io/en/latest/contents.html). 646 
 647 
Transcription factor binding site (TFBS) - ∆G4R enrichment analysis. The genomic fold-648 
enrichment of each ∆G4R over transcription factors binding profiles from breast cancer, and 649 
breast immortalized cells, was determined using the ChIP-ATLAS enrichment web tool 650 
(https://chip-atlas.org/enrichment_analysis ,with the following parameters: Antigen class: TFs 651 
and others; Cell type Class: Breast; Threshold for Significance: 500; Select your data: 652 
individual ∆G4R in bed format; Select permutation to be compared: 100 random permutations). 653 
22 result tables were obtained with each containing 12 tab-separated columns from which the 654 
following parameters selected: #2 Antigen name, #9 LogPvalue; #11 FoldEnrichment (FE). 655 
Rows were excluded where FE was “Inf”. Selected enrichments with LogPvalue < -3 for each 656 
“antigen name” were averaged by their fold enrichments to give a table with 2 columns: 657 
“antigen name” and “relative averaged fold-enrichment”. The 22 tables were then entered into 658 
a FE matrix with 134 TFs on the rows (where a TF has a FE value in at least 1/22 cases) and 659 
22 columns representing FE in each of the 22 PDTX models. Next, we computed (a) the 660 
Spearman correlation of FE matrix 134 x 134 to assess the similarity between TF FE and (b) 661 
the Spearman correlation on the transposed FE matrix (22 × 22) to assess the similarity between 662 
PDTXs. The correlation matrix (a) for TF was additionally analyzed via hierarchical clustering 663 
(ward.d2). Seven subgroups of TFs were identified. For each subgroup of TF, boxplots were 664 
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generated for fold-enrichments and TF expression levels stratified by IC classification and/or 665 
ER status of the PDTX models (ER+, ER-, membership to IC8/, membership to IC10/9). 666 
 667 
PDTX prepared into cell suspension (PDTC) and high throughput G4-ligand screen. PDTCs 668 
were prepared from cryopreserved xenograft fragments using a Tumour Dissociation Kit 669 
(MACS Miltenyi Biotec, cat no. 130-095-929) following the protocol for tough tumors. PDTCs 670 
were filtered through a 40 µm strainer and washed by centrifugation with complete growth 671 
media: RPMI-1640, supplemented with serum-free B27, EGF (20 ng/ml), FGF (20 ng/ml), 672 
Penicillin-Streptomycin (50 U/ml) and Gentamicin (5 µg/ml). Cells were plated to 673 
approximately 1.5 million cells/ml in 384-well plates. PDTCs were cultured for 24 hours and 674 
the PDTC compound screen was performed as described by Bruna et al.17. 9 different PDTX 675 
models (AB521M, HCI005, HCI009, STG139M, STG143, STG201, STG316, STG331, 676 
VHIO098) were treated with different concentrations of 3 different small molecules (i-PDS, 677 
PDS, CX-5461) for 14 days. 3 technical replicates were performed, and 3 models were 678 
analyzed within an independent screen. i-PDS and PDS were employed at 10, 3, 1, 0.3, 0.1, 679 
0.03 and 0.01 µM. Due to solubility, CX-5461 treatments were 100x lower in comparison to i-680 
PDS/PDS. Cell viability was assessed at day 0 and after 14 days of G4-ligand treatment using 681 
CellTiter-Glo 3D (Promega, cat no. G968). To correlate G4 ligand PDTC response with qG4-682 
ChIP-seq signatures, area under the curves (AUC) were extracted from PDTC G4-ligand dose-683 
response curves, fitted using isotonic regression, and scattered against ∆G4R/CNA or 684 
CG4R/CNA signatures. 685 
 686 
Fluorescence quench equilibrium dissociation binding assay for PDS and i-PDS. The assay 687 
was performed as reported elsewhere37. The chemical synthesis of i-PDS is described in the 688 
supplementary information (Supplementary Data 1). Cy5-labelled oligonucleotides were 689 
analyzed as previously described37 (see Supplementary Table 5). 690 
 691 
Animal experiments and human research participants. 692 
The research was done with the appropriate approval by the National Research Ethics Service, 693 
Cambridgeshire 2 REC (REC reference number: 08/H0308/178), which were all obtained 694 
under the appropriate Institutional Review Boards and transferred to Cambridge under 695 
Materials Transfer Agreements. All animal experiments were conducted in compliance with 696 
the rigorous Home Office framework of regulations (Project License 707679). Full names of 697 
the ethics committee: Revd. Dr. Derek Fraser, Mrs. Beth Midgley, Mr. Adam Garretty. The 698 
mouse strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ was used as PDTX avatar. Sex of mice: 699 
female. Age of mice: 3 month. Housing conditions for mice: 21 °C, Humidity: 55% ± 10%, 700 
light/dark cycle 12 h on, 12 h off. All patients were women with breast cancer. Patients were 701 
recruited by the Cambridge Cancer Centre. The covariate-relevant population characteristics 702 
of the breast cancer patients from the Cambridge Cancer Center (e.g. age, genotypic 703 
information) are reported in Supplementary Table 1. 704 
 705 
Data Availability 706 
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The qG4-ChIP-seq data reported in this paper are available at GEO (NCBI repository), 707 
accession number GSE152216. Gene expression (RNA-seq) data of the PDTX models are 708 
available at the European Genome-Phenome Archive, accession number EGAS00001001913. 709 
 710 
Code availability 711 
Sample sheets describing the detailed experimental design are available at 712 
https://github.com/sblab-bioinformatics/qG4-ChIP-seq-of-breast-cancer-PDTX/. Details of 713 
data analysis have been deposited at https://github.com/sblab-bioinformatics/qG4-ChIP-seq-714 
of-breast-cancer-PDTX/. An overview of all software tools for the processing of sequencing 715 
data is available (see Supplementary Table 6). 716 
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