Supplementary Information

The receptor PTPRU is a redox sensitive pseudophosphatase

Iain M. Hay, Gareth W. Fearnley, Pablo Rios, Maja Köhn, Hayley J. Sharpe and Janet E. Deane

Supplement contains 10 supplementary figures, 3 supplementary tables and supplementary references.

Family	PTP	pTyr-loop	WPD-loop	PTP-loop
R1	PTPRC	677-686 <mark>N</mark> Q N <mark>K N R Y</mark> V D	I 816-824 FTSWPDHGV	850-861 VVHCSAGVGRTG
R2B	PTPRM	923-932 <mark>N</mark> RM <mark>KNRY</mark> GN	I 1058-1066 FTGWPDHGV	1092-1103 VVHCSAGAGRTG
	PTPRK	911-920 <mark>N</mark> RA <mark>KNRY</mark> GN	I 1052-1060 FTGWPDHGV	1086-1097 VVHCSAGAGRTG
	PTPRT	912-921 <mark>N</mark> RN <u>KN</u> RYGN	I 1047-1055 FTSWPDHGV	1081-1092 V <mark>VHCSAGA</mark> GRTG
I	PTPRU	913-922 <u>K</u> VK <mark>GSRQ</mark> EP	M 1048-1056 FTA <mark>WPE</mark> HGV	1082-1093 V <mark>IHCSAG</mark> TGRTG
	PTPRF	1375-1384 <mark>N</mark> KP <mark>KNRY</mark> AN	V 1511-1519 FMA <mark>WPDHG</mark> V	1545-1556 VVHCSAGVGRTG
R2A	PTPRS	1416-1425 <mark>N</mark> KP <mark>KNRY</mark> AN	V 1552-1560 F T A WP D HG V	1586-1597 VVHCSAGVGRTG
	PTPRD	1380-1389 <mark>N</mark> KP <mark>KNRY</mark> AN	V 1516-1524 FTA <mark>WPDHG</mark> V	1550-1561 VVHCSAGVGRTG
R4	PTPRA	265-274 <mark>N</mark> KE <mark>KNRY</mark> VN	I 405-413 FTSWPDFGV	439-450 VVHCSAGVGRTG
	PTPRE	159-168 <mark>N</mark> RE <mark>KNRY</mark> PN	I 298-306 FTSWPDFGV	332-343 VVHCSAGVGRTG
R5	PTPRG	874-883 <mark>N</mark> KH <mark>KNRY</mark> I N	I 1023-1031 Y T Q WP D M G V	1057-1068 LVHCSAGVGRTG
	PTPRZ	1750-1759 <mark>N</mark> KH <mark>KNRY</mark> I N	I 1896-1904 Y T Q WP D M G V	1930-1941 VVHCSAGVGRTG
	PTPRB	1727-1736 <mark>N</mark> RG <mark>KNRY</mark> NN	I 1865-1873 Y T V WP D HG V	1901-1912 <mark>VVHCSAG</mark> VGRTG
R3	PTPRJ	1065-1074 <mark>N</mark> RG <mark>KNRY</mark> NN	V 1200-1208 FTS <mark>WPDHG</mark> V	1236-1247 L VHCSAG VGRTG
	PTPRH	844-853 <mark>N</mark> NA <mark>KNRY</mark> RN	V 981-989 YQA <mark>WPDHG</mark> V	1017-1028 I <mark>VHCSAG</mark> VGRTG
	PTPRO	962-971 NRCKNRYTN	I 1097-1105 YTAWPDHGV	1133-1144 <mark> HCSAG</mark> V <mark>GRTG</mark>
	PTPRQ	2060-2069 <mark>N</mark> RA <mark>KNRF</mark> PN	I 2196-2204 FTAWPEHGV	2230-2241 IVHCSAGVGRTG
R7	PTPRR	415-424 HGT <mark>KNRY</mark> KT	I 549-557 YTSWPDHKT	585-596 VVHCSAGIGRTG
	PTN5	322-331 L V R <mark>K N R Y</mark> K T	I 456-464 FTSWPDQKT	493-504 IVHCSAGIGRTG
R8	PTPRN	734-743 <mark>N</mark> I K <mark>KNR</mark> HPD	F 872-880 FLS <mark>WP</mark> AEGT	906-917 IVHCSDGAGRTG
	PTPRN2	770-779 <mark>N</mark> VP <mark>KNR</mark> SLA	V 908-916 FLS <mark>WYD</mark> RGV	942-953 IVHCSDGAGRSG
NT1	PTN1	40-49 <mark>N</mark> KNR <mark>NRY</mark> RD	V 176-184 YTT <mark>WPD</mark> FGV	212-223 VVHCSAGIGRSG
	PTN2	42-51 NRNRNRY RD	V 177-185 YTTWPDFGV	213-224 VIHCSAGIGRSG
NT2	PTN6	270-279 <mark>N</mark> KG <mark>KNRY</mark> KN	I 414-422 YLSWPDHGV	450-461 IVHCSAGIGRTG
	PTN11	273-282 <mark>N</mark> KN <mark>KNRY</mark> KN	I 424-432 F RT WPDHGV	460-471 VVHCSAGIGRTG
NT3	PTN9	327-336 <mark>N</mark> LE <mark>KNRY</mark> GD	V 465-473 FLSWPDYGV	512-523 VVHCSAG IGRTG
	PTN18	56-65 <mark>N</mark> VR <mark>KNRY</mark> KD	V 192-200 YMSWPDRGV	226-237 CVHCSAGCGRTG
NT4	PTN12	58-67 <mark>N</mark> VK <mark>KNRY</mark> KD	I 194-202 YVNWPDHDV	228-239 CI <mark>HCSAG</mark> CGRTG
I	PTN22	54-63 <mark>N</mark> I K <mark>KNRY</mark> KD	I 190-198 YKNWPDHDV	224-235 CIHCSAGCGRTG
NT5	PTN3	670-679 <mark>N</mark> LD <mark>KNRY</mark> KD	V 806-814 YVAWPDHGV	839-850 LVHCSAGIGRTG
	PTN4	679-688 <mark>N</mark> IS <mark>KNRY</mark> RD	I 815-823 Y I AWP D HG V	849-860 VVHCSAGIGRTG
NT6	PTN21	921-930 <mark>N</mark> AER <mark>NR</mark> FQD	V 1062-1070 Y T DWPEHGC	1105-1116 LVHCSAGVGRTG
	PTN14	933-942 <mark>N</mark> AE <u>RS<mark>RI</mark>RE</u>	V 1074-1082 YTD <mark>WPDHG</mark> C	: 1118-1129 VVHCSAGVGRTG
NT7	PTN13	2237-2246 NRR <mark>KNRY</mark> KN	I 2373-2381 FTAWPDHDT	2405-2416 THCSAGIGRSG
NT8	PTN23	1217-1226 YSLKNRHQD	V 1352-1360 FPTWPELGL	1389-1400 I <mark>VHCSSG</mark> VGRTG
NT9	PTN20	183-192 <mark>N</mark> RE <mark>KNRY</mark> RD	I 318-326 FTKWPDHGT	350-361 VVHCSAG IGRTG
	PTN7	<i>119-12</i> 8 HAS <mark>K</mark> D <mark>RY</mark> KT	I 252-260 F S A WP D HQ T	288-299 VVHCSAG IGRTG

Supplementary Fig. 1. Multiple sequence alignment of the pTyr recognition loop, WPD loop and PTP loop of the 37 classical PTPs, coloured by percentage identity (blue). Key variable residues in PTPRU are highlighted in red.

PTPRU D1 domain:

PIPRO DI domain.		pTvr recognition loop	
		p ry recognition top	
PTPRU_HUMAN/871-1153	871	HPAVRVADLLQHINQMKTAEGYGFKQEYESFF <mark>E</mark> GWDATKKKDKVKGSRQEPMPAY <mark>DRHRVKLHPMLGDPNADYI</mark>	944
PTPRU_MOUSE/871-1153	871	HPAVRVADLLQHINQMKTAEGYGFKQEYESFF <mark>E</mark> GWDATKKKDKLKG <mark>GRQEPVSAY</mark> DRHHVKLHPML <u>ADPDADYI</u>	944
PTPRU_DOG/871-1153	871	HPAVRVADLLQHINQMKTAEGYGFKQEYESFF <mark>E</mark> GWDATKKKDKVKGSRQEPTPAYDRHRVKLPPMMGGPDADYI	944
PTPRU_CHICK/860-1141	860	HPAVRVADLLQHINQMKTAEGYGFKQEYESFFEGWDASKKKDKTKG - RQDHVSTYDRHRVKLHPLLGDPNSDYI	932
PTPRU_FISH/870-1151	870	HPAVRVADLLQHINQMKTAEGYGFKQEYESFFDGWDINKKKDKTKG - RHDTLMGYDRHRVKLHPLLGDPNSDYI	942
-		*	
PTPRU_HUMAN/871-1153	945	NANYIDGYHRSNHFIATQGPKPEMVYDFWRMVWQEHCSSIVMITKLVEVGRVKCSRYWPEDSDTYGDIKIMLVK 1	1018
PTPRU_MOUSE/871-1153	945	SANY I DGYHRSNHF I ATQGPKPEM I YDFWRMVWQEQCAS I VM I TKL VEVGRVKCSRYWPEDSDMYGD I K I TL VK 1	1018
PTPRU DOG/871-1153	945	NANY I DGYHRSNHFI A TQGPK PEMVY DFWRMVWQEHCSSI VM I TKL VEVGRVKCSRYWPEDSEMYGD I QITL VK 1	1018
 PTPRU_CHICK/860-1141	933	NANYIDGYHRSNHFIATQGPKQEMVYDFWRMVWQEHCSSIVMITKLVEVGRVKCSKYWPDDSEMYGDIKITLVK 1	1006
	943	NANY I DGY HRSNHFI A TOGPKO E TVY DEWRMY WOENCES I VM I TKLVEVGRVKCCKY WP DESEMYGD I KI TLLK 1	1016
		WPD loop PTP loop	
PTPRU HUMAN/871-1153	1019	TETLAEYVVRTFALERRGYSARHEVRQFHFTAWPEHGVPYHATGLLAFIRRVKASTPPDAGPIVIHCSAGTGRT	1092
PTPRU_MOUSE/871-1153	1019	TETLAEYVVRTFALERRGYSARHEVROFHFTAWPEHGVPYHATGLLAFIRRVKASTPPDAGPIVIHCSAGTGRT	1092
	1019	TETLAEYVVRTFALERRGYSARHEVROFHFTAWPEHGVPYHATGLLAFIRRVKASTPPDAGPVVIHCSAGTGRT 1	1092
PTPRU_CHICK/860-1141	1007	SEM LA EYAVRT FALERRGY SARHEVKOFH FT SWPEHGV PYHATGL LA FIRRVKAST PPDAGPIVIHCSAGTGRT	1080
PTPRU_FISH/870-1151	1017	TETLAEYTVRTFALERRGYSAKHEVCOFHETSWPEHGVPYHATGLLAFIRRVKTSTPLDAGPVVVHCSVGAGRT	1090
		Q loop	
PTPRU HUMAN/871-1153	1093	GCYIVLDVMLDMAECEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCGETTIP 1153	
PTPRU_MOUSE/871-1153	1093	GCY I VL DVML DMAECEGVVD I YNCYKTL CSRRV <mark>NM I OTEEOY I F</mark> I HDA I LEACL CGETT I P. 1153	
PTPRU DOG/871-1153	1093	GCY I VI DVML DMAECEGVVD I VNCVKTL CSRRVNM I OTEEOY I FLHDA I LEACL CGETT LP. 1153	
PTPRU_CHICK/860-1141	1081	GCY LVL DVML DMAECEGVVD LYNCVKTL CSRR INM IOTEEOY IELHDALL EACL CGETSLP 1151	
DTDD11 EISU/870_1151	1001		
FIFRO_1131/070-1131	1091	SOTT VED WILL DWALE COVERT NOVATE CONTACT E COTTE THE AT LEAST COULD BE AT F 1141	

Supplementary Fig. 2. Multiple sequence alignment of PTPRU-D1 sequences from human (*Homo sapiens*), mouse (*Mus musculus*), dog (*Canis familiaris*), chicken (*Gallus gallus*) and zebrafish (*Danio rerio*). Sequences are coloured by percentage identity (blue). Key PTP motifs are labelled and boxed in red. The "backdoor" cysteine (C998) which upon oxidation forms an intramolecular disulphide with the catalytic C1085 of the PTP loop is highlighted (*).

Supplementary Fig. 3. Replicate of immunoprecipitation (IP) and pNPP assays of FLAG-tagged PTP intracellular domains (ICD). a Immunoblot analysis of FLAG IPs from HEK-293T cells transiently transfected with PTPRK and PTPRU WT and CS inactivating mutant ICDs. b Time course of pNPP dephosphorylation by FLAG IPs from (a).

Supplementary Fig. 4. The PTPRU-D1 domain shows no activity against diverse substrates. a Activity of PTPRU-D1, PTPRK-D1 and PTPRK-D2 domains incubated with 100 μ M of either pSer or pThr amino acids, measured using BIOMOL Green reagent. Note: the activity levels detected here are very low compared to that of a validated enzyme-substrate reaction (compare to Y axis of panel d). The equivalent activity of the PTPRK D1 and D2 domains suggests this level of activity is non-specific. **b** Phosphatidylinositol (PI) phosphatase activity assay. Phosphatidylinositol 4-phosphate [PI(4)P] and phosphatidyl 4,5-bisphosphate [PI(4,5)P2] substrates were incubated with either 3 μ M PTPRU-D1 or 6 μ M PRL-3 (positive control for PI phosphatase activity)¹ and product formation monitored by measurement of absorbance at 360 nm. **c** Chemical structure of the phosphoramidate-linked substrate imidodiphosphate (PNP). **d** Activity of PTPRU and PTPRK D1 domains incubated with 100 μ M of either pTyr peptide or PNP, measured using BIOMOL Green reagent.

Supplementary Fig. 5. Sequence alignments of PTPRU catalytic motifs with relevant PTPs. a Multiple sequence alignment of the PTPRU-D1 WPD loop with those of the receptor PTP D2 domains, coloured by percentage identity (blue). The non-canonical glutamate of the PTPRU-D1 WPD-loop is marked by an arrowhead. **b** Multiple sequence alignment of the R2B family pTyr recognition loops coloured by percentage identity (blue). Residues 904-925 of PTPRU, which are disordered in the structure, are highlighted by a dashed line.

Supplementary Fig. 6. Conformational changes of the PTP and adjacent loops. a T1089 within the PTP loop is stabilised in a novel conformation via hydrogen bonding to the backbone of R1091, capping the end of the α -helix. Hydrogen bonds are illustrated by a dotted yellow line. For clarity only specific mainchain and sidechain atoms are shown to help illustrate relevant bonds and interactions. b Electron density ($2F_0$ - F_c contoured at 0.8 e⁻/Å³, green) for the novel PTPRU-D1 PTP loop (H1084-R1091, blue sticks) conformation shown in (**a**). **c** In PTPRU, the loop C1121-M1127 adjacent to the PTP loop adopts a conformation that differs from classical PTPs due to re-orientation of M1127. This loop is not well ordered and was challenging to build in a single conformation suggesting it may adopt multiple conformations. The dotted inset box identifies the equivalent region as illustrated in Fig. 2d in the main text. **d** In PTPRK, the equivalent loop R1119-M1125 is stabilised via hydrogen bonding between the R1119 sidechain and backbone carboxyl groups of M1125 and V1126. As for panel (**c**), the dotted inset box identifies the equivalent Fig. 2d.

	¥
PTPRU_ <i>HUMAN</i> /1118-1128	KTL <mark>C</mark> SR <mark>R</mark> VN <mark>M</mark> I
PTPRK_HUMAN/1115-1125	KAL <mark>R</mark> SR <mark>R</mark> INMV
PTPRM_HUMAN/1128-1138	REL <mark>R</mark> SR <mark>R</mark> VN <mark>MV</mark>
PTPRT_HUMAN/1117-1127	REL <mark>R</mark> A <mark>QR</mark> VNL <mark>V</mark>
PTPRC_HUMAN/886-896	VKL <mark>R</mark> RQRCLMV
PTPRF_HUMAN/1581-1591	T C M <mark>R</mark> S Q R N Y M V
PTPRS_HUMAN/1622-1632	TLM <mark>R</mark> SQRNYMV
<i>PTPRD_HUMAN/1586-1596</i>	T L M <mark>R</mark> A Q R N Y M V
PTPRA_HUMAN/475-485	SRI <mark>R</mark> AQRCQMV
PTPRE_HUMAN/368-378	SRI <mark>R</mark> NQRPQMV
PTPRG_HUMAN/1093-1103	KHI <mark>R</mark> T <mark>QR</mark> NYL <mark>V</mark>
PTPRZ_HUMAN/1966-1976	KHI <mark>R</mark> S <mark>QR</mark> NYL <mark>V</mark>
PTPRB_HUMAN/1937-1947	HDL <mark>R</mark> LH <mark>R</mark> VH <mark>MV</mark>
PTPRJ_HUMAN/1272-1282	Y D L <mark>R</mark> MH <mark>R</mark> P L M V
PTPRH_HUMAN/1053-1063	RKM <mark>R</mark> ES <mark>R</mark> PLMV
PTPRO_HUMAN/1169-1179	SEM <mark>R</mark> SY <mark>R</mark> MSMV
PTPRQ_HUMAN/2266-2276	AEL <mark>R</mark> SE <mark>R</mark> MCMV
PTPRR_HUMAN/621-631	CQL <mark>R</mark> MD <mark>R</mark> GGMV
PTN5_HUMAN/529-539	CQL <mark>R</mark> QD <mark>R</mark> GG <mark>M</mark> I
PTPRN_HUMAN/943-953	EHV <mark>R</mark> D <mark>QR</mark> PGL <mark>V</mark>
PTPR2_HUMAN/979-989	EHL <mark>R</mark> D <mark>QR</mark> PGMV
PTN1_HUMAN/251-261	LE <mark>MR</mark> KF <mark>R</mark> MGLI
PTN2_HUMAN/249-259	LN <mark>MR</mark> KY <mark>R</mark> MGLI
PTN6_HUMAN/489-499	QMV <mark>R</mark> A <mark>QR</mark> SGMV
PTN11_HUMAN/499-509	QMV <mark>R</mark> SQRSG <mark>MV</mark>
PTN9_HUMAN/548-558	SRM <mark>R</mark> T <mark>QR</mark> AFSI
PTN18_HUMAN/265-275	L KM <mark>R</mark> KQRPAAV
PTN12_HUMAN/267-277	QEM <mark>R</mark> T <mark>QR</mark> HSAV
PTN22_HUMAN/263-273	REM <mark>R</mark> TQRPSLV
PTN3_HUMAN/875-885	RKM <mark>R</mark> DQRAMMV
PTN4_HUMAN/885-895	RTM <mark>R</mark> D <mark>QR</mark> AM <mark>M</mark>
PTN21_HUMAN/1141-1151	DML <mark>R</mark> QQRMML V
PTN14_HUMAN/1154-1164	RLL <mark>R</mark> EQRMFMI
PTN13_HUMAN/2441-2451	RCM <mark>R</mark> LQRHGMV
PTN23_HUMAN/1426-1436	RRM <mark>R</mark> QQRKHML
PTN20_HUMAN/386-396	AQ <mark>MR</mark> E <mark>QR</mark> SGMV
PTN7_HUMAN/324-334	CQL <mark>R</mark> LD <mark>R</mark> GGMI

Supplementary Fig. 7. Multiple sequence alignment of PTPRU-D1 loop K1118-I1128 across the 37 classical PTPs, coloured by percentage identity (blue). C1121 (black arrowhead) in this loop is uniquely a cysteine in PTPRU.

Supplementary Fig. 8. pNPP activity assays of PTPRU-D1 mutants. a Time course of pNPP dephosphorylation, monitored by absorbance at 405 nm, using 10 µM of PTPRK-D1.D1057E, PTPRU-D1.E1053D, PTPRU-D1.E1053D.T1089A and PTPRU-D1.K-pTyr recombinant proteins. **b** pNPP dephosphorylation data of inactive PTPRU-D1 mutants from (**a**). Background absorbance for all proteins does not exceed that observed for pNPP substrate incubated with assay buffer alone.

Supplementary Fig. 9. Trypsin limited proteolysis of the D1 domain pTyr recognition loop chimeras. Limited proteolysis of a PTPRU-D1 and PTPRK-D1, b PTPRU-D1 and PTPRU-D1.K-pTyr, c PTPRK-D1 and PTPRK-D1.U-pTyr with trypsin followed by SDS-PAGE and Coomassie staining.

Supplementary Fig. 10. *In vivo* biotinylation of chimeric tandem PTP domains. **a** *In vivo* biotinylated chimeric tandem PTP domains incubated with or without streptavidin, resolved by SDS-PAGE and visualized by Coomassie staining. Mobility shift upon streptavidin binding to biotinylated protein is indicated by arrowhead. **b** *In vivo* biotinylated chimeric tandem PTP domains bound to streptavidin magnetic beads. Input protein (IN) and protein eluted from washed beads (B) was resolved by SDS-PAGE and visualized by Coomassie staining.

Supplementary Table 1. Percentage sequence identity matrix of R2B family D1 domains vs R2B family D1 (green) and D2 (yellow) domains. Generated by multiple sequence alignment using Clustal Omega².

	PTPRU	PTPRK	PTPRM	PTPRT	PTPRU	PTPRK	PTPRM	PTPRT
	D1	D1	D1	D1	D2	D2	D2	D2
PTPRU D1	100	72.44	69.61	64.66	27.34	29.2	28.15	26.64
PTPRK D1	72.44	100	79.44	76.31	28.37	31.29	31.02	28.78
PTPRM D1	69.61	79.44	100	80.14	27.66	30.58	30.29	27.34
PTPRT D1	64.66	76.31	80.14	100	29.79	30.58	30.29	29.14

РТР	PDB ID	RMSD (Å)*
PTPN5	2BIJ	1.0 over 1010 atoms
PTPN6	4HJP	1.0 over 1082 atoms
PTPN11	3B7O	1.0 over 1121 atoms
PTPN9	2PA5	0.9 over 1208 atoms
PTPN18	20C3	1.2 over 1029 atoms
PTPN22	2P6X	1.2 over 1085 atoms
PTPN3	2B49	1.0 over 1139 atoms
PTPN4	2175	1.1 over 1121 atoms
PTPN14	2BZL	1.1 over 1102 atoms
PTPN13	1WCH	1.0 over 1038 atoms
PTPRC	1YGU	1.1 over 1255 atoms
PTPRF	1LAR	0.8 over 1233 atoms
PTPRS	2FH7	0.9 over 1446 atoms
PTPRM	1RPM	0.8 over 1505 atoms
PTPRK	2C7S	0.8 over 1582 atoms
PTPRT	200Q	0.9 over 1500 atoms
PTPRB	2AHS	1.0 over 1337 atoms
PTPRJ	2NZ6	1.0 over 1216 atoms
PTPRO	2GJT	1.1 over 1332 atoms
PTPRA	1YFO	0.9 over 1334 atoms
PTPRE	2JJD	0.9 over 1204 atoms
PTPRG	2H4V	1.0 over 1416 atoms
PTPRR	2A8B	1.2 over 1170 atoms
PTPN7	2A3K	1.0 over 1095 atoms
PTPRN	2I1Y	1.1 over 1142 atoms
PTPRN2	2QEP	0.9 over 1062 atoms
PTPN1	2NT7	1.2 over 1116 atoms

Supplementary Table 2. PTP domain structures used in structural alignments (Fig 2b and 2d).

*Calculated using extra_fit function within Pymol using default settings (5 cycles, cut-off = 2.0 Å) with PTPRU-D1 (reduced) as the target molecule.

Supplementary Table 3. Primer and oligonucleotide sequences used in this study.

Construct	Oligo (5'-3')*
PTPRU-D1 Fw	TGGC[GGTACC]CACCCTGCGGTG
PTPRU-D1 Rv	TGGC[ACTAGT]CTAAGGGATGGTGGTCTCCCCAC
PTPRU-ICD Fw	TGGC[TTCGAA]CGCAAAGGGAAGCCGGTGAAC
PTPRU-ICD Rv	TGGC[GGTACC]CTATCTTGACTCCAGCCCCTCCAAGTA
PTPRU.E1053D Fw	GCCAGATCATGGCGTCCCCTAC
PTPRU.E1053D Rv	CCATGATCTGGCCACGCTGTGAAG
PTPRU.C1085S Fw	CCACAGCAGCGCGGGC
PTPRU.C1085S Rv	CTGCTGTGGATGACAATGGGCC
PTPRU.T1089A Fw	GGGCGCCGGCCGCACAGGTTGCTATAT
PTPRU.T1089A Rv	GCCGGCGCCCGCGCTGCAGTGGATGACAAT
PTPRU-D1.ΔpTyr-loop Fw	GATCGGCACCGAGTGAAACTGC
PTPRU-D1.ΔpTyr-loop Rv	TTCAAAGAAGCTCTCATACTCCTGCTTGAAG
PTPRU-D1.pTyr loop oligo Fw	CTTTTTTGAAGGCTGGGACGCCACAAAGAAGAAGAAGACAAGGTCAAGGGCAGC
	CGGCAGGAGCCAATGCCTGCCTATGATCACT
PTPRU-D1.pTyr loop oligo Rv	AGTGATCATAGGCAGGCATTGGCTCCTGCCGGCTGCCCTTGACCTTGTCTTT
	CTTCTTTGTGGCGTCCCAGCCTTCAAAAAAG
PTPRU Exon 1 sgRNA Fw	CAGATCATAGTGCGAGGGCT
PTPRU Exon 1 sgRNA Rv	ACACTTGGCATTCACTCGGA
PTPRU Exon 14 sgRNA Fw	TGGGCCCTGTGCTATAGGT
PTPRU Exon 14 sgRNA Rv	AAACAGTCCCAGCAGGCATA
PTPRK-ICD Fw	TGGC[TTCGAA]AAAAAGAGCAAACTTGCTAAAAAACGCAAAGATG
PTPRK-ICD Rv	TGGC[GGTACC]CTAAGATGATTCCAGGTACTCCAAAGCTACATCA
PTPRK.D1057E Fw	CTGGCCTGAACATGGAGTGCC
PTPRK.D1057E Rv	CATGTTCAGGCCAGCCCGTG
PTPRK-D1.ΔpTyr-loop Fw	AATGCCTGCCTATGATCACTCCAGAGTGATTTTGCAACCC
PTPRK-D1.ΔpTyr-loop Rv	CGTCCCAGCCTTCAAAAAAGCTCTCATATTCCTCTTTGAACCCATAG
PTPRK-D1.pTyr loop Fw	AGTATGAGAGCTTCTTTGAAGGACAGTCAGCATCTTGGGATGTAGC
PTPRK-D1.pTyr loop Rv	AGTTTCACTCGGTGCCGATCATATGCTATAATGTTTCCATATCGGTTTTTTGCT
	CTATTTTG

*Restriction endonuclease sites are marked in parentheses

Supplementary References

- 1 McParland, V. *et al.* The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides. *Biochemistry* **50**, 7579-7590 (2011).
- 2 Madeira, F. *et al.* The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res* **47**, W636-W641 (2019).