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Abstract

Design of a Multiloop Pyroelectric Neutron Generator Control System

Pyroelectric neutron generators are compact, low power systems which may be capable
of producing short intense pulses of neutrons from D-D fusion reactions. Initial analysis
of pyrofusion dynamics has indicated the potential to manipulate the pulse characteristics
through system control. This thesis presents the development of novel pyroelectric neutron
generator dynamics models in MATLAB/Simulink that can be used to support the predictabil-
ity and control of the neutron pulse.

Plant models have been developed using two control system modelling approaches:
lumped-parameter and system identification modelling. Describing equations for the py-
roelectric subsystem components are detailed and implemented using lumped-parameter
modelling. Novel work towards the analysis of the pyroelectric subsystem responses, stability
and performance using control system techniques is presented. Frequency-domain studies,
stability analysis and time-domain simulations are reported.

The dynamic characteristics of pyroelectric neutron generators have indicated that they
could be effective neutron sources for nuclear reactor plants. The development of a prototype
pyroelectric neutron source for the purpose of system identification is reported. Plans to
progress the work are discussed, including validation against data collected through experi-
ments at an actual zero-power reactor.

The key research areas are: pyroelectric neutron generation; thermoelectric cooler mod-
elling; control system modelling; and controller design.

Alice Margaret Darbyshire
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Chapter 1

Introduction and background to
pyroelectric neutron generation

1.1 Project background and purpose

The genesis of this research was the requirement to understand and accurately predict pyro-
electric neutron generator dynamics and control. Our approach to this task is constructed
upon two bases. The first is an indication of what is known about the actuation of pyroelectric
neutron generation; and the second is understanding how the device could behave as a
dynamic control component both on the bench, and in nuclear reactor applications.

Since the first publication in 2005 [74], experimental results of various existing pyro-
electric neutron generator devices have been reported [20, 23, 24, 28, 31, 36, 42–44, 62, 95];
however, these are only reports of specific test results, and most of the published data are
non-transient. It is difficult to extrapolate to new situations, novel device characteristics or
applications. The quality of some of these data have been open to question because of the
lack of repeatability. Nevertheless, some suitable experimental techniques have been derived
and employed in the past to provide us with a limited amount of data.

The history of pyroelectric neutron generation has indicated that these devices are poten-
tially controllable, non-radioactive sources, capable of producing sufficient neutron flux, of
around 106 n/s [74], for nuclear reactor applications. Their modular design and possible con-
trollability could have distinct advantages, including added flexibility [90] when optimizing
neutron flux profiles in the core. Pyroelectric sources have the potential to be geometrically
scaled [74] to fit inside the channels of reactor cores and could be dynamically advantageous
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sources.

The main advantage of pyroelectric neutron generators for application in nuclear reactors
is their potential controllability: the source can be switched on and off, which could allow
for operation in a pulsed mode with control over the repetition rate and duration, leading
to interesting dynamics in the reactor core. However, to be utilised effectively and safely
in a nuclear reactor their dynamical characteristics must be well understood and controlled.
With the long history of research from pyroelectric x-ray sources through to neutron sources,
there has, to date, been no control system modelling or dynamic analysis of the pyroelectric
neutron source, or consideration of the potential effect of such a source(s) on a live nuclear
reactor.

It is hoped that, with the knowledge gained from the application of conventional control
engineering techniques, we could evaluate the feasibility of the potential use of a pyroelectric
neutron generator as a repetitive pulsed neutron source. We could understand what further is
needed, and where we go from here.

The work towards our research goals was initiated, on a part-time basis, in October 2012.
Almost four years was spent: reviewing the past literature; considering the experiments car-
ried out by previous investigators; designing various control engineering models; developing
system identification techniques using the existing experimental data; and considering the
potential effects of pyroelectric neutron sources on nuclear reactor dynamics.

In 2017, we reported the first application of a control theory approach to the modelling
of pyroelectric neutron sources and presented our initial results [26, 27]. The model was
deemed to be serviceable, and the potential uses of this model heightened the desire for
a more complete understanding of the mathematically describable aspects of pyroelectric
dynamics, and the development of a suitable control system. Over the next two years, we
significantly extended our preliminary model with a more presentable mathematical theory;
we improved our parameter estimation using empirical data, and carried out substantial model
validation. The results of these efforts are reported in the following chapters.

1.1.1 Outline of the thesis

The primary objective of this research is to develop mathematical descriptions for pyroelectric
neutron generator characteristics as components in an engineering system.
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Chapter 2 discusses the development and current status of the VR-1 experimental pro-
gram.

Chapter 3 examines, in detail, the dynamic modelling of a thermoelectric cooler (TEC)
with the intent to use it as an actuator for the pyroelectric effect. We consider the mathemati-
cal theory and compare our model to empirical data.

Chapter 4 starts with a single-loop system for TEC control system design, and updates
the model with pyroelectric neutron generator materials, geometries and thermal masses.

Chapter 5 describes the design of an inner loop control system for pyroelectric crystal
temperature control.

Chapter 6 extends the model to incorporate the pyroelectric effect and neutron generation.
The system dynamics are analysed and the model is validated against empirical data for a
specific case. The model presented in this chapter represents the most elaborate dynamic
model of a pyroelectric neutron generator, to date.

Chapter 7 considers a multiloop control system design for a pyroelectric device, and
discusses the potential controllability of the neutron generation. The chapter ends with
a consideration of the effects of repetitively pulsing the pyroelectric neutron source in a
zero-energy reactor (ZER), specifically the VR-1 training reactor at the Czech Technical
University, in Prague.

Chapter 8 critiques the developed models, and lists the deficiencies, thereby defining the
shortcomings and problem areas. Some attempt is made to make this critique constructive by
noting, where available, analytic or other approaches which might be adopted to alleviate the
shortcomings.

1.2 General nature of the pyroelectric model

The intent of this section is to introduce the basic concepts and phenomena of pyroelectric
neutron generation in a primarily descriptive and intuitively understandable manner. The
really essential portion of this work is understanding the physical processes that are involved
in pyroelectric neutron generation. The lumped-parameter model of the pyroelectric plant
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comprises several components, and processes, including: a heater which is driven by a
current input to a particular temperature; heat transfer through the crystal altering the surface
temperature; a resultant change in electrostatics giving rise to an acceleration potential, which
in turn ionises deuterium and accelerates the ions into a target, resulting in a neutron yield.

Figure 1.1 shows a functional block diagram of the main processes involved in pyroelec-
tric neutron generation (the blue blocks). The green blocks show our potential multiloop
control system. The system forcing function is a desired neutron output from the device; this
can be either a step, pulse or sine-wave based input. The inner control loop drives the crystal
temperature by controlling the current applied to the TEC. The outer control loop calculates
the difference between the system forcing function and the system output. Typically, the
controller’s task is to minimise the error signal by trying to keep it matching a set-point. This
is accomplished by manipulative control action, which affects the controlled element and
gives rise to the system output being controlled. The usual purpose of a system of this nature
is to make the system output closely resemble the system forcing function, or, in other words,
to make the output follow the input.

Fig. 1.1 Functional block diagram of processes (blue blocks) in pyroelectric neutron genera-
tion and a potential multiloop control system (green blocks).

1.2.1 A control engineering approach

Engineering models comprise analytical descriptions of the phenomenon of interest, ex-
pressed such that the key variables are explicit, and both the ranges and rules of application
are well defined. Such models should be capable of being validated, augmented or dis-
proved by independent researchers. As predictive tools, they should serve several purposes,
including:

1. Estimation or prediction of pyroelectric neutron generator dynamics.
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2. Characterisation of past experimental observations with simple analytical forms.

3. Quantitatively describing the connections between model parameters.

A control system approach to modelling the pyroelectric neutron generator system (or
the plant) will be followed; for each element, a mathematical description will need to be
established, working with the physically verified mathematical laws which describe the
system’s behaviour. There are several good texts and handbooks that describe the various
control engineering techniques we will employ in our investigations [9, 10, 30, 34, 64, 77, 97].

It is usual to analyse an idealised equivalent of the physical system in which each element
has a single property or function. Considering an idealised system has the advantage that each
element has only one independent variable (time) and the system can be described using an or-
dinary differential equation model. This technique is commonly known as lumped-parameter
modelling. Block diagrams can be used to represent the Laplace transform equations of the
plant. The techniques used in block diagrams are useful as they can be extended to include
control equipment and associated feedback paths.

Stability can be tested by examining the linear equations describing the system. A com-
plementary function can result as part of the solution of ordinary, linear differential equations.
In control engineering, this complementary function becomes the characteristic equation.
The characteristic equation, which characterises the system’s dynamics, can be determined
from a study of the transfer function. A transfer function model is usually obtained from the
linear differential equations representing a lumped-parameter model.

The experiments that have been previously undertaken by investigators can provide data
that is suitable for developing the open-loop models of the processes (i.e. with no controller
feedback). The plant open-loop stability can be examined by applying a bounded input to the
system (such as a step, saturated ramp, or sinusoidal signal) and observing the nature of the
response; this is called a Bounded-Input-Bounded-Output (BIBO) stability investigation.

As the models develop and further knowledge of the systems is acquired through their
analysis, several aspects of control engineering will be required. These have been mapped in
Fig. 1.2. The processes by which the model of the system may be developed and the methods
by which the controller may be designed are shown contained in the blue boxes. The purple
boxes represent alternative aspects that may become necessary as the work develops; for
example, following initial modelling, it is known that the pyroelectric plant is nonlinear and
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it is anticipated that nonlinear control methods will be required. The green boxes contain a
range of methods and techniques of control theory that have potential use in the analysis and
design. Orange boxes identify key designer inputs that are required.

Fig. 1.2 Flow chart showing the process of control engineering.

As shown in Fig. 1.1, we anticipate that two controllers will be required for accurate and
safe pyroelectric neutron generation. One in the inner loop to control crystal temperature, and
an outer loop controller for neutron generation. Proportional-plus-integral-plus-derivative
(PID) -type controllers are commonly used in industry, and in 1942 John ‘Zeke’ Ziegler
and Nathaniel Nichols developed the popular Ziegler-Nichols tuning method [30, 34, 77].
Their manual tuning method has made the PID algorithm the most popular feedback control
strategy to be used in industrial applications today [32, 64, 97]. In the 1970’s, as PID con-
trollers evolved from electronic and pneumatic devices into fully digital microprocessors,
programmers automated the Ziegler-Nichols loop tuning techniques [87].

In the 1980’s, Karl Astrom and Tore Hagglund of the Lund Institute of Technology
in Sweden [5–7, 49] cited the lack of robustness of methods such as the Ziegler-Nichols
tuning method as the reason for many poorly tuned industrial regulators in practice. They
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published automated versions of the Ziegler-Nichols closed-loop tuning method. All of the
methods forced the process variable into a series of oscillations, known as a limit cycle [10].
The period (time for a single oscillation) and the ultimate gain of the system are calculated
from the oscillations. These two parameters are then used instead of the steady-state gain,
time constant and deadtime to compute suitable tuning parameters. Variations on the relay
method have become standard for commercial auto-tuning controllers, though vendors (such
as MathWorks) do not mention which technology they use [32].

In 1966, Gotoh [46] analysed the frequency response of an ionisation chamber. He
calculated the break frequency (or corner frequency) of the ionisation chamber, and reported
that it was determined by the transit time of positive ions and the applied voltage, and that
it could be represented by a first-order lag. We can follow a similar method for developing
a transfer function model of a pyroelectric generator, and apply appropriate formulae and
standard parameters [71].

We will use the MathWorks [65] tools MATLAB and Simulink to analyse published
data, create our engineering models, simulate control algorithms and visualise the results.
MATLAB is professionally developed, rigorously tested and fully documented. Simulink
is a block diagram environment that supports Model-Based Design for ease of simulation.
We can make use of the pre-built functions for analyzing overshoot, rise time, phase margin,
gain margin, and other performance and stability characteristics in the time and frequency
domains. Root locus and Bode diagrams can be constructed for design and analysis. We can
also take advantage of the available automatic tuning features for our controllers.

The application of control design procedures in the frequency domain and the Laplace
transform model to investigate the stability and performance of the pyroelectric neutron
source plant is a novel approach.

1.2.2 The pyroelectric crystal heater

The change in temperature of a pyroelectric crystal is essentially the actuation mechanism
that is responsible for the pyroelectric phenomenon in the device. The most common meth-
ods for changing the temperature of a pyroelectric crystal are a resistance heater [74] or a
thermoelectric cooler [45]. We will need the ability to simulate thermally cycling our crystal,
therefore a TEC with its capability to both heat and cool would be the best option. Figure 1.3
shows a schematic diagram of a typical TEC and a general purpose thermoelectric module.
A TEC consists of several pairs of thermoelectric elements which can be used to heat a
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pyroelectric crystal. When current flows through a TEC device heat is pumped from one side
to the other, so that one side gets cooler while the other simultaneously gets hotter.

Fig. 1.3 Schematic diagram of a typical thermoelectric cooler and a general purpose thermo-
electric module (right) [93].

In 1960, Gray [47] investigated the nonlinear dynamic behaviour of thermoelectric heat
pumps and generators. He also performed the first known small-signal analysis and derivation
of the linear TEC transfer function. This derivation found application in 1962, by Anderson
[2] who performed an analysis, design, and experimental development of a thermoelectric
air conditioner for use on submarines. He concluded that the well-known basic relations
were a convenient form to explore the performance characteristics and control aspects of a
thermoelectric refrigerator. In 1970, Bywaters and Blum [18] successfully applied a similar
method when they focused their research on the transient behaviour of cascaded TECs.

In 2000, Huang and Duang [50, 51] developed a linear dynamic model of a TEC including
the heat sink and the cooling-load heat exchanger and compared their results to estimated
models derived using system identification techniques. Several researchers have applied the
transfer function developed by Huang and Duang with varying success [73, 86]. A major
part of our model development is to capture the dominant thermal dynamics which actuate
our pyroelectric device. The data that is available in the publication by Huang and Duang
[50] will be useful for the development, and parameter estimation, of our pyroelectric TEC
model in Chapter 3.

1.2.3 The pyroelectric effect

The pyroelectric effect has been observed in various materials (such as tourmaline), and
several scientists have studied the phenomenon over the last 24 centuries. Two comprehensive
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review articles, written by Whatmore [100] and Lang [62], discuss the history of pyroelectric-
ity, and provide a detailed review of developments, from the earliest known account written by
the Greek philosopher Theophrastus in 314 B.C., to David Brewster, who in 1821 was the first
author to use the term “pyroelectricity”. However, it was John Mothée Gaugain who made the
first precise measurements of pyroelectric charges in 1859; he discovered that the total quan-
tity of electricity produced by a crystal of tourmaline depends uniquely upon the limits within
which its temperature is varied; within those limits, the amount of electricity produced during
heating is the same as that produced during cooling, but with the signs of the charges reversed.

Figure 1.4 shows a triangle diagram that illustrates the thermodynamically reversible
interactions that may occur among the thermal, mechanical and electrical properties of a
crystal. In 1972, Byer and Roundy [17] developed a direct method for measuring pyroelectric
coefficients, and showed that it was possible to accurately measure pyroelectric coefficients
for various crystals.

Lithium tantalate (known as LiTaO3, or LT) and lithium niobate (LiNbO3) are pyroelec-
tric crystals that are commonly used in pyroelectric neutron generator experiments. Figure
1.4 shows an example of cylindrical z-cut LT crystal and Table 1.1 shows the similarities
between the fundamental thermal and pyroelectric properties of LT and LiNbO3 [80]. Both
crystals can grown by the Czochralski method [98] which yields large, high-quality single
crystals. The crystals can be manufactured in a cylindrical shape and cut such that the
polarization z-axis is perpendicular to its flat faces.

Crystal
Melting
point
◦C

Curie
temperature
◦C

Heat
capacity
J/kmol

Thermal
conductivity
W/mK

Pyroelectric
coefficient
µC/m2

Lithium tantalate 1650 605 100 4.6 ∼190
Lithium niobate 1253 1133 89 4 ∼140

Table 1.1 Fundamental properties of LT and lithium niobate [80].

Pyroelectric crystals, such as LT, are anisotropic dielectric (electrically non-conducting)
materials that are spontaneously polarised at equilibrium conditions; that is, they have a
built-in, or permanent, electric polarisation (dipole moment per unit volume) with no applied
temperature gradient or electric field. When the crystal is held at constant temperature, the
polarization is compensated by free charge carriers that have reached the surface of the
crystal by conduction through the crystal and from the surroundings; under these equilibrium
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Fig. 1.4 Left: Triangle diagram illustrating the coupled effects of pyroelectricity in a crystal,
and Right: An example of a cylindrical z-cut LT crystal (diameter 20 mm, length 20 mm),
manufactured by Del Mar Photonics [53].

conditions the polarisation is screened, which prevents the observation of any electrical
properties. When LT crystals are subjected to a uniform temperature change, the oxygen,
lithium and tantalum ions are displaced within the LT cell; as a result, the crystals become de-
polarised. The spontaneous polarisation cycle for a pyroelectric crystal is shown in Fig. 1.5.
The change in spontaneous polarisation is known as the pyroelectric effect, and it only occurs
in crystals which lack a centre of symmetry and also have a polar axis (a so-called z-axis) [15].

In 2001, Brownridge [14] conducted a series of experiments and concluded that, at a
given temperature, LiNbO3 and LT crystals will exhibit a definite polarization charge in a
reproducible manner, as shown in Fig. 1.6.

1.2.4 Ionisation and acceleration in pyroelectric devices

The story of pyroelectric device development begins with crystal x-ray generation, which
began in 1973 at the Bendix Research Laboratories in Michigan. It was here that Rosenblaum,
Braunlich and Carrico [13, 82] discovered that thermally stimulating single pyroelectric crys-
tals of lithium niobate, LiNbO3, resulted in persistent electron emissions from the positive
polarised surface (called the +z surface), and electron emission in bursts from the negative



1.2 General nature of the pyroelectric model 11

Fig. 1.5 The spontaneous polarisation cycle for pyroelectric crystals [15].

polarised surface (called the -z surface). These results were repeated and confirmed in 1983
[83] and 1985 [58].

In 1992, Brownridge [15] documented the spontaneous polarisation of LiNbO3 and LT.
He discovered that when these pyroelectric crystals are subjected to a thermal cycle in a
vacuum, the electrons from the surface of the crystal and from the ambient gas remaining
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Fig. 1.6 Polarization charge and crystal temperature as functions of time for the -z base of
a crystal of LT. In all three zeroing conditions presented the dashed curve represents the
temperature of the crystal with the calibration: 100 divisions = 100 ◦C. The solid curve
represents the charge reading of the electrometer with the calibration: 30 divisions = 10−7 ◦C.
(a) The crystal was grounded at a temperature of about 100 ◦C. (b) The crystal was grounded
at 0 ◦C. (c) The crystal was grounded at about −150 ◦C. [14].

in the vacuum chamber can be accelerated by the potential of the crystal against a metallic
target to create x-rays through characteristic x-ray fluorescence and bremsstrahlung.

In 2005, Brownridge and Shafroth [11, 16, 59, 60] conducted several experiments with
the aim of understanding the nature of the pyroelectric crystals focusing process and char-
acterisation of the electron beam and its dependence on the environment around its focal
spot. They thermally cycled z-cut LiNbO3 and LT crystals in a dilute gas environment, and
observed that, on a rising temperature, at the -z base positive ions are accelerated away from
the crystal in a focused beam and simultaneously electrons are accelerated to it in a focused
beam. The focused beam was reported to strike the crystal near its centre. The reverse
process was observed when the crystal was cooled. It was noted that the crystal surface
charge produced a very strong electric field at the surface of the crystal, around 1.35×107
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V/cm. This field was strong enough to ionise the gas molecules close to the crystal surface
and produce an ion pair.

Brownridge and Shafroth had pioneered the development of the first fully operational
pyroelectric x-ray source as an alternative to isotopic sources. While isotopic sources had
been manufactured to provide a wide range of source yield and energy, they required bulky
shielding, even when not in use. They demonstrated that their x-ray source could be turned
off when not in use, and although it was low in yield, it could be manufactured to fit into a
pocket and run on a nine-volt battery. In 2003, Amptek [1] introduced the first commercially
produced Cool-X x-ray device based on this design.

1.2.5 Deuterium-deuterium (D-D) fusion

Deuterium exists naturally as molecules of D2. An important aspect in realizing pyroelectric
fusion and neutron generation is the ability to ionise and accelerate deuterium gas towards the
deuterated target. Once an atom of deuterium is accelerated above its ionisation energy, its
electron is stripped away, leaving just the bare nucleus: the ion. When considering deuterium
ionisation it is important to know if D+ or D+

2 ions are being produced. A research group
at Rensselaer Polytechnic Institute (RPI) [23] conducted an experiment using a novel mass
spectroscopy system constructed using pyroelectric crystals as an ion source. It was found
that D+

2 ions were being produced and accelerated to between 65 and 80 keV. There was
no evidence that D+ ions were being produced in large quantities. These results show that
D-D fusion neutron yield from a pyroelectric accelerator using tip ionisation sources should
be calculated using D+

2 ions. As a result, the D-D interaction energy is half that of the
accelerated ion energy.

In 2005, the University of California, Los Angeles (UCLA) [74] showed that a small
pyroelectric crystal could produce deuterium ion beams of sufficient energy and current to
drive nuclear fusion via the deuterium-deuterium reaction. There are two branches of the
D-D fusion reaction which have the same chance of occurring over a large range of energies:

D+D → He3(0.82 MeV)+n(2.45 MeV)

D+D → T(1.01 MeV)+H(3.02 MeV).
(1.1)

These branches are called the neutron branch and the proton branch respectively. The
cross section for the reaction varies with accelerating potential. The D-D neutron branch
produces neutrons at comparable energies (∼2.45 MeV) to the fast neutrons that are produced
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from fissions in a nuclear reactor. Following moderation, in a reactor, to thermal energies
these neutrons would initiate fission reactions [29, 33, 48, 56, 72, 78, 88, 89, 99].

1.3 Review of existing pyroelectric neutron generators

As we have noted in a previous section, we will need suitable data from an experimental pro-
gram to provide data for the development and validation of a pyroelectric neutron generator
model. Therefore, a necessary preliminary is to consider the status of transient data that is
available from the existing literature. This is accomplished in this section by distilling out
the best experimental data which represent the essence of current empirical knowledge, and
which are based on the efforts of previous investigators.

In 2001, Shafroth [85] first discussed the possibility of achieving fusion and generating
neutrons using pyroelectric crystals at a meeting of the American Physical Society. He
suggested that pyroelectric crystals could be used to achieve D-D fusion through ionisation
of deuterium gas and acceleration of deuterium D+

2 or D+ ions into a deuterated target.
However, at the time, the lack of both neutron detection equipment and a target put a stop to
this research.

Since then, there have been two main research groups who have led the major develop-
ments in pyroelectric neutron generation, and we can compare their devices and the published
experimental data that is available for our analysis. The lead research groups are:

1. University of California, Los Angeles (UCLA) [31, 63, 74, 90–92].

(a) In 2005, Brian Naranjo, James Gimzewski and Seth Putterman from UCLA
published the first professional publication describing pyroelectric generated
neutron production [74]. They reported that gently heating a pyroelectric crystal
in a deuterated atmosphere can generate nuclear fusion under desktop conditions.
It was reported that, although the fusion was not useful in a power-producing
sense, it was anticipated that the system would find application as a simple
palm-sized neutron generator. Figure 1.7 shows the UCLA vacuum chamber
cut-away view, and the arrangement of neutron, ion current (Faraday cup) and
x-ray detectors.

(b) In 2007, researchers at UCLA [90] collaborated with Lawrence Livermore Na-
tional Laboratory (LLNL), and reported the first results from the operation of the
LLNL Crystal Driven Neutron Source (CDNS) based on the pyroelectric effect.
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Fig. 1.7 UCLA vacuum chamber cut-away view, and arrangement of neutron and x-ray
detectors [74].

The goal of this work was to raise the neutron output by increasing the beam
energy and current using different crystal configurations. They incorporated
feedback temperature control, socket mounts for rapid changing of field emitters,
and the ability of the assembly to traverse the beam axis permitting maximum
experimental flexibility. The neutron output of 1.9 × 105 cps was a factor of two
higher than had previously been seen. This neutron yield is still the highest yield
to date.

(c) In 2009, the researchers [91, 92] demonstrated pulsed operation at a low repetition
rate by coupling an independently user-controlled ampere class spark deuterium
ion source with a negative high voltage pyroelectric crystal. The yield from their
device was > 1010 n/s during the neutron pulse, with pulse widths of ∼100’s ns.

(d) In 2012 [31], they used a decoupled configuration with a target coated crystal
and an electrically biased gated tungsten tip to generate neutrons. Their testing
additionally showed that dielectric insulation of the crystal reduces flashover.

2. Rensselaer Polytechnic Institute (RPI) [3, 24, 25, 28, 35–45].

(a) Research led by RPI has made significant contributions to electron acceleration,
optimisation of x-ray production and improvements in the reproducibility of the
neutron yields. In 2003-2007, RPI [35–40] reported experiments that showed
that the maximum energy and x-ray yield from pyroelectric x-ray generators are
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dependent on the thickness of the crystal. They showed that the maximum energy
can be doubled with the addition of a second crystal. They also reported that
the crystal heating rate had an effect on the x-ray production. They qualitatively
discussed the reduction of the counts that was observed per thermal cycle when
a crystal was heated very rapidly or very slowly. At rapid heating rates the
poor thermal conductivity meant that the exposed crystal surface may not have
experienced the same thermal cycle as the surface contacting the heater. At slow
heating rates the crystal may re-mask its polarization through the accumulation
of free charges, and by gradual electrical conduction through the crystal. The
group observed that the optimal heating rate was around 0.27 K/s, half the rate at
which the crystal could no longer react to the entire thermal cycle.

(b) Between 2007 and 2009, RPI [41–45] demonstrated a paired-crystal device that
generated an acceleration potential of over 200 keV, which is the highest energy
produced using this technology. RPI made contributions to the reproducibility
of the neutron yields. Experiments were undertaken that produced ∼ 1× 104

neutrons per thermal cycle for a two-crystal system. The group had the ability to
reproduce experimental results using a new thermal management system, meaning
thermal cycles could replicated from one experiment to another. Research at RPI
had focused on the practical application of a portable pyroelectric neutron source
with emphasis on improvements in the neutron production yield, reproducibility
and controlled emission length. Such sources could find uses in neutron detector
calibration, research and education and security applications.

(c) In 2009, RPI [25] published steady-state equations that were used to predict the
potential and electric field in an idealized one-crystal and two-crystal pyroelectric
accelerator. Their mathematical analysis was shown to agree with both finite
element calculations and experimental values. They also showed that the acceler-
ating potential is maximised at around 120 keV for crystal thickness between 10
and 20 mm, for a 50 ◦C temperature change.

(d) In 2011, RPI research [24, 28] focused on improving the neutron yield, the
emission reproducibility, and shortening the heating cycle. They showed that
D-D and D-T neutrons could theoretically produce ∼ 107 n/cycle and could reach
∼ 107 n/s for the D-T reaction. They demonstrated that the neutron emission
during heating or cooling could be shortened to ∼ 30 seconds during a typical
heating/cooling cycle of about 2-3 minutes. They also developed an educational
accelerator device in collaboration with the United States Military Academy,
and the Defense Threat Reduction Agency at West Point [3]. They discussed a
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method to optimise the acceleration potential by precisely controlling the thermal
cycle of the crystals through a proportional thermal controller implemented in
LabVIEW.

The most recent advances in associated fields have focused on: optimising various aspects
of the hardware associated with pyroelectric x-ray radiation sources [4, 19, 55, 57, 75, 95, 96];
the modelling and simulation of pyroelectric detectors [76]; and reconverting solar energy
into nuclear fusion energy using pyroelectric devices [94].

The number of devices studied by the principal investigators of pyroelectric neutron
generation, through the years 2005-2019, are summarised in Table 1.2. The transient data
from these devices are shown in Fig. 1.8.

The UCLA 2005 device [74] data, presented in Fig. 1.8a, shows (from top to bottom): the
crystal temperature; the x-rays detected; the Faraday cup current; and the neutrons detected.

The UCLA and LLNL 2007 device [90] data, presented in Fig. 1.8b, shows the mea-
sured beam current (right), detected neutrons per 10 s (left), and rear crystal temperature (left).

The UCLA and LLNL 2012 device data [31], presented in Fig. 1.8c, shows (from top to
bottom): the measured crystal temperature; the ion source bias voltage; the neutron produc-
tion averaged over 1 s time intervals; and the crystal voltage measured from bremsstrahlung
emission.

In the RPI 2008 [36] device data presented in Fig. 1.8d, the dashed line shows the counts
from a CdTe x-ray detector, the dotted line shows the counts from the proton recoil detector
without pulse-shape discrimination, and the solid line represents the proton recoil detector
counts with pulse-shape discrimination (neutron counts) [36].

Comparison of devices and data available in Table 1.2 and Fig. 1.8 indicates that, as a
starting point, the UCLA group’s 2005 device [74] will serve as the best baseline from which
to identify the typical components for the processes involved in, and the data available from,
pyroelectric neutron generation.
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Investigator Device and experiment General results and remarks

ULCA 2005
[74]

LiTaO3 z-cut crystal,
(diameter, 3.0 cm; height, 1.0 cm),
with copper disk, and tungsten tip.
Resistance heaters on -z face.
Heated from 240 K to 265 K.
Heating rate 0.2 K/sec.
Cooled naturally.
Deuterium pressure 5.2 mTorr.

1. Ion beam >100 keV, >4 nA.
2. Neutron yield ≈ 800 cps.
3. Transient data results
are shown in Fig. 1.8a.

UCLA and LLNL 2007
[90]

LiTaO3 z-cut crystal,
(diameter, 3.0 cm; height, 1.0 cm),
platinum coated crystal faces,
copper disk (diameter 1 cm)
and tungsten tip.
Feedback temperature control.
TEC on -z face.
Heated from 10 ◦C to 110 ◦C.
Heating rate 0.2 K/sec.
Cooled naturally.
Deuterium pressure 3 mTorr.

1. Ion beam >80 keV, ∼9.5 nA.
2. Neutron yield ≈ 924 cps.
3. Transient data results
are shown in Fig. 1.8b.

UCLA and LLNL 2012
[31]

LiTaO3 z-cut crystal,
(diameter, 3.0 cm; height, 3.0 cm),
copper disk
and tungsten tip.
Feedback temperature control.
TEC on -z face.
Heated from 20 ◦C to 65 ◦C.
Heating rate 0.3 K/sec.
Cooled naturally.
Deuterium pressure 2.25 mTorr.

1. Ion beam >80 keV, 3 nA.
2. Neutron yield 1.6 ×102 cps.
3. Transient data results
are shown in Fig. 1.8c.

RPI 2007
[36]

LiTaO3 z-cut crystal pair,
(diameter, 2.0 cm; height, 1.0 cm),
platinum coated crystal faces,
copper disk (diameter 1.6 cm)
and tungsten tip.
Heated from 25 ◦C to 160 ◦C.
Heating rate 0.27 K/sec.
Cooled naturally.
Deuterium pressure 3 mTorr.

1. Ion beam >100 keV, ∼9.5 nA.
2. Neutron yield ≈ 5.9 × 103 cps.
3. Transient data results
are shown in Fig. 1.8d.

Table 1.2 Summary of pyroelectric neutron generator devices.
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Fig. 1.8 Comparison of published transient data: a) UCLA 2005 [74]; b) UCLA and LLNL
2007 [36]; c) UCLA and LLNL 2012 [31]; d) RPI 2007 [36].
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1.3.1 Overview of the VR-1 reactor

A Zero Energy Reactor (ZER) is one which generates insufficient power to materially alter
its own thermal energy and can be modelled using the reactor kinetics subsystem. For the
ZER system there is no feedback path; hence, for some real plants, the control of the neutron
level can be entirely in the hands of the Reactor Panel Operator. The VR-1 reactor at the
Czech Technical University [52] operates as a ZER, as does a Pressurised Water Reactor
(PWR) during start-up and critical operation in the sub-power range. The VR-1 ZER is
convenient for performing pulsed-source experiments and making corresponding calculations
for systems ranging from delayed critical to highly subcritical [12, 54].

The training reactor VR-1 is operated by the Department of Nuclear Reactors of the
Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University
(CTU) in Prague. The reactor is principally used for training of university students and there
is a focus on education and research in the field of nuclear engineering [52]. The Defence
Academy’s Nuclear Faculty has research links with the CTU’s Department of Nuclear Reac-
tors, and there is an ongoing programme of experimental collaboration.

The VR-1 training reactor, shown in Fig. 1.9, is a pool-type, light water thermal re-
actor with enriched uranium fuel. The neutron moderator is light de-mineralised water,
which is also used as a neutron reflector, as biological shielding, and as a coolant. There
are two pools containing identical, 2.3 m diameter, 4.7 m height, stainless steel reactor
vessels; one vessel houses the active core, and the other is a handling vessel. The reactor
shielding is made up of water and a specialised type of heavy concrete. The reactor is at
ambient temperature; it sits at atmospheric pressure and the cooling is via natural convec-
tion only. The current neutron source is an americium-beryllium mix, with an activity of
185 GBq [s−1]. The fuel is type IRT-4M, 235U, with an enrichment of 19.7%, just below
the threshold classed as highly enriched. The average neutron lifetime in the reactor is
around 10−4 seconds. The reactor has a low nominal power of 1 kW thermal (up to 5 kW
thermal for a short period). A detailed description of the VR-1 reactor is available online [52].

In the field of nuclear reactor dynamics it is common to use the term kinetics for short-
time phenomena without feedback, and the term dynamics with feedback [29, 48, 78, 88, 99].
Short-time phenomena typically occur in time intervals of seconds to minutes. This timescale
is appropriate for rapid changes in the neutron flux due to intended or accidental changes in
the system, and flux transients important for: certain accident analyses (critical excursions);
experiments with time-dependent neutron fluxes; reactor operation (such as start-up, load
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Fig. 1.9 Photographs of the VR-1 training reactor, at CTU [52].

change, and shut-down); and analysis of stability with respect to neutron flux changes. It is
this short timescale that we will be considering for our application of pyroelectric neutron
generators to nuclear reactors.

The short-time phenomena include changes in the neutron flux as well as causally related
changes in the reactor system, i.e. composition or temperature. This causal relationship can
occur in either direction. Changes in the system can also be externally induced, for example,
by the motion of an independent neutron source, or of control or shut-down rods, resulting
in neutron flux changes. Nuclear reactors are designed to initiate, maintain and control a
nuclear fission chain reaction. Uranium-235 is a fissile isotope that is commonly used; on
absorption of a neutron it can undergo fission; this can be expressed as

1
0n+235

92 U →
[

236
92 U∗

]
→ FF1 +FF2 +νn(5 MeV) (1.2)

The reaction generates highly charged and energetic fission fragments (referred to as FF1

and FF2), and between one and five neutrons (on average ν = 2.4 neutrons) are produced
with a total energy of 5 MeV. The neutrons produced in the fission reaction are referred to as
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prompt, and can be used to propagate a fission chain reaction. The majority of these neutrons
appear instantaneously, within 10−14 seconds of the fission event. A small quantity, less than
1%, of the neutrons appear with an appreciable time delay, from the subsequent decay of
radioactive fission fragments; these are called delayed neutrons.

The probability of a neutron-induced nuclear fission reaction taking place can be ex-
pressed in terms of its microscopic cross section, σ (units of barns); this expresses the
probable reaction rate for neutrons travelling with a certain speed over a distance in a partic-
ular material. The microscopic fission cross section is a measure of the probability that a
neutron and a nucleus interact to form a compound nucleus which then undergoes fission.
The variation of the fission cross section for 235U with neutron energy is shown in Fig. 1.10.

Fig. 1.10 The microscopic fission cross sections for 235U, for a range of neutron energies
[61].

The low energy neutrons, < 1 eV, are known as thermal neutrons, and for these the fission
cross sections are largest. The intermediate energy region is known as the slowing down
region, which contains the resonance region, and the high energy region is known as the fast
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energy region. Neutrons produced in the fission reaction are usually in the high energy region,
around 2 MeV, and need to be moderated to lower energies. Fission can occur at these high
energies; however, it is much easier for a neutron to be absorbed and for a fission reaction to
occur at thermal energies. In thermal light water reactors the moderation is carried out by
the water that surrounds the fuel, which acts both as a coolant and a moderator. Reactor fuel
enrichment levels have a large effect on the number of neutron-induced nuclear fissions. In
reactors, such as the VR-1, with highly enriched fuels (i.e. those enriched to ∼ 20%), more
neutrons will be captured in the resonance region, where the cross section is lower than the
thermal region.

In the 1960’s and 1970’s, researchers [33, 72, 89] conducted experimental and analytical
study of pulsed-source techniques for measuring shut-down reactivities in, and the frequency
response of, nuclear reactors. The studies demonstrated the feasibility of using pulsed-source
experimental techniques in a wide range of nuclear reactors.

It is anticipated that pyroelectric neutron sources will have distinctive dynamic effects
when operated in the core of the VR-1 reactor. In this thesis, we will present the first model
and simulations of these combined dynamic responses.





Chapter 2

Status of the VR-1 experimental
program and recommendations for
future work

Pyroelectric neutron generators are not commercially available; however, as previously
mentioned, groups at UCLA, NNL and RPI have built devices for on-the-bench testing.
These groups have focused on the improvement of the ionisation mechanisms to achieve
reproducibility of results in the system. One of the primary challenges for our future experi-
mental work will be to replicate the pyroelectric systems hardware that has been previously
developed, with adaptations for the size and material constraints associated with live nuclear
reactor applications.

Since this programme of PhD work started, in October 2012, two initial proof-of-
concept demonstrators have been designed and manufactured at the Nuclear Faculty, Defence
Academy. The first was assembled using adapted commercial, off-the-shelf components at
the end of 2012 (referred to as Demonstrator One (DI) from hereinafter) and experiments
were carried out in Prague in February 2013. The system was re-designed later in 2013 and a
second system (referred to as Demonstrator Two (DII) from hereinafter) was fabricated at
the end of 2013 and tested in February 2014.

2.1 Initial proof of concept demonstrator manufacture

The two demonstrators, DI and DII, were designed to understand the new designs that would
be required for nuclear reactor applications, and to enhance the system analysis. The demon-
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strators have helped to narrow down our recommended design options, avoiding those which
will not work, and to highlight where further development and testing is necessary. They
helped with the familiarisation with the experimental applications of the work. Challenges
were added to the design of these demonstrators, as the application to a nuclear reactor
introduces size and material constraints. This PhD work took the lead on the build of the
hardware between 2012 and 2014; this facilitated real system experience to improve the
pyroelectric model. The ongoing build of this hardware will continue at the Nuclear Faculty
and the author will provide the control system design and implementation.

Both of our demonstrators have included many of the same standard vacuum system com-
ponents such as pumps, controllers, gauges, flanges and fittings. Commercial, off-the-shelf
vacuum components have been purchased and adapted to build the DI chamber, crystal and
heater mountings and system connections to gauges, and controllers. The main constraint
placed on the design was that the chamber should fit in a dry 50 mm diameter, cylindrical
vertical channel in the reactor. Figures 2.1 and 2.2 show the DI system hardware, vacuum
system and connections.

The DI vacuum chamber was assembled using a modular approach, by adding the alu-
minium flanges and fittings, as necessary. The main chamber was an aluminium KF-40
intermediate flange (Note: KF stands for Kwik-Flange). Kwik-Flanges were chosen as they
are easily accessible: the vacuum seals consist of re-usable polymer-metal o-rings and clamps.
The chamber had a 40 mm outer diameter and was 100 mm in length. The ends of the cham-
ber were two aluminium DN 40 to DN 16 reducers, where DN is the European designation
equivalent to American Nominal Pipe Size (NPS); it stands for diamètre nominal/nominal
diameter, which is measured in millimetres. Two 30 mm sections of aluminium bar of 30
mm outer diameter served both as the heat sinks and provided the mounting platforms for
the two LiTaO3 crystals. A segment was cut from each bar to allow enough space for the
wires to pass through and to provide the penetration into the chamber required to pump
down and introduce the deuterium gas. This design of chamber had a high vacuum integrity
and repeatedly held suitable vacuum pressures down to 10−4 mTorr (which is equal to 10−6

mbar). The geometry and small size of this chamber made it difficult to access the internal
pyroelectrics and make adjustments or repairs during testing.
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Fig. 2.1 The DI device at the Nuclear Faculty, February 2013.

Fig. 2.2 DI device vacuum system and connections at CTU in Prague, February 2013.

The DI device produced neutrons above background during a bench test at the Czech
Technical University, in Prague. However, problems with multiple TEC failures at peak
transient temperatures, and difficulty accessing the internal pyroelectrics made repetition
infeasible in the time frame that was available for conducting the experiments.
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Following the DI experiments the opportunity to use the radial channel of the VR-1
reactor was proposed. This altered the main constraint placed on the design from a dry 50
mm diameter vertical channel to a dry 250 mm diameter horizontally oriented channel in
the reactor. Figure 2.3 shows the DII prototype and Fig. 2.4 shows the position of the VR-1
radial reactor channel. The geometrical constraint of the new channel size was the main
driver behind the increased geometry of the vacuum chamber. This larger rectangular vacuum
chamber made the internals of the chamber more accessible during experimentation.

Fig. 2.3 DII device during bench testing at CTU in February 2014 (photograph courtesy of H.
Bull, Nuclear Faculty).

Fig. 2.4 Reactor vessels H01 and H02, Reactor VR-1, adapted from source [52].
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2.2 Pyroelectrics hardware

Two 1 cm thick, 2 cm diameter, z-cut LiTaO3 crystals were mounted on TECs and housed
inside the vacuum chamber, see Fig. 2.5. TECs were chosen for the neutron generator
because it was envisaged that later designs would benefit from the capability of the TEC to
both heat and cool. The maximum size of heater that would fit inside the DI chamber was 2
cm by 2 cm, and a heater1 from Farnell was chosen. These heaters were also used in the later
DII system. It was necessary to provide a cooling-load aluminium mass capable of sinking
all the heat produced by the devices. A silver-filled adhesive acted as a thermal compound
and improved the thermal contact between the devices and the cooling load. Thermocouples
(T/C in Fig. 2.5) were attached to the front of the TECs.

The DII design incorporates a removable aluminium plinth heat sink onto which the
crystals are attached. The z+ face of the tip crystal has a 18 mm diameter, ∼ 0.8 mm thick
copper disk and a 70 nm radius tungsten (chemical symbol W) tip2 attached. The copper disk
collects the charge from the z+ face and the tip locally enhances the electric field with the
aim of improving the ionisation of the D2 gas. Figure 2.6 is a photograph of the pyroelectric
set-up for DII.

A Dual Inline Package (DIP) socket was soldered to the copper disk, which was cut to
size using the Electric Discharge Machine (EDM) at the Nuclear Faculty. The tungsten tip
could then easily be inserted and removed. The copper disk was mounted to the crystal using
JB Weld epoxy, which is electrically non-conductive. The crystal was also mounted to the
TEC using thermally conductive epoxy. The back side of the TEC was glued to the heat
sink using the same thermally conductive epoxy to ensure thermal conductivity. A T-type
thermocouple was epoxied to the upper side corner of the TEC and was used to measure the
temperature of the back of the crystal. A deuterated target of deuterated polystyrene (DPS)
was deposited onto the surface of the target crystal in preparation for the neutron production
experiments.

1Part no. MCPE-071-10-13, from uk.farnell.com.
2Part no. 15864, Ernst R. Fullam, Inc., http:www.fullam.com (Dec 2013) as by Gillich 2009
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Fig. 2.5 Pyroelectrics experimental set-up for DII, February 2014.

Fig. 2.6 Photograph of the DII pyroelectrics, February 2014.
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2.3 Target preparation

The target material was deuterated polystyrene, deposited in a ∼ 45 µm layer on the surface
of the target crystal. To prepare the target we heated 100 mg of DPS in a flat-bottomed
flask containing 75 mL of xylene. The mixture was heated to around 100 ◦C, just below the
boiling point of xylene (at around 135 ◦C). Within half an hour the DPS was fully dissolved.
At this point, the xylene was gently boiled to thicken the solution. A pipette was then used to
transfer three drops of the solution to the surface of the target crystal. The surface tension
was enough to keep the solution from running down the sides of the crystal. The coated
crystal was left in a fume cupboard to dry through evaporation of the xylene.

2.4 Vacuum chamber

The vacuum chamber houses the pyroelectric neutron generator and is an integral part of the
system. The standard commercially available chambers are generally made of stainless steel
and are too large in size for the nuclear reactor application. We designed and manufactured
a custom-built chamber for DII using on-site expertise at the Nuclear Faculty, Defence
Academy and HMS Sultan.

The most common materials used in the manufacture of vacuum chambers are austenitic
steels. However, this material would not be suitable for the nuclear reactor application, due
to the reactor neutron flux. The high activation of stainless steels by neutrons rules them
out as suitable materials for this application. For radioactive backgrounds, aluminium with
its substantially lower neutron absorption cross section is favoured. Aluminium is a good
choice for thermal conductivity and allows the vacuum chamber to act as a heat sink for the
TECs. Aluminium has a sufficiently high maximum service temperature of 200 ◦C, and may
be used up to this value without significant property degradation.

A rectangular chamber, with a box lid configuration, was fabricated from welded thin
plate (10 mm thick) aluminium material (150 mm by 150 mm by 300 mm (W H L)). We
designed the chamber to be rigid enough to withstand the differential pressure, with operating
pressure of around 1-10 mTorr inside and atmospheric pressure acting externally. The gasket
sealing the lid was made from Viton, which is a standard material used in vacuum systems.
Viton has suitability over a wide temperature range of -20 ◦C to 200 ◦C. One end-plate was
adapted with ports for: entry of deuterium gas, attachment of the vacuum pump line, pressure
gauge and electrical feed-through for thermocouple output and power to heaters, see Fig.
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2.7. The removable lid facilitated easy access to the pyroelectric crystals and TECs mounted
inside the chamber.

Fig. 2.7 End-plate attachments of DII, February 2014.

After manufacture, all chamber surfaces and components were thoroughly cleaned with a
mild detergent and wiped down with acetone to remove gross deposits of cutting oils left
by machining. Activation of material by such particles would hamper the functioning of the
equipment and produce radioactive components that are difficult to handle.

Leak tightness of a vacuum chamber is essential; however, this is difficult given that
the weldability of aluminium is poor. Gas can easily flow through a wall of the vessel via
any imperfections such as holes, cracks or bad seals. For a vacuum chamber, leaks from
atmosphere into the evacuated chamber are of concern. The welds between the aluminium
plates on DII were coated with TorrSeal to improve their integrity. The chamber was leak
tested using a water immersion bubble test. This method consisted of pressurising the system
with a high pressure of nitrogen, then the chamber was isolated from the gas supply and its
internal pressure monitored over time. A leak detection liquid was applied along the welds
of the plates and flanges to identify any leak sites. The chamber was evacuated to around 3
mTorr, stabilised, isolated and then the increase in pressure was measured; over 24 hours
the pressure increased to 100 mTorr and stabilised. This pressure would be too high for the
pyroelectric system application, and the vacuum pumps would have to remain on during the
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experiments in order to maintain a high vacuum.

During DI experiments the deuterium gas cylinder was connected to the system via a
flexible plastic hose and clips. The connection point for the gas was remote from the chamber
and the proximity of the pump could have prevented the gas from reaching the chamber; this
may have compromised the experiments in February 2013. During testing it was found that
this was an air ingress leak point to the system. The DII system was designed with improved
gas connections and used a high integrity refrigeration hose with a Schrader valve, two ball
valves and a needle valve connection: this resulted in better leak integrity and improved
manual control over the gas flow.

2.5 Vacuum system

A Leybold TURBOVAC 503 portable, high-vacuum pump was used to achieve the necessary
vacuum environment for the experiments. This turbomolecular pump is designed to pump
vacuum chambers down to pressures in the high-vacuum range. The aluminium DN 16
vacuum hose running to the chamber is connected to the pump using an ISO-K 40 to 16
reducer. The TURBOVAC was operated and controlled with the corresponding Leybold
NT 10 (200-240 V) TURBOTRONIK frequency converter4 using a 1 m connecting cable.
A dual-stage, oil-sealed roughing pump was connected to the system via the forevacuum
line and used to reduce the pressure in the vacuum chamber to below 5 mTorr before the
TURBOVAC pump was turned on.

Experiments were conducted on the bench using the DII chamber to determine how well
the vacuum held following pump-down and system isolation. These experiments were able
to determine that the pressure rise over 24 hours became significant (above 100 mTorr). It
is possible that atmospheric gases were permeating the gasket or other seals in the vacuum
chamber, and it was also likely that the epoxies and crystal assemblies were out-gassing into
the system. Out-gassing is the liberation of gases and vapours from the walls of a vacuum
chamber or other components on the inside of a vacuum system. This quantity of gas is
also characterized by the increase in pressure resulting from the introduction of gases into
this volume. The gas molecules bonded to the surface of the materials have a large effect
at pressures in the 10−3 mbar range (which is equivalent to 1 mTorr). Degassing of glue
joints can be a problem, even for high-performance epoxies which are commonly used to

3From www.leyboldproducts.oerlikon.com, Part number 85400
4From www.leyboldproducts.oerlikon.com, Part number 89500
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Fig. 2.8 Photograph of the DII vacuum system on the bench, February 2014.

repair leaks, such as the TorrSeal used on the DII chamber welds. This out-gassing limits
the lowest achievable pressure in the vacuum chamber, and considerably extends the time
for high and ultra-high vacuum to be reached. Similar issues in maintaining the required
vacuum were experienced by RPI [25]. During experiments on DII the chamber took 3 hours
to pump down to 6 mTorr. Evacuation to 100 mTorr was quick (taking around 30 mins), then
it took 90 minutes to reduce to the 6 mTorr limit.

2.6 Data acquisition and control

A LabJack U95 data acquisition device was used for data acquisition and control for DI;
it was relatively easy to use and low cost. An electronics box was built to house the TEC
10 V power supplies and relays. This was connected on its input port to the LabJack for a
control signal and on the output port to the neutron generator via the electrical feed-through
as shown in Figs. 2.9 and 2.10.

When developing the DII system, the decision was made to upgrade to the National
Instruments cDAQ, see Fig. 2.11. With this new data acquisition platform, a direct interface
with any sensor can easily be controlled via LabVIEW or MATLAB, which is advantageous
as the control system modelling and control design is carried out using MATLAB software.
A LabVIEW program was written to provide two modes of control: ramp and soak. The

5From www.LabJack.com, Ue9
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Fig. 2.9 Photograph of the DI data acquisition hardware, February 2012.

Fig. 2.10 Photograph of the electronics hardware, February 2014.

program manages the temperature set point and generates a signal to the relays based on an
on/off control algorithm. The program interfaces with the cDAQ and its thermocouple and
digital output modules. The graphical user interface generated is shown in Fig. 2.12.

Figure 2.14 shows the LabVIEW block diagram for the temperature while loop; the
target crystal diagram is shown for clarity, some sections of the wiring shown are duplicated
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Fig. 2.11 Photograph of the National Instruments cDAQ.

Fig. 2.12 Screen shot of the LabVIEW program graphical user interface.

for independent control of the tip crystal temperature. The program receives a user input
temperature profile and raises or lowers the current to the thermoelectric cooler based on
whether the crystal needs to be heated or cooled to match the command profile. Using this
program, the thermal cycles were reproducible. Part of the program establishes communica-
tion between the computer and the cDAQ modules via a device driver. The program takes
the set temperature and the desired time to get to that temperature and then calculates the
required ramp rate. It uses this ramp rate and a measurement of current time to determine
a set-point value. The program samples the current temperature and displays it to the front
panel. It then calculates the difference between the set-point and the current temperature
and a PID controller with pulse width modulation determines the required on/off state of the
heaters. Figure 2.13 shows the LabView block diagram for the pressure loop.
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At this stage, before we had carried out our model simulation and controller design,
the TECs were controlled using on-off control. The DII hardware was redesigned to more
precisely control the thermal cycle for each crystal independently. We noticed that with
on-off control the TECs would not last long. There were lots of “hard” oscillations caused by
this program; it is believed that this caused damage to the TEC heaters, which compromised
the February 2014 DII experiments. These could now be removed through the design of an
appropriate PI controller.

Fig. 2.13 Screen shot of the LabVIEW pressure loop.
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Fig. 2.14 Screen shot of the LabVIEW temperature loop (showing target crystal only for
clarity).
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2.7 X-ray experiments

X-ray fluorescence occurs when an electron bound to a target atom is expelled by incident
x-ray or electron radiation. When an outer electron falls in energy to fill the empty shell,
radiation is emitted in the form of x-rays. Every element has a characteristic set of electron
energy levels, so the x-rays emitted as the electrons move between levels are specific to
the target atom. The beam electrons eject inner-shell electrons that are then replaced by
outer-shell electrons. If the voltage is too low, then the beam energy may not be capable of
generating the characteristic radiation.

Since the acceleration potential changes as the crystal heats and cools, the x-ray emission
is cyclical. With the +z surface of the tip crystal facing the target crystal, emission is observed
during heating. As the heating cycle progresses, the pyroelectric effect causes an increase
in the acceleration potential until the charge emitted as electrons balances with the charge
generated due to the change in polarisation. After this point, the acceleration potential will
decrease as the excess charge is emitted more rapidly than it can be replenished.

We purchased an Amptek X-123 detector for use in the DII experiments. The Amptek
X-123 (see Fig. 2.15) is a complete x-ray detector system housed in an aluminium box. It
combines a XR100CR detector and pre-amplifier, digital pulse processor and multichannel
analyser (MCA), and power supply into a single package. Two connections were required:
power (+5 VDC) and USB to the computer. To accurately calibrate the x-ray spectrum, we
used two known sources: a copper source (at 8.9 keV), and an americium-241 source (at 14
keV).

Fig. 2.15 Photograph of the X-ray Detector, X-123 from Amptek [1].

Following the pump-down sequence, x-ray studies were completed to determine if the
system could attain the 100 to 200 keV end-point energies for ionisation and fusion. All
experiments were carried out at the CTU, in Prague. The crystals were given a 5 minute
ramp to 90 ◦C, a 5 minute soak time at that temperature and then allowed to cool naturally.
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The x-ray yield data is presented in Fig. 2.16, as the number of x-ray counts plotted against
energy, and is indicative of the ion current impacting the target.

The resulting x-ray output consists of a continuous bremsstrahlung spectrum falling off
to zero at the 65 keV end-point voltage. Characteristic x-ray emission lines can also be seen
superimposed on the continuous bremsstrahlung spectrum. The x-ray results from the DII
experiments can be compared with those of RPI [45], see Fig. 2.17. An end-point energy
was observed to be about 200 keV and the k-shell x-ray lines for tantalum can be seen.

Fig. 2.16 X-ray emission from experiment using DII, 2014 - test 19.

Changing the heating rate was seen to have a detrimental effect on the x-ray production.
The drop in production when rapid heating rates were applied may have been due to the poor
thermal conductivity of the crystal, which means that the crystal surface facing the detector
may not have experienced the same thermal cycle as the surface contacting the TEC. During
slow thermal cycles, the crystal may have had time to re-mask its polarization through the
accumulation of free charges from the gas, and by gradual electrical conduction through the
crystal. Increasing gas pressure was seen to have a great effect on x-ray intensity.
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Fig. 2.17 X-ray energy (A) and yield (B) for one of RPI’s successful neutron experiments
[45].

The results show that the DII system provided an unstable environment, and reproducibil-
ity in energy and x-ray yield was not possible. As end-point energies of ∼ 65 keV were
obtained, this was not deemed high enough for successful neutron experimentation. However,
the improved deuterium gas flow and pressure control was tested. The D2 pressure typically
obtained was 10-20 mTorr and it was deemed that the quantity of gas permeating out of the
system may have become equal to the amount of D2 in the system. Under neutron experiment
conditions this would have reduced the emission from the sealed system.

Following the DI and DII experiments we identified that modelling the system in order
to understand and accurately predict the performance was the priority task. Following our
modelling and simulation, it is recommended that the experimental program is improved to
further verify the model.
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A future device (DIII) would be specifically targeted at on-the-bench testing and designed
to validate the pyroelectric neutron generator model. The device would be based around
the Kurt Lesker 304L stainless steel CF cube for UHV systems - which has been tested
and proven to sustain a suitable vacuum. It is the intention that testing, and development
of the device will be begin at the Nuclear Department in late 2020 - early 2021, following
appropriate financial approval, and risk assessments. The equipment intended for future
purchase and its connection to the CF cube is shown in Fig. 2.18.

The main advantage of using an off-the-shelf cube as a vacuum chamber is the many
gauges, instruments, accessories and feedthroughs that are available. The LiTaO3 crystals
and TECs will be epoxied on to two DN35CF-KF25 reducers on opposite sides of the
cube. There will be connections to the existing pressure gauge and vacuum system via
appropriate reducers. The multi-pin instrumentation feedthrough will provide connections to
data acquisition and control. The top port can be fitted with a glass viewport for observing
the experiments and quick identification of some of the more common TEC failures we
experienced with the DI and DII devices.

Although a repeatable neutron yield has yet to be detected, both sets of experiments
produced x-rays. The total charge produced by a pyroelectric crystal was observed during the
experiments to be independent of the length of the heating or cooling phase; it depended only
on the total change in temperature, and the pyroelectric coefficient. This is true if the crystal
temperature change takes place over a long enough time for conduction of the heat through
the crystal to allow the heating or cooling of the exposed crystal surface. The temperature
cycle must also be fast enough such that relaxation current and screening effects remain
negligible.
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Fig. 2.18 DIII device - schematic of the proposed hardware. Individual images adapted from
[22].





Chapter 3

System dynamic model of a
thermoelectric cooler

3.1 Introduction

A thermoelectric cooler is a low-power energy conversion device with no moving parts
and it has the potential for good controllability; it is therefore the best-possible technical
solution to the problem of pyroelectric system actuation. Previous research groups have used
thermoelectric coolers to heat pyroelectric crystals and the results of such experiments are
readily available in publications. The vital missing stage from these pieces of research is the
modelling and simulation of the thermoelectric cooler, and the pyroelectric system dynamics.
Another advantage of the thermoelectric cooler, for our application, is the ability to heat or
cool simply by switching the direction of the applied current flow. In fact, with the appropriate
control the device could be used to cool the crystal to below ambient temperature; some-
thing which has been only been done using nitrogen cooling in previous pyroelectric research.

In the control of the thermal aspects of our pyroelectric neutron generator we will have
the requirement to establish control over the incremental temperature of the cold-side to
which the thermal load (our crystal) is connected; this temperature is known as the controlled
variable. The controlling variable will be the incremental current, since this can be varied by
electrical means.

In this chapter we begin by introducing the ideal governing equations for the thermo-
electric cooler. Using these, a state-space model is developed specifically for the purpose
of controller design and applicability to the pyroelectric system actuation. The validity of
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the model with respect to this purpose is then determined. As part of the verification and
validation, the outputs of the derived thermoelectric cooler model are compared to another
simulation model that was developed by Huang in 2000, which itself has been validated
against experimental data [50]. Finally, a parameter variability-sensitivity analysis is used to
provide sufficient confidence in our model performance, and the conclusion is drawn that the
model can be considered valid for its intended application.

It is difficult to obtain an exact analysis of the dynamic behaviour of thermoelectric
coolers. The devices are most accurately described by partial differential equations that
contain nonlinear terms and that are subject to boundary conditions that contain product-type
nonlinearities [47]. In this research we require to control a thermoelectric cooler for use as
the actuator in a pyroelectric system; hence sufficiently modelling the dynamic behaviour of
such devices will contribute significant information to our task. Information in a form that is
useful for control purposes can be obtained by means of small-signal analysis, which permits
the development of transfer function models which can be used in the frequency response
analysis or calculation of the device response in the time domain.

Sufficient background material in control engineering for the work to follow will be
presented as it is required in this thesis. For further references the reader is referred to the
control engineering texts listed in the References section [30, 34].

3.2 Thermoelectric cooler preliminaries

In order to maintain control of the thermoelectric cooler it is first required to understand the
dynamic behaviour of the device. There are three closely-related, predominant thermoelectric
effects: the Seebeck effect; the Peltier effect; and the Thomson effect, which are well
described in the original 1960s modelling work of Gray [47];

1. The Seebeck effect. In 1821, Seebeck discovered that an electric current could be
produced in a closed circuit composed of two different conductors if one junction of
the dissimilar metals was maintained at a temperature different from the other junction,
and the effect can be expressed as

α(T ) =
dV
dT

(3.1)

where α is the Seebeck coefficient of thermoelectric material [V/K];
V is the voltage [V];
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T is temperature [K].

2. The Peltier effect. In 1834, Peltier observed that an amount of heat Q was either
absorbed or evolved at a junction of two dissimilar metals when an electric current I
was passed through the junction.

Q = ΠI (3.2)

where Π is the Peltier coefficient.

3. The Thomson effect. In 1857, Thomson showed the direct relationship between the
Seebeck and Peltier effects; the Peltier coefficient at a junction is equal to the Seebeck
coefficient multiplied by the operating junction temperature, given by

Π = αT (3.3)

where T is the temperature of the junction. Thomson also predicted what came to be
known as the Thomson effect, that heat Q is absorbed or evolved along the length of
a material rod whose ends are at different temperatures. This heat was shown to be
proportional to the flow of current and to the temperature gradient along the rod. The
proportionality factor τ is known as the Thomson coefficient. Practically the thermo-
electric behaviour of a device is adequately described using only one thermoelectric
parameter, the Seebeck coefficient α . The Thomson effect is comparatively small, and
so it is generally neglected [50].

There are two other main heat transfer factors that we must consider in addition to the
Seebeck effect when we aim to sufficiently model the thermoelectric cooler dynamics:

1. Fourier’s heat conduction. The heat conduction in two thermoelectric cooler semi-
conductor legs between the source and the sink. The thermal flow down these two legs
is given by Fourier’s heat conduction law:

dQ
dt

=−kA
dT
dx

= kA
TH −TL

L
(3.4)

where k is the mean thermal conductivity of the p-n pair [W/m-K];
A is the total cross-sectional area of the thermoelectric material [m2];
TL is the temperature of the cold-side of the thermoelectric module [K];
TH is the temperature of the hot-side of the thermoelectric module [K];
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L is the length of the thermoelectric elements [m]; and

2. Joule heating. Ohmic heating occurs in both of the thermoelectric cooler legs because
of the presence of electrical resistance. The heat Q produced in each leg is given by
Joule heating:

Q =
ρLI2

A
(3.5)

where ρ is the average electrical resistivity of the semiconductor materials [Ω·m], and
I is the applied electrical current [A]. Approximately half of the resistance-produced
heat in each of the two legs flows towards the source, and half towards the sink.

Gray used small-signal analysis to theoretically derive a dynamic model of a thermoelec-
tric module [47]. Bywaters and Blum worked out their control equations for a thermoelectric
module based on the assumption that the temperature distribution is linear [18]. We will use
the same assumption and follow a similar process for obtaining the linearised thermoelectric
cooler model as these previous researchers.

3.3 Governing equations for the thermoelectric cooler model

First, the temperature distribution across the thermoelectric cooler (TEC) must be modelled.
With reference to Fig. 3.1, during a cooling cycle, the heat load QL is absorbed at the cooling-
load heat exchanger and conducted to the cold-end plate of the thermoelectric module; it is
then pumped to the hot-side of the module and into the heat sink. In the development of the
governing equations for the system dynamic model of the TEC, we can assume that [18]:

• the temperature distributions inside the cold-end plate and the cooling-load heat
exchanger are uniform, and

• the temperature distribution in the TEC is linear and the average temperature can be
represented as T = TH−TL

2 , and

• the parameters of the device are independent of temperature.

The governing describing equation for the energy balance to the cold-end plate and the
cooling-load can now be written as

(MLCL +MCCC)
dTL

dt
= QL +

kA
L
(TH −TL)−αITL +

1
2

ρL
A

I2 (3.6)
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Fig. 3.1 Schematic diagram of the thermoelectric cooler and temperature distribution.

where ML is the mass of the cooling-load [kg],
CL is the specific heat capacity of the cooling-load [J/kg-K],
MC is the mass of the cold-end plate of the thermoelectric module [kg],
CC is the specific heat capacity of the cold-end plate of the thermoelectric module [J/kg-K],
TL is the temperature of the cold-side of the thermoelectric module [K],
TH is the temperature of the hot-side of the thermoelectric module [K],
I is the applied current to the thermoelectric module [A],
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α is the Seebeck coefficient of the thermoelectric material [V/K],
k is the mean thermal conductivity of the p-n pair [W/m-K],
A is the total cross-sectional area of the thermoelectric material [m2],
ρ is the mean electrical resistivity of the thermoelectric material [Ω-m] and
L is the length of the thermoelectric elements [m].

The energy balance to the heat sink and the hot-side plate can be written as

(MFCF +MHCH)
dTH

dt
= αITH − kA

L
(TH −TL)+

1
2

ρL
A

I2 −hAF(TH −Ta) (3.7)

where MF is the mass of the heat-sink [kg],
CF is the specific heat capacity of the heat-sink [J/kg-K],
Ta is the ambient temperature [K],
h is the convective heat transfer coefficient of the heat sink [Wm−2K−1], and
AF is the total heat transfer surface area of the heat sink [m2].

3.3.1 Linearisation of the governing equations

Control design methods are much easier for linear than for nonlinear models; however, the
thermoelectric heat transfer process is nonlinear. Therefore, we now need to find a linear
model that approximates the nonlinear one.

Linearisation of the TEC governing equations

Lyapunov proved, if a small-signal linear model is valid near an equilibrium and is stable,
then there is a region containing the equilibrium within which the nonlinear system is stable
[9, 10]. So, we can safely make a linear model and design a linear control for it such that, at
least in the neighbourhood of the equilibrium, our design will be stable. Since the role of
feedback control is to maintain the process variables near equilibrium, small-signal linear
models are a common starting point for control design. Using a small-perturbation analysis
a linearised equation set for a typical TEC can be formed. The variables are considered to
be the summation of a steady-state value (denoted by X̄) and a small change (denoted by X̃)
about that operating point, i.e.
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TL(t) = T̄L + T̃L(t)

TH(t) = T̄H + T̃H(t)

Ta(t) = T̄a + T̃a(t)

QL(t) = Q̄L + Q̃L(t)

I(t) = Ī + Ĩ(t)

(3.8)

Equation set 3.8 can be substituted into Eqs. 3.6 and 3.7. Taking constant properties for
k, ρ , CL, CC, CF , CH and α , with the preceding considerations, the following equations, Eqs.
3.9 and 3.10, may be realised.

(MLCL +MCCC)(
˙̄TL +

˙̃TL) =(Q̄L + Q̃L)+
kA
L
(T̄H + T̃H − T̄L − T̃L)−α(Ī + Ĩ)(T̄L + T̃L)

+
1
2

ρL
A

(Ī + Ĩ)(Ī + Ĩ)

(3.9)

(MFCF +MHCH)( ˙̄TH + ˙̃TH) =α(Ī + Ĩ)(T̄H + T̃H)−
kA
L
(T̄H + T̃H − T̄L − T̃L)

+
1
2

ρL
A

(Ī + Ĩ)(Ī + Ĩ)−hAF(T̄H + T̃H − T̄a − T̃a)

(3.10)

Eliminating steady-state and high-order terms, we obtain the following

(MLCL +MCCC)
˙̃TL = Q̃L +

kA
L
(T̃H − T̃L)−α ĪT̃L −α ĨT̄L +

ρL
A

ĪĨ (3.11)

and

(MFCF +MHCH)
˙̃TH =−kA

L
(T̃H − T̃L)+α ĪT̃H +α ĨT̄H +

ρL
A

ĪĨ −hAF(T̃H − T̃a) (3.12)

Now, for a TEC performing at a constant cooling load, we have Q̃L = 0, and for a fixed
ambient condition, we can say that T̃a = 0. Making these substitutions yields the linear set of
differential governing equations that we require for our analysis of the TEC dynamics, Eqs.
3.13 and 3.14.

(MLCL +MCCC)
˙̃TL =

kA
L
(T̃H − T̃L)−α ĪT̃L −α ĨT̄L +

ρL
A

ĪĨ (3.13)
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(MFCF +MHCH)
˙̃TH =−kA

L
(T̃H − T̃L)+α ĪT̃H +α ĨT̄H +

ρL
A

ĪĨ −hAF T̃H (3.14)

3.4 The TEC Model time constants

The linear time-invariant system of Eqs. 3.13 and 3.14 may be represented in transfer function
form. Considering first the equation for the cold-side, Eq. 3.13, by multiplying out all terms,
we obtain the following:

MCLC
˙̃TL =

kA
L

T̃H − kA
L

T̃L −α ĪT̃L −α ĨT̄L +
ρL
A

ĪĨ (3.15)

where, for convenience, we have made the substitution MCLC = (MLCL +MCCC). Then,
collecting like terms, we have

MCLC
˙̃TL +

(
kA
L

+α Ī
)

T̃L =
kA
L

T̃H +

(
ρL
A

Ī −αT̄L

)
Ĩ (3.16)

Putting into standard form, we have the following:

MCLC
kA
L +α Ī

˙̃TL + T̃L =

(
kA
L

kA
L +α Ī

)
T̃H +

(
ρL
A Ī −αT̄L
kA
L +α Ī

)
Ĩ (3.17)

In this standard form, we can see that the time constant of the cold-side of the system (i.e.
the time when the response is 1/e times the initial value, often denoted by the symbol τ) is

τL =
MCLC

kA
L +α Ī

(3.18)

The time constant shows us that the operating point chosen for the applied current Ī
affects the rate at which the system will respond to a forcing function. Eq. 3.18 also indicates
that the materials and geometry of the whole system are important factors in the rate of heat
transfer on the cold-side.

Next we can take the hot-side equation as given by Eq. 3.14 and multiply out all terms,
to obtain the following:

MCFH
˙̃TH =−kA

L
T̃H +

kA
L

T̃L +α ĪT̃H +α ĨT̄H +
ρL
A

ĪĨ (3.19)

where we make a similar substitution as previously done with the cold-side; MCFH =

MFCF +MHCH . Then, collecting like terms, we have
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MCFH
˙̃TH +

(
hAF +

kA
L

−α Ī
)

T̃H =
kA
L

T̃L +

(
αT̄H +

ρL
A

Ī
)

Ĩ (3.20)

Putting into standard form, we have the following:

(
MCFH

hAF + kA
L −α Ī

)
˙̃TH + T̃H =

(
kA
L

hAF + kA
L −α Ī

)
T̃L +

(
αT̄H + ρL

A Ī

hAF + kA
L −α Ī

)
Ĩ (3.21)

The time constant of the hot-side can be seen from Eq.3.21 to be

τH =
MCFH

hAF + kA
L −α Ī

(3.22)

As in the case for the cold-side, the hot-side time constant is dependent on the operating
point value of the applied current, Ī, and on the materials and geometry of the system.

3.5 The TEC Model state-variable representation

The linear time-invariant system of Eqs. 3.13 and 3.14 may be represented in the more
compact, state-variable form as a set of first-order differential equations, expressed as vector-
matrix differential equations of the form

ẋ(t) = f [x(t),u(t), t] (3.23)

where x(t) is an n-dimensional state vector;
u(t) is an r-dimensional control vector;
f is the system function, and
t is time.

With consideration to the physical signals present in the thermoelectric system, an
appropriate state vector may be chosen as

x(t) = [ T̃L(t) T̃H(t) ]T (3.24)

First considering the cold-side representation in Eq.3.17, the state-variable form can be
written as
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˙̃TL =−

(
kA
L +α Ī
MCLC

)
T̃L +

(
kA
L

MCLC

)
T̃H +

(
ρL
A Ī −αT̄L

MCLC

)
Ĩ (3.25)

The state-variable form of the hot-side representation in Eq.3.21 can be similarly written
as

˙̃TH =

(
−
(
hAF + kA

L −α Ī
)

MCFH

)
T̃H +

(
kA
L

MCFH

)
T̃L +

(
αT̄H + ρL

A Ī
MCFH

)
Ĩ (3.26)

Then, identifying T̃L as x1, T̃H as x2, and Ĩ as u, the state-variable representation as an
equation set can be written as Eq. 3.27

ẋ1 =

(
−( kA

L +α Ī)
MCLC

)
x1 +

(
kA
L

MCLC

)
x2 +

(
ρL
A Ī−αT̄L
MCLC

)
u

ẋ2 =

(
kA
L

MCFH

)
x1 +

(
−(hAF+

kA
L −α Ī)

MCFH

)
x2 +

(
αT̄H+

ρL
A Ī

MCFH

)
u

(3.27)

For the real physical TEC system, these equations are nonlinear and time-varying. For
the linearised, stationary system model, the general expression for the system equations are
[99]

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

(3.28)

where A = n by n time-invariant system matrix
B = n by r control matrix
C = m by n output matrix
y = m-dimensional output vector

For the derived TEC model, the system matrix A can be written as

A =


(

−( kA
L +α Ī)

MCLC

) (
kA
L

MCLC

)
(

kA
L

MCFH

) (
−(hAF+

kA
L −α Ī)

MCFH

)
 (3.29)

and the control input matrix B can be written as
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B =


(

ρL
A Ī−αT̄L
MCLC

)
(

ρL
A Ī+αT̄H
MCFH

)
 (3.30)

while a suitable output vector y for the TEC system analysis is

y = [ T̃L T̃H ]T (3.31)

The system representation in state-space as given in Eqs. 3.29 and 3.30 will hence-
forth be referred to as the ‘TEC Model’ in this thesis.

3.6 Verification and validation of the TEC Model

We will be using the TEC Model derived in section 3.4 for the controller design in Chapter 5
and eventually as the actuator for the pyroelectric system in Chapter 6. Decisions will be
based on this model, so we are now concerned with whether the TEC Model and its results
are correct. This concern is addressed through model verification and validation in section 3.6.

Model verification is often defined as "ensuring that the computer program of the comput-
erized model and its implementation are correct" and is the definition adopted in this thesis.
Model validation is usually defined to mean "substantiation that a computerized model within
its domain of applicability possesses a satisfactory range of accuracy consistent with the
intended application of the model" and is the definition used in this thesis [84].

3.6.1 The Huang model of the TEC [50]

As part of our verification and validation, the outputs of the derived TEC Model will be
compared to another simulation model developed by Huang, which has been validated against
experimental data. In 1999 B.J. Huang and C.L. Duang published their work on the system
dynamic model and temperature control of a thermoelectric cooler [50]. The TEC Model
we developed in section 3.4 is for the analysis of a pair of thermoelectric elements. How-
ever, Huang’s model consists of many pairs of thermoelectric elements, and considers the
energy balance to the thermoelectric material, and while this makes it more mathematically
complex than required for our application, it should be a more accurate model against which
to verify the results of our TEC Model. Both models consider the effect of the thermal
masses connected at the cold- and hot-sides of the thermoelectric module and so can be
simulated to produce directly comparable outputs. In addition, Huang carried out a set of
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experiments to verify his system dynamic model of a thermoelectric cooler using the system
identification; we can also make use of these results to further experimentally verify our TEC
Model. Huang’s model has been successfully used by several groups in later work developing
various controllers for thermoelectric coolers [50, 73, 86].

The equations that follow in this section are those that have been developed by Huang
and Duang in their manuscript [50]. It is worth noting that we are taking the time to report
Huang’s equations in full here as they are required to support later discussions in this chapter
with reference to potential errors.

The governing describing equation for the energy balance to the cold-end plate and the
cooling-load is reported in [50] as

(MLCL +MCCC)
dTL

dt
= QL − kA

∂T (x, t)
∂x

|x=0 −αpnITL (3.32)

where αpn is the Seebeck coefficient of the thermoelectric material [V/K], and all the other
terms are as previously defined.

In [50] the energy balance to the thermoelectric material is reported in the following
relation

Cγ
∂T (x, t)

∂ t
= k

∂ 2T (x, t)
∂x2 − τ

A
I
∂T (x, t)

∂x
+

ρ

A2 I2 (3.33)

where γ is the mean density of the thermoelectric material [kgm−3] and,
τ is the Thomson coefficient [VK−1].

The energy balance to the heat sink and the hot-side plate is reported as

(MFCF +MHCH)
dTK

dt
= IαpnTH − kA

∂T (x, t)
∂ t

|x=L −hAF(TH −Ta) (3.34)

Linearisation is carried out around a steady-state value. The variables of the thermoelec-
tric cooler are written as the summation of a steady-state value and a perturbed quantity, as
in Eq. 3.8 with T (x, t) = T̄ (x)+ T̃ (x, t)

Using an approximate relation of the Seebeck coefficient according to a Taylor’s series
expansion, the following equations are reported:

k
∂ 2T̃
∂x2 − τ Ī

A
∂ T̃
∂x

+

[
2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
Ĩ =Cγ

∂ T̃
∂ t

(3.35)
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(MLCL +MCCC)
dT̃L

dt
= Q̃L(t)− kA

∂ T̃
∂x

|x=0 − (τ +αL)ĪT̃L −αLĨT̄L (3.36)

(MFCF +MHCH)
dT̃H

dt
= (τ +αH)ĪT̃H +αH ĨT̄H − kA

∂ T̃ (x, t)
∂x

|x=L −hAF(T̃H + T̃a) (3.37)

Following application of Laplace transforms to solve the thermoelectric PDE, the Huang
Model is reported as:

GI(s) =
N(s)
sD(s)

(3.38)

where

N(s) ={Akq [αLT̄L cosh(qL)−αH T̄H ]+αLT̄LEH sinh(qL)}s

+
Akqβ

Cγ
[EH (1− cosh(pL))−Akpsinh(pL)]

(3.39)

D(s) = AkqEL cosh(qL)+EHEL sinh(qL)+AkqEH cosh(pL)+A2k2 pqsinh(pL) (3.40)

p(s) =
τ Ī
A +

√
τ2 Ī2

A2 +4kCγs

2k

q(s) =
τ Ī
A −

√
τ2 Ī2

A2 +4kCγs

2k

(3.41)

EL(s) = (MLCL +MCCC)s+(τ +αL)Ī (3.42)

EH(s) = (MFCF +MHCH)s+hAF − (τ +αL)Ī (3.43)

β =

[
2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
(3.44)

A model reduction is then performed using the following approximations:
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αH = αL = αpn (3.45)

p(s) = q(s) = λ (s) =

√
Cγs

k
(3.46)

sinh(λL)≈ λL (3.47)

cosh(λL)≈ 1+
λ 2L2

2
(3.48)

The reduced model is then found to be

GI(s) =
T̃L

Ĩ
=−K

s
z +1[

s
p1
+1
][

s
p2
+1
] (3.49)

where

K =

{
Akαpn(T̄H − T̄L)+Lα2

pnĪT̄L

(
ρL2hAF

A +2ρLk
)

Ī + ρL2αpn
A Ī2 +LαpnhAF T̄L

}
AAFhk+LhAFαpnĪ −Lα2

pnĪ2 (3.50)

z =
AAFhk+LhAFαpnĪ −Lα2

pnĪ2{[1
2AαpnL2Cγ +Lαpn (MFCF +MHCH)

]
T̄L − ρL2

A (MFCF +MCCC) Ī
} (3.51)

p1,2 = apn ±
√

α2 −b2 (3.52)

It is noted here that in the equivalent of Eq. 3.52 in [50] the symbol α is used rather than
αpn. It is assumed that this is a typographical error.

a =

{
Ak(MFCF +MLCL +MCCC +MHCH)+LhAF(MLCL +MCCC)

+ACγL(Ak+ 1
2hAFL)+Lαpn(MFCF +MLCL)Ī

}
{

AL2Cγ (MFCF +MLCL +MCCC +MHCH)
+2L(MFCF +MHCH)(MLCL +MCCC)

} (3.53)

b =
AAFhk+LhAFαpnĪ −Lα2

pnĪ2{ 1
2AL2Cγ (MFCF +MLCL +MCCC +MHCH)

+L(MFCF +MHCH)(MLCL +MCCC)

} (3.54)
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The transfer function model GI(s) will be henceforth referred to as the ‘Huang
Model’ in this thesis.

The derived TEC Model, given by Eqs. 3.29 and 3.30 in section 3.4, was trans-
formed from a state-space representation to transfer function form. The resultant
TEC Model structure was identified to be the same as Eq. 3.49, i.e. both models con-
sist of two poles and one zero.

Simulation of the Huang Model

The next step is to simulate the Huang Model (Eqs. 3.32 to 3.54) in MATLAB in readiness
for comparison with our TEC Model and for the purpose of verification. Huang used the
values for a typical thermoelectric cooler that have been summarised in table 3.1. Table 3.2
is provided for the purpose of comparing the simulated Huang Model parameter values with
those reported and published in Fig. 3.2. The parameter values compared are the model gain
K, zero z, and the two poles p1 and p2, with reference to the common model GI(s) structure
given in Eq. 3.49. The model steady-state operating point values used for this comparison
are Ī = 1 A, T̄L = 273 K and T̄H = 273 K.

Comparison of the values shown in table 3.2 shows:

1. The values of the gains K are in good agreement.

2. The value of the zero z is not in agreement; however, it shows a similar order of
magnitude.

3. The values of the poles for the Huang Model are much larger than logically expected
for the type of thermal system. These values of poles indicate system time constants
of ∼ 7 ms, which is rather quick for a typical thermal system. It is known from our
initial experiments that TEC time constants are expected to be in the high tens to low
hundreds of seconds.

4. The values of the poles for the Huang Graph indicate system time constants of 83
seconds and 400 seconds; these are known to be more realistic values.

Here we can now report two potential mistakes in the published manuscript [50]:

1. The first error is with regard to the format of Eq. 3.49, which has been given in
zero-pole-gain format. The value of gain K plotted in Fig. 3.2 and calculated from Eq.
3.50 is given for the standard transfer function form.
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Parameter Symbol Value Units

Mean density of the thermoelectric material γ 200 kgm−3

Mean electrical resistivity of the thermoelectric mate-
rial

ρ 10−5 Ω-m

Total cross-sectional area of the thermoelectric mate-
rial

A 0.00145 m2

Seebeck coefficient of thermoelectric material αpn 0.02 VK−1

Mean thermal conductivity of the thermoelectric p-n
pair

k 1.5 Wm−1K−1

Length of the thermoelectric elements L 0.0025 m
Mass of the cold-end and hot-end plate of thermoelec-
tric module

MC = MH 0.05 kg

Specific heat capacity of the cold-end and hot-end
plate of thermoelectric module

CC =CH 500 Jkg−1K−1

Convective heat transfer coefficient of the heat sink h 10 Wm−2K−1

Mass of the heat sink MF 0.4 kg
Specific heat capacity of heat sink CF 850 Jkg−1K−1

Total heat transfer surface area of the heat sink AF 0.3 m2

Mass of the cooling-load heat exchanger ML 0.6 kg
Specific heat capacity of the cooling-load heat ex-
changer

CL 400 Jkg−1K−1

Table 3.1 Table summarising the TEC values used by Huang [50]

Model Gain K Zero z Pole 1 p1 Pole 2 p2

Huang Model 6.1358 0.0013 142.8971 142.8571
Huang Graph 6 0.008 0.0025 0.012

Table 3.2 Comparison of simulated parameter values for the Huang Model and Huang Graph

2. The second error is with regard to Eqs. 3.52, 3.53 and 3.54 calculating the values of
the poles, p1 and p2. Simulation of the system in MATLAB would indicate that these
equations likely calculate the inverse of the poles, i.e. the system time constants. It
is thought that the published values in Fig. 3.2 are correct values for the poles. More
analysis to support this claim will be carried out when comparing the values for our
TEC Model.

The corrected values are now compared in table 3.3. There are now two more problems
to be seen with the newly calculated parameter values:

1. The values for the Huang Model and Huang Graph are not exactly the same.
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Fig. 3.2 The reported graphed output of the Huang Model [50], referred to in this thesis as
the Huang Graph

2. The values for the Huang Model give p1 ≈ p2, but, as we have different thermal masses
on the hot- and cold-side, we expect different time constants in the system.

We are using the Huang Model for verification and validation, hence it was decided
that it would be prudent to check the correctness of Eqs. 3.35-3.54. We worked through
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the equations and section 3.6.2 reports the intermediate steps in the derivation of Huang’s
mathematics.

Model Gain K Zero Pole 1 Pole 2

Huang Model 0.22449 0.001339 0.006998 0.007
Huang Graph 0.022 0.008 0.012 0.0025

Table 3.3 Comparison of the TEC Model parameters with Huang Model and Huang Graph

3.6.2 Derivation of the Huang Model

This section is dedicated to deriving the structural form and numerical correctness of the
Huang Model [50], which has not been done in any of the later works that depend on it
[73, 86]. In the manuscript [50], it is stated that linearisation is carried out by substituting
Eqs. 3.8 into Eq. 3.33 to linearise the energy balance to the thermoelectric material. This
substitution yields

Cγ
∂ (T̄ + T̃ )

∂ t
= k

∂ 2(T̄ + T̃ )
∂x2 − τ

A
(Ī + Ĩ)

∂ (T̄ + T̃ )
∂x

+
ρ

A2 (Ī + Ĩ)2 (3.55)

which can be expanded to give

Cγ

[
∂ T̄
∂ t

+
∂ T̃
∂ t

]
= k
[

∂ 2T̄
∂x2 +

∂ 2T̃
∂x2

]
− τ

A

[
Ī
∂ T̄
∂x

+ Ī
∂ T̃
∂x

+ Ĩ
∂ T̄
∂x

+ Ĩ
∂ T̃
∂x

]
+

ρ

A2

[
Ī2 +2Ī Ĩ + Ĩ2] (3.56)

It is stated in [50] that a linear steady-state temperature distribution in the thermoelectric
material can be assumed, such that

dT̄ (x)
dx

=
(T̄H − T̄L)

L
(3.57)

It is also stated that we can ignore the high-order terms, and eliminate the steady-state
term, which leads to

k
∂ 2T̃
∂x2 − τ Ī

A
∂ T̃
∂x

+

[
2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
Ĩ =Cγ

∂ T̃
∂ t

(3.58)

Equation 3.58 agrees with Eq. 3.35.
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We now linearise Eq. 3.32, by the same method. It is stated in [50] that we can use the
approximate relation of the Seeback coefficient according to a Taylor’s series expansion:

αpn(T ) = αL +
τ

T̄L
T̃L = αH +

τ

T̄H
T̃H (3.59)

Substitution of Eqs. 3.8 and 3.59 into Eq. 3.32 yields

(MLCL +MCCC)
d(T̄L + T̃L(t))

dt
= (Q̄L + Q̃L(t))− kA

∂ (T̄ + ˜T (x)(x, t))
∂x

|x=0

− (Ī + Ĩ(t))
(

αL +
τ

T̄L
T̃L(t)

)
(T̄L + T̃L(t))

(3.60)

Expanding Eq. 3.60 yields

(MLCL +MCCC)
dT̄L

dt
+(MLCL +MCCC)

dT̃L

dt
=

Q̄L + Q̃L(t)− kA
∂ T̄
∂x

|x=0 − kA
∂ T̃
∂x

|x=0

−αLĪT̄L − τ ĪT̃L −αLĪT̃L −
τ

T̄L
ĪT̃L

2

−αLĨT̄L − τ ĨT̃L −αLĨT̃L −
τ

T̄L
ĨT̃L

2

(3.61)

Again, we can ignore the high-order terms and eliminate the steady-state terms to obtain

(MLCL +MCCC)
dT̃L

dt
= Q̃L(t)− kA

∂ T̃
∂x

|x=0 − τ ĪT̃L −αLĪT̃L −αLĨT̄L (3.62)

Collecting the ĪT̃L terms on the right-hand side yields

(MLCL +MCCC)
dT̃L

dt
= Q̃L(t)− kA

∂ T̃
∂x

|x=0 − (τ +αL)ĪT̃L −αLĨT̄L (3.63)

Equation 3.63 agrees with Eq. 3.36.

We now linearise Eq. 3.34, the energy balance to the hot-side of the thermoelectric cooler,
by the same method. Substitution of Eqs. 3.8 and 3.59 into Eq. 3.34 yields
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(MFCF +MHCH)
d(T̄H + T̃H)

dt
= (Ī + Ĩ)

(
αH +

τ

T̄H
T̃H

)
(T̄H + T̃H)

− kA
∂ (T̄ (x)+ T̃ (x, t))

∂x
|x=L

−hAF((T̄H + T̃H)− (T̄a + T̃a))

(3.64)

Expanding yields

(MFCF +MHCH)
dT̄H

dt
+(MFCF +MHCH)

dT̃H

dt
=

ĪT̄HαH + ĪτT̃H + ĪαH T̃H + Ī
τ

T̄H
T̃H

2

+αH ĨT̄H + τ ĨT̃H +αH ĨT̃H +
τ

T̄H
T̃H

2Ĩ

− kA
∂ T̄ (x)

∂x
|x=L − kA

∂ T̃ (x, t)
∂x

|x=L

−hAF T̄H −hAF T̃H +hAF T̄a +hAF T̃a

(3.65)

We may ignore the high-order terms and eliminate the steady-state terms to obtain

(MFCF +MHCH)
dT̃H

dt
= τ ĪT̃H +αH ĪT̃H +αH ĨT̄H − kA

∂ T̃ (x, t)
∂x

|x=L −hAF T̃H +hAF T̃a

(3.66)

Collecting the ĪT̃L terms and the hAF terms on the right-hand side yields

(MFCF +MHCH)
dT̃H

dt
= (τ +αH)ĪT̃H +αH ĨT̄H − kA

∂ T̃ (x, t)
∂x

|x=L −hAF(T̃H + T̃a) (3.67)

Equation 3.67 agrees with Eq. 3.37. We have derived Eqs. 3.35, 3.36 and 3.37, which are
reported in [50].

Next, the manuscript states that these equations can be solved by Laplace transforms
to obtain the transfer function of the perturbed cold-end temperature T̃L. This technique
results in a transformation of the PDE equation in space and time into an ordinary differential
equation in space, which can then be solved by conventional methods. When the Laplace
transforms of Eqs. 3.58, 3.63, and 3.67 are computed, the following set of equations results:



3.6 Verification and validation of the TEC Model 65

kT̃xx(x,s)−
τ Ī
A

T̃x(x,s)−CγsT (x,s) =
[

2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
Ĩ (3.68)

kAT̃x(0,s) = (MLCL +MCCC)sT̃L(x,s)+(αL + τ)ĪT̃L(x,s)+αLĨ(s)T̄L (3.69)

− kAT̃x(L,s) = (MFCF +MHCH)sT̃H(x,s)− (τ +αH)ĪT̃H +hAF T̃H(x,s)+αH Ĩ(s)T̄H

(3.70)

Where, in accordance with statements in [50], we can let the change in load Q̃L = 0 and the
change in ambient temperature T̃a = 0.

Equation 3.68 must be solved for the element temperature as a function of the space
coordinate x. After the boundary conditions are applied to determine the constants of integra-
tion, the temperature at x = 0 can be evaluated. The solution of the differential equation by
classical methods is straightforward [47]. The equation can be written in the following form:

kT̃xx(x,s)−
τ Ī
A

T̃x(x,s)−CγsT (x,s) =
[

2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
Ĩ (3.71)

The complete solution of this equation is:

T̃ (x,s) = A1(s)epx +B1(s)eqx +
β

sCγ
Ĩ(s) (3.72)

where A1 and B1 are constants, and p and q are the roots of Eq. 3.68. The following
definitions are made for convenience:

p(s) =
τ Ī
A +

√
τ2 Ī2

A2 +4kCγs

2k

q(s) =
τ Ī
A −

√
τ2 Ī2

A2 +4kCγs

2k

(3.73)

and

β =

[
2ρ Ī
A2 − τ(T̄H − T̄L)

AL

]
(3.74)
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Equation 3.74 agrees with Eq. 3.44.

At this stage, we note that we can make use of the same simplifications in notation that
are reported in Eqs. 3.42 and 3.43, where

EL(s) = (MLCL +MCCC)s+(τ +αL)Ī (3.75)

and

EH(s) = (MFCF +MHCH)s+hAF − (τ +αH)Ī (3.76)

The transfer function of interest is

GI(s) =
T̃L(s)

˜I(s)
(3.77)

where T̃L0(s) = 0 and T̃H=0.

Since s is treated as a constant in the solution of the differential equations, the constants
of integration A1(s) and B1(s), as well as the roots of the characteristic equation q and p are
functions of s. They are not functions of x [47]. The boundary conditions that determine the
two constants of integration are:

T̃ (L,s) = 0

EL(s)T̃L =−αLĨT̄L + kAT̃x(0,s)
(3.78)

When Eq. 3.72 is substituted into Eqs. 3.78 a set of two equations in two unknown
coefficients is obtained:

A1epL +B1eqL =− β

sCγ
Ĩ (3.79)

and

A1(EL + kAp)+B1(EL + kAq) =
(
−EL

β

sCγ
−αLT̄L

)
Ĩ (3.80)

Solving Eqs. 3.79 and 3.80 yields the coefficients A1 and B1. Since the Eq. 3.71 is
homogeneous for Ĩ = 0, each of the coefficients must have Ĩ as a factor. Once A1 and B1 are
known, the control function GI(s) can be evaluated from its definition [47]. That is
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GI(s) =
T̃L(s)
Ĩ(s)

=
A1

Ĩ
+

B1

Ĩ
+

β

sCγ
(3.81)

This procedure yields:

T̃L

Ĩ
=

(Aβkp−Aβkq−AβkpeLq +AβkqeLp −CTLαγseLp +CTLαγseLq)

Cγs(ELeLp −ELeLq −AkpeLq +AkqeLp)
(3.82)

Re-writing yields:

T̃L

Ĩ
=

Aβk
Cγ

(
p−q− peLq +qeLp)−TLα(eLp − eLq)s

s [EL(eLp − eLq)−Ak(peLq −qeLp)]
(3.83)

The transfer function can be expressed in hyperbolic functions, when we recognise that

cosh(nx) =
enx + e−nx

2

sinh(nx) =
enx − e−nx

2

(3.84)

then

e−nx = cosh(nx)− sinh(nx) (3.85)

The transfer function can now be expressed as

T̃L

Ĩ
=

N(s)
sD(s)

(3.86)

where

N(s) =(TLα[cosh(Lq)− cosh(Lp)+ sinh(Lq)− sinh(Lp)]s

+
Aβk
Cγ

[p−q+ pcosh(Lq)+qcosh(Lp)+qsinh(Lp)− psinh(Lq)]
(3.87)

and

D(s) =(EL(cosh(Lp)− cosh(Lq)+ sinh(Lp)− sinh(Lq))

−Akp(sinh(Lq)+Akpcosh(Lq))+Akq(sinh(Lp)+ cosh(Lp))
(3.88)
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Huang’s publication [50] references Gray [47] who, in 1960, conducted the first small-
signal analysis of a thermoelectric device. The device consisted of two elements of homoge-
neous thermoelectric semiconductors. From our studies of the presented Huang solutions, it
would appear that he has followed the analysis process of Gray. In our derivation we used
Huang’s equations and applied the appropriate boundary conditions that were identified by
Gray [47]. We consider that the A2 terms in Huang’s solution for D(s) may originate from
the definition of β , which incorporates a division through by A in [50]; however, in Gray’s
publication it does not.

There is good agreement between the general structure of our solution for one thermo-
electric element, Eq. 3.83, and the solution presented by Gray [47] for two elements.

3.6.3 Verification and validation using the Huang Model

Three models will be compared:

1. The TEC Model - the thermoelectric cooler derived by this author in section 3.4
simulated in MATLAB.

2. The Huang Model - model derived by Huang and simulated in MATLAB using the
published full equations [50].

3. The Huang Graph - model derived by Huang and simulated in MATLAB using the
graphed output of the Huang Model reported in [50].

Comparison of the TEC Model parameters

The model parameters of the derived TEC Model were compared to the Huang Model and
Huang Graph output values, as shown in table 3.4. Bolded entries indicate cells where the
published number has been corrected in accordance with the correction of errors previously
identified.

Model Gain Zero Pole 1 Pole 2

TEC Model 0.020604 0.008164 0.01151 0.002398
Huang Model 0.22449 0.001339 0.006998 0.007
Huang Graph 0.022 0.008 0.012 0.0025

Table 3.4 Comparison of TEC Model parameters with the Huang Model and Huang Graph
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The TEC Model parameters in table 3.4 show very good agreement with the Huang
Graph, providing confidence in the validity of the derived model, and further supporting our
suspicion of typographical mistakes in [50].

Comparison of the TEC Model frequency response

The frequency response of the Huang Model has also been published and is reprinted here
in Fig. 3.3a. Before we discuss our specific system, we will take the time to introduce the
basics of frequency response analysis that are required to understand the later discussions of
our system analysis.

Frequency response analysis

One of the most commonly used techniques to analyse and design control systems is based
upon the response of the system when subjected to a sinusoidal forcing function. Con-
sider a forcing function of sinωt applied to the system represented by the transfer function
H(s) = A(s)/B(s), where f0(t) will be the output.

The Laplace transform of the input is

Fi(s) =
ω0

s2 +ω2
0

(3.89)

while the output transform is

F0(s) =
ω0

s2 +ω2
0

A(s)
B(s)

(3.90)

We can take partial fractions, and expand into the form

F0(s) =
1
2 j

[
A( jω0)
B( jω0)

]
s− jω0

+

1
−2 j

[
A(− jω0)
B(− jω0)

]
s+ jω0

+
C(s)
B(s)

(3.91)

The first two terms of Eq.3.91 are complex conjugates, and the sum of the two is equal to
twice the real part of either one. Therefore,

F0(s) = Re

 A( jω0)
jB( jω0)

(s− jω0)

+ C(s)
B(s)

(3.92)

Now
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A( jω0)

B( jω0)
= H( jω0) = |H( jω0)|e jθ (3.93)

Thus

F0(s) = |H( jω0)|Re
[

e jθ

j(s− jω0)

]
+

C(s)
B(s)

(3.94)

where C(s)/B(s) is the transient or homogeneous solution to the system differential equation.
If the system is stable, the homogeneous solution is bounded and approaches zero over
increasing time. The steady-state component of the solutions is represented by the function

F0ss(s) = |H( jω)|Re
[

e jθ

j(s− jω0)

]
(3.95)

This corresponds to a steady-state solution

f0ss(t) = |H( jω0)|sin(ω0t +θ +π) (3.96)

So, we can see that the steady-state output response of a linear system to a unit sinusoidal
forcing function is a sine wave of the same frequency, only modified in amplitude and shifted
in phase. Therefore, the magnitude response of a linear system is defined as the magnitude
and phase angle of the transfer function with s replaced by jω . It also follows that, if
we experimentally determine the frequency response of a linear system, we can ascertain
its transfer function. In Chapter 6 we will use data from pyroelectric neutron generation
experiments to determine various transfer functions of the system. For the reader interested
in further information on the fundamentals of frequency response analysis there are many
good standard textbooks available on the subject [30, 34].

When analysing the frequency response given in Fig. 3.3a a potential mistake can be
identified. The error is with regard to the plotted phase change, which is from 80° at low
frequency to 40° at high frequency. The reported total phase change of 40° for this system
is not typical for the given structure of the Huang Model. For a system with two poles and
one zero, a total phase change of 90° would be expected. With the purpose of comparing the
TEC Model frequency response with that of the Huang Model, both were simulated using
MATLAB. The resultant frequency responses are shown together in Fig. 3.3.

Comparison between Fig. 3.3a and Fig. 3.3b shows:
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(a) Frequency response of the Huang Model [50].

(b) Frequency response of the TEC Model, Huang Model and Huang Graph for comparison.

Fig. 3.3 Comparison of frequency responses of the TEC Model, the Huang Model and the
Huang Graph.
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1. The gain of the simulated Huang Graph in Fig. 3.3b and that published in Fig. 3.3a are
in good agreement.

2. The phase is different for the two figures. The phase in Fig. 3.3b is closer to that
expected for the structure of all the models, lending support to the suspicion of error in
the frequency response in [50].

We can also see that the frequency response of the TEC Model and simulated
Huang Graph shown in Fig. 3.3b are the same. This adds further confidence to the
validity of the TEC Model.

The findings of this section lend support to the supposition that the errors are only
typographical mistakes and therefore should not have any negative effect on the logical
foundations, results or the conclusions of the publication.

3.6.4 Verification and validation using experimental data

The dynamic TEC Model derived theoretically in the present study may not be physically
accurate due to many assumptions; experimental verification is therefore required. Huang
performed an experimental verification of his model, and reported that the identified model
parameters coincided with the test results well [50]. Huang used the experimental set-up
shown in Fig. 3.4. We need to take account of the different cooling-load geometry in order to
successfully model the frequency response of Huang’s experiment. The new geometry results
in a cooling-load mass of ML = 0.1134 kg. The other parameters for Huang’s experiment
are the same as used for the model development, and these are summarised in table 3.1.
Huang’s experiment number 7 is chosen as this most closely replicates the type of conditions
that would be used in pyroelectric neutron generator systems. The specific operating point
values required to simulate the Huang Experiment are: I = 3 A; T̄L =−14.4+273 K; and
T̄H = 10+273 K. The resulting frequency responses are shown in Fig. 3.5.

System K z p1 p2
Huang Experiment 0.255 0.1319 0.0213 0.6600

TEC Model 0.075 (70) 0.1668 (-26) 0.01316 (38) 0.1725 (74)
Huang Model 0.5893 (-131) 0.003007 (98) 0.01761 (17) 0.01759 (97)

Table 3.5 Parameter values comparison for the Huang Experiment, Huang Model and TEC
Model; percentage error is given in brackets.
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Fig. 3.4 Experimental set-up for system identification of a thermoelectric cooler used by
Huang [50].
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Fig. 3.5 Frequency response comparison of the TEC Model, Huang Model and Huang
Experiment.
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Note that percentage error values in table 3.5 are calculated using:

experiment value−model value
experiment value

×100% (3.97)

Table 3.5 shows that the TEC Model has better agreement than Huang’s Model with the
experimental values determined by Huang through system identification methods. What is
also important to note is that, at the critical frequency for control (the gain crossover at 0 dB,
10−2 Hz), the TEC Model gain matches the experiment. This agreement around crossover is
important because modelling errors are most damaging near the gain crossover frequency.
However, we see that the Huang Model appears to be worse - this further lends support to the
suspicion that there are typographical errors in the reporting of these model equations.

3.7 Parameter variability-sensitivity analysis of the TEC
Model

The dynamic model of a TEC is shown to vary with different operating conditions [18, 50, 86].
A parameter variation study of the TEC Model may be conducted in MATLAB using a
sampling tuneable model. The selected operating point variations for this study are given by
Eq. 3.98; evaluating the system for all combinations of these values results in an array of
models. Each entry in the array is a state-space model that represents the system evaluated at
the corresponding operating points.

T̄L = [233 K 253 K 293 K 313 K 343 K]

T̄H = [233 K 253 K 293 K 313 K 343 K]

Ī = [0 A 1 A 2 A 3 A]
(3.98)

In the following figures:

1. m11 (blue plots on figure) is the response of the model output cold-side temperature,
T̃L, for perturbations in the input applied current, Ĩ;

2. m12 (red plots on figure) is the response of the model output hot-side temperature, T̃H ,
for perturbations in the input applied current, Ĩ.

3.7.1 The TEC Model step response

The step response plot shown in Fig. 3.6 demonstrates the effect of a step in applied current
on the cold- and hot-plate temperatures of the TEC Model. It can clearly be seen that applying
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a positive current causes the cold-end plate temperature TL (m11, blue plot) to decrease,
which allows heat to be absorbed from the cooling-load heat exchanger. The absorbed heat is
then pumped across the TEC to the hot-end plate, which sees a rise in temperature (m12, red
plot).

Fig. 3.6 TEC Model step response showing parameter variability-sensitivity.

3.7.2 The TEC Model frequency response

The resulting frequency response plots presented in Fig.3.7 show that:

1. The magnitude difference and phase difference are invariant for changes in current.
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2. The sensitivity of the model output in hot-side temperature is more greatly affected by
the changes in operating point.

3. The phase margin of m11 is −81.2° at the gain crossover 0.02 rad/s. The negative
gain margin indicates that stability will be lost by decreasing the gain for this particular
system geometry.

4. m12 will be closed-loop stable, as the frequency response does not pass through 0 dB,
−180°. The positive gain margins indicate that stability is lost by increasing the gain
for this particular system geometry.

3.7.3 The TEC Model phase-plane

We can use a phase-plane plot to further analyse the effects of the model operating point
variations on the system internal energy and stability. The system response may be interpreted
in terms of a trajectory in the state-space, giving additional physical meaning to the time
response of the system. The time response in the phase-plane is generated by starting at an
initial condition. The shape of the trajectory depends on the eigenvalues of the system.

The phase-plane portrait for system temperature changes, shown in Fig. 3.8, is character-
istic of a stable node, indicating that the eigenvalues of the thermal system are, as expected,
real and negative. Variation of the model current operating point Ī does not affect the stability
of this particular TEC system.

3.8 Summary

This chapter has introduced the thermoelectric cooler governing equations which have
been used to develop the TEC Model. The model performance has been successfully
verified through: simulation and comparison with Huang’s theoretical model, and with
an experimentally derived model. Along the way, potential typographical and modelling
errors have been identified and investigated, leading to greater understanding of the TEC
performance. A parameter-variation sensitivity analysis has been performed and stability
for one particular system geometry has been assessed. It has been shown that the resulting
system performance is very dependent on both the model operating point values and the
hot-side and cold-side thermal masses. The next step is to apply the TEC Model to the
specific geometry and environment appropriate to pyroelectric neutron generator systems
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Fig. 3.7 TEC Model frequency response showing parameter variability sensitivity.

with the aim of assessing stability and controllability under these conditions; this is the focus
of Chapter 4.
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Fig. 3.8 Phase-plane plot of thermoelectric cooler.





Chapter 4

Application of the TEC Model to a
pyroelectric system

4.1 Introduction

We will now consider the cooling-load and heat-sink geometry that is relevant to our py-
roelectric system application. We will model and simulate the experimental pyroelectric
system as investigated by the University of California, Los Angeles (UCLA) group in their
2005 publication in Nature [74]. In their system, the crystal acts as the cooling-load and the
vacuum chamber acts as the heat sink. In this arrangement, if we apply a positive current to
the system we will cool the crystal, and a negative current will heat the crystal.

First, we must declare the parameters of the pyroelectric system. We will use the same
TEC device as was previously modelled in Chapter 3. The parameters for this device are
presented in table 4.1; however, the heat-sink and cooling-load parameters will be changed
to appropriate UCLA pyroelectric system values.

4.2 Application of the TEC Model to the UCLA pyroelec-
tric system

The UCLA pyroelectric system under consideration consists of a cylindrical (diameter, 3.0
cm; height, 1.0 cm) z-cut LiTaO3 crystal with its negative axis attached to a thermoelectric
cooler. On the exposed crystal face, there is a copper disc attached (diameter, 2.5 cm; height,
0.5 mm), allowing charge to flow to a tungsten probe (shank diameter, 80 mm; tip radius,
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100 nm; length, 2.3 mm). This single-crystal pyroelectric system is shown in Fig. 1.7.

We can apply the TEC Model (developed in Chapter 3) to this type of pyroelectric system,
where the crystal plus the disk make up the cooling-load heat exchanger and the vacuum
chamber is the heat sink for the system. To enable suitable verification of our applied model,
we will use the single-crystal system arrangement used in the experiments of the UCLA
research group [74]. Some of the crystal material properties were not explicitly stated in the
UCLA research; these values were taken from the website of Roditi, who are a manufacturer
and distributor of photonic crystals [80].

Parameter Symbol Value Units
Crystal radius r 1.50e-02 m
Crystal depth z 1.00e-02 m
Pyroelectric coefficient γ -1.48e-04 C/m2 ·K
Crystal resistivity ρe 1.3e+12 Ω ·m
Crystal density ρ 7.47e+03 kg/m3

Crystal specific heat capacity c 4.24e+02 J/kg ·K
Crystal conductivity k 4.60e+00 W/m ·K
Crystal permittivity εr 5.30e+01 dimensionless ratio
Vacuum permittivity ε0 8.85e-12 F/m

Table 4.1 Single-crystal parameter values used in the UCLA experiments [74].

The vacuum chamber geometry is not explicitly stated in [74]; however, we can esti-
mate the geometry using the scale provided in the bottom left-hand corner of the published
Fig. 4.1 (inner diameter ≈ 7 cm; inner length ≈ 5.5 cm; with wall and end-plate thickness
≈ 1 cm). The vacuum chamber is stated to have “thick stainless steel walls”, i.e. a specific
heat capacity of 502 J/kg ·K; thermal conductivity of 14 W/m ·K; a density of 7999 kg/m3

and an emissivity of around 0.075 at 300 K. The calculated pyroelectric system values are
summarised in table 4.2.

Figure 4.2 shows a schematic of a typical single-crystal pyroelectric system of the type
we will investigate in this chapter. Figure 4.3 shows the heat transfer processes involved.
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Fig. 4.1 The UCLA experiment geometry (figure adapted from [74]).

Parameter Symbol Value Units

Mass of the heat sink (chamber) MF 1.860 kg
Specific heat capacity of heat sink (chamber) CF 502 Jkg−1K−1

Total heat transfer surface area of the heat sink (cham-
ber)

AF 0.0302 m2

Mass of the cooling-load heat exchanger (crystal) ML 0.0528 kg
Specific heat capacity of the cooling-load heat ex-
changer (crystal)

CL 424 Jkg−1K−1

Table 4.2 Pyroelectric system parameters.

4.2.1 Consideration of heat transfer via radiation

We shall now consider the radiative heat transfer between the crystal and the vacuum chamber
inner wall. The effects of heat transfer via radiation in the vacuum chamber can be modelled
using the Stefan-Boltzmann Law, which can be expressed as

q = εσAT 4 (4.1)
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Fig. 4.2 Schematic of the single-crystal pyroelectric system.

where the Stefan-Boltzmann Constant is σ = 5.6703×10−8 W/m2K4.

The net radiative heat transfer to a surface is the radiation arriving from other surfaces
minus the radiation emitted from the surface:

q = qabsorption −qemission (4.2)

Absorption depends on irradiation, which depends on emission from other surfaces
including those far away from the observed surface. The radiation exchange between
surfaces’ depends not only the radiative properties and temperatures, but also on the surfaces
geometry, orientation and the separation distance. To represent these dependencies, we use a
geometric function known as a view factor. The view factor is a dimensionless geometric
property that determines how much of a surface is visible to another surface, and can be
expressed as



4.2 Application of the TEC Model to the UCLA pyroelectric system 85

Fig. 4.3 Schematic diagram of the temperature distribution and heat transfer processes in the
single-crystal pyroelectric system.

Fi, j =
radiation leaving Ai and intercepted by A j

radiation leaving Ai
(4.3)

where Fi, j is the view factor, that is the fraction of energy emitted from surface i which
directly strikes surface j,
Ai is the cross sectional area of surface i, and
A j is the cross sectional area of surface j.

The view factor satisfies two relations.

1. The law of reciprocity:

AiFi, j = A jFj,i (4.4)
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2. The summation rule: The sum of all view factors must be one; the summation relation
for enclosure of N surfaces is

Σ
N
j=1Fi, j = 1 (4.5)

We can consider the vacuum chamber and the crystal as two concentric cylinders, and we
can make the following assumptions:

1. The surfaces under consideration form an enclosure and are separated by a non-
participating medium, in which there is no scattering, emission or absorption. A
vacuum is such a medium, as are monatomic and most diatomic gases at low and
moderate temperatures, which are temperatures before ionization and dissipation
occurs. In our system it is the electric field which causes the ionization of the deuterium
gas, not the high temperatures directly.

2. The enclosing surface of the vacuum chamber may be composed of complex geome-
tries; however, the enclosure may be idealized by inventing alternative simple surfaces
and by assuming the surfaces to be isothermal with constant (average) heat flux values
across them.

3. The small body (the crystal) can see only the large enclosing body (of the vacuum
chamber) and nothing else. Hence, all radiation leaving the small body will reach the
large body, i.e. the representative view factor is Fcrystal,chamber = 1.

4. Part of the radiant energy leaving the inside surface of the vacuum chamber will strike
the surface of the crystal; the rest will return to the chamber surface.

5. Heat transfer between the crystal and the chamber by convection is negligible.

To find the fraction of energy leaving the chamber surface which strikes the crystal
surface, we apply the law of reciprocity:

AchamberFchamber,crystal = AcrystalFcrystal,chamber (4.6)

where Acrystal is the area of the crystal, and Achamber is the area of the chamber.

Fchamber,crystal =
Acrystal

Achamber
Fcrystal,chamber =

Acrystal

Achamber
(4.7)

where, in accordance with our previous assumption that all radiation leaving the crystal will
reach the chamber, Fcrystal,chamber = 1.
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The inner surface area of the UCLA group’s experimental vacuum chamber is estimated
to be 0.0198 m2. The total surface area of the crystal is 0.0024 m2. By taking the total
surface area of the crystal, we knowingly overestimate the view factor to be

Fchamber,crystal =
Acrystal

Achamber
= 0.1190 (4.8)

By the conservation rule, for an N surface enclosure, ΣN
j=1Fi, j = 1. The majority of the

rest of the heat must therefore be returning to the chamber surface.

Let us consider the crystal (at the cooling-load temperature TL) and the chamber (at
the heat-sink temperature TH), both emitting radiation towards one another; both will emit
radiation according to the Stefan-Boltzmann Law, where the emissivity of the lithium tan-
talate is estimated to be 0.6 [28]. The variation of the total emitted radiative energy of the
cooling-load (i.e. the crystal) with temperature is shown in Fig. 4.4. It can be seen that
the maximum total energy for an experiment soak temperature of 100°C is around 0.35 W.
Figure 4.4 shows the total emitted radiative energy of the vacuum chamber heat sink, for the
same maximum temperature, is around 12 W. The vacuum chamber does not typically reach
this temperature during experiments, and, as can be seen from the dashed line plotted in Fig.
4.4, with the view factor, the proportion of this energy that would reach the crystal is much
less (around 2 W).

Fig. 4.4 Radiative heat transfer of the crystal (left) and chamber (right) as a function of
temperature.

Conduction is considered to be the dominant heat transfer process in the system. We can
check this assumption with an estimate of the total rate of conductive heat transfer
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qcond =
kA
L

∆T (4.9)

For a ∆T of 100°C the conduction across the crystal can be calculated to be around 32 W,
which confirms the dominance of conductive heat transfer in the system. We can now apply
the TEC Model to the UCLA pyroelectric system and analyse the thermal performance.

4.3 Dynamics response analysis

The time response of our control system consists of two parts:

1. The transient response: from the initial state to the final state.

2. The steady-state response: the manner in which the system output behaves as time
approaches infinity.

We are trying to predict the dynamic behaviour of the UCLA TEC system from a
knowledge of the system components. The most important characteristic of the dynamic
behaviour is the stability - whether the system is stable or unstable. The system will be said
to be in equilibrium if, in the absence of any disturbance or input, the output stays in the
same state. As our system is a linear time-invariant one, it will be considered to be stable if
the output eventually comes back to equilibrium when the system is subjected to an initial
condition. We will also be interested in the system’s relative stability and steady-state error.

4.3.1 Equilibrium points

The phase-plane plot in Fig. 4.5 shows the trajectories of the system given by the nonlinear
TEC equations (Eqs. 3.6 and 3.7). These equations have been solved for an ambient room
temperature of Ta = 298 K, and cooling-load of QL = 0. The trajectories near an equilibrium
point (represented by the black squares) should be approximated well by those of a linearised
system at that point. The circles show the starting points for the plotted trajectories. The
nature of the system response corresponding to various initial conditions (TH and TL) is
directly displayed on the phase-plane. We can see that alternative equilibrium points are
possible, and these are related to the choice of the important parameters (Ta, QL, TH , TL and
I) of the nonlinear equations.
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Fig. 4.5 Phase-plane plot for the nonlinear TEC

4.3.2 Transient response analysis

We will study the dynamic response of the pyroelectric thermal system in three domains:
Laplace transform (s-plane), the frequency response, and the state-space. The governing
equations for the TEC Model were developed in Chapter 3, and are repeated below for
convenience. Initially we shall consider both the crystal and the vacuum chamber to be at a
room temperature of T̄H = 298 K (i.e. 25°C). The parameters of the system are the UCLA
values, which are given in tables 4.1 and 4.2

(
MCLC

kA
L +α Ī

)
˙̃TL + T̃L =

(
kA
L

kA
L +α Ī

)
T̃H +

(
ρL
A Ī −αT̄L
kA
L +α Ī

)
Ĩ (4.10)

(
MCFH

hAF + kA
L −α Ī

)
˙̃TH + T̃H =

(
kA
L

hAF + kA
L −α Ī

)
T̃L +

(
αT̄H + ρL

A Ī

hAF + kA
L −α Ī

)
Ĩ (4.11)
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The current-temperature transfer functions with the numerical values input are

T̃L

Ĩ
=

−0.12581(s+0.0002974)
(s+0.01959)(s+0.0003026)

(4.12)

T̃H

Ĩ
=

0.0055515(s+0.0004223)
(s+0.01959)(s+0.0003026)

(4.13)

Then, we will consider the operating point for the applied current to be Ī = −1 A;
according to our earlier definitions, a negative value for the current will simulate heating of
the crystal. The current-temperature transfer functions with the numerical values input are
now

T̃L

Ĩ
=

−0.12581(s+0.0003347)
(s+0.01879)(s+0.0003014)

(4.14)

T̃H

Ĩ
=

0.0055515(s−0.0004223)
(s+0.01879)(s+0.0003014)

(4.15)

We can see that, for either sign in current input, the value of the gain remains the same.
However, the values of the poles and zeros change; this can be seen more easily when these
features are plotted on the complex plane, called a pole-zero map. The pole-zero maps of T̃L

Ĩ
for both the cooling and the heating operating point currents are shown together in Fig. 4.6.
The system poles are marked by an ‘x’, and the zeros are marked by a ‘o’.

From the pole-zero plot, we can observe that there are two near-cancelling pole-zero pairs
close to the imaginary axis, which could be potentially eliminated to simplify the model,
with no effect on the overall model response. We will look at this effect when we design the
controller for this system in Chapter 5.

1. The p1 time constant is 53 seconds; this shorter time constant is associated with the
smaller thermal mass of the crystal.

2. The p2 time constant is 2491 seconds (around 41 minutes); this longer time constant is
associated with the larger thermal mass of the vacuum chamber, which takes longer to
see the effects of changes in operating conditions.

By inspection of the gain of the transfer functions, we can observe that the cooling-load
(crystal) sees a larger response from the same forcing function when compared with the heat
sink (vacuum chamber). It is worth noting here that, in order to simulate the heating the
crystal (the cooling-load), we must apply a negative current to the TEC; this is consistent



4.3 Dynamics response analysis 91

Fig. 4.6 Pole-zero map showing the location of the poles and the zeros for T̃L
Ĩ for both the

heating and the cooling currents.

with the definition of current direction we made during the development of the TEC Model
in Chapter 3.

We must also consider the potential effect of the thin copper disk attached to the front of
the crystal in the UCLA system. The disk can be neglected in our thermal calculations as
the heat capacity of the crystal (22.37 J/K) is about 28 times that of the copper disk (0.8 J/K).

In the experiments conducted by UCLA the crystal was first cooled down to 240 K (i.e.
−33°C) from room temperature by pouring liquid nitrogen into the cryogenic feed-through
before heating. With T̄L = 240 K, Ī =−1 A and T̄H = 298 K the transfer functions become

T̃L

Ĩ
=

−0.10132(s+0.0001388)
(s+0.01879)(s+0.0003014)

(4.16)

T̃H

Ĩ
=

0.0055515(s+0.003152)
(s+0.01879)(s+0.0003014)

(4.17)

We can see that the greatest effect is on the gain and the largest system pole of T̃L
Ĩ . The

pole-zero map of these transfer functions, shown in Fig. 4.7, further highlights the potential
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for the pole-zero cancellations to be valid for transients with variations in T̄L.

Fig. 4.7 Pole-zero map showing the location of poles and zeros for T̃L
Ĩ for both heating and

cooling currents and with T̄L = 240 K.

In the following sections the emphasis will be on heating and cooling transients about
room temperature operating points. That is, we will take T̄L = T̄H = 298 K, with Ī =−1 A
for heating transients and Ī = 1 A for cooling transients. However, we will investigate the
effects of changing these operating points when we undertake our sensitivity analysis towards
the end of this chapter. We will first consider the system response to aperiodic signals: step,
impulse and ramp functions.

4.3.3 Unit-step response

In this section we shall analyse the system response to a unit-step input, for which the initial
conditions are assumed to be zero. Because our system has been linearised, the output for the
unit-step case can be multiplied by the magnitude of the input step to derive a step response of
any amplitude. We can use MATLAB to simulate the system response to a positive unit-step
input in current, and the output is shown in Fig. 4.8. The operating conditions used in this
simulation were Ī = 1 A, and T̄H = T̄L = 298 K. Figure 4.8 shows that the system has a
rise time of 105 seconds and a settling time of 169 seconds. The final steady-state output
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cold-side temperature change for the unit-step input in current is −6.31 K, and, as this is
linearly scaled, it would increase with an increase in current.

Figure 4.9 shows that, with Ī = 1 A, the response of T̃L to a negative unit-step input in
current has the same rise time and settling time and has a steady-state change of 6.31 K.
However, to more accurately represent the step response to a heating transient, we would
ideally need to change our current operating point to be a negative value, i.e. change to
Ī =−1 A. Figure 4.10 shows the effect of this change in current operating point sign on the
negative unit-step response of the cold-side temperature T̃L. It can be seen that the rise time
and settling time are increased. We can also see that the steady-state final value has been
slightly increased.

The step response analysis indicates that the open-loop pyroelectric TEC system response
is far too sluggish.The difference in step responses for the different operating points highlights
the need to conduct a sensitivity analysis to investigate the effects of variation in operating
point - particularly the magnitude and the sign of the applied current for both the heating and
cooling transients for our pyroelectric system geometry.

Fig. 4.8 Positive unit-step response of the cold-side (crystal) temperature, with Ī = 1 A, and
T̄L = T̄H = 298 K.
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Fig. 4.9 Negative unit-step response of the cold-side (crystal) temperature, for operating
point values of Ī = 1 A, and T̄L = T̄H = 298 K.

4.3.4 Unit-impulse response

The system response to a brief input signal (an impulse) can give us some further information
about the reaction of the system to an external change. While an impulse input is impossible
in any real system, it is actually a useful idealisation, because, in the time domain, a system
is described by its Impulse Response Function. Our system can be completely characterised
by its impulse response (i.e. any output can be calculated from the input and the impulse
response). Again, we will take the operating point values of T̄L = T̄H = 298 K, with Ī = 1 A,
and apply a positive impulse to the system. Analysis of Fig. 4.11 shows that the system
impulse response peak response is −0.126 K at t = 0 and the settling time is 199 seconds.
We can compare this with the response for a heating impulse, if we now take the operating
point current to be Ī =−1 A and apply a negative impulse to the system. Figure 4.12 shows
the response of T̃L. Comparing the two responses, we can see that the peak responses are
of equal magnitude; however, the heating transient takes slightly longer to settle (around 14
seconds longer).



4.3 Dynamics response analysis 95

Fig. 4.10 Negative unit-step response of the cold-side (crystal) temperature for operating
point values of Ī =−1 A, and T̄L = T̄H = 298 K.

4.3.5 Unit-ramp response

Typical pyroelectric experiments, such as those carried out by UCLA [74], apply temperature
ramps to the crystal. Figures 4.13 and 4.14 show that the unit-ramp response curves for
the cold-side (crystal) temperature for both cooling and heating transients lead the input
curve. As for our previous analysis, we have used the appropriate operating point current.
The unit-ramp responses show that the open-loop pyroelectric TEC system is incapable of
accurately following a ramp input. We can observe simulated changes of around ±∼360 K
over 100 seconds, which would be unphysical.

4.3.6 Frequency response

One way we can use the exponential response of a Linear-Time-Invariant system is to find
the frequency response, or response to a sinusoid. As we are simulating using a heat pump
to actuate the pyroelectric crystal, it is feasible that, as we cycle the system, there will be a
temperature difference between the hot-side and the cold-side of the system.

Figure 4.15 highlights the difference between the frequency responses of two different
current operating points. We can see that with an operating point current appropriate to
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Fig. 4.11 Unit-impulse response of the cold-side (crystal) temperature for operating point
values of Ī = 1 A, and T̄L = T̄H = 298 K.

heating the cold-side (crystal) of Ī = 1 A, the magnitude of the response is slightly greater at
the low frequencies. At the high frequencies, the response of both the magnitudes and the
phases are the same. We see that, at a low frequency, the higher magnitude of the heating
model is accompanied by a slightly more lagged response. It is important to note that, despite
the differences at low frequency, the two responses are the same at the critical frequency,
where the magnitude plots cross over the 0 dB line (this occurs at a frequency of 0.124 rad/s);
at this point the phase margins of the systems are around 80 degrees.

Although the open-loop pyroelectric TEC system is stable, the principal drawback of
open-loop control is a loss of accuracy. A feedback loop would attempt to maintain the
process variable (in our case the crystal temperature) at a desired value, thereby increasing
the accuracy. Without feedback there would be no guarantee that any control efforts applied
to the process will actually have the desired effect. These control system design challenges
will be addressed in further detail in Chapter 4.
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Fig. 4.12 Unit-impulse response of the cold-side (crystal) temperature for operating point
values of Ī =−1 A, and T̄L = T̄H = 298 K.

4.4 Sensitivity analysis

In order to explore the behaviour of the model, we will conduct a sensitivity analysis. The
analysis will help to examine the robustness of the model output, through the change in
cold-side (crystal) temperature T̃L with respect to changes of the parameter values: current
Ī, cold-side (crystal) temperature T̄L and hot-side (chamber) temperature T̄H . Our nominal
set of operating parameters will be Ī = 1 A, and T̄L = T̄H = 298 K, and we will vary one
parameter at a time while keeping all other parameters fixed. This approach will reveal the
form of the relationship between the varied parameter and the output.

First, we analyse the effects of a ±10% change in each operating point value about
the nominal set of parameter values. Figure 4.16 shows the effects of the changes in each
operating point about its nominal value. We can conduct the same analysis for a negative
unit-step input, and the response is shown in Fig. 4.17. We can see that T̄L has the greatest
effect, followed by T̄H . The response indicates that the model is least sensitive to small
changes in Ī.
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Fig. 4.13 Negative unit-ramp response of the cold-side (crystal) temperature for operating
point values of Ī = 1 A, and T̄L = T̄H = 298 K.

4.4.1 Operational current

When we consider the possibility of thermally cycling the crystal in our pyroelectric system,
we will need to consider the potential current input range of −10 A to 10 A (the negative
currents indicating heating of the crystal, and positive current indicating cooling the crystal).
This range for the current is outside the small percentage change that we investigated in the
previous section. In fact, we are potentially looking at a 1000% change in current over the
typical operating range of the TEC. Also, in a case of thermal cycling, it may be essential to
have the sign of the current operating point vary from positive to negative, following along
with the sign of the input current. It is anticipated that having the opposite sign for a current
operating point could have an unwanted impact on the simulated system dynamic response.
In the following two sections we will consider the effect of varying the current operational
point sign and magnitude across the stated range.

Positive unit-step input

A positive unit-step input will cool the cold-side of the TEC (reducing the crystal tempera-
ture); we can see this in Figs. 4.18 and 4.19. The performance characteristics of these step
responses have been tabulated in table 4.3. The most appropriate operating point current for



4.4 Sensitivity analysis 99

Fig. 4.14 Positive unit-ramp response of the cold-side (crystal) temperature for operating
point values of Ī = 1 A, and T̄L = T̄H = 298 K.

Fig. 4.15 Frequency response of the UCLA pyroelectric TEC system for operating point
values of T̄L = T̄H = 298 K and with both Ī =−1 A and Ī = 1 A.
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Fig. 4.16 Plot of positive unit-step response curves for ±10% changes in operating point
values.

this positive unit-step input is Ī = 1 A. All of the Ī values result in reducing the cold-side
temperature, as expected. However, we can see some different dynamics between the positive
and negative values, which highlights the importance of having the correct operating point
current.

1. For positive unit-step transients run with the wrong sign on the operating point current
(i.e. simulated with a negative value for Ī):

(a) There are no overshoots present in these transients.

(b) The settling times are longer, and increase with the magnitude of Ī.

(c) The rise times are longer, and increase with the magnitude of Ī.

(d) The steady-state values are greater, and increase with the magnitude of Ī.

These dynamic responses can be explained by inspection of the governing equa-
tions, Eqs. 4.10 and 4.11, (repeated below for convenience).

(
MCLC

kA
L +α Ī

)
˙̃TL + T̃L =

(
kA
L

kA
L +α Ī

)
T̃H +

(
ρL
A Ī −αT̄L
kA
L +α Ī

)
Ĩ (4.18)
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Fig. 4.17 Plot of negative unit-step response curves for ±10% changes in operating point
values.

(
MCFH

hAF + kA
L −α Ī

)
˙̃TH + T̃H =

(
kA
L

hAF + kA
L −α Ī

)
T̃L +

(
αT̄H + ρL

A Ī

hAF + kA
L −α Ī

)
Ĩ

(4.19)

If we consider the Joule heating term (ρL
A Ī Ĩ) which appears on the right-hand side

of both equations, it can be seen that if the signs of Ī and Ĩ are opposite this term
becomes negative. We would, in effect, be simulating removing the Joule heating
from both the cold-side and the hot-side, instead of correctly adding this heating
power.

2. For transients simulated with the correct sign on the operating point current but larger
magnitude than the input (i.e. simulated with a positive value for Ī):

(a) The peak responses of these transients are lower, and decrease with increasing Ī.

(b) The overshoots are larger, and increase with increasing Ī.

(c) The settling times are longer, and increase with increasing Ī.

(d) The rise times are shorter, and decrease with increasing Ī.
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(e) The steady-state values are lower, and decrease with increasing Ī.

In each case the increased magnitude of the operating point falsely drives the transient
faster and harder - leading to faster responses, with more overshoot but decreased final
steady-state values.

Ī (A) Peak response (K) Overshoot (%) Settling time (s) Rise time (s) Steady-state (K)
−10 −17 0 1.35×104 6.85×103 −17.2
−5 −10.4 0 9.45×103 3.84×103 −10.4
−1 −7.43 0 5.37×103 255 −7.44
0 −6.85 0 2.58×103 140 −6.85
1 −6.41 1.55 169 105 −6.31
5 −5.82 30.2 9.5×103 50 −4.47

10 −5.24 104 1.46×104 21.9 −2.57
Table 4.3 Performance characteristics for a positive unit-step for various operating point
currents Ī.

Fig. 4.18 Plot of positive unit-step response curves for various operating point currents Ī.
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Fig. 4.19 Three-dimensional plot of positive unit-step response curves for various operating
point currents Ī.

Negative unit-step input

We will now consider a negative unit-step input, which when applied to the TEC will heat
the cold-side (increasing the crystal temperature). We can see this response in Figs. 4.20 and
4.21. The performance characteristics of these step responses have been tabulated in table
4.4. In this case, the most appropriate operating point current for the negative unit-step input
is Ī =−1 A. All of the Ī values can be seen to increase the cold-side temperature. However,
once again, the plots highlight the different dynamic responses of the positive and negative
operating point values.

1. For negative unit-step transients with positive operating point currents:

(a) There are overshoots in the response, which increase along with the magnitude
of Ī.

(b) The settling times are shorter, and increase with increasing magnitude of Ī.

(c) The rise times are shorter, and they decrease with increasing magnitude of Ī.

(d) The steady-state values are lower, and these also decrease with increasing magni-
tude of Ī.
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These dynamic responses can (again) be explained by inspection of the governing
equations. The reader is referred back to the earlier discussion of the Joule heating
term.

2. For transients simulated with the correct sign on the operating point current but larger
magnitude than the input (i.e. simulated with a negative value for Ī):

(a) The peak responses of these transients are higher, and this increases with increas-
ing magnitude of Ī.

(b) There is no overshoot in any of these responses.

(c) The settling times are longer, and these increase with increasing Ī.

(d) The rise times are longer, and they increase with increasing Ī.

(e) The steady-state values are higher, and these also increase along with Ī.

These responses to negative unit-step inputs show that the increased magnitude of the
operating point falsely drives the transient slower and increases the final steady-state
values.

Fig. 4.20 Plot of negative unit-step response curves for various values of operating point
current Ī.
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Ī (A) Peak response (K) Overshoot (%) Settling time (s) Rise time (s) Steady-state (K)
−10 17 0 1.35×104 6.85×103 17.2
−5 10.4 0 9.45×103 3.84×103 10.4
−1 7.43 0 5.37×103 255 7.44
0 6.85 0 2.58×103 140 6.85
1 6.41 1.55 169 105 6.31
5 5.82 30.2 9.5×103 50 4.47
10 5.24 104 1.46×104 21.9 2.57

Table 4.4 Performance characteristics for a negative unit-step for various current operating
points.

We can see from tables 4.3 and 4.4 that the magnitude of the responses (the peak responses
and steady-states) at each operating point are equal and opposite, and both the settling and
rise times are the same. It is very important that we have the correct sign and magnitude of
operating point current in our model.

Fig. 4.21 Three-dimensional plot of negative unit-step response curves for various operating
point currents Ī.
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The Bode plot for various operating point currents is shown in Fig. 4.22, and it can be
seen that:

1. The current operating point has its greatest effect on the low frequency magnitude, but
all the plots have similar high frequency responses.

2. The low frequency magnitudes for each operating point support the steady-state values
that are seen in the unit-step responses analysed in the previous section.

3. All plots have the same corner frequency at approximately 0.01 rad/s.

4. All plots come together at the same gain crossover frequency (the 0 dB line) of
approximately 0.1 rad/sec; and all have a bandwidth of approximately 0.2 rad/s.

5. The phase crossover (the 180 degrees line) for all plots is at 10−5 rad/s.

4.4.2 Operational cold-side (crystal) temperature

The UCLA researchers decreased the temperature of their crystal before beginning the heat-
ing cycle, and we may wish to heat our system starting from room temperature. It was
therefore deemed prudent to investigate the effect on the response of the TEC model of
various operating cold-side temperatures T̄L. The results of this analysis are plotted in Figs.
4.23 and 4.24.

With these simulations carried out, we found that

1. As with the current operating point, the cold-side (crystal) temperature operating point
also has its greatest effect on the low frequency magnitude. However, this effect is less
than that of the current.

2. The low frequency magnitude response for each operating point is supported by the
steady-state values that are seen in the unit-step responses.

3. The corner frequency remains unchanged at approximately 0.01 rad/s.

4. The gain crossover frequency remains unchanged at approximately 0.1 rad/s; and the
bandwidth is still approximately 0.2 rad/s.

5. The phase crossover remains unchanged, at around 10−5 rad/s.
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Fig. 4.22 Frequency response sensitivity analysis of the UCLA pyroelectric TEC system
model for various values of operational current Ī.

4.4.3 Operational hot-side (chamber) temperature

To complete our operating point variation analysis we investigate the effect on the response
of the TEC model of various operating hot-side (chamber) temperatures T̄H . The results of
this analysis are plotted in Figs. 4.25 and 4.26.

With these simulations carried out, we found that

1. As with the current operating point, the hot-side (crystal) temperature operating point
also has its greatest effect on the low frequency magnitude. However, the effect is the
least out of all the operating point parameters.

2. The low frequency magnitude response for each operating point is supported by the
steady-state values that are seen in the unit-step responses.
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Fig. 4.23 Three-dimensional plot of positive unit-step response curves for various cold-side
(crystal) operating point temperatures T̄L.

3. The corner frequency remains unchanged at approximately 0.01 rad/s.

4. The gain crossover frequency remains unchanged at approximately 0.1 rad/s; and the
bandwidth is still approximately 0.2 rad/s.

5. The phase crossover remains unchanged at around 10−5 rad/s.

State-space

The phase portraits in Figs. 4.27 and 4.28 show trajectories moving directly towards, and
converging to the critical point. The trajectories that are the eigenvectors move in straight
lines. The rest of the trajectories move, initially when near the critical point, roughly in the
same direction as the eigenvector of the eigenvalue with the smaller absolute value. Then,
farther away, they would bend towards the direction of the eigenvector of the eigenvalue
with the larger absolute value. The trajectories move from infinite-distant out towards, and
eventually converge at, the critical point (when the eigenvalues are distinct, real and are
both negative). It is an asymptotically stable node. All trajectories of its solutions converge
to the critical point as t → ∞. A critical point is asymptotically stable if all of the system



4.4 Sensitivity analysis 109

Fig. 4.24 Frequency response sensitivity analysis of the UCLA pyroeletric TEC system
model for various values of operational cold-side (crystal) temperature T̄L.

eigenvalues are negative, or have a negative real part for complex eigenvalues.

It can be seen that:

1. For all values of T̃L the corresponding temperature change in T̃H is small. If we take, for
example, the initial change in temperature for the hot-side (chamber) to be T̃H = 0 K
and vary the initial change in the cold-side (crystal) temperature, T̃L, we can see from
Fig. 4.27 that the resultant change in T̃H is never more than 5 K.

2. Now, if we take the initial change in temperature for the cold-side (crystal) to be
T̃L = 0 K and vary the initial change in the hot-side (chamber) temperature, T̃H , by the
same amount, Fig. 4.27 shows the change in T̃L to be twice that of T̃H for the same
simulation.
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Fig. 4.25 Three-dimensional plot of unit-step response curves for various hot-side (chamber)
operating point temperatures T̄H .

3. Figure 4.28 shows the effect of the sign of Ī on the phase-plane trajectories. We can
see that the trajectories for the more negative current operating points have the greater
magnitude temperature changes.

The phase-plane analysis indicates that the temperature changes seen by the hot-side
(chamber) will be much less than those seen by the cold-side (crystal), so we can narrow
down the range of potential model operating points for T̄H . We will take T̄H between −10◦C
and 10◦C.

4.4.4 Combined effects of operational point variation

It is important to now consider the combined effects of the following operational point
variations, given in Eq. 4.20; the maximum and minimum values are chosen as they are
expected operational values for the pyroelectric system. Figure 4.29 shows the frequency
response for all combinations of the operating point values. The large magnitude variation at
low frequency is seen in the plot.
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Fig. 4.26 Frequency response sensitivity analysis for UCLA pyroelectric TEC system model
operational hot-side (chamber) temperature T̄H .

T̄L = [−30+273 K,60+273 K]

T̄H = [−10+273 K,10+273 K]

Ī = [−10 A,10 A]

(4.20)

However, if we over-plot with the physically realistic variations for room temperature op-
eration (black circles), we see that this range is reduced for our expected ‘normal operation’.
The analysis reinforces the requirement to vary the operating point of our model over time, if
we wish to execute transients with large temperature or current changes.
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Fig. 4.27 Phase-plane plot for hot- and cold-side temperature changes with positive Ī.

Fig. 4.28 Phase-plane plot for hot- and cold-side temperature changes with negative Ī.

T̄L = [25+273 K,60+273 K]

T̄H = [−5+273 K,25+273 K]

Ī = [−10 A,10 A]

(4.21)
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It is useful to also change the operating point current Ī in the pyroelectric TEC Model to
match the input current value. Figure 4.30 shows the expected increase in cold-side (crystal)
temperature with increase in current input and the same increase in current operating point.
For the −5 A input the steady-state temperature change is 12.4 K, and for −10 A input this
is increased to 24.8 K. This change in operating point value causes the change in dynamic
response. The operating point variation can be seen to cause the steady-state value to increase.

Performance specification I = −1 A I = −5 A I = −10 A
Peak (K) 5.18 28.8 84.1

Overshoot % 108 31.7 n/a
Time to peak (s) 255 322 9.78×103

Settling time (s) 1.33×104 9.99×103 9.78×103

Rise time (s) 26.1 60 3.13×103

Table 4.5 Step responses for varying current input along with operating point.

Table 4.5 highlights the increasing damping that is caused by increasing the absolute
value of the operating point current. As the current is increased (i.e. becomes more negative),
the rise time increases, and the peak response increases along with the time to peak. The
amount of overshoot and the settling time both decrease with increasing operating point
current.
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Fig. 4.29 Frequency response combined sensitivity analysis for the UCLA pyroelectric TEC
system.
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Fig. 4.30 UCLA pyroelectric TEC Model unit-step response.
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4.5 Summary

1. The effect of the dynamic behaviour of the thermal masses of the heat sink (crystal)
and the cooling-load heat exchanger (chamber) will present a challenge to the control
system design.

2. A pole-zero map analysis has shown that we could potentially simplify our model by
eliminating near-cancelling pole-zero pairs during our control system design.

3. The linear dynamic model has been shown to vary with operating conditions. We have
quantified this output variability and attributed this to the different operating point
parameters. We can rank the parameters in terms of their effects on the output. It seems
that the magnitude and sign of Ī will be the most important parameter, followed by T̄L

and then T̄H .

The analysis has reinforced the requirement to vary the operating point of our model over
time if we wish to execute transients with large temperature or current changes. We will
have to design our controller on a nominal parameter set, and then test the robustness of the
controller to different operating points to confirm the credibility of the control system design.
Designing a closed loop system will allow us the flexibility of placement of poles, which can
be used to govern the stability. Chapter 5 is dedicated to controller design for the pyroelectric
TEC system that we have just analysed in this chapter.



Chapter 5

Control system design for a pyroelectric
TEC model

5.1 Introduction

The control system for our pyroelectric TEC system consists of an automatic controller,
an actuator, a plant, and a sensor. The automatic controller compares the actual value of
the plant output with the reference input, determines the deviation, and produces a control
signal that will reduce the deviation to zero or to a small value. Simulink is the primary
tool used in our pyroelectric TEC control system design; it allows us to use a model-based
design approach and, with this, we can easily analyse and compare the performance of our
various control systems. Figure 5.1 shows the Simulink model block diagram containing the
components of our pyroelectric TEC control system. Working through the blocks in Figure
5.1 from left to right, we have:

1. An input signal multiport switch for selecting the temperature input (set point) signal
type, which can be programmed using the mfile. The model has been constructed
so that the input (reference signal) may be selected from various types, including a
step, a sine-wave or a saturated ramp signal. The Simulink model is initiated, and the
simulations are automated, using a MATLAB mfile script. The input signal is saved to
the MATLAB workspace, and later plotted for use in the analysis of the response of
the control system designs.

2. A summing junction which compares the reference cold-side (crystal) temperature
change input signal with the actual temperature change, and outputs an error signal.
The error signal is acted on by the controller, and it is saved to the MATLAB workspace.
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3. A second multiport switch which is for the selection of the controller type. We are
considering two common types of industrial controllers which may be used: the two-
position (or on-off) controller and the proportional-plus-integral-plus-derivative (PID)
controller. Which of these we ultimately select will depend on the nature of our pyro-
electric TEC system and the operating conditions. Port 3 on the controller multiport
switch is a forward path to the TEC without any controller, and is implemented in
open-loop investigations.

4. A saturation block on the output of the multiport switch ensures that the controller
cannot demand more than the maximum current in either the positive or negative
direction (defined previously to be our cooling and heating currents). The current
signal is also saved to the MATLAB workspace.

5. A pyroelectric TEC model which has been implemented as a linear parameter-varying
(LPV) system. An LPV system comprises a linear state-space model whose dynamics
vary as a function of time-varying scheduling parameters. In our case, it is the sign
of the current input Ĩ which acts as the scheduling parameter, and initiates the model
switching between two stacked, local linear time-invariant (LTI) state-space models.
The Simulink block implements a grid-based representation of the LPV system. A
grid of values is specified for the scheduling parameter. At each operating point of ± Ī
we specify the corresponding linear system as a state-space model object. An array
of state-space models, with operating point information, is then generated and used
to configure the LPV system block. The structure of the LPV model will allow us to
add additional models to the grid as required. We will design a controller based on the
LPV model and simulate its performance against the nonlinear model.

6. The nonlinear model represented by Eqs. 3.6 and 3.7 is implemented using two general
expression ‘Fcn’ blocks and integrators on the outputs. The initial conditions of the
integrators are set to the operating point temperatures of TH = 298 K and TL = 298 K.

The first task is to check that the open-loop nonlinear model and the LPV model im-
plementations simulate the system dynamics correctly by comparing the outputs with our
previous pyroelectric TEC model in Chapter 4. The open-loop structure has no closed signal
path whereby the output influences the control effort. In order to simulate our open-loop
system, the controller multiport switch is set to 3 and the feedback gain, H, is set to zero. We
applied both a positive and a negative unit-step input current to the system (and correspond-
ingly Ī =±1 A in the LPV model of the TEC), and these responses are shown in Figs. 5.2
and 5.3 respectively. These results confirm the correct dynamic response of the open-loop
LPV and nonlinear TEC model, when compared with Figs. 4.8 and 4.10 in section 4.3.3.
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Fig. 5.1 Simulink LPV and nonlinear TEC models.
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Fig. 5.2 Positive unit-step responses of the open-loop Simulink nonlinear and LPV TEC
models.

Fig. 5.3 Negative unit-step response of the open-loop Simulink nonlinear and LPV TEC
models.



5.2 Two-position control action 121

5.2 Two-position control action

In a two-position control system, the actuating element has only two fixed positions. This type
of control is relatively simple and inexpensive, and therefore widely used in both industrial
and domestic control systems. With reference back to the block diagram of our TEC system
in Fig. 5.1, the output signal from the controller is the current Ĩ (which is subsequently
saturated in the Simulink block labelled TEC Current Saturation), and the actuating error
signal is the output from the summing junction. In two-position control, the current signal Ĩ
remains at either a maximum or a minimum value, depending on whether the actuating error
signal is positive or negative.

The range through which the actuating error signal must move before the switching
occurs is called the differential gap. The differential gap causes the controller output u(t)
to maintain its present value until the actuating error signal has moved slightly beyond the
zero value. This differential gap is intentionally provided in order to prevent too-frequent
operation of the on-off mechanism. The Simulink Relay block behaves like a switch with
hysteresis; that is, it has a different condition for switching "ON" than it does for switching
"OFF".

5.2.1 Unit-step response

In this case, the dead-band is set to ± 0.1 K, and we have taken the maximum current
allowable for the TEC to be ± 10 A. The programmed relay schedule is:

1. Switch full negative = − 0.1 K

2. Full negative value = − 10 A

3. Switch full positive = + 0.1 K

4. Full positive value = + 10 A

Figure 5.4 shows the controller response to a positive unit-step input, and Fig. 5.5 shows
the negative unit-step response. These on-off controller responses show:

1. The current input to the TEC is either 100% full negative or full positive regardless
of where the crystal temperature reading is with respect to the reference temperature
input. This has caused overshoots and undershoots in the response.
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2. Oscillations and swings of temperature. The temperature swings may be reduced by
programming a lower temperature differential, but this would increase the number of
switching points and potentially decrease the longevity of control elements through
excessive use.

3. The implementation of hysteresis has caused there to be a constant error around the
set-point. However, if no hysteresis was implemented, we would probably see damage
to the TEC due to rapidly switching it on and off around the set-point.

Fig. 5.4 Simulink nonlinear TEC model with an on-off controller - positive step.



5.2 Two-position control action 123

Fig. 5.5 Simulink nonlinear TEC model with an on-off controller - negative step response.
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5.2.2 Ramp response

A ramp input of 40 K is commonly applied in UCLA pyroelectric experiments [74]. We
expect to operate our system with at least 40 degree temperature changes applied to the
pyroelectric crystal, and our open-loop simulations of Chapter 4 demonstrated that we would
potentially require up to 10 A of current input for this temperature change. We have taken
the maximum possible current input available; however, to avoid excessive over-switching
we have allowed a 10% error at steady-state. The on-off controller relay schedule has been
initially programmed as:

1. Switch full negative = − 4 K

2. Full negative value = − 10 A

3. Switch full positive = + 4 K

4. Full positive value = + 10 A

Our ramp response analysis shows:

1. The use of the programmed on-off controller has again resulted in oscillations and
swings of temperature and a steady-state error, which can be seen in Figs. 5.6 and 5.7.
There are, once again, overshoots and undershoots seen in these responses.

2. The difference in the heating and cooling ramp responses can be clearly seen, and it is
particularly apparent in the oscillations around steady-state (from 200 seconds). In the
cooling ramp response we can see fewer current switching points (less than half the
number than in the heating ramp). This is due to the slower responding dynamics of
the system in the cooling mode of operation.

3. In order to obtain the best performance of the on-off controller we need to trade off
the accuracy and the amount of switching in the response. We can reprogramme the
on-off controller relay schedule as:

(a) Switch full negative = − 4 K

(b) Full negative value = − 5 A

(c) Switch full positive = + 4 K

(d) Full positive value = + 5 A
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The effect of decreasing the maximum current input to the TEC on the control system
response is shown in Fig. 5.8. Although the overall accuracy of the response has
decreased, the amount of switching has reduced to a more tolerable number.

Fig. 5.6 Simulink nonlinear TEC model with an on-off controller - positive ramp response.
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Fig. 5.7 Simulink nonlinear TEC model with an on-off controller - negative ramp response.
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Fig. 5.8 Simulink nonlinear TEC model with an on-off controller - positive ramp response,
with limited maximum current at 5 A.
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5.2.3 Sine-wave response

Although previous researchers have not continuously cycled their pyroelectric systems, we
intend to investigate the feasibility of this mode of operation. A reasonable frequency at
which to cycle our system can be determined from the frequency analysis that we conducted
in Chapter 4. Referring back to Fig. 4.29, we can see that all the frequency response magni-
tude plots pass through 0 dB at around 0.1 rad/sec, which indicates that the system cannot
be cycled at frequencies above this point. In fact, we can see that 0.01 rad/sec is the highest
frequency in the constant magnitude portion (flat region) of the plot. The system attenuates
higher frequencies, so this would appear to be the fastest frequency at which we may cycle
the pyroelectric TEC and obtain a good response.

Our sine-wave response analysis shows:

1. From Fig. 5.9, it seems that it is possible to keep the system stable, with a reasonable
amount of accuracy through implementation of on-off type control. However, the
amount of continuous controller switching seen in the response would cause wear on
the control-system components and damage to the TEC.

2. In order to obtain the best performance of the on-off controller we need to trade off
the accuracy and the amount of switching in the response. We can reprogramme the
on-off controller relay schedule as:

(a) Switch full negative = − 4 K

(b) Full negative value = − 5 A

(c) Switch full positive = + 4 K

(d) Full positive value = + 5 A

The effect of decreasing the maximum current input to the TEC on the control system
response is shown in Fig. 5.10. Although the overall accuracy of the response has
decreased, the number of switching points has reduced to a more tolerable number.

3. Figure 5.11 confirms the expectation that reducing the maximum current to ± 1 A
will increase the error and reduce the accuracy of the controller. For this transient, the
following relay schedule was implemented:

(a) Switch full negative = − 4 K

(b) Full negative value = − 1 A
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(c) Switch full positive = + 4 K

(d) Full positive value = + 1 A

With these values the controller will not meet the accuracy required of the pyroelectric
TEC system.

4. The best on-off control system response for a 40 degree, 0.01 rad/sec sine-wave
operational cycle has been found to be produced for the following relay schedule:

(a) Switch full negative = − 4 K

(b) Full negative value = − 6 A

(c) Switch full positive = + 4 K

(d) Full positive value = + 6 A

Figure 5.12 shows that the ± 6 A current control signal supplied to the TEC provides
the best trade-off between accuracy (error less than 10%) and amount of switching.
The largest error can be observed on the cooling half of the cycle. This is due to the
slower dynamic response when the crystal is being force cooled by the TEC.

5. A more sophisticated approach to the control system design would be to modulate
the current input to the TEC in proportion to how much temperature error there was
present. This can be achieved with a PID controller, which we investigate in the next
section.
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Fig. 5.9 Simulink nonlinear TEC model with an on-off controller - sine-wave response.
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Fig. 5.10 Simulink nonlinear TEC model with an on-off controller - sine-wave response, with
limited maximum magnitude of current at 5 A.
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Fig. 5.11 Simulink nonlinear TEC model with an on-off controller - sine-wave response, with
limited maximum magnitude of current at 1 A.
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Fig. 5.12 Simulink nonlinear TEC model with an on-off controller - sine-wave response,
with limited maximum magnitude of current at 6 A - best compromise between accuracy and
potential TEC damage through switching.
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5.3 PID control action

The parallel PID controller output is the sum of the proportional, integral and derivative
actions, weighted independently by P, I and D, respectively. For example, for a continuous-
time parallel-form PID controller, the transfer function is:

Cpar(s) = P+ I
(

1
s

)
+D

(
Ns

s+N

)
(5.1)

where N is the filter coefficient, which determines the pole location of the filter in the deriva-
tive action of the block. The location of the filter pole depends on the Time domain parameter.
When Time domain is Continuous-time, the pole location is s =−N.

The design of the PID controller using the Simulink PID Tuner involves the following
tasks:

1. Develop the Simulink model of the process to be controlled and the PID controller.
For our application the model is shown in Fig. 5.1.

2. Launch the PID Tuner. When launching, the software automatically computes a linear
plant model from the Simulink model and designs an initial controller.

3. Tune the controller in the PID Tuner by manually adjusting design criteria in two
design modes. Our pyroelectric TEC system design requirements (and controller
parameters) are:

(a) A settling time under 150 seconds gives transients of reasonable heating response
times when compared with UCLA pyroelectric experiments [74].

(b) An overshoot of less than 10% will avoid damage to the TEC components (which
occurs at around 120 ◦C) when heating to a potential maximum temperature of
100 ◦C.

(c) A rise time of around 5 seconds represents a crystal heating rate of around 12.4
K/min as used by the UCLA group in their experiments [74].

(d) A zero steady-state error to the step reference input.

4. The tuner computes PID parameters that robustly stabilize the system. For our system
the adjusted PID parameters are:

(a) P =−0.47647

(b) I =−0.016725
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(c) D = 1.1409

and N = 0.37466.

5. Export the parameters of the designed controller back to the PID Controller block
and verify controller performance against the nonlinear model in Simulink. The
controller performance is analysed through unit-step, ramp and sine-wave responses in
the following sections of this chapter.

5.3.1 Unit-step response

Figure 5.13 shows the closed-loop response with these settings. The tuned control system
has a stable closed-loop response to a unit-step input, with

1. A rise time of 20 seconds

2. A settling time of 103 seconds

3. An overshoot of 8.87%

4. An infinite gain margin

5. A phase margin of 69 degrees at 0.0687 rad/sec

The response shows that the new controller meets all the design requirements. Figure
5.14 shows that the response for the cooling transient is also satisfactory.
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Fig. 5.13 Simulink nonlinear TEC model with a PID controller - unit-step response, at room
temperature (heating transient).
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Fig. 5.14 Simulink nonlinear TEC model with a PID controller - unit-step response, at room
temperature (cooling transient).
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5.3.2 Ramp response

The ramp response in Fig. 5.15 shows an improved response when compared with that of the
on-off controller. There is a smaller overshoot and no oscillations at steady-state. The error
is kept at a smaller magnitude with the PID controller. Figure 5.16 shows that the response
for the cooling ramp is also satisfactory with this controller.

Fig. 5.15 Simulink nonlinear TEC model with a PID controller - heating ramp response, at
room temperature.
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Fig. 5.16 Simulink nonlinear TEC model with a PID controller - cooling ramp response, at
room temperature.
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5.3.3 Sine-wave response

Of particular importance is the response to a cyclic temperature demand, which is shown in
Fig. 5.17. In this plot, we can see that the system responds with improved accuracy when
compared with the on-off controller.

1. When we increase the amplitude of the input signal to 40 K we still see a good response,
as demonstrated in Fig. 5.18. The error is greater and subsequently the control system
demands higher current inputs to the TEC in order to obtain the accuracy required.

2. In fact, we could cycle the system with a sine-wave amplitude of 20 K to achieve the
total temperature change of 40 K (the known temperature change required to produce
the 180 keV electric field required for ionisation and acceleration of the deuterium
atoms). The system response is shown in Fig. 5.19. We start the cycle by initially
cooling the crystal, then take it through a total 40 K change cyclically.

3. We could double the frequency, as shown in Fig. 5.20. However, we can see that the
errors are greater (almost double) when the input frequency is increased. This is due to
the thermal lag in the system temperature response.

4. The effect of increasing the input frequency further to 0.1 rad/sec is shown in Fig. 5.21.
The response indicates that the system cannot be cycled this fast. This is to be expected
as the Bode plot in Chapter 4 showed that the amplitude falls off at frequencies at
above about 0.01 rad/sec, and at this frequency the output of the system is 90 degrees
out of phase with the input. The system cannot meet this demand.

5. If we reduce the input frequency to 0.001 rad/sec, the system error is reduced and the
accuracy of the response is increased, as can be seen in Fig. 5.22.
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Fig. 5.17 Simulink nonlinear TEC model with a PID controller - 1 K amplitude, 0.01 rad/sec
sine-wave response, at room temperature.
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Fig. 5.18 Simulink nonlinear TEC model with a PID controller - 40 K amplitude, 0.01 rad/sec
sine-wave response, at room temperature.
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Fig. 5.19 Simulink nonlinear TEC model with a PID controller - 20 K amplitude, 0.01 rad/sec
sine-wave response, at room temperature.
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Fig. 5.20 Simulink nonlinear TEC model with a PID controller - 20 K amplitude, 0.02 rad/sec
sine-wave response, at room temperature.
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Fig. 5.21 Simulink nonlinear TEC model with a PID controller - 20 K amplitude, 0.1 rad/sec
sine-wave response, at room temperature.
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Fig. 5.22 Simulink nonlinear TEC model with a PID controller - 20 K amplitude, 0.001
rad/sec sine-wave response, at room temperature.
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5.4 Summary

1. The on-off controllers result in either 100% full negative or full positive TEC cur-
rent, which causes overshoots and undershoots in the crystal temperature, along with
oscillations around the steady-state temperature.

2. The on-off controllers have been shown to provide poor control, and are not recom-
mended for our pyroelectric TEC system heating/cooling processes.

3. The PID controllers have been shown to provide improved temperature control, with
reduced error signals and no oscillations at steady-state.

4. Overall, the more sophisticated approach to the control system design was to modulate
the current input to the TEC in proportion to how much temperature error there was
present. This was achieved with the PID controller.

Having obtained good control over the heating and cooling cycles of a pyroelectric TEC
system, we are now ready to expand our model and simulate the production of neutrons.
Chapter 6 discusses the processes behind ion generation and acceleration, and the subsequent
production of neutrons in a pyroelectric neutron generator. Equations are developed and
verified using system identification techniques. We will then go on to consider the effects of
changing the amplitude and frequency of temperature cycles when we consider the control
system design for pyroelectric neutron production in Chapter 7.





Chapter 6

System dynamic model of a pyroelectric
neutron generator

6.1 Introduction

A pyroelectric neutron source comprises pyroelectric crystals typically in a single or paired
arrangement; the work presented in this chapter focuses on a single crystal, attached to a
thermoelectric heater/cooler. These components are contained within a vacuum chamber
which is partially filled with deuterium gas at low pressure, and which contains a deuterated
target. When the pyroelectric crystal is thermally cycled, a change in the bound surface
charge develops on the exposed polarised face. Through this pyroelectric effect, the crystal
generates high voltages and a strong electric field in the chamber. The electric field is capable
of ionising the deuterium gas and accelerating the ions into the deuterated target to produce a
pulse of neutrons. In this chapter, we will model the pyroelectric neutron generator system
using two approaches:

1. First, we will compare the UCLA experimental results, shown in Fig. 6.1 [74],
with those of our theoretically derived model for the pyroelectric neutron generator
system. This section builds upon our previously published work on pyroelectric neutron
generator modelling, which was undertaken in 2017 [27].

2. Second, we will estimate the pyroelectric neutron generator model parameters using
a system identification technique. We conducted an initial investigation into suitable
estimation techniques in our second publication of 2017 [26]; this section of the chapter
extends and improves upon that earlier work.
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Fig. 6.1 Data from a single ULCA experiment run: a, Crystal temperature; b, X-rays detected;
c, Faraday cup current; d, Neutrons detected [74].
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6.2 Pyroelectric system describing equations

The data selected for identification is that of UCLA [74]. The UCLA system comprises
a single z-cut, 1 cm radius, LiTaO3 crystal with its −z axis facing a deuterated target in a
vacuum chamber containing deuterium gas at 0.7 Pa. In the UCLA experiments the crystal is
heated from 240 K to 280 K, using a TEC, resulting in a decrease in spontaneous polarisation
and leading to a system potential of around 100 keV for this particular system geometry. A
tungsten tip was used in these experiments to generate a high electric field (> 25 Vnm−1),
sufficient for ionisation of deuterium and acceleration of the ions into a deuterated target. A
neutron flux over 400 times the background level was reported.

Changes in the bulk crystal temperature, T̃L, alter the lattice spacing of non-symmetrically
located ions within pyroelectric crystals, such as lithium tantalate. The ion displacement
varies the spontaneous polarization of the crystal, producing a displacement current, I, which
is parallel to the crystal’s polar axis [76]. We can estimate the electric current which is
generated during the pyroelectric effect as [57]:

I = γA
dTL

dt
(6.1)

where γ =−190 µC/K ·m2 is the value most often quoted as the pyroelectric coefficient for
LiTaO3 [45]. The UCLA publication [74] quotes a pyroelectric coefficient value based on the
earlier work of Rosenblum et al. [82]. It is reported that heating a lithium tantalate crystal
from 240 K to 265 K decreases its spontaneous polarization by 0.0037 Cm2 (i.e. γ =−148
µC/K ·m2). We will use this experimentally derived value of the pyroelectric coefficient, as
this was measured for the appropriate initial crystal temperature and the magnitude of the
change applied in the UCLA experiments. The relationship between the pyroelectric current
I and crystal voltage V may be expressed as

C
dV
dt

+
V
R
= I (6.2)

where C is the crystal capacitance, which may be written as [45]

C = εoεcr
A
L

(6.3)

and ε0 is the standard permittivity of the vacuum; εcr = 46 is the relative permittivity of the
LiTaO3 [45] and L = 0.01 m is the length of the crystal used in the experiments [74]. In Eq.
6.2, R is the resistance of the LiTaO3 crystal, which is expressed as



152 System dynamic model of a pyroelectric neutron generator

R =
ρA
L

(6.4)

where A is the area of the crystal, and ρ is the crystal resistivity. Specific values for LiTaO3

crystal resistivity are difficult to obtain, and are not widely available. Roditi, a company who
manufacture and distribute crystals for various applications, claim a value of bulk resistivity
of ρ = 4.5×1010 Ω.cm for standard LiTaO3 on their website [80]. However, for the same
crystal, the webpage also has a value for bulk conductivity of σ = 2.22×1015 Ω−1.cm−1.
One of these values must be published in error, as we would reasonably expect the following
relationship between the bulk conductivity and bulk resistivity:

ρ =
1
σ

(6.5)

We contacted Roditi to ask for clarification on these values and the response, an email (J
Brendel 2018, personal communication, 12 September), gave a range of values for LiTaO3

bulk resistivity of between 1014 to 1015 Ω.cm. During the analysis of our pyroelectric neutron
generator simulations, which are discussed in more detail later in this chapter, we found
that a value of 1.3× 1014 Ω.cm produced the most accurate results, when comparing the
model generated signals to the UCLA experiment data [74]. With this value of resistivity, the
resistance is calculated to be R = 9.1×1010 Ω.

Combining Eqs. 6.1 and 6.2 yields

C
dV
dt

+
V
R
= γA

dTL

dt
(6.6)

We can now expand our previous small-perturbation analysis of the TEC model, devel-
oped in Chapters 3 and 4, to the linearised equation set for the typical pyroelectric neutron
generation system. Our expanded variables set becomes:

TL(t) = T̄L + T̃L(t)
TH(t) = T̄H + T̃H(t)
V (t) = V̄ +Ṽ (t)
I(t) = Ī + Ĩ(t)

(6.7)

where each variable is considered to be the summation of a steady-state value (denoted by
X̄) and a small change (denoted by X̃) about that operating point. Equation set 6.7 can be
substituted into 6.6, to obtain

C
d(V̄ +Ṽ )

dt
+

(V̄ +Ṽ )

R
= γA

d(T̄L + T̃L)

dt
(6.8)
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Eliminating the steady-state terms in Eq. 6.8, the following equation, Eq. 6.9, may be
realised:

C
dṼ
dt

+
Ṽ
R
= γA

dT̃L

dt
(6.9)

Taking the Laplace transform of Eq. 6.9, with steady-state initial conditions, yields

CsṼ +
Ṽ
R
= γAsT̃L (6.10)

Then, we can rearrange Eq. 6.10 to obtain the transfer function

Ṽ
T̃L

=
RγAs

CRs+1
(6.11)

where the time constant is RC = 529 seconds, and the gain is RγA = 1.9×106. Assuming
that all the surface charge is converted into ions, a theoretical maximum ion current may be
calculated from Eq. 6.11 by applying Eq. 6.12:

q̃ =
Ṽ
R

(6.12)

The total charge on the surface of the crystal is found by multiplying the crystal’s surface
potential, Ṽ , by the crystal’s capacitance, C [45]

Q =CṼ (6.13)

During the heating phase the system generates deuterons, and we can calculate the number
of ions produced from the ion current, Eq. 6.12, by dividing through by the elementary
charge, e = 1.6×10−19 C. We may assume that all the charge is converted into ions [45]

φ =
Q
e

(6.14)

where φ is the number of ions observed. Then, we can estimate that around half of the D-D
fusions result in the neutron-producing branch, and the neutron production S, per thermal
cycle, may then be obtained using

S =
Ndσφ

2
(6.15)

where Nd = 7.96× 10−10 (b-
◦
A)−1 [45] is the target density of deuterium atoms per unit

volume and σ = 259 b-
◦
A [45] is the calculated integrated cross section for D-D fusion.



154 System dynamic model of a pyroelectric neutron generator

6.3 Detectors

When modelling the UCLA experiments we need to take into account the behaviour of
any detectors, which may affect the system signals that are recorded. The UCLA detector
arrangement is shown in Fig. 1.7. There are three detectors used in the capture of the signals
of interest:

1. The x-ray energy is measured using an Amptek XR-100T-CdTe x-ray detector.

2. The ion current is measured using a Faraday cup.

3. A liquid scintillator is used for the detection and pulse-shape identification of neutrons.

6.3.1 Amptek XR-100T-CdTe

The UCLA group used an Amptek XR-100T-CdTe x-ray and gamma ray detector [74].
Detailed information on the operation of this detector can be found on the Amptek website
[1]. Amptek’s standard XR-100T-CdTe detector consists of a 1 mm thick CdTe diode
detector located behind a 4 mm (100 µm) Be window. The probability of a photon interaction
somewhere in the thickness is the product of the probability of transmission through beryllium,
Be, and the probability of interaction in the material. Detection efficiency is an important
consideration for us, but according to Amptek [1], due to charge transport effects, defining it
is somewhat subtle. If we consider the probabilities of interaction with the material, which
are shown by the black line on Fig. 6.2, we can see that the efficiency remains above 0.3 for
the entire energy range. The UCLA group observed that when the crystal reached 80 keV
the field ionization rapidly turned on [74]; therefore, it is important that we have taken into
account the detector efficiency at energies above this level.

6.3.2 Faraday cup

In the UCLA experiments [74] the ion current is measured using a Faraday cup. When a
beam or packet of ions hits the metal, it gains a small net charge while the ions are neutralized.
The metal can then be discharged to measure a small current proportional to the number
of impinging ions. By measuring the electric current in the metal part of the cup circuit,
the number of charges being carried by the ions in the vacuum part of the circuit can be
determined. The current flow, I, through the circuit can be very accurately measured, and is
directly proportional to the number of ions, φ , that have been intercepted by the Faraday cup
[8]. The number of ions can be simply calculated from
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Fig. 6.2 Linear plot of interaction probability, computed by Amptek for their standard 1 mm
CdTe detector [1]. The probabilities of interaction with the detector material are shown by
the black line; the results for a 0.5 mm Si detector and for a CdTe stack detector, 2.25 mm
thick, are shown for comparison purposes.

φ

t
=

I
e

(6.16)

where t is the time of measurement.

The data recorded during the UCLA experiments [74], shown in Fig. 6.1, shows that
the ion current is detected after around 150 seconds. The group reported that, only when
the crystal potential reaches around 80 keV, does the field ionisation fully switch on. We
will need to include this nonlinearity in the form of a deadband in our pyroelectric neutron
generator model. The counting of charges collected per unit time in the Faraday cup may be
impacted by two potential sources of error:

1. primary electrons that have been turned around, and are referred to as backscattered
electrons, which temporarily leave the collecting surface, and
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2. the emission of low-energy secondary electrons from the surface struck by the incident
charge.

The UCLA group reported that ions striking the mesh and the surrounding aperture
created secondary electrons that accelerated back into the crystal, increasing the x-ray signal
[74]. NASA studies of Faraday cup detectors in 1965 [21] report that it is fundamentally
impossible to distinguish between a new incident electron and one that has been backscattered
or a fast secondary electron. These studies measured backscattering coefficients as low as
0.4% and as high as 62%, and secondary-electron yields ranging from 1.1 to 5.2% for a broad
range of metal targets. We will need to take these coefficients into account in our model,
and the appropriate magnitude to best replicate the UCLA experiment can be found through
simulation trials.

6.3.3 Neutron detection

The UCLA group designed and constructed their own prototype neutron detector, built with
funds from DARPA. The detector consisted of six liquid scintillator (BC-501A and NE213)
cells (diameter, 127 mm; height,137 mm), for detection and pulse-shape identification of neu-
trons. Each scintillator was optically coupled to a 12 mm Hamamatsu R1250 photomultiplier
tube (PMT). Most importantly for our simulation purposes, the UCLA group report an 18%
2.45-MeV neutron detection efficiency [74], which will be included in our full system model.

6.4 Comparison of Simulink results with UCLA experiment

Equations 6.11 and 6.12, for the crystal potential and the ion current respectively, can be
added to our Simulink model for the pyroelectric TEC system. The resulting Simulink model
is shown in Fig. 6.3. At the top of Fig. 6.3, we have our TEC Model, which we designed
in Chapter 5 for the TEC, including, from left to right: the input signals (step, ramp and
sine) with selector switch, the PID controller, the TEC current saturation block and the LPV
TEC model. Then, working across the bottom of the diagram, again from left to right, we
have our new components representing the thermal-to-pyroelectric system, a deadband for
the ion current generation, deuterium ion count and, finally, we get to the output in neutron
counts per second. The deadband represents the UCLA group’s observation that only when
the crystal reached 80 keV did the field ionization turn on [74]. We have also included three
switches that give us the option to include the various detector parameters, which have been
previously described, in the simulation.
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Fig. 6.3 Simulink model of the pyroelectric system.
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For a simple visualisation of the accuracy of our results when compared to the UCLA
experimental data, we can over-plot the original UCLA published graphs [74]. The graphs
were read into MATLAB using the image read function of the image processing toolbox.
The scale of each image was determined, and the simulation data was plotted on the same
axis, for ease of comparison. The results are shown in the figures that follow.

1. Crystal temperature and x-ray energy. Figures 6.4 and 6.5 show very good agree-
ment between the temperature profiles, and also between the x-ray energy signals
for our Simulink pyroelectric system model. The dominant dynamic response of the
temperature to x-ray energy sub-system has been captured. However, the magnitude
may be affected by the efficiency of the detector used in the UCLA experiments [74].
We have used a detector efficiency of 90%, and the improvement in the accuracy of the
magnitude of the detected x-ray energies can be seen in Fig. 6.5. The solid blue plot is
the maximum predicted x-ray energy, and the dashed blue line shows the result when
the detector efficiency is modelled.

2. Ion current. Figure 6.6 shows that the ion current output predicted by our model is
approximately half of that observed by the UCLA group [74]. The timings of the peak
in the ion current transients are in good agreement. The dashed blue plot in Fig. 6.6
shows the ion current output when a mid-range backscattering coefficient, of 30%,
and a mid-range secondary-electron yield, of 3%, are added. Including this coefficient
produces a more accurate prediction result for the UCLA experimental system.

3. Deuterium ions per second. Figure 6.7 shows our simulation of the number of
deuterium ions produced, assuming 100% ionization efficiency. There is no comparison
deuterium ion signal from the UCLA group’s experiments.

4. Neutrons per second. The over-prediction of ions leads to an over-prediction of the
ion current, and the number of neutrons per second that we simulate are detected, as
seen in Fig. 6.8. The maximum neutron yield we have simulated is in good agreement
with the maximum yield predictions made by the RPI group for a theoretically optimal
system of a similar size [45].

The observed neutron peak of the UCLA group experiments was around 400 neutrons
per second, with a neutron detector efficiency of 18%. We simulate a peak count of
1400 neutrons per second. The UCLA group report that part of the ion beam struck
outside the target and there was an oxide layer on the target [74]; this may well be
a major factor contributing to the discrepancy of around 50% in the neutron counts
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simulated by our model. Fig. 6.8 shows the result just taking into account the detector
efficiency, and also the result with the addition of the geometrical considerations.

Comparison of our results with the UCLA experiments indicates that discontinuities
and efficiency factors must be taken into account in order to reasonably predict the current
system output. We have derived our pyroelectric neutron generator model structure from first
principles and obtained a good representation of the dynamic response of the UCLA system.
We can now use system identification techniques to estimate the best model parameters to fit
a set of experimental input-output data relationships.

Fig. 6.4 Comparison of the UCLA crystal temperature with simulation.
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Fig. 6.5 Comparison of the UCLA x-ray energy with simulation.
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Fig. 6.6 Comparison of the UCLA ion current with simulation.
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Fig. 6.7 Plot of simulated deuterium ions.
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Fig. 6.8 Comparison of the UCLA neutron count rate with simulation.
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6.5 System identification

This section presents our methods to construct, estimate and analyse grey-box models of the
pyrofusion system from the UCLA measured data [74]. Our methods of system identification
were trialled on data sets obtained from the publications of previous pyrofusion research
groups. The results of our 2017 publication [26] indicated the promising potential application
of these methods to the system identification of profusion device characteristics to support
model verification, pulse characterisation and prediction of operational capabilities. The
identified models were shown to exhibit satisfactory analogous cause-and-effect behaviour.
However, the link between the estimated model parameters and the basic physics equations
was not derived. In this section we aim to address this shortfall in our previous research.

Mathematical dynamic relationships between the input and output experimental data
of each sub-system may be estimated with the implementation of the system identification
algorithms in MATLAB. With consideration to the available system data from UCLA [74],
three potential sub-systems may be identified:

1. crystal temperature to potential (x-ray energy),

2. potential to ion current, and

3. ion current to neutron flux.

We were unable to obtain the original data for the UCLA experiments; so, we used
WebPlotDigitiser [81], which is an open source, semi-automated online tool, to reverse
engineer the images of the data and extract the underlying numerical data. The results of
this reverse engineering can be see in Figs. 6.9, 6.10 and 6.11. The temperature data is not
digitised, as we use our previously designed TEC PID controller to generate the temperature
profile input to the pyroelectric neutron generator system (see Fig. 6.3).

The selected time-domain data captures the important sub-system dynamics, such as the
dominant time constants, system natural frequency and damping.

We used the MATLAB System Identification Toolbox to identify the models from the
measured data. The following steps were taken:

1. Process the data. We import the data into the MATLAB workspace and create a
data object for each transfer function using iddata. This data object takes the input
and output data, and the sampling time. Each data value is assigned a time instant,
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Fig. 6.9 Comparison of the UCLA x-ray plot with the numerical data from the reverse
engineered images.

which is calculated from the start time and sample time. To replicate our input inter-
sample behaviour, we use the default setting of a zero-order-hold; the zero-order hold
maintains a piecewise-constant input signal between samples.

2. Identify linear models. We used tfest to identify the transfer function models, based
on the iddata objects. The function tfest estimates a continuous-time transfer function,
using the time-domain data. We specified the number of poles and zeros for each
estimated transfer function based on the models we derived from our theory. We
compare the structure and numerical values for each estimated model with the derived
models later in this section. The MATLAB estimation algorithm we used was the
Instrument Variable (IV) method. The method is also known as the Simplified Refined
Instrumental Variable method for Continuous-time systems (SRIVC) [79].

3. Compare the model output to measured data. Then we used the compare function
to simulate the response of estimated dynamic system models to the input data, and
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Fig. 6.10 Comparison of the UCLA ion plot with the numerical data from the reverse
engineered images.

superimpose the output response over our digitised experimental data from UCLA
[74]. The compare calculates the fit (in percentage) using [69]:

fit = 100
(

1− ||y− ŷ||
||y−mean(y)||

)
(6.17)

where y is the measured data and ŷ is the output of the estimated model.

Systems were represented as grey-box models, whose structures were based on our
theoretical derivations of the transfer functions, and whose coefficients were estimated
from the experimental data. The simulated model response comparison results are shown
in Figs. 6.13, 6.14, and 6.15. Each plot can be used to evaluate the estimated candidate
model identified from the measurement data, and also to validate the selected model through
comparison of the time-domain models and the data. The plots also show the normalized root
mean square error (NRMSE) measure of the goodness of the fit between simulated response
and measurement data. The three sub-systems may be individually analysed:
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Fig. 6.11 Comparison of the UCLA neutron count rate plot with the numerical data from the
reverse engineered images.

1. Temperature to x-ray energy. A linear model of first-order structure, based on
our theoretically derived model structure, was estimated. This model simulates the
temperature-potential experimental data relationship with a good fit of ∼ 90%. The
result is shown by the blue line plotted in Fig. 6.13, where the grey line is the
digitised x-ray data. Our derived transfer function model for the temperature to x-ray
relationship, with numerical values, is

Ṽ
T̃L

=
3270.4s

s+0.001889
≈ 1.9×106s

529s+1
(6.18)

The estimated model was found to be

Ṽ
T̃L

=
3584.3(s+0.009×10−5)

(s+0.001466)
≈ 3584.3s

(s+0.001466)
≈ 2.4×106s

682s+1
(6.19)
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Both models show good agreement: the estimated gain is 27% greater than the derived
gain, and the time constant is 29% greater.

2. Potential to ion current. We estimated a first-order nonlinear Hammerstein-Wiener
model, with an input deadband of [0, 80 keV]. The model estimation is shown to have a
reasonably good fit of ∼ 72%. The Hammerstein-Wiener model is estimated using the
function nlhw, which represents the decomposition of the input-output relationship into
two or more interconnected elements [66]. The system dynamics are represented by a
linear transfer function and the nonlinearities are captured using nonlinear functions of
inputs and outputs of the linear system, as shown in Fig. 6.12. For our potential to ion
current subsystem we applied a deadband input nonlinearity of [0, 80 keV].

Fig. 6.12 The structure of Hammerstein-Wiener models [66].

In Fig. 6.12:
f is a nonlinear function that transforms input data u(t) as w(t) = f (u(t)).
w(t), an internal variable, is the output of the Input Nonlinearity block and has the
same dimension as u(t).
B/F is a linear transfer function that transforms w(t) as x(t) = (B/F)w(t).
x(t), an internal variable, is the output of the Linear block and has the same dimension
as y(t).

We can compare the parameters of the estimated linear model with those we calculated
for our derived Simulink model (the model is shown in Fig. 6.3). The estimated model
and the derived model were both purely static gains (without any poles or zeros present
in the structure). The models are in good agreement: the gain for our estimated model
was ≈ 1×10−13, which is around 15% greater than our calculated gain for the system
including the Faraday cup efficiency, which was 5.4×10−14 ×1.6 = 8.7×10−14.

3. Ion current to neutron flux. The first-order estimated models had a good percentage
fit to the estimation data of ∼ 84%. The derived model is a static gain of 5.8×1010,
and we use this as our initial model for estimation. The final estimated model also has
a structure with no zeros or poles, and a static gain of 2.9×1010. This would imply
that we need to reduce the gain of our derived model by 50% in order to get the best fit.
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Fig. 6.13 Comparison of the UCLA system data and the estimated temperature to x-ray
transfer function response. The original data is represented by the grey line, and the simulated
response is plotted in blue.
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Fig. 6.14 Comparison of the UCLA system data and the estimated x-ray to ion current
transfer function response. The original data is represented by the grey line, and the simulated
response is plotted in blue.
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Fig. 6.15 Comparison of the UCLA system data and the estimated ion current to neutron
counts per second transfer function response. The original data is represented by the grey
line, and the simulated response is plotted in blue.
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6.6 Summary

Our models have shown behavioural properties that reasonably resemble the performance
of the UCLA pyroelectric neutron generation system [74]. We have identified the nonlinear
dynamic characteristics for the UCLA pyrofusion system. We have investigated the physical
identification of the model structures through use of digitised pyrofusion experiment data.
The simulations in MATLAB/Simulink of a simple pyroelectric neutron source demonstrate
the possibilities of investigation into the dynamic characteristics using methods of control
engineering theory.

1. We have improved the modelling of the pyroelectric neutron generation system based
on our previously published model and results [26, 27].

2. The dominant dynamic response of each sub-system has been captured and the theo-
retically derived model has been used to estimate more physically accurate transfer
functions.

3. The nonlinearities of the system have been investigated and the initial steps towards
their identification have been made.

4. The detector and geometrical considerations for the UCLA system have been identified;
these parameters could be tuned to model other systems in the future.

5. Through our modelling process we can confirm that the UCLA group’s neutron yield
is not the theoretical maximum for an optimised system.

6. We have designated the same data set to be used for estimating and validating the
model, so there is some risk that we may have overfitted our data. We were unable to
get hold of any additional appropriate time-domain data for validation. In future work
it is recommended that tests are run that provide an additional independent data set for
cross-validation. This will be specified in Chapter 8.

In Chapter 7 we will analyse and compare the stability and controllability of the UCLA
pyroelectric neutron system and a theoretically optimal pyroelectric neutron system. Control
system design will be discussed, simulated and analysed. Finally, we will discuss the potential
application of these neutron sources to low-power nuclear reactors.



Chapter 7

Pyroelectric neutron generator control
system

7.1 Introduction

In the previous chapter we used simulation and system identification techniques to create a
pyroelectric neutron generator model, which captures the dominant dynamic characteristics
of the system. However, before we can consider the application of the generator, we must
first analyse the potential controllability of pyroelectric neutron production. We must:

1. Estimate the pyroelectric neutron generation system dynamic response, stability and
performance.

2. Determine the controllable pyroelectric system dynamics and controllability bound-
aries.

3. Understand the type of additional system equalization desirable to achieve better
control.

4. Identify the maximum forcing function bandwidth compatible with reasonable control
action.

Following this investigation, we can consider the feasibility of using this neutron generator
system as a stable and reliable neutron source in a nuclear reactor. In Chapters 4 to 6,
we derived a pyroelectric neutron generator model structure from the underlying physics
principles. In order to simulate the cyclic, or repeated pulse operation, of our pyroelectric
neutron system, we are required to make a few adjustments to our Simulink model, which
include:
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1. Extension of the x-ray deadzone to [-80,80] keV.

2. The addition of a block to output the absolute value of the ion current for the calculation
of the ion production.

3. A switch on the ion production signal that only allows neutrons to be generated when
the ions are accelerated towards the target.

The updates can be seen in the Simulink model in Fig. 7.1. The full system model
has a multiloop control system, with temperature control in the inner loop, and the control
of neutron production in the outer loop. We initially tuned single-input single-output PID
controllers, and now we need to turn our attention to tuning multiloop PID controller
architectures. We will follow a typical workflow [67], whereby we tune the compensator for
the inner loop (the blue blocks in Fig. 7.1) first, by isolating the inner loop from the rest of
the control system. Then we will tune the outer loop (the green blocks in Fig. 7.1) to achieve
our desired closed-loop response.
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Fig. 7.1 Simulink single-crystal pyroelectric neutron generator multiloop control system.
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7.2 Inner loop temperature controller design

In Chapter 5, we designed a control system for a TEC operating at 240 K to increase the
pyroelectric crystal temperature to 280 K, for the purpose of generating neutrons. With
consideration of our nuclear reactor application, we must optimise our TEC control system to
operate at room temperature, that is, at ∼300 K. As we will be cycling our crystal temperature
during the reactor transients, we will define the heating half-cycle as neutron producing. Our
design objectives for the inner loop control system are:

1. Minimal closed-loop step response settling time.

2. Inner loop phase margin of at least 60 degrees.

3. Maximum inner-loop bandwidth.

The heating/cooling process can allow temperature overshoots of around 20% of the
crystal temperature beyond the setpoint. TEC modules have operating temperature limits, and
there are units available with a maximum operation temperature of around 200 ◦C, where this
limit is defined by the reflow temperature of solder and sealing [70]. Temperature differences
between hot and cold sides of around 70 + 273 K are safe for TEC operation. For our system,
initially at room temperature (i.e. around 30 + 273 K), the change in setpoint must not exceed
60 K.

We can use the MATLAB supported rule-based methods to automatically tune our
controller to achieve the optimal system design and to meet our requirements. However,
these methods do not support nonlinear systems. We will need to use a linear plant model to
automatically tune the PID controller gains, then fine-tune the design interactively as required.

We first isolate the inner loop (the blue blocks in Fig. 7.1); this removes the effect of
the outer control loop on the open-loop transfer function of the inner loop. We can tune
a one-degree-of-freedom PID controller, using the built-in pidtune MATLAB algorithm,
which balances performance (response time) and robustness (stability margins) [67]. We can
choose to specify a target value for the first 0 dB gain crossover frequency of the open-loop
response. In Chapter 5, we identified the crossover frequency for the open-loop TEC system
(i.e. without a controller) to be around 0.127 rad/sec. So, we can design and compare the
performance of two controller options by specifying target values of 0.1 and 1 rad/sec gain
crossover frequencies in the pidtune MATLAB algorithm. The controllers that result from
the control design process are of the following PI form:
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K p+Ki
1
s

(7.1)

where K p and Ki have the following values:

1. Crossover frequency of 0.1 rad/sec: with K p = −0.612, Ki = −0.0504.

2. Crossover frequency of 1 rad/sec: with K p = −6.7, Ki = −4.02.

PI controllers are quite common in industry applications, since the derivative action is
sensitive to measurement noise [67]. We have also moved the TEC current saturation from
an external Simulink block to an internal controller parameter, such that the output of the PI
controller will always be limited to ±10 A.

We may now take each controller and simulate the closed-loop response for both the
heating and cooling modes of operation. If the response for the cooling mode is unsatisfactory,
we will need to consider gain scheduling of the PID controller. The resulting closed-loop
TEC system unit-step and frequency response plots are shown in Fig. 7.2. The unit-step
performance characteristics are compared in Table 7.1. We can see that:

1. Although the controller designs were based on the heating mode of operation, the
resulting individual control system responses are the same for both heating and cooling.
This is most clearly apparent on the Bode diagram, where the cooling cycle frequency
response exactly overlays the heating response for each crossover target.

2. The unit-step response plot shows us that the response time increases with increasing
target crossover frequency. The values of the rise time are easily compared in Table
7.1, where we can see the factor of approximately 10 increase between each successive
controller design.

3. The controllers have reduced the low frequency gain to 0 dB. Each controller meets its
crossover target well.

Comparing each of the controller performances against our design requirements, we
can determine that controller 2 best meets our requirements. It is clear that the pyroelectric
neutron generation system will not produce the demanded neutron output without either a
good calibration of the neutron demand to temperature change required, or an outer closed-
loop involving control on the neutron error. As our system is a multiloop control system, we
must jointly tune both the inner and outer loops in order to get an acceptable design.
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No. Crossover
frequency
(rad/sec)

Peak
response
(K)

Overshoot
%

Settling
time (sec)

Rise time
(sec)

Steady-
state (K)

1 0.1 1.17 16.8 61.7 13.9 1
2 1.0 1.23 23.4 9.12 1.27 1

Table 7.1 Comparison of closed-loop TEC controller performance characteristics.

Fig. 7.2 Comparison of the TEC control system unit-step and frequency responses.
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7.3 Outer loop neutron controller design

When designing multiloop control systems, the inner control loop is typically designed to be
faster than the outer loop to reject disturbances before they propagate to the outer loop. In
our case, we should design the outer loop to have a bandwidth of no more than 0.1 rad/s. We
use a linearised pyroelectric neutron generator system model, and incorporate the inner TEC
feedback control loop. Two crossover frequencies are considered for the outer control loop:
0.1 rad/sec and 0.01 rad/sec. We use the MATLAB algorithm pidtune for the neutron PID
controller design. The optimised controller has the following I-only form:

Ki
1
s

(7.2)

where

1. For a crossover frequency of 0.1 rad/sec: Ki = 0.00154, with a phase margin of 90.7
degrees.

2. For a crossover frequency of 0.01 rad/sec: Ki = 0.0016, with a phase margin of 100.7
degrees.

Figure 7.3 shows the response of the two neutron PI controllers.

1. The unit-step response shows that the multiloop control system, with the pyrolectric
outer loop controller tuned for a 0.01 rad/sec crossover frequency, has a very sluggish
response. This would be too slow for our reactor transient application, and the response
actually increases (very slowly) to infinity (i.e. the system is unbounded and unstable).

2. The controller tuned for 0.1 rad/sec has a good response, with a final steady-state value
of 1, a rise time of around 23 seconds, and no overshoot.

3. The Bode diagram clearly shows the systems to act like bandpass filters, from around
10−16 rad/sec to around 10−2 rad/sec. This indicates that the system should respond
well to slow changing inputs with maximum frequencies in the region of 10−2 rad/sec.

The multiloop system controllers that we will take forward to the next section, for
the nonlinear system cyclic pulse simulations in Simulink, are the inner loop TEC PI
controller tuned at 1 rad/sec and the outer loop integral neutron controller tuned at
0.1 rad/sec.
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Fig. 7.3 Comparison of the two pyroelectric neutron generator multiloop controller designs,
with an inner control loop (temperature) crossover frequency of 1 rad/sec, and an outer loop
(neutrons) target crossover frequency of 0.1 rad/sec or 0.01 rad/sec.
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7.4 Repeated pulse and positive half-cycle sine-wave responses

In this section, we will investigate how our first pass controller system responds to dynamic
inputs when coupled with the nonlinear plant dynamics. In each case, the controllers and
input combinations under investigation are:

1. An inner loop PI TEC controller, with a ±10 A output current saturation, and 1 rad/sec
crossover frequency; and an outer loop I-only pyroelectric controller with 0.1 rad/sec
crossover frequency.

(a) Positive half-cycle sine-wave input, with 800 counts per second (cps) magnitude
and 0.01 rad/sec frequency.

(b) A repeated pulse input with an amplitude of 800 cps, period of 600 seconds, pulse
width of 50% and zero phase delay.

2. A inner loop PI TEC controller, with a ±10 A output current saturation, and 1 rad/sec
crossover frequency; and an outer loop I-only pyroelectric controller with 0.1 rad/sec
crossover frequency; and additionally with an external reset trigger. The action of
the external reset is explained in the following section.

(a) Positive half-cycle sine-wave input, with 800 cps magnitude and 0.01 rad/sec
frequency.

(b) A repeated pulse input with an amplitude of 800 cps, period of 600 seconds, pulse
width of 50% and zero phase delay.

3. An inner loop PI TEC controller, with ±10 A output current saturation, and 1 rad/sec
crossover frequency; and an outer loop I-only pyroelectric controller with 0.1 rad/sec
crossover frequency, external reset trigger, and additionally with tracking mode
enabled. The action of the enabled tracking mode is explained in the following section.

(a) Positive half-cycle sine-wave input, with 800 cps magnitude and 0.01 rad/sec
frequency.

(b) A repeated pulse input with an amplitude of 800 cps, period of 600 seconds, pulse
width of 50% and zero phase delay.

The results of the simulations are shown in Figs. 7.4 to 7.9. The main observations from
the simulation results are as follows:

1. Neutron I-only controller:



182 Pyroelectric neutron generator control system

(a) Positive half-cycle response. Figure 7.4 shows a reasonable neutron response.
The production of generated neutrons lags the demand and there is an error of
around 40 cps at each peak. The multiloop controller shows good inner loop
(temperature) control. However, the main issue with this controller response
is the continually increasing crystal temperature - ideally, we would want the
temperature to decrease back to room temperature between each half-cycle. The
TEC current demand looks reasonable, it only once peaks at the saturation value -
this could be avoided with a controller that reduces the temperature between peak
demands. The x-ray energy and ion current signals look reasonable - both are
positive, and they are repeatable, i.e the signals do not increase or drift between
the peaks in neutron demand.

(b) Pulse response. Figure 7.5 shows that the PI controller response to a pulse
demand is not as good as the previous half-cycle response. The first neutron pulse
demand results in a series of spikes, which overshoot the setpoint. The error in
neutrons increases over the transient, with the controller finally unable to produce
a satisfactory second pulse. The temperature exceeds the safe operational limits
for the device, and the error in this signal increases over the transient. The TEC
current saturates several times over the duration of the two pulses. The x-ray
energy switches from positive to negative several times (due to the temperature
fluctuations) and the ion current signal has a similar shape.

The two responses indicate that we need to include an external reset in the controller to
reset the output when the neutron demand signal has a falling edge - this should cause
the temperature demand to return the crystal to room temperature between cycles.

2. Neutron I-only controller with reset trigger: We specify an external trigger condi-
tion that causes the controller block to reset the integrator and filter to initial conditions.
Our external trigger condition is a falling neutron demand.

(a) Positive half-cycle response. Figure 7.6 can be compared to the I-only controller
response. The neutron output looks very similar - the error at peak demand is,
again, around 40 cps. The temperature change response has improved, and we
can see that it now successfully returns to 0 K (i.e. back to room temperature)
between each positive half-cycle. This is accompanied by increased saturation of
the controller output (TEC current), and oscillations on the falling neutron edge.
There are also accompanying oscillations in the x-ray energy and ion current.

(b) Pulse response. Figure 7.7 can be compared to the I-only controller response,
and we can see that there is no improvement in the performance.
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The oscillations in temperature are due to the TEC actuator having its own closed-loop
dynamics. The neutron controller is in an outer loop and sees the temperature dynamics
as an inner loop, or a cascaded saturated dynamic. We need to remove the falling-edge
TEC current and temperature oscillations using a tracking coefficient on the output
of the inner loop. This will ensure that when we transfer control from one control
loop to the other there is no big transient. A successful multiloop anti-windup control
strategy in MATLAB requires feeding back the actuator output to the tracking port of
the controller block [67].

3. Neutron I-only controller with reset trigger and tracking mode for anti-windup:

(a) Positive half-cycle response. We enable the tracking mode of the I-only con-
troller, so that the difference between the inner loop feedback signal (the actual
crystal temperature) and the block output is fed back to the integrator input with a
gain Kt = 1. Figure 7.8 shows no improvement in the overall neutron production.
However, the oscillations that were previously seen on the falling edge of the
crystal temperature signal have been removed. It is to be noted that there is an
increase in successive temperature change peaks from 42 K to 50 K. The TEC
current signal has fewer saturation peaks, and has a much smoother response than
the previous controllers. The x-ray energy and ion current have no oscillations or
spikes in their response.

(b) Pulse response. Figure 7.9 shows a greater level of improvement in its response
when compared to the previous controller. The spikes in neutron generation have
gone, and both pulse demands are achieved. There is an increasing overshoot
from one pulse to the next - however, this overshoot is around 27% - this is
deemed to be acceptable. Again, the temperature profile is damped and shows an
increase from one pulse to the next. The TEC current demand has less saturation,
and both the x-ray energy and the ion current response have been damped. The
temperature rate limit is breached for 30 seconds at the start of each pulse when
the rate is approximately 1 K/sec. Following this initial period, the rate reduces
to around 0.07 K/sec for 200 seconds of each pulse. The cooling rate at the end
of the pulse is also around 1 K/sec for 40 seconds.

The best response is seen with the I-only controller with reset trigger and tracking
mode for anti-windup. The multiloop pyroelectric neutron generator control system
shows a good response to both the positive half-cycle and the pulse in neutron demand.



184 Pyroelectric neutron generator control system

Fig. 7.4 Positive half-cycle response for the multiloop control system - with a temperature PI
controller, and a neutron I-only controller.
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Fig. 7.5 Pulse response for the multiloop control system - with a temperature PI controller,
and a neutron I-only controller.
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Fig. 7.6 Positive half-cycle response for the multiloop control system - with a temperature PI
controller, and a neutron I-only controller with external reset trigger.
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Fig. 7.7 Pulse response for the multiloop control system - with a temperature PI controller,
and a neutron I-only controller with external reset trigger.
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Fig. 7.8 Positive half-cycle response for the multiloop control system - with a temperature PI
controller, and a neutron I-only controller with external reset trigger and tracking mode
for anti-windup.
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Fig. 7.9 Pulse response for the multiloop control system - with a temperature PI controller,
and a neutron I-only controller with external reset trigger and tracking mode for anti-
windup.
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Having identified a suitable set of trajectories for neutron production in Fig. 7.9, we
now look to optimise over these by parametrisation. The input pulses are generated using
the MATLAB Pulse Generator block. The block waveform parameters, Amplitude, Pulse
Width, Period, and Phase Delay, determine the shape of the output waveform. The following
diagram shows how each parameter affects the waveform [68].

Fig. 7.10 Pulse generator parameter effects [68].

The UCLA experiments showed that it takes around 150 seconds of heating the crystal to
start generating 800 neutrons per second. We want to thermally cycle our system, so we will
take 150 × 2 seconds as our period. The amplitude of our pulse will be set at 800 neutrons
per second. We will investigate the operation of the generator over a range of pulse widths
(i.e. 10%, 25%, 50%, and 75% of the period). The pulse width (or duty cycle) is specified as
the percentage of the pulse period that the signal is on.

The plots in Fig. 7.11 show the results. Each of the four plots in the left-hand column
compares an ideal rectangular pulse (dashed-black outline) with the system’s neutron output
(cps) (blue plot). The plots in the right-hand column show the total number of neutrons
produced over 600 seconds. For each pulse width, we calculate the Normalised Root Mean
Square Error (NRMSE) between the ideal pulse and the modelled pulse, using the MATLAB
function goodnessOfFit, with the cost function ‘NRSME’ specified [69]. The fit values are
shown in Table 7.2, and vary between -0.4450 and -0.3560, with the former being the worst fit.

Although the pulse width of 10% has the best fit to the ideal pulse data, it can be seen
that the pulse amplitude only reaches a maximum of 400 cps. The longer pulse widths of
50% and 75% produce more neutrons overall; however, we can see that there are increasing
overshoots when transitioning from low to high states in successive pulses. The performance
of repeated pulses at these longer pulse widths is not reliable. The pulse width of 25% seems
to be the best compromise between the number of neutrons produced, and the repeatability
of the pulses.
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Fig. 7.11 Effect of pulse width variation on output neutron pulse and total neutrons produced.
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Pulse Width NRSME
10 -0.3560
25 -0.3615
50 -0.3679
75 -0.4450

Table 7.2 Comparison of NRMSE values for variation in pulse width.
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7.5 The parallel pyroelectric neutron generator actuator
problem

If we are to consider the potential of utilising pyroelectric neutron sources in reactor control
applications, we will need to have several devices operating in an array. There are several
ways in which the control of an array can be achieved. In this section, we will investigate
the problem of operating pyroelectric neutron generators in parallel. Figure 7.12 shows the
Simulink block diagram for two parallel pyroelectric neutron generators. Both devices are
driven by the same setpoint signal, and the outputs of the devices are combined to generate
the total neutron production signal. We have developed the model so that two input types can
be considered: a step demand and a repeated pulse. The array controller was designed using
the method that we used to design the controllers for the individual devices. In this section,
we will report and discuss the results for the best performing controller design: an I-only
controller (with a target crossover closed-loop frequency of 0.01 rad/sec and a resulting
integrator gain of Ki = 0.00512), with external reset trigger that is inserted into the forward
path to improve the closed-loop response of the array.
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Fig. 7.12 Simulink block diagram of the parallel pyroelectric neutron generator array control
system.
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7.5.1 Repeated pulse response

Figure 7.13 shows the response of the controller array to a repeated pulse demand of 1600
neutrons/second, with a 400 second period and a 50% pulse width. Figure 7.14 shows the
response of the individual devices, and as each device responded in exactly the same way,
only one response is shown. From the figures we can see that:

1. The total pulsed demand is not quite met. The total generated pulse peaks reach a
maximum of around 1470 cps at 200 seconds following the rising edge of each demand.
The falling edge of each demand appears to be well controlled.

2. The individual devices produce half of the total neutrons generated by the array. The
temperature of the crystal is well controlled, and rises with each successive pulse.
However, the temperature change remains well below the maximum ∼70 K for the
TEC. The maximum rate of change of temperature is 0.3846 K/sec, which is just under
double the limit of 0.2 K/sec that was suggested by UCLA as safe enough to prevent
crystal damage [74]. However, more research is required into the damage caused by
the rate of change of temperature in lithium tantalate crystals.

3. The TEC current hits the saturation limit on the falling and rising edges of each pulse.
However, the maximum duration of this saturation is around 23 seconds.

4. The x-ray energy cycles with the pulse, and the magnitude looks reasonable, reaching
a maximum of around 120 keV at the pulse peaks.

5. The ion current also looks to be sensible, and peaks at around 2.3 nA.

Fig. 7.13 Repeated pulse response of the parallel pyroelectric neutron generator array.
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Fig. 7.14 Repeated pulse response of an individual pyroelectric neutron generator in the
array.
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7.5.2 Step response

Figure 7.15 shows the response of the controller array to a step demand of 1600 neu-
trons/second, and Fig. 7.16 shows the response of an individual device. From the figures we
can see that

1. The overall constant step demand of 1600 cps is not met.

2. However, the array is able to produce a peak combined output of 1600 cps at around
500 seconds, for a maximum duration of 232 seconds. The rising edge of the pulse
is seen at 64 seconds and the falling edge starts at 732 seconds, yielding a maximum
pulse duration of 661 seconds.

3. The individual devices produce half of the total neutrons generated by the array. The
temperature of the crystal is well controlled, until the TEC current becomes fully
saturated at 752 seconds. The temperature change rises above the maximum ∼70 K
for the TEC. The maximum rate of change of temperature is 2.8 K/sec, which is well
above the limit of 0.2 K/sec that was suggested by UCLA as safe enough to prevent
crystal damage. However, as we previously stated, more research is required into the
damage caused by the rate of change of temperature in lithium tantalate crystals.

4. The x-ray energy reaches a maximum of around 130 keV.

5. The ion current also looks to be sensible, and peaks at 2.5 nA.

Fig. 7.15 Step response of the parallel pyroelectric neutron generator array.
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Fig. 7.16 Step response of an individual pyroelectric neutron generator in the array.
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7.6 Pyroelectric neutron generator driven subcritical reac-
tor transient

In this section, we will undertake a preliminary investigation into the feasibility of using
a pyroelectric neutron generator array as an external neutron source to drive a subcritical
reactor transient. The VR-1 zero-power reactor at the Czech Technical University would be
convenient for performing such pulsed-source experiments. In 2019, a research team at the
VR-1 performed several experiments using a pulsed external neutron source to determine the
accuracy of the reactor kinetics parameters [12].

The simplest model of a reactor that we can consider is known as the point kinetics
model. Several studies have shown good agreement between the point kinetic equations
and experimental results at low frequencies (i.e. less than 20 rad/sec) [72]. These lumped-
parameter equations are known to be satisfactory when the reactor is not very far from critical,
i.e. when k ≈ 1 [48]. The point kinetics equations, assuming a one neutron energy group
reactor (that is one in which the production, diffusion and absorption of neutrons occur at
thermal energy), may be written as [48]:

dn
dt

=
ρ −β

l
n+Σ

i=m
i=1 λiCi +q (7.3)

dCi

dt
=

βi

l
n−λiCi (7.4)

where l is the neutron generation time,
ρ = k−1

k is the reactivity (where k is the effective multiplication factor),
β is the effective delayed neutron fraction and is different for each reactor,
λi is the decay constant for the decay of precursor group i,
Ci is the number of delayed neutron precursors in group i,
q is the source of neutrons extraneous to the fission process (i.e. pyroelectric neutrons),
βi is the proportion of fission reactions that result in the production of a delayed neutron
precursor in group i.

Since, in the point kinetics equations, the neutron density is assumed to have a fixed
spatial distribution, n may be regarded as an integral or volume-averaged property that is
proportional to the instantaneous neutron density at some point in the reactor, such as the
total number of neutrons, fission rate, power or average power density. We shall use the total
number of neutrons, because the output of our pyroelectric neutron source is neutrons in
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counts per second.

We can reduce the mathematical complexity of determining the reactor response to step
changes in reactivity by representing all the delayed neutron precursors with a single mean
decay constant. Applying this approximation, the kinetics equations can be written as

dn
dt

=
ρ −β

l
n+λC+q (7.5)

dC
dt

=
β

l
n−λC (7.6)

The parameters β , λ and l are assumed to be constant; and for the VR-1 reactor we
may take the following values: β = 0.00772, λ = 0.08518 s−1 and l = 4.571×10−5 seconds.

When we are considering the VR-1 reactor, the system output is the neutron flux and
the input can be a reactivity perturbation, ρ̃ , or a time-dependent neutron source, q̃. We call
the two transfer functions the reactivity transfer function and the source transfer function,
respectively. The system represented by Eqs. 7.5 and 7.6 is nonlinear, since ρ is functional of
n [48]. In order to obtain the source transfer function, we can linearise by considering small
deviations about some equilibrium value. In linearising we make the following substitutions:

n = n̄+ ñ
C = C̄+C̃
ρ = ρ̄ + ρ̃

q = q̄+ q̃

(7.7)

Making these substitutions into Eqs. 7.5 and 7.6, we obtain

d(n̄+ ñ)
dt

=
(ρ̄ + ρ̃)−β

l
(n̄+ ñ)+λ (C̄+C̃)+ q̄+ q̃ (7.8)

d(C̄+C̃)

dt
=

β

l
(n̄+ ñ)−λ (C̄+C̃) (7.9)

If we now expand these equations, we get

dn̄
dt

+
dñ
dt

=
ρ̄ n̄+ ρ̄ ñ+ ρ̃ n̄+ ρ̃ ñ−β n̄−β ñ

l
+λC̄+λC̃+ q̄+ q̃ (7.10)

dC̄
dt

+
dC̃
dt

=
β n̄
l
+

β ñ
l
−λC̄−λC̃ (7.11)
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If we now remove the steady-state and higher-order terms, we obtain the following set of
small perturbation equations:

dñ
dt

=
ρ̃ n̄+ ρ̄ ñ−β ñ

l
+λC̃+ q̃ (7.12)

dC̃
dt

=
β ñ
l
−λC̃ (7.13)

Applying the Laplace transform (with all initial conditions set equal to zero), and rear-
ranging, we may obtain the source transfer function:

ñ
q̃
=

s+λ

s2 +
(

λ + β−ρ̄

l

)
s− ρ̄λ

l

(7.14)

Figure 7.17 shows the Simulink block diagram for the VR-1 reactor and the pyroelectric
neutron generator array. The frequency response plot of the linearised subcritical VR-1
reactor and pyroelectric neutron generator array is shown in Fig. 7.18, and it indicates that
this system could accept forcing functions with frequencies of up to 0.1 rad/sec.

Figures 7.19 and 7.20 show the change in reactor neutron density for an array of four
pyroelectric neutron generators. The I-only controller for this array was designed using the
same method as we used for the previous array, and the integral gain for optimal closed-loop
performance was found to be Ki = 0.00256.

1. The responses seen are typical of the results to be expected from repetitively pulsing
a subcritical reactor configuration - the neutron density, increases with the addition
of pyroelectric neutrons. The falling edge of each neutron pulse is accompanied by a
decrease in the reactor neutron density. This decrease shows an immediate fall caused
by the prompt response of the reactor, followed by a delayed neutron ‘tail’.

2. The pulse width that is generated by the array becomes slightly narrower with each
successive pulse, and the pulse height ever so slightly increases.

3. The response of the shutdown reactor is less than that of the reactor when it is at around
one rod worth of subcriticality.

4. It is to be noted that the model we have implemented is linear and does not account for
increasing reactivity in the VR-1.
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Fig. 7.17 Simulink block diagram of the VR-1 reactor and pyroelectric neutron array.
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Fig. 7.18 VR-1 reactor and pyroelectric neutron array frequency responses.
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Fig. 7.19 Subcritical (shutdown reactor −7 $) VR-1 response to a pyroelectric neutron pulse.
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Fig. 7.20 Subcritical (approximately one rod worth −2 $) VR-1 response to a pyroelectric
neutron pulse.
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7.7 Summary

We have analysed the potential controllability of pyroelectric neutron production, and the
applicability of an array of devices as a pulsed neutron source in a subcritical reactor. Our
main conclusions are:

1. The best form of controller for a single pyroelectric neutron generator is a multiloop
control system, where there is a PI inner control loop for the crystal temperature, and
an outer control loop containing an I-only controller, with an external reset trigger and
the tracking mode enabled, for the neutron output.

2. A single device had the best performance when the control system was designed so that
the inner loop crossover frequency was 1 rad/sec and the outer loop had a crossover
frequency which was ten times less, at 0.1 rad/sec.

3. The maximum forcing function bandwidth has been found to be approximately 10−2

rad/sec, and given the current capability of the UCLA device, the maximum neutron
output of each pyroelectric device has been limited to 800 cps.

4. From our preliminary analysis, it would seem that an array of pyroelectric neutron
generators is capable of following a pulse demand in neutrons with a reasonable level
of accuracy. The continuous step demand is rather more challenging for the array, and
a continuous output can only be maintained for around 600 seconds.

5. Although the count rates seen in the simulated VR-1 subcritical system are small, we
have confirmed the viability of coupling a pyroelectric neutron generator array with a
zero power reactor. The device could be used to generate experimental data for kinetics
parameter validation [12].



Chapter 8

Future research, recommendations and
conclusions

8.1 General summary and conclusions

It will be recalled from Chapter 1 that the primary goals of this research were the modelling
and control system design for the dominant dynamic characteristics of a pyroelectric neutron
generator. The simulations and system identification tasks reported in Chapters 3-7 have
accomplished the thesis goals, and in addition have revealed other facets of pyroelectric
neutron dynamics. The total effort can be summarised under two major headings:

1. Status of the pyroelectric neutron generator model.

2. Extensions to the model and the control system design.

8.2 Status of the existing pyroelectric neutron generator
model

Our Simulink pyroelectric neutron generator model has been developed in Chapters 3-7, and
the status of this model can be summarised in the following points:

1. Chapter 3. Accurate modelling of the TEC was identified early on as a primary
goal for successful pyroelectric neutron generator simulation. The performance of
our model has been verified through simulation and comparison with more accurate
theoretical models, and with an experimentally derived model. We performed a
parameter-variation sensitivity study and a stability analysis. These indicated that the
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TEC model performance is dependent on both the model operating point values and
the hot-side and cold-side thermal masses.

2. Chapter 4. We applied our TEC model to the appropriate pyroelectric system thermal
masses, and studied the system stability. We found the pyroelectric TEC system
response to be sluggish with large overshoots - confirming the requirement for an inner
loop TEC control system.

3. Chapter 5. We investigated the application of different simple controller types to our
pyroelectric TEC system and found that simple PI control yields good closed-loop
performance.

4. Chapter 6. We have shown that, for the particular UCLA experiment [74] case, the
developed Simulink pyroelectric neutron generator model adequately captures the
dominant non-linear system dynamics, and represents the available experimental data
well.

5. Chapter 7. We designed a multiloop control system for a pyroelectric neutron generator
device, where there is a PI inner control loop for the crystal temperature, and an outer
control loop containing an I-only controller, with an external reset trigger and the
tracking mode enabled, for the neutron output. The multiloop control system behaves
in a suitable fashion, and the overall system has all the features of good closed-loop
control (stability, accuracy, and simplicity). We have shown that pyroelectric neutron
production can potentially be controlled, and an array of devices could be applied as a
pulsed neutron source in a subcritical reactor.

8.3 Extensions to the model and control system design

Our major recommendations for model extension can be summarised in the following points:

1. Chapters 3-5. The TEC simulation results would benefit from thermal cycling valida-
tion experiments.

2. Chapters 3-5. A simulation comparison of paired crystal systems would indicate the
potential dynamic advantages. It is anticipated that, due to the position of each crystal
in a paired arrangement, they may require independent temperature control.

3. Chapter 6. The existing pyroelectric neutron generator devices are not yet optimal
in their performance. We recommend further investigations into tip and target age-
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ing, pressure control, and verification of the limit for the rate of change of crystal
temperature.

4. Chapter 6. There is a lack of suitable identification data sets from pyroelectric neutron
generator experiments, and, due to this, there is a risk that we have over-fitted our data.
We recommend that further on-the-bench experiments are performed to provide a more
extensive transient database for model cross-validation.

5. Chapter 6. The detector and geometrical considerations for the UCLA system have
been identified; these parameters could be tuned to model other systems in the future.

6. Chapter 6. The geometry factor is arguably one of the weaker assumptions. It is
obvious that this is required to reasonably replicate the system response, and more
work will be required to substantiate this factor.

7. Chapter 6. Thermal gradients, charge leakage through the crystal, temperature de-
pendence of material properties, parasitic capacitance, and spontaneous discharges
all likely contribute to the slight discrepancies between the potential predicted by our
model and the measured potential in the UCLA experiments.

8. Chapter 6. A question also remains as to the adaptivity of the model performance to
capturing the system dynamics of different pyroelectric plant geometries and materials.

9. Chapter 7. When designing the multiloop control system, we assumed ideal tempera-
ture sensors and neutron detectors. It is recommended that the associated efficiencies or
system dynamics are attributed to these components in the feedback loops to investigate
the robustness of the control system design.

10. Chapter 7. The application of optimal control theory should be considered. A control
law that maximises the neutron output, whilst constraining the TEC current and/or rate
of change of crystal temperature, could improve the system performance.

11. Chapter 7. Lastly, the control system design and reactor application results presented
will require validation with experiments at the VR-1 reactor.

8.4 Application of the pyroelectric neutron model

Some appreciation of the scope of the potential model application has been revealed during
our studies. The main applications can be listed under two headings:
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1. Pre-experimental analysis

(a) simulation of experiments

(b) predict critical areas and parameters

(c) guidance for experimental design

2. Post-experimental analysis

(a) interpretation and generalisation of results

The experimental data taken for model development and validation was the best available
at the time, however limited. The existing data has indicated that consistent repeatable
results could be possible with hardware improvements. It is thought that the future transition
from the domain of research to that of nuclear reactor application will present significant
challenges, including: geometry, scalability and material restrictions on hardware and com-
ponent selection; integration of radiation-hardened and radiation-tolerant components, such
as sensors and control circuits; self-containment of the device, and the ageing of the device.
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