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Abstract: Roadway and railway bridges are not only integral, but also vulnerable parts of
terrestrial transport networks. Structural failures of bridges may lead to disastrous consequences
on users and society at large. Bridge predictive deterioration models are extremely important
for effective maintenance decision-making. However, the lack of enough inspection data between
maintenance activities of a bridge complicates the development of accurate predictive models.
Presented herein is a Gaussian Process Regression (GPR) based collaborative model for
predicting the condition of bridge elements with limited available inspection data per bridge.
This model has been applied in 137 bridge decks, showing that collaborative prognosis has the
potential to predict the condition of different types of bridge elements, composing different types
of bridges.
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1. INTRODUCTION

The economic development of a country is linked with
the available resources to society and the effectiveness
of their use (Ivanová and Masárová, 2013). Transport
networks contribute to modern society’s daily activities by
serving mobility and productivity (Chan et al., 2010). The
most widely used modes of transport are the terrestrial,
constituting of roadways and railways, while representing
5158 billion passenger-kilometres in 2015 in EU-28 (Eu-
rostat, 2017). Bridges are an integral and at the same
time vulnerable element of terrestrial transportation net-
works. Structural failures of bridges, which are primarily
located at intersections of highways/railways, can lead
to catastrophic consequences not only on users but also
on the society at large. Probable extensive effects consist
of traffic rerouting, productivity reduction, loss of access
to areas of interest, as well as increment of travel time,
distance and subsequently of carbon monoxide emissions
and environmental pollution.

Railway and highway bridges gradually deteriorate over
their lifetime. A variety of extreme events, composed of
man-made events (e.g. terrorist attacks, bridge strikes)
and natural disasters (e.g. floods, earthquakes), as well
as heavy traffic and insufficient maintenance, can dra-
matically accelerate their deterioration (Zhang and Wang,
2017). Only in the U.S., the number of bridges is 614,387
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bridges, with around 40% of them being over 50 years old
and 9.1% being structurally deficient, while 188 million
trips/day are conducted over structurally deficient bridges.
Additionally, their average age is continuously rising, while
many bridges are close to the end of their design life-
time. A recent approximation of money required for bridge
rehabilitation equals $123 billion (ACSE, 2017). Ensur-
ing that bridges can operate under normal and extreme
conditions requires frequent inspections and maintenance,
when needed, to meet safety threshold values. Transporta-
tion departments often face the challenge of managing
thousands of bridges, having budgetary constraints and
no systematic way for deciding on the optimal timing for
repairing bridge elements.

The progress in infrastructure condition assessment and
prediction using sensors, such as vibrometers and cameras,
as well as in data analysis methods in recent years (Chuang
et al., 2019; Hadjidemetriou and Christodoulou, 2019;
Hadjidemetriou et al., 2018; Malekjafarian et al., 2018)
has motivated researchers and practitioners to evaluate
the benefits of asset predictive maintenance, compared to
reactive maintenance. Thus, there is an increased interest
in predictive maintenance prioritisation of multi-system
multi-component networks (MSMCN). MSMCN are net-
works consisting of numerous systems which are in turn
composed of several components. A bridge can be exam-
ined as a system of multiple components (e.g. primary
deck element), whilst belonging in a network of multiple
bridges. Predictive maintenance, which is the decision-
making for maintenance or replacement processes based on
predictive models, has the potential to enhance reliability
and decrease maintenance cost of systems and networks
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(Mobley, 2002). The accuracy of predictive deterioration
models becomes extremely important since it is directly
correlated with the effectiveness of maintenance decision-
making.

Predicting bridge elements deterioration becomes partic-
ularly challenging due to the diversity of bridge features
and operating environments, as well as the lack of data.
Bridge features may consist of type, material, usage and
size (such as dimensions and number of spans), while oper-
ating environment characteristics include location, traffic
and weather. In addition, most transport infrastructure
owners have been collecting and storing bridge condition
and maintenance data only for the last few decades, while
their inspection rate varies between one to seven years.

With the aforementioned in mind, the following section
of the paper describes the state of research in deteriora-
tion models for assets in general and specifically bridges,
the identified gap in knowledge, and the objective of the
present study. The sections that follow present the pro-
posed methodology and a conducted case study. Lastly,
findings, conclusions, and future research are discussed.

2. BACKGROUND

Overcoming the barriers of modelling deterioration of
infrastructure assets and specifically of bridges or bridge
components has attracted the interest of researchers. A
few of them formed empirical relationships between bridge
condition indices and the attributes affecting deterioration
of bridges. These deterministic models assume that the
relationship between bridge condition and time is certain,
ignoring the randomness and uncertainty in deterioration
procedure. Thus, if the input variables do not change,
the prediction remains the same (Kotze et al., 2015). Wu
et al. (2017) further categorised these predictive models as
utilising straight-line extrapolation, regression, and curve-
fitting methods (Chen et al., 2010; Morcous et al., 2002;
Wei and Liu, 2013).

Another approach worth mentioning concentrates on de-
terioration mechanisms of bridge elements and on bridge
reliability regarding strength limit states. Either determin-
istic mathematical equations or Monte Carlo Simulation
(MCS) are used for the deterioration models. One of the
initial examples of this group of studies is the work done by
Frangopol et al. (1997), who introduced an optimisation
method for scheduling the lifetime inspection and main-
tenance of bridges. At a later stage, Estes and Frangopol
(1999) improved the previous work by proposing an opti-
misation system-based approach that attempts to balance
expected life-cycle cost and lifetime reliability. Bocchini
et al. (2011) extended this approach from the bridge-
level to the level of network of bridges, while proposing
a random field-based method to improve the efficiency of
life-cycle analysis under uncertainty of bridge networks.

Another group of studies considers the probabilistic nature
of bridge deterioration, and thus uses stochastic predictive
models. Most stochastic models are based on Markov chain
theory. For instance, Kleiner (2001) modelled asset dete-
rioration as a semi-Markov procedure that is discretised
into condition states. The waiting time in every state
is assumed to be a random variable with a probability

distribution. Another work by Thompson and Johnson
(2005) analysed California bridge condition data set to
estimate the deterioration transition probabilities and to
examine if the main assumptions of Markov chain-based
models for bridge deterioration can be validated. Simi-
larly, Puz and Radic (2011) utilised homogeneous Markov
procedures with a continuous parameter (i.e. time) and
a finite set of condition states to probabilistically pre-
dict structure condition. The continuous parameter allows
the calculation of probabilities of each condition state in
any moment. In addition, Ranjith et al. (2013) used a
stochastic Markov chain model to predict the condition
of timber bridge elements and tested it on inspection
data from the Roads Corporation of Victoria, Australia.
The research work of Wellalage et al. (2015) proposed a
Metropolis-Hasting algorithm-based Markov chain MCS
method to overcome the limitation of existing nonlinear
optimisation-based algorithms that fail to identify the
optimum transition probability matrix values, leading to
invalid predictions. Finally, Chang et al. (2019) presented
a stochastic deterioration methodology that combines lo-
gistic regression, Markov chains and classification trees.

Another notable approach is the application of artificial
intelligence and machine learning on asset deterioration
models. For example, Lee et al. (2012) proposed a data
processing technique for backward prediction model out-
comes, by filtering out condition ratings for long-term de-
terioration prediction using Time Delay Neural Network.
This research work showed potential to enhance accuracy
of current bridge deterioration models that are based on
artificial intelligence. Furthermore, Callow et al. (2013)
used a hybrid optimisation technique to remove mean-
ingless condition ratings as input for long-term prediction
modelling, improving a computational costly procedure of
neural network. Last, Galal Ali et al. (2019) used artificial
neural networks and data from Missouri, USA to predict
the condition of long span bridges.

Summarising, although there are multiple bridge deteri-
oration models, there is a research gap in handling the
limited amount of available historical inspection data per
bridge, as well as the diversity of bridges and bridge
elements in terms of attributes and the environment that
they are exposed to. Given this, the current paper aims to
develop a methodology that can be applied to any type of
bridge element, especially when data is limited.

3. METHODOLOGY

Presented herein is a prediction model for failures in bridge
elements, using collaborative Gaussian Process Regression
(GPR). GPR is a non-parametric and data driven regres-
sion technique, which generates a stochastic distribution
of functions mapping the inputs to corresponding outputs
for a given dataset. A major benefit of GPR is that it can
quantify the confidence of the predictions (Alvarez et al.,
2011). Applications of GPR include Lithium ion battery
health estimation (Richardson et al., 2017) and learning
the dynamics of robotic arms (Bocsi et al., 2011).

GPR is selected here for bridge condition prediction be-
cause of the low frequency of bridge inspections. Since the
bridges are inspected once in several years, their deterio-
ration process cannot be continuously tracked. Moreover,



the bridges undergo timely maintenance activities and
thus uninterrupted inspection records from their new to
failed states are rare. GPR can extrapolate such scattered
inspection information to unrecorded condition, and of
generating a distribution of functions that describe bridge
deterioration throughout their lifetime.

GPR assumes a joint multivariate normal distribution for
all the outputs in dataset. The output for any given input
data point is the marginal normal distribution at that
point. The marginal distribution for each input point is
Gaussian, characterised by its mean and standard devia-
tion. The mean is the predicted value of the output, and
the standard deviation is a measure of the prediction’s
confidence. A higher standard deviation implies lower con-
fidence. The marginal distributions for unknown points are
predicted based on their similarity with the known points
from the training dataset. Depending on the application,
similarities are evaluated using various kernel functions
which show large values for points lying closer to one
another and small values for those far apart (Rasmussen,
2004).

The mathematical description presented here is extracted
from Rasmussen (2004). For the input space X, the cor-
responding function is estimated as f : X → R from the
input space to the reals. f is a Gaussian process if for any
vector of inputs x = [x1, x2, ..., xn]T such that xi ∈ X for
all i, the vector of outputs f(x) = [f(x1), f(x2), ..., f(xn)]T

is Gaussian distributed. GPR is specified by a mean func-
tion µ : X → R, such that µ(x) is the mean of f(x)
and a covariance, or kernel, function k : X × X → R
such that k(xi, xj) is the covariance between f(xi) and
f(xj). We say f ∼ GP (µ, k) if for any x1, x2, ..., xn ∈
X, [f(x1), f(x2), ..., f(xn)]T is Gaussian distributed with
mean [µ(x1), µ(x2), ..., µ(xn)]T and n×n covariance matrix
Kxx:

k(x1, x1) k(x1, x2) ... k(x1, xn)
k(x2, x1) k(x2, x2) ... k(x2, xn)

... ... ... ...
k(xn, x1) k(xn, x2) ... k(xn, xn)


GPR sequentially evaluates the covariance for neighbour-
ing points using a kernel function, followed by calculating
their corresponding marginal distributions. As the gran-
ularity of neighbouring unknown points is increased, it
approaches a continuous domain and eventually is equiva-
lent to a function with domain of all possible input values.
Despite poor scalability because of the computations in-
volved, GP models can be optimised to achieve a trade-off
between fitting the data and smoothing. GPR is therefore
a favourite solution for problems with small regression
datasets (Chapados and Bengio, 2008). Our methodology
for bridge elements prediction can be separated into the
following main phases: (i) clustering of similar bridges and
pooling of their data together; and (ii) application of GPR
for fitting functions to the data.

Clustering similar bridges (phase 1) leads to a more de-
scriptive record. For the reasons explained before in this
section, a single bridge would not have enough data de-
scribing its deterioration. The features governing bridge
deterioration are identified and used as the basis for clus-
tering similar bridges. Such features can be intrinsic like

bridge material, mileage, or span count, or extrinsic like
local weather conditions or traffic. Our hypothesis is that
bridges with common features are bound to deteriorate
similarly. Such collaborative deterioration modelling has
been proposed as a solution and proved useful to the
problem of lack of local data in recent literature (Palau
et al., 2018). Within a cluster, the inspection records
corresponding to different ranges of bridge condition are
concatenated together and a common training dataset is
attained. This dataset consists of time-series of inspections
ranging from best inspected condition in the cluster to the
worst.

Next (Phase 2), GPR is used to predict values for unknown
data points. Since the bridge condition deteriorates over
time, we need a decreasing prior mean value function
for the GPR priors. This is different from conventional
applications where the mean is usually zero, or a constant
value. The mean value for regression is calculated by
fitting a straight line using a least square fit. Using this
mean value and random covariances, a prior distribution
of functions is generated. This prior is updated according
to the data from the previous step, with exponential
kernel (1) calculating covariances for unknown data points.
Exponential kernel is often the default kernel for GP
applications because of its universal nature, the possibility
of integrating it against most functions, infinite possible
priors, and its only two governing parameters which can be
easily tuned to suit for the given application (Duvenaud,
2014).

k(xa, xb) = σ2 exp

(
−(xa − xb)2

2l2

)
(1)

Where,

l = characteristic length

σ2 = signal variance

(xa, xb) = points for which covariance is

spacespacecalculated

4. CASE STUDY

The proposed methodology was applied on a real-world
bridge inspection dataset. This dataset was provided by
a large transport infrastructure owner in the UK. The
organisation name cannot be disclosed for confidentiality
reasons. Dataset consists of inspection records of several
bridges across the UK maintained by the organisation.
Bridges undergo regular inspections every three or four
years, and they are recommended for maintenance if the
condition is considerably degraded. Each bridge compo-
nent is rated independently based on the infrastructure
owner’s internal specifications. The condition index used
in this study ranges from 100 to 0, with 100 indicating
perfect condition. Different infrastructure owners use dif-
ferent condition indices. However, the presented prediction
methodology is applicable to any bridge element, rated by
any infrastructure owner. The case study, which serves as
an example application, focuses on bridge deck elements.

Before proceeding to the clustering and GPR phases,
bridges, which have deteriorated without being inter-
rupted by any maintenance activities, were selected. These



are the bridges that accurately resemble the deterioration
process, and thus they were used for the regression model.
Such bridges are characterised by consecutive inspections,
where the bridge condition either deteriorated or remained
constant. The final cleaned dataset for the current case
study comprised of total 137 independent deck elements,
and 295 data points representing various stages of decks’
lifecycles.

The selected data points were separated into four clus-
ters based on bridge deck material (Phase 1). Bridge
engineers of the organisation, which provided the data,
recommended that bridge deck material is the major influ-
encer amongst the available features. Analyses for the two
clusters with the highest number of data points (71 points
for both) are presented here. To concatenate the data
points within clusters, the average rates of deterioration
were used as references, assuming the deck to be aged zero
at condition index 100. For example, the bridge age for
condition index 99 would be calculated using the average
rate of deterioration between the indices 100 and 99. This
is followed until condition index 0. For consecutive inspec-
tions within a cluster, the first inspection was marked on
the plot with y-axis value equal to its health index, and x-
axis value as the corresponding reference age. For the next
inspection, y-axis value was its new condition index and x-
axis value was its previous age plus the time since previous
inspection. Eventually, a plot with condition index on the
y-axis and age on the x-axis was obtained. An example for
such a plot for one of the clusters is shown in Fig. 1, where
the red cross-marks are individual data points.

In Phase 2, GPR was applied for fitting distributions of
functions to individual clusters. A straight line was first
fit to obtain prior mean values, followed by calculating
posterior distribution of the functions. Exponential kernel
function with characteristic length (l) equal to 45 and
signal variance equal to 100 was found suitable for cal-
culating the covariance matrix of the clusters. Posterior
distribution for the cluster in Fig. 1 is shown in Fig. 2,
where the red dotted line represents the posterior mean
and the grey region shows the standard deviation. Fig.
3 displays the same technical plot for cluster 2. Certain
ambiguities can be seen in these plots, for example the
data points corresponding to different bridges in Fig. 2
and 3 are not exactly similar. This is due to the fact that
only a single feature, i.e. the deck material, was used as the
basis for identifying the clusters. The clustering step can
be further improved, depending on the application, if more
features are incorporated while clustering the bridges.

Summarising, the condition of a bridge deck, which has
never been maintained and it is characterised by common
features as the clusters, can be estimated based on its age
using the plots in Fig. 2 and Fig. 3. The red line is the
predicted value, and the grey region its confidence of pre-
diction. The narrower the grey region, the more confident
the prediction is and vice versa. As it can be observed
from the plots, the presence of more and closely located
data points causes more confident predictions. Moreover,
for the conditions where we do not have any historical
inspection data, the confidence of predictions is very low.
For example, the standard deviation of predictions is very
high after t = 650 in Fig. 2. In such situation, it is
recommended for the infrastructure owner to resort to

Fig. 1. Plot obtained after concatenating data points from
cluster 1

Fig. 2. Posterior distribution of functions for cluster 1

Fig. 3. Posterior distribution of functions for cluster 2



a conservative maintenance plan and observe the bridge
deterioration more frequently.

5. CONCLUSIONS

The proposed collaborative GPR-based model was applied
to a case study, with several significant outcomes being
extracted. Firstly, most of the data from bridge inspections
are concentrated within 80 to 40 condition index range.
In the examined cluster, very few bridges have inspection
records for very fragile conditions due to a safety threshold,
set by the organisation. A bridge element must be repaired
or replaced if its condition index is below 40. The repair
or maintenance strategy is based on the type of element
and existing defects. Secondly, the proposed method of
clustering similar bridges to expand the dataset is deemed
applicable since the rates of deterioration are nearly con-
stant and the standard deviation tight within the cluster.
Moreover, when GPR was applied for combined data of
all bridges, the grey region was more spread out. Thirdly,
there are some outliers, but GPR can understand the
common behaviour and fit a distribution of predictor func-
tions. It can be observed in both Fig. 2 and Fig. 3 that
the grey region narrows down where the concentration of
data points increases near the mean and broadens in the
presence of the outliers indicating less confidence of the
predictions.

The current paper proposed a methodology for modelling
deterioration of bridges, for the situation where a single
bridge does not have enough uninterrupted inspection
records. The core idea is to expand the dataset by ac-
cumulating inspection records from similar bridges. The
contribution of the presented work can be summarised as:
the development of a methodology that can be applied to
any type of bridge element, especially when the data is
limited.

The current research can be synthesised with work al-
ready done in the same laboratory for predictive group
maintenance of networks of bridges (Hadjidemetriou et al.,
2020; Liang and Parlikad, 2020). Elements deterioration
model is the first out of five phases for scheduling the
optimal maintenance of bridge networks, under budget
constraints. Thus, the proposed predictive model can be
compared with the existing model (i.e. Markov chain-
based) and replace it if the predictions are improved. More
accurate predictive models can lead to improved main-
tenance decision-making and consequently safer bridges.
This chain reaction continues with having a positive im-
pact on infrastructure owners and bridge engineers regard-
ing maintenance budget allocation, and finally terrestrial
transport network users, whose safety and comfort will be
enhanced. Additionally, prediction confidence, quantified
by the proposed model, enables asset operators to under-
take a safer risk-based maintenance strategy. In the sense
that in case of a bridge being a critical transportation
link, the operators would prefer a conservative approach
for planning maintenance activities.

The clustering step however presents scope of develop-
ment. If the bridges are clustered strictly (i.e. if all the
features are required to be common), then it would cause
the cluster size to diminish. In the extremity, this would
be representative of the case where the bridges in a cluster

are required to be identical and we would fall back to
the original problem of data scarcity. On the other hand,
lenient clustering would cause the bridges to be too differ-
ent and undermine the purpose of clustering. Future work
will focus on finding a trade-off between strict and lenient
clustering. An automated algorithm will be developed to
identify the sweet spot, where a cluster holds enough data
to be modelled confidently but not diverse.
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