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Clinical impact of tissue sodium storage
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Abstract
In recent times, the traditional nephrocentric, two-compartment model of body sodium has been challenged by long-term sodium
balance studies and experimental work on the dermal interstitium and endothelial surface layer. In the new paradigm, sodium can
be stored without commensurate water retention in the interstitium and endothelial surface layer, forming a dynamic third
compartment for sodium. This has important implications for sodium homeostasis, osmoregulation and the hemodynamic
response to salt intake. Sodium storage in the skin and endothelial surface layer may function as a buffer during periods of
dietary depletion and excess, representing an extra-renal mechanism regulating body sodium and water. Interstitial sodium
storage may also serve as a biomarker for sodium sensitivity and cardiovascular risk, as well as a target for hypertension
treatment. Furthermore, sodium storage may explain the limitations of traditional techniques used to quantify sodium intake
and determine infusion strategies for dysnatraemias. This review is aimed at outlining these new insights into sodium homeo-
stasis, exploring their implications for clinical practice and potential areas for further research for paediatric and adult
populations.
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Introduction

In the last 15 years, sodium homeostasis has been
completely revised going back to concepts that were first
introduced in the early 1900s. The discovery of a third
compartment in which sodium can accumulate without
concurrent water retention is in sharp contrast with the
two-compartment model that has been described in med-
ical textbooks since the 1950s (Fig. 1). Although the
notion of a third compartment is not new and has already
been demonstrated a century ago, recent studies have
shown that this third compartment has major conse-
quences for daily clinical practice.

Textbook sodium homeostasis

The current concepts of sodium homeostasis that are taught
every day to medical students are based on the two-
compartment model, which assumes that the total body water
is divided over the intracellular (2/3rd) and extracellular com-
partment (1/3rd) with a similar osmolality. In the intracellular
compartment, the main cation is potassium and sodium concen-
trations are low. The opposite is true for the extracellular com-
partment where sodium is the main cation and preserves effec-
tive circulating volume. According to the two-compartment
concept, an increase in sodium intake or hypertonic NaCl infu-
sion will add sodium to the extracellular compartment, increase
extracellular osmolality and induce a water shift from the intra-
cellular to the extracellular compartment to control plasma os-
molality, which will only slightly increase. Following this in-
crease in plasma osmolality, thirst sensation will lead to in-
creased water intake, and the kidney will retain water in re-
sponse to antidiuretic hormone release. As a result of a subse-
quent increase in total bodywater, plasma osmolality will return
to baseline values at the expense of an expanded extracellular
fluid volume and rise in blood pressure. This blood pressure
increase, in turn, will induce pressure natriuresis and lower total
body sodium content. These mechanisms have been first
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described by Borst and later on by Guyton who both have
demonstrated that long-term control of arterial pressure is close-
ly related to body fluid homeostasis [1, 2].

As outlined above, adopting the traditional two-compartment
model implies that the kidney is crucial for regulation of both
water and sodium balance and should be perfectly able to match
sodium and water excretion with the perceived intake resulting
in a ‘zero balance’ during steady-state water and sodium intake.
Disruption of this balance will lead to problems with volume or
osmoregulation. For example, sodium sensitivity of blood pres-
sure is believed to be attributed to impaired renal sodium
excretion.

New insights into sodium homeostasis

Long-term sodium balance studies, however, have demon-
strated that sodium and water homeostasis cannot be ex-
plained by the two-compartment model and is more compli-
cated [3–5]. These studies, which carefully measured sodium
intake and excretion during 200 consecutive days in an
enclosed habitat, demonstrated that 24-h sodium excretion
can differ up to 80 mmol from 24-h sodium intake during
stable sodium intake, thereby inducing large fluctuations in
total body sodium content up to 1000s of mmols over weeks.
Surprisingly, a matching increase in total body water (1 L for
every 140 mmol sodium) and extracellular volume that would
be expected according to the two-compartment model was not
observed. Also, changes in total body sodium content were
not related to blood pressure.

Experimental studies provided an explanation for these unex-
pected findings. In the skin interstitium, sodium accumulation
was associated with increased content and sulfation of negatively
charged glycosaminoglycans (GAGs) [6]. Via binding to these
GAGs, sodium can be osmotically inactivated and does not in-
duce concurrent water retention (i.e. nonosmotic sodium stor-
age). As the skin is a large organ and skin sodium concentrations

up to 180–190 mmol/L were found, a significant amount of
sodium can be stored without effects on extracellular volume,
body weight or blood pressure [6]. Monocytes, which seem to
be attracted by high interstitial sodium concentrations, play a
crucial regulating role in skin sodium homeostasis. Once in the
skin, macrophages modulate vascular endothelial growth factor-
C (VEGF-C)–mediated hyperplasia of lymph vessels, which is
considered to be the principal process of mobilization of exces-
sive sodium from the skin [7]. Interestingly, an increasing body
of evidence suggests that a significant amount of the skin sodium
excess is not osmotically inactivated by GAGs but is actively
concentrated in the skin by a kidney-like countercurrent system
and serves as a hypertonic barrier that prevents skin water loss
[8–11]. This theory may also explain the large fluctuations in
total body chloride, as chloride can be concentrated in the skin
too [10].

In addition to the skin, the endothelial surface layer (ESL)
is likely to be involved in nonosmotic sodium storage [12].
The ESL is a dynamic layer consisting of GAGs, proteogly-
cans and adsorbed plasma proteins covering the inner surface
of the endothelium. In contrast to the skin interstitium to
which sodium has to be transported, the ESL may provide
capacity for instant intravascular sodium storage. As this vas-
cular system for sodium storage has a volume of 1.5 L in
healthy subjects, significant amounts of sodium can be
inactivated right after sodium has entered the circulation
[13]. The observation that diseases that are characterized by
ESL damage, such as diabetes mellitus and chronic kidney
disease, are often associated with volume overload may indi-
cate that sodium inactivation by the ESL GAGs contributes to
preserving normal volume regulation [13–15].

The exact role of sodium storage in the skin and ESL and the
interaction between both compartments is unknown.We recently
hypothesised that skin sodium accumulation, which may seem
beneficial at first sight, is harmful and is likely to represent sig-
nificant sodium excess and impairs vascular function [16]. This is
supported by the observation that an increased skin sodium

Fig. 1 Sodium storage in a third compartment. The extracellular fluid
compartment consists of an interstitial (blue) and intravascular (red) space
that were considered to be osmotically equilibrated. However, significant

higher sodium concentrations can be found in the skin and endothelial
surface layer (ESL), comprising a third compartment that is not in osmotic
equilibration with the other fluid compartments
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content is observed in patients with fluid overload such as
hyperaldosteronism, acute kidney injury, dialysis and heart fail-
ure patients [17–20]. Moreover, high skin sodium content is
strongly associated with left ventricular hypertrophy [21].
Conversely, nonosmotic sodium storage in the ESL seems to
be crucial to reduce the negative effects of sodium excess such
as an increase in extracellular volume and blood pressure [16].
Also, the ESL has an important barrier function and may thus
prevent skin sodium accumulation [16].

In clinical practice, physicians need to deal with distur-
bances of osmoregulation and volume regulation on a daily
basis, particularly in subjects with hypertension, kidney dis-
ease, or heart failure or critically ill patients. The novel in-
sights into sodium homeostasis may significantly impact daily
clinical practice and could provide an explanation for so far
inexplicable findings, but may also provide new diagnostic or
therapeutic options.We will review the prevalence and impor-
tance of (nonosmotic) sodium storage in common diseases
and the effect of frequently used therapies and discuss the
clinical consequences for dysnatremias, hypertension and so-
dium intake estimation using urine samples.

Interstitial sodium storage
and osmoregulation

The presence of an additional compartment in which sodium
can be (temporarily) stored complicates diagnostics and treat-
ments that are based on the two-compartment model. In 1958,
Edelman et al. described the relation between serum osmolal-
ity and the ratio of total body exchangeable cation content and
total body water [22]. On first sight, these data support the
concept that serum osmolality is only influenced by water,
sodium and potassium. However, an important limitation of
the Edelman study is that measurements were performed in
steady-state conditions, meaning that subjects with
hyponatremia, normonatremia and hypernatremia were com-
pared, whereas infusion of hypo- or hypertonic solutionwithin
a subject may result in different data given the plasticity of the
newly discovered third compartment. In the latter case, sodi-
um may be mobilized from interstitial sodium storages in re-
sponse to hypotonic stimuli, whereas excess sodium may be
stored after hypertonic stimuli [23, 24]. As a consequence, the
individual patient may not move along the regression line of
the Edelman equation following infusion therapy as the rela-
tion between serum osmolality, total body cation and total
body water content may be significantly altered due to the
temporary storage and release of sodium.

The Edelman equation is the basis of formulas that are
currently used in daily clinical practice to estimate the effect
of sodium or water infusion in case of hypo- or hypernatremia,
such as the Adrogue-Madias, Nguyen-Kurtz and Barsoum-
Levine formulas [25–27]. However, multiple studies have

demonstrated that these formulas are not able to accurately
estimate changes in plasma sodium concentration. In healthy
subjects, hypertonic saline infusion induced changes in plas-
ma sodium concentration that were on average 2.2 mmol/L
different from the expected values within 2 h after infusion
[28]. Also, the observed changes in plasma sodium concen-
tration were not in line with the urine cation excretion that was
expected according to these changes. Despite the fact that
108 mmol of sodium was cleared from the total body water
during a 4-h period, only 51 mmol of sodium was retrieved in
the urine. These data indicate that healthy subjects have a
significant capacity for interstitial sodium storage that can be
utilized in situations of sodium excess such as sodium infusion
or high sodium diet. Recently, we demonstrated that intersti-
tial sodium storage is also involved in prevention of acute
hypotonicity. After oral water loading in healthy subjects,
the observed decrease in plasma sodium concentrations was
60% less than expected according to the traditional two-
compartment model, indicating recruitment of sodium from
interstitial or ESL stores [29].

Data from clinical studies demonstrate that even larger dis-
crepancies are seen in daily clinical practice. Both in hypo- and
hypernatremic patients the observed plasma sodium concentra-
tions were > 2 mmol/L higher than expected within 24 h after
initiating treatment [30]. In a subgroup of 15 volume-depleted
hyponatremic subjects, the average inconsistency was even
5.6 mmol/L. A subsequent study showed that only 50% of
the variability of the observed plasma sodium concentration
could be explained by the estimated values [31]. The average
discrepancy between estimated and observed plasma sodium
concentrations in this study was 3.4–4.5 mmol/L for
hyponatremic patients and 5.0–6.7 mmol/L for hypernatremic
patients depending on the formula that was used. The crucial
role of the third compartment in the pathophysiology of
dysnatremias is confirmed by a case report of a hypernatremic
patient in which skin and muscle sodium content were signif-
icantly increased during hypernatremia but normalized after
correction of hypernatremia [32]. The inaccuracy of the current
formulas in the clinic therefore seems a logical consequence of
the fact that the Edelman equation does not take into account
storage and release of sodium from a dynamic third compart-
ment. As both overcorrection and undertreatment of
dysnatremias are harmful and may even be lethal, it is crucial
that the effects of treatment on plasma sodium concentration
are frequently monitored to timely recognize potentially unpre-
dictable changes.

To improve patient care, further research needs to identify
factors that affect osmoregulation in addition to total body
water, plasma sodium and potassium concentration, and sodi-
um and potassium excretion. This could include patient char-
acteristics that have been demonstrated to affect interstitial
sodium storage such as age, gender, sodium intake, blood
pressure, diabetes mellitus, infection and inflammation [17,
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19, 33–39]. These additional variables may help to estimate
the treatment effects of hypo- and hypertonic saline infusion
more accurately.

Tissue sodium storage and volume regulation

The new insights into sodium homeostasis challenge the
(patho)physiology underlying blood pressure regulation and
hypertension, in particular the effect of sodium intake on
blood pressure, also known as sodium sensitivity. Decades
of research have not resolved the phenomenon of sodium
sensitivity. This may be explained by the fact that most re-
search was focussed on the kidney as an impaired renal ca-
pacity for sodium excretion was thought to be responsible for
sodium sensitivity. The findings that total body osmotically
active sodium content is not only regulated by the kidney, and
that total body sodium content is not necessarily related to
blood pressure, provide new insights into potential mecha-
nisms responsible for sodium sensitivity. Recently, interests
have shifted to the skin interstitium and ESL as potential mod-
ulators of sodium sensitivity [12, 40].

Laffer et al. have put forward the vasodysfunction theory that
links interstitial sodium accumulation with vasodysfunction and
ultimately sodium sensitivity [40]. In this study, sodium loading
and depletion were tested in sodium-sensitive and sodium-
resistant individuals. In contrast to sodium-resistant individuals
who were able to lower peripheral resistance in response to
sodium loading thereby preserving normal blood pressure,
sodium-sensitive individuals could not modulate peripheral re-
sistance resulting in a blood pressure increase. Even more inter-
esting is that sodium loading in the sodium-resistant subjects did
not affect body weight whereas an iso-osmolar retention of wa-
ter (1 L per 140 mmol sodium) was observed in sodium-
sensitive individuals. These findings suggest that sodium-
resistant subjects have a residual capacity for neutralization of
a sodium load without concurrent water retention while in
sodium-sensitive subjects interstitial sodium storage is fully sat-
urated. This hypothesis is supported by data frommultiple 23Na-
MRI studies that have demonstrated interstitial sodium accumu-
lation in subjects that are known to be sodium sensitive such as
the elderly and hypertensive, diabetic, heart failure and dialysis
patients [17–19]. Besides the iso-osmolar increase in extracellu-
lar volume in sodium-sensitive subjects, the high interstitial so-
dium concentration itself may contribute to a sodium-induced
increase in blood pressure. Previous studies have demonstrated
detrimental effects of hypersalinity on endothelial function that
may subsequently impact total peripheral resistance and blood
pressure [41, 42]. Altogether, these data indicate that changes in
peripheral resistance do not merely seem a consequence of long-
term autoregulation to tissue hyperperfusion, as was believed
according to the two-compartment model theory, but may be

directly responsible for blood pressure changes in sodium-
sensitive individuals.

Although interstitial storage of sodium is a new, and for
many clinicians unknown concept, it is likely that most clini-
cians have actively altered interstitial sodium content in their
patients last month. Data from 23Na-MRI studies show that
everyday treatments such as diuretics, sodium glucose
cotransporter 2 (SGLT-2) inhibition and dialysis significantly
impact interstitial sodium content [17, 18, 43]. These therapies
may be of particular interest in sodium-sensitive hypertension
as these subjects are characterized by interstitial sodium accu-
mulation. Until recently, it was unknown whether interstitial
sodium accumulation contributes to the cardiovascular risk.
Yet, a recent trial demonstrated an association between skin
sodium content and an intermediate endpoint, left ventricular
hypertrophy. In chronic kidney disease patients, interstitial
sodium content was strongly correlated with left ventricular
mass, independent of blood pressure or total body
overhydration [21]. The observed correlation was stronger
than the correlation between total body overhydration and left
ventricular mass. Although we need to wait for data from
long-term studies investigating the potential cardiovascular
risk that is associated with interstitial sodium accumulation,
these data are interesting, in particular because interventions
are possible with commonly used therapies.

Nonosmotic sodium storage
and hypertension treatment

The novel insights into sodium homeostasis may also lead to
new treatment options for hypertension. In this respect, the
ESL is of interest as previous studies have demonstrated that
the ESL volume in diabetic and chronic kidney disease pa-
tients is significantly reduced [13, 15]. Many studies have
attempted to restore the ESL and thereby its important barrier
functions by oral supplementation of GAGs. In type 2 diabetic
patients, a highly purifiedmixture of GAGs named sulodexide
has been shown to be able to restore the damaged ESL [44].
For that reason, many clinical studies have investigated
sulodexide, most of them focussing on the potential anti-
albuminuric effects that were expected after restoration of
the glomerular ESL in diabetic patients. Although small stud-
ies were promising, large randomized, placebo-controlled tri-
als were not able to confirm the anti-albuminuric effects of
sulodexide [45, 46].

Considering the ESL restoring capacity of sulodexide, it
increases the intravascular capacity for nonosmotic sodium
storage and may thereby decrease osmotically active sodium
and potentially blood pressure. To investigate this hypothesis,
we have meta-analysed studies that had investigated
sulodexide for different medical conditions but also measured
blood pressure [47]. In 8 placebo-controlled trials, of which 7
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were double blinded, including 3019 subjects, we demonstrat-
ed that sulodexide lowered blood pressure significantly. This
effect was observed despite the fact that the majority of pa-
tients were already being treated with maximally tolerated
renin-angiotensin system inhibition and the majority had a
normal blood pressure at baseline (i.e. < 140/90 mmHg). In
subjects with actual hypertension, the decrease in systolic
(10 mmHg) and diastolic (5 mmHg) blood pressure was sim-
ilar to regularly prescribed antihypertensive therapy [48]. In a
subsequent study investigating individual patient data of the 2
largest studies included in the meta-analysis, we demonstrated
that the magnitude of albuminuria at baseline was an impor-
tant modifier of the blood pressure response after sulodexide
[49]. As previous studies have shown that the ESL thickness
decreases with increasing amounts of albuminuria, these data
suggest that the blood pressure reducing capacity of
sulodexide can be attributed to the ESL restoring properties
[13, 50]. Considering this new working mechanism that dif-
fers from regular antihypertensive drugs and may decrease
sodium sensitivity, future research should point out whether
sulodexide may be of added value to the antihypertensive
drugs that are currently available.

Estimation of sodium intake

A single collection of 24-h urine is regarded as the gold stan-
dard for estimation of sodium intake and is widely used in
clinical practice and cohort studies. This method is based on
the assumption that 24-h sodium intake equals 24-h sodium
excretion during stable sodium intake. However, long-term
sodium balance studies have shown that this assumption is
incorrect as 24-h sodium excretion may be up to 80 mmol
different from the actual intake during fixed intake because
of infradian rhythms in total body sodium content induced
by aldosterone and cortisol [3]. On top of these fluctuations,
day-to-day variations in sodium intake, medication effects and
collection errors complicate the use of a single 24-h urine
measurement for estimation of sodium intake. A subsequent

analysis that investigated multiple 24-h urine collections dur-
ing fixed sodium intake demonstrated that 7 consecutive 24-h
urine collections were needed for estimation of steady-state
sodium intake once [51]. The need for multiple measurements
is further emphasized by a cohort study investigating outpa-
tients who collected multiple 24-h urine samples during a 17-
year follow-up [52]. Baseline and follow-up estimates of so-
dium intake were > 34 mmol different in half of the
subjects (Fig. 2). This inconsistency was present both when
estimating follow-up sodium intake estimates within 1 year
after baseline and when analysing 15-year average estimates.
In daily practice, clinicians should therefore not rely on a
single 24-h urine collection for estimating sodium intake and
making therapeutic decisions but should base treatment and
dietary advice on multiple measurements.

These findings also complicate the use of single urine col-
lections for research purposes. Although a single urine collec-
tion can be used for estimation of population sodium intake,
individual estimates based on a single urine collection are
inaccurate and significantly impact research outcomes. This
is illustrated by the abovementioned study that investigated
the association between sodium intake and cardiovascular out-
come, both when estimating sodium intake with a single base-
line collection and when estimating sodium intake with mul-
tiple 24-h collections during long-term follow-up [52]. Major
differences in the observed associations were seen. Whereas
the highest tertile of estimated sodium intake was not associ-
ated with cardiovascular disease or mortality when sodium
intake was assessed at baseline (relative risk 1.09, 95% con-
fidence interval 0.61–1.95), a significant association was ob-
served when sodium intake was estimated within 1 year after
baseline (RR 1.80, 95%CI 1.03–3.13). Themajor influence of
the method used for estimation of sodium intake may, at least
in part, explain the inconsistent findings of cohort studies that
have investigated the relation between sodium intake and car-
diovascular outcome, but have used varying methods for es-
timation of sodium intake. Given the inaccurateness of a sin-
gle urine collection, future studies should use multiple urine
collections when assessing individual sodium intake.
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Fig. 2 Consequences of
estimating sodium intake with a
single measurement. a
Differences in estimated sodium
intake when estimated at baseline
or within 1 year after follow-up. b
Differences in the associated risk
for the composite of
cardiovascular events and death
when using baseline or 1-year
follow-up estimates of sodium
intake. Adapted from [52]
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Potential implications of tissue sodium
storage in paediatrics

These novel insights into sodium homeostasis may have poten-
tial implications for clinical practice and future research in pae-
diatrics. Studies looking at interstitial sodium storage in children
are lacking with most research done in adults. A previous metic-
ulous dietary salt modulation study in healthy girls aged 11–15 of
black and white race showed that body sodium retention oc-
curred without weight gain or a rise in blood pressure, raising
the possibility that interstitial sodium storage functions in adoles-
cence [53]. In this study, greater sodium retention was observed
with black race, which could indicate the existence of racial
differences in interstitial sodium storage before adulthood. It is
unclear how sodium storage first develops in human interstitial
and vascular systems or its function in sodium homeostasis in
neonates, who are prone to renal sodium losses from tubular
immaturity [54]. It may be relevant to consider interstitial sodium
storage in salt wasting nephropathies such as Bartter syndrome,
particularlywith regard towhether the interstitium acts as a buffer
for renal sodium losses.

The relevance of the ESL in children has been suggested by
a previous study which showed a significant reduction in en-
dothelial glycocalyx thickness by 36% in children with type 1
diabetes comparedwith controls [55]. This reduction appeared
to precede the onset of microalbuminuria and hypertension,
raising the possibility that restoring the ESL with agents such
as sulodexide may be a therapeutic option to prevent these
problems developing later in life.

The association between sodium intake and blood pressure in
children has been previously reviewed [56]. As in adults, dietary
sodium consumption in children has been observed to be above
recommended levels in developed countries, with sodium intake
being shown to be positively associated with blood pressure
[57–59]. It is unknown whether interstitial sodium storage mod-
ulates sodium sensitivity in childhood and adolescence, or deter-
mines hypertension in later life. Studies in adults have shown that
interstitial sodium accumulation in the skin and muscle increases
with age and positively correlates with blood pressure [19, 21].
Longitudinal studies evaluating interstitial sodium in children
and adolescents using methods such as 23Na-MRI could reveal
the direction of causality in the relationship between interstitial
sodium and blood pressure, showing if interstitial sodium accu-
mulation starts early in life and precedes, or is implicated in the
development of hypertension. This may further strengthen the
need for preventative strategies such as dietary sodium reduction
in children to prevent the onset of hypertension in adulthood.
Recent studies have shown a higher prevalence of sodium sen-
sitivity in women with possible differences in interstitial sodium
accumulation and storage [34, 35, 60]. It may be relevant and
informative to explore these sex differences in children, before
the onset of puberty and major influence of sex hormones or size
differences.

Conclusion

Interstitial and ESL sodium storage is a clinically relevant
concept that complicates treatments and diagnostics based
on the classical two-compartment model but may also provide
new possibilities for treatment of common diseases such as
hypertension. The current understanding of the impact of
(nonosmotic) sodium storage on daily clinical practice is like-
ly to be only a fraction of the impact it actually has.
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