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Abstract 20 

An ecologic analysis was conducted to explore the correlation between air pollution, and COVID-

19 cases and fatality rates in London. The analysis demonstrated a strong correlation (R2>0.7) 

between increment in air pollution and an increase in the risk of COVID-19 transmission within 

London boroughs. Particularly, strong correlations (R2>0.72) between the risk of COVID-19 

fatality and nitrogen dioxide and particulate matter pollution concentrations were found. 25 

Although this study assumed the same level of air pollution across a particular London borough, 

it demonstrates the possibility to employ air pollution as an indicator to rapidly identify the city’s 

vulnerable regions. Such an approach can inform the decisions to suspend or reduce the 

operation of different public transport modes within a city. The methodology and learnings from 

the study can thus aid in public transport’s response to COVID-19 outbreak by adopting different 30 

levels of human-mobility reduction strategies based on the vulnerability of a given region. 

Keywords: COVID-19, human mobility, Air pollution, particulate matter (PM2.5), Nitrogen dioxide 

(NO2), transport 
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1. Introduction 

The current outbreak of novel coronavirus COVID-19 or severe acute respiratory syndrome 40 

coronavirus 2 (SARS-CoV-2), has resulted in the World Health Organization (WHO) declaring it as 

a global pandemic (World Health Organization, 2020). Reported first within the city of Wuhan, 

Hubei Province of China in December 2019, the COVID-19 exhibits high human-to-human 

transmissibility and has spread rapidly across the world (Qun, et al., 2020). The human-to-human 

transmission of COVID-19 can occur from individuals in the incubation stage or showing 45 

symptoms, and also from asymptomatic individuals who remain contagious (Bai, et al., 2020). 

The COVID-19 has been reported to transmit via the inhalation of exhaled respiratory droplets 

(Guangbo, Xiangdong, Ligang, & Guibin, 2020) that remain airborne for up to 3 hours (Neeltje, 

Trenton, & Dylan, 2020). The extent to which COVID-19 induces respiratory stress in infected 

individuals may also be influenced by underlying respiratory conditions (Wei, et al., 2020) like 50 

acute respiratory inflammation, asthma and cardiorespiratory diseases (Centers for Disease 

Control and Prevention, 2020). Various studies have reported an association between air 

pollution levels and excess morbidity and mortality from respiratory diseases (Adamkiewicz, et 

al., 2004; Dockery, 2001; Yan, et al., 2003) with children and elderly people being at most risk 

(Department for Environment, Food & Rural Affairs, 2017). 20% of England’s population is at risk 55 

of mortality from COVID-19 due to underlying conditions and age (Amitava, et al., 2020). 

The simultaneous exposure to air pollutants such as particulate matter (PM2.5) and Nitrogen 

dioxide (NO2) alongside COVID-19 virus is also expected to exacerbate the level of COVID-19 

infection and risk of fatality (Transport & Environment, 2020; European Public Health Alliance, 

2020). Recent studies have also suggested that exposure to NO2 and PM2.5 may be one of the 60 
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most important contributors to COVID-19 related fatalities (Xiao, Rachel C, Benjamin M, Danielle, 

& Francesca, 2020; Ogen, 2020; Travaglio, Popovic, Yu, Leal, & Martins, 2020). Moreover, the 

adsorption of the COVID-19 virus on PM could also contribute to the long-range transmission of 

the virus (Guangbo, Xiangdong, Ligang, & Guibin, 2020). For example, an ecologic analysis of the 

2003 severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) reported that infected 65 

patients who lived in moderate air pollution levels were approximately 84% more likely to die 

than those in regions with lower air pollution (Yan, et al., 2003). The aerosol and surface stability 

of the COVID-19 or SARS-CoV-2 is reported to be similar to that of SARS-CoV-1 (Neeltje, Trenton, 

& Dylan, 2020). Given the limited understanding of the epidemiology of COVID-19, social-

distancing and human-mobility reduction measures can contribute greatly to tailoring public 70 

health interventions (Shengjie, et al., 2020). 

2. Human-mobility reduction 

Countries across the world have enforced lockdowns and other coordinated efforts to reduce 

human-mobility (European Commission, 2020; Anderson, Heesterbeek, Klinkenberg, & 

Hollingsworth, 2020; Matteo, et al., 2020; Edward, Daniele, & Yves, 2020). The UK’s national 75 

framework for responding to a pandemic states that public transport should continue to operate 

normally during a pandemic, but users should adopt good hygiene measures, and stagger 

journeys where possible (Department of Health, 2007). Within the UK, London has recorded the 

highest COVID-19 related fatalities (i.e. 30.2% of UK’s deaths as of 31 March 2020) (National 

Health Services, 2020). On 18 March 2020, further to the UK government’s advice, Transport for 80 

London (TfL) closed 40 out of 270 London Underground (LU) stations that do not serve as 

interchanges with other lines and announced a reduced service across its network (Transport for 
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London, 2020). This is also because 30% of TfL’s drivers, station staff, controllers and 

maintenance teams were not able to come to work, including those self-isolating or ill with 

COVID-19 (Transport for London, 2020).  85 

The UK’s current human-mobility reduction response reflects the need to maintain business 

continuity, near-normal functioning of society and enable critical workers to make essential 

journeys (Department of Health, 2007; Joy, et al., 2011). However, a statistically significant 

association exists between human-mobility through public transport and transmissions of acute 

respiratory infections (ARI) (Joy, et al., 2011; Lara & Anders, 2018). It was found that using public 90 

transport in the UK during a pandemic outbreak has an approximately six-fold increased risk of 

contracting an ARI (Joy, et al., 2011). Moreover, the pandemic case rates for London boroughs 

with access to interchange stations are higher (Lara & Anders, 2018), as individuals would interact 

with more people in comparison to through stations.  

One of the most controversial debates in pandemic countermeasures is the potential benefit of 95 

human-mobility reduction and social-distancing attained by the closure of public transport 

systems. From a public policy perspective, there is a need to achieve a trade-off between the 

potential public health benefits of closing public transport during a pandemic thereby delaying 

the community spread, against the socio-economic impacts of curtailing/reducing human 

mobility. Determining the vulnerability of regions/locations to COVID-19 might help achieve such 100 

trade-offs. The proposed approach can be employed to rapidly identify regions that are highly 

vulnerable to COVID-19 and accordingly inform human-mobility reduction measures across the 

city’s public transport network.  
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3. Materials and Methods 

An ecologic analysis was conducted to explore the correlation between short-term air pollution 105 

(of PM2.5 and NO2 levels) and COVID-19 cases and fatality rate in each London borough/region. 

To this end, a linear regression model was fitted to the data for regions with more than 100 

reported cases and 10 COVID-19 related deaths as of 31 March 2020. Accordingly, the 

vulnerabilities of different boroughs in London to COVID-19 was measured. 

3.1. Fatality data 110 

As the COVID-19 is an evolving pandemic, the available data as of 31 March 2020 on COVID-19 

morbidity and mortality for different boroughs in London was collected (Public Health England, 

2020; National Health Services, 2020) The Office of National Statistics (A Baker, personal 

communication, 2020) confirmed that they are unable to provide COVID-19 related fatality data 

categorized by each London borough or local authority. To this end, the deaths reported by 115 

individual NHS Hospital Trusts in London were employed to inform the reported deaths for each 

London borough. The fatality rate across each London borough was estimated by dividing the 

number of reported deaths by the number of reported positive COVID-19 cases.  

3.2. Air pollution data 

The air pollution data associated with particulate matter (PM2.5) and nitrogen dioxide (NO2) for 120 

each London borough was collected from (King's College London, 2020). NO2 data was available 

for 15 boroughs namely Barking and Dagenham, Bexley, Wandsworth, City of London, Croydon, 

Greenwich, Havering, Hillingdon, Kensington and Chelsea, Lewisham, Reading, Redbridge, 

Sutton, Tower Hamlets and Westminster. While, the PM2.5 data was available only for 8 boroughs 
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(Barking and Dagenham, Wandsworth, City of London, Croydon, Hillingdon, Kensington and 125 

Chelsea, Lewisham). Time series of available air pollution (PM2.5 and NO2) and COVID-19 cases 

could be seen in Figure 1, which shows that COVID-19 cases increase with increasing air pollution 

at London boroughs.    

The average NO2 concentration within the LU network was reported to be 51 μg m−3 (James 

David, et al., 2016). The PM2.5 concentration within different LU stations was recorded by Smith 130 

et al. (2020) with an average concentration of was 88 μg m−3. 



 

8 
 

 

Figure 1 The average a) NO2 and b) PM2.5 pollution concentrations and reported COVID-19 cases for different 

boroughs in London for March 2020. The grey bars show the monthly average of NO2 and PM2.5 concentrations and 

the line represent the cumulative number of reported COVID-19 cases in each London borough.  135 
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4. Results 

A strong correlation between short-term NO2 and PM2.5 pollution concentrations and COVID- 
19 cases with R2 values of 0.82 (COVID-19 cases = -29.345 + 10.306*NO2 concentration) and 0.72 
(COVID-19 cases = -215.63 + 40.997*PM2.5 level) were observed respectively (see 140 

Figure 2). In particular, COVID-19 fatality rate increased with increase in short-term air pollution, 

where a significant correlation between COVID-19 fatality and NO2 and PM2.5 pollution 

concentrations with R2 of 0.90 (fatality rate = 1.864+ 0.5787*NO2 level) and 0.67 (fatality rate = 

-7.733+ 2.3399*PM2.5 level) were found (see  

Figure 3).  145 

 

 

Figure 2 Relationship between a) NO2 and b) PM2.5 pollution concentrations and reported COVID-19 cases at 

London boroughs using data during March 2020 
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 150 

 

Figure 3 Relationship between a) NO2 and b) PM2.5 pollution concentrations and the COVID-19 fatality rate for each 

London borough. The fatality rate was calculated by dividing the number of reported deaths by the number of 

reported positive COVID-19 cases 

 155 

The median PM2.5 levels recorded for 27 of 40 closed LU stations range from 0-50 μg m−3 (5 

stations), 50-100 μg m−3 (9 stations), 100-200 μg m−3 (5 stations), 200-300 μg m−3(6 stations) and 

greater than 300 μg m−3 (2 stations) (see Table A1). Of the 230 operating stations, the median 

PM2.5 levels recorded for 219 stations range from 0-50 μg m−3 (56 stations), 50-100 μg m−3 (15 

stations), 100-200 μg m−3 (15 stations), 200-300 μg m−3 (18 stations) and greater than 300 μg m−3 160 

(7 stations) (Smith, et al., 2020) (see Table A1). This suggests that approximately 40% of the 

stations in operation during the current COVID-19 outbreak in London are up to 26 times more 

polluted than the ambient background locations and the roadside environment which has a 

median PM2.5 level of 14 μg m−3 (Smith, et al., 2020). Moreover, the average NO2 concentrations 

across the LU network is 27.5% higher than the NO2 limit values for the protection of human 165 

health (European Environment Agency, 2014). 
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5. Concluding discussion 

Our analysis shows that short-term exposure to air pollution (both NO2 and PM2.5) is significantly 

correlated with an increased risk of contracting and dying from COVID-19, expanding on previous 

evidence linking high mortality rates in England (Travaglio, Popovic, Yu, Leal, & Martins, 2020), 170 

Northern Italy (Ogen, 2020) and USA (Xiao, Rachel C, Benjamin M, Danielle, & Francesca, 2020). 

Biologically, either long-term or short-term exposure to air pollutants such as PM2.5 and NO2 can 

compromise lung function and therefore increase the risk of dying from COVID-19 (Wei, et al., 

2020). Given that the immunity to the 2003 SARS-CoV-1 was reported to be relatively short-lived 

(around 2 years) (Li-Ping, et al., 2007), achieving herd immunity for diseases like COVID-19 or 175 

SARS-CoV-2 would be unlikely without overwhelming the healthcare system (Edward, Daniele, & 

Yves, 2020). Human-mobility reduction measures provide the greatest benefit to COVID-19 

mitigation (Matteo, et al., 2020; Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020) as 

prevention is potentially cost-effective than cure (Lara & Anders, 2018) or death.  

The results from this study demonstrate that the air pollution levels can serve as one of the 180 

indicators to assess a region’s vulnerability to COVID-19 and accordingly adopting human-

mobility reduction strategies. For instance, the London Borough of Kensington and Chelsea is 

seen to be highly vulnerable to COVID-19 fatality from our analysis (see Figure 3a). Table A1 

shows that all the through stations and 3 out of 4 interchange stations (South Kensington, Sloane 

Square, Earl’s Court, Notting Hill gate) in this borough are currently operational. Such a 185 

vulnerability-based assessment might aid decision-makers in selecting appropriate human-

mobility reduction measures to COVID-19 in London’s different local authorities/boroughs (such 

as apportion of transport staff across railway stations, arranging dedicated shuttling services for 
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key workers, scheduling bus operations etc.) while adhering to the UK’s national framework for 

response to pandemic outbreaks (Department of Health, 2007) of not isolating towns or even 190 

cities (Department of Health & Social Care, 2020). 

We support the UK government’s existing COVID-19 guidance (Department of Health & Social 

Care, 2020) to exercise good hygiene and to avoid unnecessary travel. While considering the 

evidence that COVID-19 can be transmitted from an asymptomatic individual (Bai, et al., 2020), 

the currently implemented countermeasure of suspending operations only on the stations that 195 

do not serve as interchanges is not effective. This is because of the statistically significant risk of 

contracting ARI’s on UK’s public transport and higher pandemic case rates within London 

boroughs that have comparatively easier access to interchange stations. Moreover, the PM2.5 and 

NO2 levels, potential contributors to COVID-19 transmission and fatalities, are relatively higher in 

LU stations than other transport environments. E.g. the median level of airborne PM2.5 in LU 200 

stations is several times higher than cycling (35 μg m−3), bus (30.9 μg m−3), cars (23.7 μg m−3) 

(Vania, et al., 2015; Smith, et al., 2020). 

It has to be noted that the number of positive COVID-19 cases considered within this study are 

only those reported at the hospitals and does not include the growing number of people who are 

self-isolating at home due to mild COVID-19. While the individual risk of contracting and dying 205 

from COVID-19 is dependent on various factors (including age, underlying conditions, availability 

of health care, population density etc.), these results are informative for both scientists and 

decision-makers in their efforts to reduce the transmission and socio-economic impact of the 

ongoing COVID-19 outbreak through appropriate human-mobility reduction strategies. It is also 

recommended to expand the study further to understand the effect (if any) of other air quality 210 
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parameters such as volatile organic compounds (VOCs) and nitrogen oxides (NOx),  on COVID-19 

transmission and fatality rate. 
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Appendix A 345 
 
Table A1 Status of LU stations (as of 31 March 2020) and their mean PM2.5 levels adapted from (Smith, et al., 
2020; Transport for London, 2020) 
 

Borough Line Station 

Mean PM2.5 
level in the 

station 
(μg m−3) 

Status (as of 
31/03/2020) 

Barking and Dagenham District Becontree tube station 6 Open 

Barking and Dagenham District Dagenham Heathway 
tube station 4 Open 

Barking and Dagenham District Upney tube station 3 Open 

City of Westminster Central Bond Street tube station 367 Open 

City of Westminster Central Oxford Circus tube station 338 Open 

City of Westminster Northern Embankment tube station 316 Open 

City of Westminster Bakerloo Edgware Road tube 
station (Bakerloo line) 311 Open 

City of Westminster Victoria Green Park tube station 308 Open 

City of Westminster Central Marble Arch tube station 307 Open 

City of Westminster Central Tottenham Court Road 
tube station 298 Open 

City of Westminster Victoria Oxford Circus tube station 296 Open 

City of Westminster Northern Leicester Square tube 
station 287 Open 

City of Westminster Bakerloo Baker Street tube station 273 Open 

City of Westminster Bakerloo Maida Vale tube station 268 Open 

City of Westminster Bakerloo Oxford Circus tube station 263 Open 

City of Westminster Victoria London Victoria station 253 Open 

City of Westminster Jubilee Bond Street tube station 245 Open 

City of Westminster Bakerloo Piccadilly Circus tube 
station 244 Open 

City of Westminster Jubilee Westminster tube station 242 Open 

City of Westminster Northern Tottenham Court Road 
tube station 239 Open 

City of Westminster Jubilee Green Park tube station 236 Open 

City of Westminster Bakerloo Embankment tube station 227 Open 

City of Westminster Piccadilly Piccadilly Circus tube 
station 176 Open 

City of Westminster Jubilee Baker Street tube station 174 Open 

City of Westminster Piccadilly Leicester Square tube 
station 148 Open 

City of Westminster Piccadilly Green Park tube station 144 Open 

City of Westminster Jubilee St. John's Wood tube 
station 131 Open 
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City of Westminster District Embankment tube station 104 Open 

City of Westminster District Westminster tube station 104 Open 

City of Westminster Circle Westminster tube station 89 Open 

City of Westminster District London Victoria station 75 Open 

City of Westminster Circle Embankment tube station 61 Open 

City of Westminster Hammersmith 
& City Baker Street tube station 57 Open 

City of Westminster Circle Baker Street tube station 50 Open 

City of Westminster Metropolitan Baker Street tube station 42 Open 

City of Westminster Circle London Victoria station 42 Open 

City of Westminster Hammersmith 
& City 

Edgware Road tube 
station (Hammersmith & 
City lines) 

39 Open 

City of Westminster Hammersmith 
& City 

Paddington tube station 
(Hammersmith & City 
lines) 

19 Open 

City of Westminster Circle 

Edgware Road tube 
station (Circle, District 
and Hammersmith & City 
lines) 

10 Open 

City of Westminster Hammersmith 
& City Royal Oak tube station 9 Open 

City of Westminster Circle Paddington tube station 
(Circle) 6 Open 

City of Westminster Circle Royal Oak tube station 4 Open 

City of Westminster Hammersmith 
& City 

Westbourne Park tube 
station 4 Open 

City of Westminster Circle Westbourne Park tube 
station 3 Open 

City of Westminster Circle Bayswater tube station 3 Closed 

City of Westminster Piccadilly Covent Garden tube 
station 132 Closed 

City of Westminster Circle Great Portland Street 
tube station 91 Closed 

City of Westminster Metropolitan Great Portland Street 
tube station 48 Closed 

City of Westminster Hammersmith 
& City 

Great Portland Street 
tube station 99 Closed 

City of Westminster Piccadilly Hyde Park Corner tube 
station 148 Closed 

City of Westminster Central Lancaster Gate tube 
station 260 Closed 

City of Westminster Victoria Pimlico tube station 460 Closed 

City of Westminster Central Queensway tube station 277 Closed 

City of Westminster Bakerloo Regent's Park tube 
station 243 Closed 

City of Westminster Circle St. James's Park tube 
station 53 Closed 
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City of Westminster District St. James's Park tube 
station 94 Closed 

City of Westminster District Temple tube station 82 Closed 

City of Westminster Circle Temple tube station 14 Closed 

City of Westminster Bakerloo Warwick Avenue tube 
station 277 Closed 

Greenwich Jubilee North Greenwich tube 
station 103 Open 

Hammersmith & City Circle Ladbroke Grove tube 
station 5 Open 

Havering District Elm Park tube station 5 Open 

Havering District Hornchurch tube station 3 Open 

Havering District Upminster Bridge tube 
station 2 Open 

Hillingdon Piccadilly Heathrow Terminals 2 & 3 
tube station 50 Open 

Hillingdon Piccadilly Heathrow Terminal 4 
tube station 47 Open 

Hillingdon Piccadilly Hatton Cross tube station 44 Open 

Hillingdon Metropolitan Uxbridge tube station 31 Open 

Hillingdon Metropolitan Ruislip Manor tube 
station 30 Open 

Hillingdon Metropolitan Eastcote tube station 29 Open 

Hillingdon Metropolitan Ruislip tube station 29 Open 

Hillingdon Metropolitan Hillingdon tube station 28 Open 

Hillingdon Metropolitan Ickenham tube station 28 Open 

Hillingdon Metropolitan Northwood Hills tube 
station 23 Open 

Hillingdon Metropolitan Northwood tube station 23 Open 

Hillingdon Central Ruislip Gardens tube 
station 19 Open 

Kensington and Chelsea Piccadilly Gloucester Road tube 
station 147 Closed 

Kensington and Chelsea Circle Gloucester Road tube 
station 5 Closed 

Kensington and Chelsea District Gloucester Road tube 
station 24 Closed 

Kensington and Chelsea Central Holland Park tube station 123 Closed 

Kensington and Chelsea Central Notting Hill Gate tube 
station 200 Open 

Kensington and Chelsea Piccadilly South Kensington tube 
station 178 Open 

Kensington and Chelsea Piccadilly Knightsbridge tube 
station 137 Open 

Kensington and Chelsea Piccadilly Earl's Court tube station 105 Open 

Kensington and Chelsea District Sloane Square tube 
station 57 Open 
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Kensington and Chelsea District South Kensington tube 
station 45 Open 

Kensington and Chelsea Circle Sloane Square tube 
station 33 Open 

Kensington and Chelsea District Earl's Court tube station 21 Open 

Kensington and Chelsea Circle South Kensington tube 
station 18 Open 

Kensington and Chelsea Circle High Street Kensington 
tube station 4 Open 

Kensington and Chelsea Hammersmith 
& City Latimer Road tube station 4 Open 

Kensington and Chelsea Circle Notting Hill Gate tube 
station 3 Open 

Kensington and Chelsea Circle Ladbroke Grove tube 
station 2 Open 

Kensington and Chelsea Circle Latimer Road tube station 2 Open 

Redbridge Central Newbury Park tube 
station 56 Open 

Redbridge Central Gants Hill tube station 55 Open 

Redbridge Central Redbridge tube station 75 Closed 

Redbridge Central Wanstead tube station 35 Open 

Redbridge Central Barkingside tube station 31 Open 

Redbridge Central Fairlop tube station 12 Open 

Redbridge Central Hainault tube station 9 Open 

Redbridge  Snaresbrook tube station  Open 

Redbridge  South Woodford tube 
station 

 Open 

Redbridge  Woodford tube station  Open 

Tower Hamlets Central Mile End tube station 186 Open 

Tower Hamlets District Tower Hill tube station 91 Open 

Tower Hamlets District Mile End tube station 82 Open 

Tower Hamlets District Aldgate East tube station 64 Open 

Tower Hamlets Circle Tower Hill tube station 59 Open 

Tower Hamlets District Bromley-by-Bow tube 
station 56 Open 

Tower Hamlets Hammersmith 
& City Mile End tube station 45 Open 

Tower Hamlets Hammersmith 
& City Aldgate East tube station 42 Open 

Tower Hamlets Hammersmith 
& City 

Bromley-by-Bow tube 
station 40 Open 

Tower Hamlets Hammersmith 
& City Bow Road tube station 76 Closed 

Tower Hamlets District Bow Road tube station 80 Closed 

Tower Hamlets District Stepney Green tube 
station 127 Closed 
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Tower Hamlets Hammersmith 
& City 

Stepney Green tube 
station 74 Closed 

Tower Hamlets  Millwall tube station  Open 

Tower Hamlets  St Katharine Docks tube 
station 

 Open 

Wandsworth Northern Tooting Broadway tube 
station 284 Open 

Wandsworth Northern Tooting Bec tube station 234 Open 

Wandsworth Northern Clapham South tube 
station 203 Closed 

Wandsworth  East Putney tube station  Open 

Wandsworth  Southfields tube station  Open 

 350 


