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Abstract 
 

Open reading frames (ORFs) are the genomic DNA sequences that have the potential to be 

translated. Genome annotation pipelines dismiss translation products of small ORFs (smORFs) 

of 100 codons or fewer (≤ 300 nucleotides) as being unlikely to have a biological function. 

Recently, a number of micropeptides with diverse functions have been discovered in different 

organisms. The smORFs that encode them were identified from sequences originally annotated 

as non-coding regions of the genome including untranslated regions of an mRNA or a non-

coding RNA (ncRNA). Newly discovered micropeptides have been shown to influence various 

biological processes and diseases. These new discoveries complement already characterised 

peptides and small proteins known to be important biological regulators. Within the immune 

system the best characterised of these include host defense anti-microbial peptides (~12-50 

AA), chemokines (~90-100 AA) and cytokines (101-200 AA) that are known to play essential 

roles in normal and pathological immune reactions. Questions remain as to how widespread 

micropeptides are in the immune system and what their functional roles might be.  

 

Here we describe a new analytical pipeline that performs a comprehensive and systematic 

analyses of RNA-Seq and Ribosome profiling to identify actively translated smORFs. In 

comparison to previously published pipelines, our pipeline is more stringent at smORF 

prediction. We have applied our pipeline to mouse B and T cells and discovered 5744 actively 

translated smORFs and their predicted translation products. smORFs were classified, and for 

each class, we performed analyses to look at their conservation, translation efficiency, and the 

biological processes linked to them. It has been shown in the UniProt database that a small 

subset of chemokines and majority of cytokines are between 101 and 200 AA long. With this in 

mind, we extended our analysis to candidate proteins of up to 200 AA in length and found 

evidence for translation of 945 such polypeptides. We further investigate whether the predicted 

micropeptides possess features of signal peptides which have a potential to be secreted and 

could act as immune regulators. Furthermore, verifying their existence and identifying their 

functions will be essential and potentially lead to useful applications. 
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1.1 Roles of bioactive peptides and small proteins in 

the immune system 

Biologically active peptides and small proteins belong to a class of molecules that play essential 

regulatory roles in diverse biological processes (Boonen et al, 2009; Andrews and Rothnagel, 

2014; Cabrera-Quio et al., 2016). Neuropeptides and hormones are considered the best 

examples of extensively studied small proteins, they are derived from larger precursor proteins 

and contain N-terminal signal sequences (Fricker, 2005; Cunha et al., 2008). Within the immune 

system the best characterised of these include host defense antimicrobial peptides, hormones 

and cytokines that are known to have important functions in normal and pathological immune 

reactions. 

 

Host defence peptides (HDPs), also known as antimicrobial peptides (AMPs) are produced by 

various cells and tissues in all classes of complex organisms, such as amphibians, birds, 

insects, mammals, and plants. Their lengths vary between 12 and 50 amino acids (AA). For 

instance, neutrophils in the human innate immune system produce alpha-defensins (Ganz et al., 

1985), and another HDP called dermcidin is secreted by human sweat glands onto the skin 

(Schittek et al., 2001). The general defence mechanism is that HDPs interact with membranes 

of microbes and disrupt them. Some of the HPDs may form pores or holes in the membrane and 

others may change the membrane structure by poking into it in many places. Apart from having 

a role against microorganisms, they are also involved in activities in wound healing and in the 

maintenance of the microbiota (Hancock et al., 2016). 

 

Peptide hormones or protein hormones are secreted from animal and plant’s cells. Plant’s 

hormones are able to influence plant’s growth and development including embryogenesis, the 

regulation of organ size, pathogen defense, stress tolerance and reproductive development 

(Shigenaga and Argueso, 2016; Pierre-Jerome et al., 2018; Bürger and Chory, 2019). Animal 

hormones play a role in regulating animal's growth, metabolism, and sexual development and 

function (Neave, 2007). They act as extracellular signaling molecules and bind to a receptor 

protein that is embedded in the plasma membrane of the target cell. The inside portion of the 

receptor undergoes a conformational change which activates intracellular signaling reactions, 

involving signaling proteins. One or more signaling proteins alter the activities of effector 

proteins and thereby the cell behaviour. Immune cells synthesize, store and secrete hormones. 
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Hormones, including adrenocorticotropic hormone (ACTH), endorphin and triiodothyronine (T3) 

were found in Natural killer cells and activated T cells, and suggested a need for a decrease in 

the levels of these hormones for the killing of target cells (Pállinger, and Csaba, 2008).  

 

Small peptides and proteins that are secreted and play an important role in cell signaling are 

loosely categorized as Cytokines. Cytokine is a general name, it includes chemokines 

(cytokines with chemotactic activities), interferons (cytokines in response to virus infection), 

interleukins (cytokines made by one leukocyte and acting on other leukocytes), lymphokines 

(cytokines made by lymphocytes), monokine (cytokines made by monocytes) and tumour 

necrosis factors, but generally not hormones. Immune cells including macrophages, B 

lymphocytes, T lymphocytes and mast cells produce cytokines (Abbas et al., 2014). Cytokines 

have been shown to act on the cells that secrete them (autocrine action), on nearby cells 

(paracrine action), or in some instances on distant cells (endocrine action) 

as immunomodulating agents. Cytokines are involved in health and disease, specifically in 

development (Saito, 2001), host responses to infection, inflammation, trauma, and sepsis 

(Dinarello, 2000), also they are linked to schizophrenia, depression (Dowlati et al., 2010), 

Alzheimer's disease (Swardfager et al., 2010) and cancer (Locksley et al., 2001). Chemokines 

are a family of cytokines with length ranging from 80-100 AA in different species (Abbas et al., 

2014). They are essential signaling molecules in both innate and adaptive immune responses 

serving as messengers for intracellular communication and recruiting leukocytes to move 

towards sites of infection or inflammation. Interleukins (ILs) are larger cytokines than 

chemokines, with the majority of them between 100 and 200 AA in length. They promote the 

development and differentiation of T and B lymphocytes, and hematopoietic cells. For example, 

interleukin 4 (IL4) produced principally by CD4+ T cells, is important in promoting B cell 

responses including B cell proliferation, class switch recombination and somatic hypermutation, 

as well as the differentiation of B cells into plasma cells (Yokota et al., 1986).  

 

1.2 Small open reading frames (smORFs) and 

micropeptides 

The concept of a gene has been continuously refined, evolved and has become more complex. 

Initially genes were identified as DNA sequences which contain open reading frames (ORFs). 

https://en.wikipedia.org/wiki/Cell_signaling
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Those ORFs are potentially translatable DNA region that begins with a start codon (e.g. AUG) 

and ends with one of the three stop codons (UAA, UGA, and UAG), with no stop codons in 

between, they are termed CDS (from coding DNA sequence) and direct the sequence of amino 

acids in a protein. As the understanding of the molecular mechanisms of genes deepens, the 

updated view has included regulatory regions and elements (promotor, enhancer, chromatin 

structure) as well as transcripts (Gerstein et al, 2007). Furthermore, non-coding transcripts have 

been discovered from distinct genomic loci, they bear signatures of mRNAs, including 5’ 

capping, spliced via canonical splice motifs, and polyadenylation, but one important difference 

between ncRNAs and protein-coding mRNAs is their low level of nucleotide sequence 

conservation (Carninci et al., 2005). These non-coding genes and their transcript products 

(known as non-coding RNAs or ncRNAs) have revolutionized our understanding of gene 

regulation (Derrien et al., 2012; Guttman and Rinn, 2012).  

 

The advent of next-generation sequencing technologies and proteomic approaches has led to a 

more comprehensive annotation of genes, transcripts and their translated protein products. 

Several large-scale genomic studies have revealed that a much larger fraction of the genome is 

transcribed and translated than was anticipated (Carninci et al., 2005; Kim et al., 2014; Ingolia 

et al., 2014). In recent years, a class of genetic elements has emerged to challenge the 

understanding of the coding potential of the genome: translated functional small ORFs 

(smORFs or sORFs) of 100 codons and fewer (Basrai et al., 1997). Apart from annotated CDSs, 

the genomes of many metazoans, including mouse and human, contain millions of putative 

smORF sequences (Kastenmayer et al., 2006; Frith et al., 2006; Ladoukakis et al., 2011). The 

discovery of smORFs and their protein products points to a fundamental gap in our knowledge 

of protein-coding genes. 

 

The sizes of smORFs can range from 2 (a theoretical lower boundary) to 100 codons in length 

(Andrews and Rothnagel, 2014). The shortest coding smORF reported to date has 6 codons, it 

is an upstream open reading frame (uORF) on S-Adenosylmethionine decarboxylase 

(AdoMetDC) mRNA. AdoMetDC is a key enzyme in the pathway of polyamine biosynthesis. The 

cellular levels of the polyamines regulate AdoMetDC translation. The AdoMetDC uORF, which 

encodes a peptide of sequence MAGDIS, is specifically required for translational control of 

AdoMetDC by polyamines (Ruan et al., 1996; Law et al., 2001; Raney et al., 2002). There is no 

consensus for the upper limit of a smORF, some studies have described smORFs of 150-200 

codons (Hayden and Bosco, 2008; Yang et al., 2011). The protein products of smORFs are 



 14 

referred to as SEPs (from smORF-encoded polypeptides) or micropeptides (Saghatelian and 

Couso, 2015; Anderson et al., 2015; Mackowiak et al., 2015). Micropeptides differ from classical 

bioactive peptides in how they are biochemically synthesized (Figure 1.1) (Saghatelian and 

Couso, 2015; Makarewich and Olson, 2017). Classical bioactive peptides such as 

neuropeptides, peptide hormones and growth factors are often enzymatically cleaved from 

longer precursor proteins by proteolysis to form their final active structures. Take insulin as an 

example, it is firstly synthesized as a single polypeptide called preproinsulin in pancreatic β-cells, 

subsequently, the signal peptide is cleaved to form proinsulin. To form the mature insulin, the 

proinsulin is then cleaved at two positions to yield two polypeptide chains linked by 2 disulphide 

bonds.  The resulting mature insulin is secreted to the outside of the cell (Steiner and Oyer, 

1967). Bioactive micropeptides in principle are directly translated and released in the cytoplasm 

and mitochondria (Aspden et al., 2014) as well as nucleus (Slavoff et al., 2014) without being 

processed (Figure 1.1) (Hashimoto et al., 2008). 

Figure 1.1 | Micropeptides and classical bioactive peptide biosynthesis. (A) Peptide 

hormones are cleaved from longer precursor prepropeptides to form their final active structures. 

(B) Micropeptides are directly translated and released without being processed. 

 

Recently, a large number of micropeptides with diverse functions have been discovered in 

different organisms (Table 1.1) (Duncan and Mata, 2014; Hsu et al., 2018; Finkel et al., 2018; 

Delcourt et al., 2018; Erpf and Fraser, 2018; van Heesch et al., 2019). The smORFs that 

encode them were identified from sequences originally annotated as non-coding regions of the 

genome including untranslated regions of an mRNA or a ncRNA, with ncRNA being a major 



 15 

source (Anderson et al., 2015; Nelson et al., 2016; D’lima et al., 2017; Matsumoto et al., 2017; 

van Heesch et al., 2019). Newly discovered micropeptides have been shown to influence 

development (Kondo et al., 2007,2010; Chng et al., 2013; Pauli et al., 2014; Chaunt-Delalande 

et al., 2014), DNA repair (Slavoff et al., 2014), mRNA decapping (D’Lima et al., 2017), muscle 

calcium homeostasis (Magny et al., 2013; Anderson et al., 2015,2016; Nelson et al., 2015,2016), 

metabolism (Lee et al, 2015), stress signalling (Matsumoto et al., 2017), cancer (Huang et al., 

2017) and inflammatory diseases (Jackson et al., 2018). These new discoveries emphasize the 

functional potential of this unexplored class of biomolecules and complement already 

characterised peptides and small proteins known to be important biological regulators. 

 

Micropeptide 
gene name 

Conservation Method of 
identification/
characterizati-
on 

Function Size 
(number 
of amino 
acids) 

Reference 

HAMP 
(Hepcidin) 
 

Vertebrates MS assay 

 
Regulates iron 
metabolism and 
mediator of 
anemia of 
inflammation  

25 
 

Krause et al., 
2000; Park et 
al., 2001 

ENOD40-1  Plants In vitro 
translation 

Associates with 
a subunit of 
sucrose 
synthase in root 
nodule 

12 and 
24 

Röhrig et al., 
2002 

PLS 
(POLARIS)  

Plants Gene 
expression 
analysis 

Leaf 
morphogenesis 

36 Casson et al., 
2002 

Brick1 (Brk) Plants and 
animals 

Mutation 
analysis 

Leaf 
morphogenesis 

76 Frank and 
Smith, 2002 

MT-RNR2 
(Humanin) 

Mammals (only 
6: Bonobo, 
Cat, 
Chimpanzee, 
Gelada, Tiger, 
Green 
monkey) 

Functional 
expression 
screening of 
cDNA library 

Neuroprotective 
factor and 
involve in 
programmed cell 
death 

24 Tajima et al., 
2002; Guo et 
al., 2003 

ROT4  Plants Screening of a 
mutant in 
Arabidopsis 
thaliana 

Leaf 
morphogenesis 

53 Narita et al., 
2004 
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tal (ftarsal-
less/Polished 
rice/Pri) 

Insects Mutation 
analysis 

Activates an 
essential 
transcription 
factor, driving 
formation of 
cuticle 
structures during 
embryo 
development 

11-32 
(Three of 
11; one 
of 32 
which is 
rarely 
translate
d) 

Galindo et al., 
2007;  
Kondo et al., 
2007, 2010 

Wfdc21 Mammals 
(non-human) 

Bioinformatics 
(microarray 
analysis) 

Promotes 
activation of the 
metalloproteinas
e MMP2 

63 Wu et al., 
2008 

C12orf75 
(AGD3) 

Mammals Bioinformatics 
(microarray 
and RNA-Seq 
analysis) 

Involves in stem 
cell 
differentiation 

63 Kikuchi et al., 
2009 

CYREN (MRI-
2) 
  

Mammals MS screening 
and RNA-Seq 

DNA repairing 
process (non-
homologous end 
joining pathway) 

69 Slavoff et al., 
2014 

Toddler Vertebrates Bioinformatics 
(mined 
zebrafish 
genomic data 
sets for 
previously non-
annotated 
translated 
open reading 
frames) 

Activates a G 
protein–coupled 
receptor to 
promote 
migration of 
mesendodermal 
cells in the 
developing 
embryo 

58 Pauli et al., 
2014 

MLN  
(Myoregulin) 

Mammals Bioinformatics 
(screen for 
uncharacterize
d skeletal 
muscle-
specific genes) 

Calcium 
homeostasis 

46 Anderson et 
al., 2015 

MT-RNR1 
(MOTS-c) 

Vertebrates Bioinformatics 
(in silico 
search for 
potential 
smORFs in 
12S rRNA) 

Regulates 
insulin sensitivity 
and metabolic 
homeostasis 

16 Lee et al., 
2015 

STRIT1 Mammals Bioinformatics Interacts with 35 Nelson et al., 
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(DWORF) (PhyloCSF 
search) 

and enhances 
calcium pump 
activity in 
muscle cells 

2016; 
Makarewich 
et al., 2018 

NBDY 
(NoBody) 

Mammals MS screening 
and RNA-Seq 

mRNA 
decapping 
process 

68 D'Lima et al., 
2017 

SPAAR Mammals Proteomics Regulates 
mTORC1 and 
muscle 
regeneration 

90 Matsumoto et 
al., 2017 

HOXB-AS3 Primates Ribo-Seq Inhibits colon 
cancer growth 

53 Huang et al., 
2017 

MYMX  
(Myomixer/Min
ion) 

Mammals CRISPR 
mediated loss 
of function 
screening of 
genes required 
for myoblast 
fusion  

Mediates cell 
fusion and 
muscle 
formation 

84 Bi et al., 
2017; Zhang 
et al., 2017 

Aw112010 Mammals 
(non-human) 

Ribo-Seq Controls 
mucosal 
inflammatory 
response 

82 Jackson et 
al., 2018 

MTLN 
(Mitoregulin 
/MPM) 
 

Vertebrates Bioinformatics 
(in silico 
search for 
potential 
smORFs in 
transcripts 
detected in 
mouse skeletal 
muscle) 

Enhances 
mitochondrial 
respiratory 
activity and 
promotes 
myogenic 
differentiation 
 

56 Stein et al., 
2018; Lin et 
al., 2019 

PIGBOS1 Mammals Proteomics Regulates 
unfolded protein 
response 

54 Chu et al., 
2019 

NCBP2AS2/K
RASIM 

Vertebrates 
and Drosophila 

Proteomics promotes tumor 
angiogenesis in 
cancer-
associated 
fibroblasts 

99 Kugeratski  et 
al., 2019; 
Prensner et 
al., 2020 

POLGARF Mammals Ribo-Seq and Unknown 64 Loughran et 
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MS function but 
potentially a 
regulatory 
protein 

al., 2020 

BRAWNIN 
(BR) 

Vertebrates Bioinformatics 
and 
overexpression 
of the smORF 
in cell line 

Essential for 
respiratory chain 
complex III (CIII) 
assembly 

71 Zhang et al., 
2020 

 

Table 1.1 | Examples of characterized micropeptides and their biological functions. 

1.3 Identification of smORFs and micropeptides 

High quality gene annotation requires the power to correctly identify open reading frames that 

encode genuine protein products, and to discriminate between them and the vast number of 

ORFs that are untranslated in a particular context. This challenge becomes particularly acute 

when applied to smORFs. The high numbers of smORFs and lack of experimental validation 

present a challenge for annotation and curation. The difficulty for smORF study is that functional 

smORFs are often discarded by genome annotations because they have not been 

experimentally validated or no homology with other protein-coding genes.  

 

Putative ORFs can exist in any DNA sequence by chance. Stop codons occur at a frequency of 

roughly 1 in 20 in random sequences, ORFs of up to 60 codons will occur frequently by chance 

(5%) and even ORFs of 150 codons will appear by chance in a large genome (0.05%) 

(Kamvysselis, 2003). Many putative ORFs do not encode proteins. Traditional computational 

prediction of protein-coding ORFs relies on a number of stringent criteria to remove 

meaningless ORFs, such as size cutoff of 300 nucleotides, AUG start codon usage, and 

sequence similarity (Gish and States, 1993; Kochetov, 2004), rendering them inappropriate for 

smORF detection.  

 

The ORF length is a fundamental criterion used to distinguish bona fide protein-coding ORFs 

from short putative ORFs that occur by chance (Dinger et al., 2008). The likelihood that an ORF 

encodes an authentic protein increases with its length (Lipman et al., 2002). The choice of a 

100-codon cutoff as the minimum size for detection was made historically by ORF-discovery 

pipelines to search for long ORFs that are unlikely to have occurred by chance. This cutoff has 
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also been based on the assumption that peptides of shorter than 100 AA have exceedingly low 

probability to fold into stable structures to perform robust biological functions (Ingolia et al., 

2014). This arbitrary threshold is consistent with the observation that > 95% of proteins in public 

databases such as UniProtKB/Swiss-Prot (UniProt Consortium, 2018) are > 100 AA in length, 

and has subsequently been shown to display a high level of concordance with more 

sophisticated discrimination methods (Frith et al., 2006). ORFs of less than 100 codons have 

been disregarded by such filtering and it will potentially result in the misclassification of some 

protein coding transcripts as ncRNAs.  

 

Translation is a key feature for of smORFs in its expression. Selection of the translation initiation 

site (TIS) is a crucial step during translation. In the classic view of eukaryotic translation, 

ribosomes almost always initiate at the first AUG codon on an mRNA and translate a single, 

long open reading frame (Hinnebusch, 2014). However, exceptions have been known since the 

1980s that translation can initiate at a non-AUG codon, even though at a much lower efficiency 

(Zitomer et al., 1984; Peabody, 1987, 1989; Clements et al., 1988; Hann et al., 1988). In most of 

these cases, near-cognate codons CUG, GUG, and UUG are used. Interestingly, not all near-

cognate start codons are equally efficient, CUG is generally most efficient (Kearse and Wilusz., 

2017). Recent advancements in ribosome footprint mapping have revealed that non-AUG start 

codons are used at an astonishing frequency (~60%) (Ingolia et al., 2009, 2011). Methods 

solely based on AUG start codon have limited the smORF discovery. 

 

Searching for sequence conservation is a commonly used way to verify whether an ORF is 

actually a protein-coding sequence, because conservation across species is a strong indication 

of function. This can be done by detecting either its similarity to annotated protein sequences in 

a pairwise alignment manner or its conservation across species by multiple sequence alignment. 

However, these methods do not work well to differentiate coding smORFs from non-coding 

smORFs. For example, BLAST tool is size dependent, it measures the absolute amount of 

conservation, i.e., the number of conserved amino acid positions (Wheeler et al., 2006), so short 

sequences are physically unable to obtain high conservation scores as an indication of 

functionality. BLAST penalizes the identification of protein sequences of fewer than 80 AA and 

fails below 20 AA (Ladoukakis et al., 2011). Ka/Ks ratio is another example. Ka is the number of 

non-synonymous (a nucleotide mutation that alters the amino acid sequence of a protein) 

substitutions per non-synonymous site per time period, Ks is the number of synonymous (a 

nucleotide mutation that do not alter the amino acid sequence of a protein) substitutions per 
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synonymous site in the same time period. Amino acid sequences of canonical protein-coding 

ORFs are conserved across different species, and the Ka/Ks ratio measures this purifying 

selection at the nucleotide level. It is expected to see a prevalence of synonymous versus non-

synonymous codon substitutions (Ka/Ks<1). However, it is difficult to score statistically significant 

values for very short sequences because the number of possible changes is low, such that 

Ka/Ks loses predictive power below 100 AA (Couso, 2015). 

 

Translation of smORFs is not direct evidence for function of the peptide produced. Experimental 

evidence for smORF function was and is difficult to obtain. Because of their small size, smORFs 

in model organisms such as mice, flies, and zebrafish are less likely to be hit in random 

mutagenesis screens than larger ORFs, and the large number of smORFs in the genome 

makes it impractical to carry out systematic mutagenesis, meaning their functions are less likely 

to be revealed. As for the micropeptides themselves, the standard practice for isolation is to use 

electrophoresis to separate peptides by size, this method fails to detect peptides below 10kDa 

(Couso and Patraquim, 2017). Small peptides would often run off the gel or masked by 

degraded peptides from large proteins. 

 

Despite the challenges, smORFs and micropeptides have been uncovered in an ad hoc manner 

over the years. Searching for regulators responsible for certain phenotypes resulted in the 

unexpected discovery of a few micropeptides (Table 1.1) (Galindo et al., 2007; Kondo et al., 

2007,2010; Wadler and Vanderpool, 2007; Maki et al., 2010; Rice and Vanderpool, 2011). 

Studies in Drosophila melanogaster revealed micropeptides have a crucial regulatory role in 

larval epidermal differentiation (Galindo et al., 2007; Kondo et al., 2007, 2010) and Cardiac 

physiology (Schiemann et al., 2019).  The Tal gene was previously annotated as a non-coding 

RNA. Four tandem smORFs in the Tal transcript are independently translated to micropeptides 

of 11 (translated from the first three smORFs) and 32 AA (the fourth smORF) in epidermal cells, 

the fourth smORF is rarely translated. The transcription factor Ovo binds to the promoter of a 

target gene to repress gene expression and prevent differentiation of larval epidermal cells, and 

no trichomes are formed. The Tal micropeptides promote the post-translational modification of 

Ovo; they promote cleavage of Ovo repressor domain, which turns Ovo into an activator to 

switch on target gene expression that induces trichome formation (Kondo et al., 2010). 

Phylogenetic analysis as the evidence for conservation showed that the Tal gene belongs to a 

gene family that is at least 440 million years old (Galindo et al., 2007). Recently another 

micropeptide named Myoregulin was identified when a bioinformatics screening for 
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uncharacterized skeletal muscle-specific genes was carried out (Anderson et al., 2015). Similar 

to Tal, this gene was annotated as a putative long non-coding RNA (lncRNA). Myoregulin is a 

member of SERCA-inhibitory micropeptide family and is conserved at the structural and 

functional level. It has a role in regulating muscle performance by inhibiting the activity of 

SERCA which is the membrane pump that controls muscle relaxation by regulating Ca2+ uptake. 

Following Myoregulin gene knockout, mice show improved exercise performance and Ca2+ 

handling in muscle (Anderson et al., 2015). 

 

Approaches to identify protein-coding smORFs 

The identification of smORFs that are translatable and that are likely to encode micropeptides 

remains a major challenge. With the advancement of technology, the challenge has begun to be 

addressed. Recent computational and experimental approaches have been developed to 

increase our ability to infer the translational state and coding potential of smORFs and detect 

the micropeptides generated from translation. Three complementary approaches that are 

typically used to discover functional smORFs are bioinformatics, transcriptomics and proteomics 

(Table 1.2). However, these techniques are useful for identification of smORF and 

micropeptides and not for direct functional characterization. 

 

Approaches to 
identify smORFs 

Methods & Metrics Description Reference 

Bioinformatics sORF finder, CPC Tools to locate 
smORFs having coding 
potential 

Hanada et al., 2009; 
Kong et al., 2007 

 PhyloCSF A computational 
method examining 
evolutionary 
conservation of a 
smORF across species 

Lin et al., 2011 

Transcriptomics/ 
translatomics 

Ribo-Seq A deep sequencing-
based method of 
ribosome protected 
fragments to obtain 
global snapshot of 
translation 

Ingolia et al., 2009 

Poly-Ribo-Seq A combination of Ribo-
Seq and polysome to 

Aspden et al., 2014 
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enrich more potent 
protein-coding ORFs 

Ribosome Release 
Score (RSS) 

A metric to detect the 
termination of 
translation at the stop 
codon of an ORF using 
Ribo-Seq 

Guttman et al., 2014 

FLOSS score A method designed to 
distinguish true coding 
from non-coding 
sequences based on 
the RPF-length 
distribution 

Ingolia et al., 2014 

ORFScore, ORF-
RATER, RiboORF, 
RiboTaper, RP-BP, 
RiboCode, 
Ribotricer  

These are methods to 
identify true protein 
coding ORFs based on 
triplet periodicity 
pattern in Ribo-Seq 
data 

Bazzini et al., 2014; 
Fields et al., 2015; Ji 
et al., 2015; Calviello 
et al., 2016; Malone 
et al., 2017; Xiao et 
al., 2018; Choudhary 
et al., 2020 

GWIPS-viz, TISdb, 
uORFdb, RPFdb, 
sORFs.org, SmProt, 
HRPDviewer 

Databases to collect 
Ribo-Seq data and 
genome annotations 
derived from the data 

Michel et al., 2013; 
Wan and Qian, 2013; 
Wethmar et al., 2013; 
Xie et al., 2015; 
Olexiouk et al., 2015; 
Hao et al., 2017; Wu 
et al., 2018 

Proteomics/ 
peptidomics 

Proteogenomics A method that 
combines proteomics, 
genomics, and 
transcriptomics 

Slavoff et al., 2013 

 

Table 1.2 | Computational and experimental approaches to identify smORFs. 

Bioinformatics 

A large collection of putative translatable smORFs have been identified by bioinformatics 

methods based on the level of DNA and protein sequence conservation across species and 

synonymous (nucleotide substitutions that do not change the coded amino acid) versus 

nonsynonymous substitution (Kimura, 1980; Ina, 1995; Makalowski and Boguski, 1998), coding 



 23 

potential (Karlin et al., 1998; Bateman et al., 2004; Skarshewski et al., 2014), sites of transcripts 

and context of the initiation codon (Kozak, 1987; Brent and Guigó, 2004). 

 

As mentioned earlier, tools such as BLAST and Ka/Ks ratio do not work well to differentiate 

coding smORFs from non-coding smORFs. More recently, bioinformatics tools were designed to 

overcome the limitations. sORF finder is a package for identifying smORFs with coding potential 

based on their similarity in nucleotide composition to known coding sequences (Hanada et al., 

2009). It calculates the likelihood of a smORF appearing in the coding regions of a genome 

using Bayesian estimation. This method was initially applied to two small protein gene datasets 

in S. cerevisiae and A. thaliana and showed low false negative rate (∼9%). CPC (Coding 

Potential Calculator) is a support vector machine classifier that incorporates six sequence 

features to discriminate coding versus non-coding ORFs (Kong et al., 2007). Three of the 

features score the quality of the ORF (size, coverage, integrity) and the remaining three, 

assessed by BLASTX, are based on the putative homologous protein sequences which are 

conserved in other species (number of hits, quality of hits, frame distribution of hits). PhyloCSF 

(phylogenetic codon substitution frequency) is a vigorous conservation-based method. It 

evaluates the likelihood of an ORF to be a conserved protein-coding sequence by analysing 

multiple alignment of nucleotide sequences incorporate phylogenetic distance and a model of 

codon substitution frequencies (Lin et al., 2011). PhyloCSF is a method to determine whether a 

multi-species nucleotide sequence alignment is likely to represent a protein-coding region, it 

provides a conservation score for all six reading frames (three on the forward strand and three 

on the reverse strand) of a given genomic sequence. PhyloCSF has been used to identify 

several novel micropeptides, including non-annotated P-body dissociating polypeptide (NBDY) 

(D'Lima et al., 2017) (Figure 1.2). PhyloCSF has been integrated to UCSC genome browser, 

which makes easy access for the community (Cabili et al., 2011; Pauli et al., 2012). 

 

Figure 1.2 | Identification of micropeptide by PhyloCSF. PhyloCSF is a computational tool to 

identify potential coding genes based on the evolutionary conservation of their nucleotide 

sequence. PhyloCSF has been used to identify several novel micropeptides, including non-
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annotated P-body dissociating polypeptide (NBDY). NBDY scores positively on PhyloCSF 

(upward deflection) in exon 1 that encodes the functional NBDY protein. NBDY transcript was 

annotated as noncoding before it was discovered, however it shows strong conservation in 

PhyloCSF. By combining RNA-Seq and MS, NBDY was identified in a screening, then it was 

characterized by performing immunoprecipitation and MS analysis (IP-MS) on the co-

precipitated proteins. NBDY is a component of the mRNA decapping protein complex cross-

linking to EDC4 (enhancer of mRNA decapping 4) and regulates the P-body number in cells by 

interacting with decapping proteins. 

 

In silico micropeptide feature searches and modelling have been applied to amino acid 

sequences in recent studies (Jackson et al., 2018; van Heesch et al., 2019). TargetP 

(Emanuelsson et al., 2000) and DeepLoc (Almagro Armenteros et al., 2017) are online tools for 

prediction of protein subcellular localizations. Prediction of signal peptides can be performed by 

SignalP and transmembrane helices by TMHMM (Petersen et al., 2011). InterPro provides 

functional analysis of proteins by classifying them into families and predicting domains and 

important sites (Mitchell et al., 2018). 

 

Studies that used these tools have predicted hundreds, even thousands of putative novel 

smORFs in difference genomes (Frith et al., 2006; Ulitsky et al., 2011; Pauli et al., 2012). 

However, this will not work for all smORFs. For example, those that are encoded by lncRNAs 

are less likely to be conserved given lncRNAs themselves do not have high sequence 

conservation (Makarewich and Olson, 2017). These methods are also used together with 

experimental methods to validate the identified smORFs.  

Transcriptomics 

RNA sequencing (RNA-Seq) and ribosome profiling (Ribo-seq) are transcriptomic-based 

experimental methods for finding potential translated smORFs and micropeptides. RNA-Seq 

uses next-generation sequencing (NGS) to determine which RNAs are expressed in a given cell, 

tissue, or organism at a specific time point. This collection of data, known as a transcriptome, 

can then be used as transcriptional evidence to combine in silico prediction for finding potential 

smORFs (Ladoukakis et al., 2011). Ribosome profiling (Ribo-Seq), an approach based on 

massively parallel deep sequencing of isolated ribosome-protected fragments (RPFs, or 

referred to as “ribosome footprints”), provides a “snapshot” of genome-wide protein synthesis in 

https://en.wikipedia.org/wiki/Transcriptome
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vivo with single-nucleotide resolution thus allows detailed and accurate analysis of protein 

production (Ingolia et al., 2009,2012,2014). In this method, firstly samples are either treated with 

a protein synthesis inhibitor to stall translating ribosomes or with no-drug treatment like thermal 

freezing (Michel et al., 2013), ribosome-bound RNAs then are extracted from cell lysates and 

undergo nuclease digestion to generate RPFs. These RPFs are isolated and purified for 

sequencing. The sequencing reads will be mapped to a reference genome or transcriptome to 

identify the precise position of the ribosome at the time the translation was halted (Figure 1.3).  

 

 

 

Figure 1.3 | An overview of Ribo-Seq and RNA-seq. Ribo-Seq enables the identification of 

actively translated smORFs. During translation, ribosomes are moving on the transcript codon 

by codon, the sample is treated with protein synthesis inhibitor to block elongation. After 

nuclease digestion, ribosome protected fragments or footprints were purified and sequenced. 

Footprints were then mapped back to the reference genome in the protein coding region as 

shown in the red track. The signal indicates the ribosome density at each nucleotide on the 

transcript. RNA-Seq data as shown in the blue track has covered the whole mRNA. 

 

Ribosome profiling studies in a wide variety of species including flies, zebrafish, mice and 

humans and cell cultures have revealed that translation occurs in a pervasive manner (Ingolia et 

al., 2011; Lee et al., 2012; Stern-Ginossar et al., 2012; Dunn et al., 2013; Aspden et al., 2014; 

Bazzini et al., 2014; Juntawong et al., 2014; Smith et al., 2014; Vasquez et al., 2014; Ji et al., 

2015; Fields et al., 2015; Johnstone et al., 2016). Ribosome footprints were detected in 
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lncRNAs, in the upstream and downstream regions, and even overlapping the CDS of 

annotated coding transcripts. Moreover, studies revealed that translation from non-canonical 

start sites, including internal sites of CDSs and non-AUG start codons, is widespread.  

 

Ribo-Seq can identify either initiating ribosomes (initiation Ribo-Seq) or elongating ribosomes 

(elongation Ribo-Seq) by using different inhibitors (Michel and Baranov, 2013). Initiation Ribo-

Seq has been used to map translation initiation sites (TISs). This method uses compounds such 

as harringtonine (Ingolia et al., 2011), lactimidomycin (Lee et al., 2012) or puromycin (Clamer et 

al., 2018) to stop ribosomes at translation initiation sites, which indicate where active translation 

is taking place. Surprisingly complex organization of translation initiation sites in eukaryotes has 

been revealed by using this method including non-AUG sequences that initiate translation, the 

generation of N-terminally extended and truncated isoforms of annotated proteins as well as the 

translation of numerous open reading frames from host transcripts. Elongation Ribo-Seq uses 

translation elongation inhibitors, such as cycloheximide (Ingolia et al., 2009) or emetine (Ingolia 

et al., 2011) as well as no-drug by thermal freezing (Oh et al., 2011), to obtain ribosome 

footprints which are more likely to be the result in a translated ORF. In addition, this method 

also provides quantitative information of translation including translation efficiency (TE) and 

differential gene expression at the level of translation. Modification has been applied to the 

original Ribo-Seq, a method called Poly-Ribo-Seq enriches polysomes that are more likely to be 

actively translating mRNA into proteins. Poly-Ribo-Seq was successfully used to identify several 

smORFs in the Drosophila genome (Aspden et al., 2014). 

 

While Ribosome profiling provides data on many putatively functional translated ORFs, 

including smORFs, ribosome occupancy does not automatically imply true coding potential or 

biological function at the peptide level. A sequencing read is not necessary an actively 

translated RNA fragment. A read could be obtained by a scanning ribosome which is a genuine 

RPF, or other RNA-binding proteins (Ingolia et al., 2014; Ji et al., 2016), or could represent 

technical or biological noise. Consequently, several ribosome profiling guided computational 

approaches and metrics based on the triplet periodicity pattern, sequence conservation, RPF-

length distribution and other features - were devised and utilised to assess the coding potential 

of smORFs (Table 1.2). ORFScore is a metric to quantify the bias of the trinucleotide periodicity 

pattern of RPFs towards the first reading frame in a smORF (Bazzini et al., 2014). ORFScore 

determines whether RPFs are uniformly distributed in all three reading frames or preferentially 

accumulate in one frame. Using the periodicity pattern, several algorithms and pipelines have 
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been developed including ORF-RATER (Fields et al., 2015), RiboORF (Ji et al., 2015), 

RiboTaper (Calviello et al., 2016), RP-BP (Malone et al., 2017), RiboCode (Xiao et al., 2018) 

and Ribotricer (Choudhary et al., 2020). The Ribosome Release Score (RRS) is a metric to 

detect the termination of translation at the stop codon of an ORF and has shown to robustly 

distinguish protein-coding transcripts from ncRNAs (Guttman et al., 2014). In addition to the 

approaches mentioned above, several databases have been developed to collect Ribo-Seq 

data and genome annotations derived from the data, including GWIPS-viz (Michel et al., 2013), 

TISdb (Wan and Qian, 2013), uORFdb (Wethmar et al., 2013), RPFdb (Xie et al., 2015), 

sORFs.org (Olexiouk et al., 2015), SmProt (Hao et al., 2017) and HRPDviewer (Wu et al., 2018). 

Those databases provide rich resources for the community, in the meantime, continued 

optimization of these methods and combination with other emerging technologies will enhance 

the power to identify functional smORFs. 

Proteomics 

Mass spectrometry (MS) is the gold standard for proteomics research, it is a powerful technique 

for direct detection and quantification of peptides and proteins. Mass spectrometry based 

peptidomics and proteomics have been implemented for micropeptides discovery in recent 

years, several micropeptides encoded by smORFs have been directly validated in Drosophila 

melanogaster (Aspden et al., 2014; Pueyo et al., 2016), zebrafish (Bazzini et al., 2014), human 

tissues and cell lines (Slavoff et al., 2013,2014; Na et al., 2018). MS is able to determine if 

polypeptides are, in fact, translated from a smORF comparing to Ribo-Seq, thus show direct 

evidence of protein-coding potential of the transcript. In MS experiments, peptide mapping is 

usually performed to identify proteins. Proteins will be digested and fragmented into peptides by 

using enzymes (e.g. trypsin), the molecular weights of the peptides will be accurately measured. 

These experimental masses of the peptides are compared to masses generated from an in 

silico digest of annotated proteins contained within a database. A protein will be confirmed if 

several of the masses match those for a specific protein in the database. Interestingly, in 

proteomics studies, there are currently many peptides are not matched to any protein, and one 

possible reason is that some of them may belong to micropeptides which have not yet been 

annotated. Proteogenomics is a research method that combines proteomics, genomics, and 

transcriptomics to improve the identification and validation of micropeptides (Castellana and 

Bafna, 2010; Woo et al., 2013; Branca et al., 2014). In a study carried out by Slavoff et al., 

peptidomics and RNA-Seq were combined to identify smORFs in human K562 cells (Slavoff et 
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al., 2013). The authors first built de novo assembly of the K562 transcriptome using RNA-Seq, 

and then added this transcriptome on top of the annotated human transcriptome from public 

database RefSeq (Pruitt et al., 2013) to build a custom database for all possible peptides and 

proteins. They then performed liquid chromatography followed by tandem MS (LC-MS/MS) in a 

modified protocol to enrich small polypeptides and matched the results against the custom 

protein database. Through this strategy, 86 unannotated micropeptides were identified in human 

K562 cells.  

 

Although MS-based proteomics has made great progress in micropeptide identification, there 

are still some difficulties to consider. In general, proteomics is limited in sensitivity and some 

micropeptides do not have suitable tryptic peptides (Martinez et al., 2019). At the same time, 

micropeptides may be short lived, their average abundance is low in samples, they are often 

lost in sample preparation, therefore absent from detection, they may also have tissue- and 

time-specific expression patterns, which further impedes their identification. Improved 

purification methods may be more efficient at extracting micropeptides, for example, Schwaid et 

al. described an affinity-based approach that is able to enrich cysteine-containing human 

micropeptides, they identified 16 novel micropeptides in the study (Schwaid et al., 2013).  

 

The best strategy to date for detecting micropeptides is likely to combine computational and 

experimental approaches, and the methods described above have been successfully used to 

identify putative micropeptide that could have diverse biological functions. 

 

1.4 Functional characterization of micropeptides 

Advancement of technologies have led to discovery of hundreds or even thousands of potential 

novel micropeptides, however, the existence of a peptide does not imply it has a function. Each 

of these micropeptides needs to be studied independently. Experimental demonstration is 

essential to reveal their biological effects. So far, only a small number of micropeptides have 

been fully characterized and found to play important roles in fundamental biological processes 

(Table 1.1).  

 

Ideally, an antibody against a micropeptide can be generated and validated to demonstrate its 

specificity, however there might be lack of available antibodies as well as means to generate 
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custom antibodies. Firstly, the small size of micropeptide provides limited choices for designing 

antibodies, secondly, the 3D structure of the micropeptides is unknown, it might limit the regions 

for epitope design. An additional concern is that techniques that make use of antibodies, e.g. 

Western blot, if a micropeptide is expressed at a low level, the antibody may not be sufficient to 

generate strong enough signals for detection. 

 

In addition to antibody-based validation of micropeptides, the coding potential of smORFs can 

be assessed by in vitro translation assays 

(https://www.thermofisher.com/uk/en/home/references/ambion-tech-support/large-scale-

transcription/general-articles/the-basics-in-vitro-translation.html). The full-length cDNA of a 

smORF is cloned into a vector containing a phage polymerase promoter, and then expression of 

the construct is evaluated using a cell-free protein-synthesizing system in the presence of 35S-

methionine. The protein products are analysed by gel electrophoresis and autoradiography is 

performed to visualize the synthesis of a 35S-labeled micropeptide. Introducing a frame-shift 

mutation in the smORF and subsequently the predicted peptide is not produced will strengthen 

the results. This is a valuable method to screen potential candidates, however the results should 

be interpreted with caution, as it is possible that the smORF can be translated in vitro but not in 

vivo (Anderson et al., 2015,2016; van Heesch et al., 2019). 

 

CRISPR-Cas9 mediated gene-editing strategies can be designed to insert an epitope tag into 

the endogenous locus of the micropeptide in-frame with the encoding smORF using homology-

directed repair in vitro or in vivo (Ran et al., 2013). The method has been used to generate 

fusion proteins that can be detected by Western blot and provides evidence that the 

micropeptide host transcript is actively transcribed from its native chromosome and translated 

into stable peptides (Galindo et al., 2007; Anderson et al., 2015; Matsumoto et al., 2017). The 

position of the knock-in tag (N-, C-terminal or internal) as well as the size and biochemical 

properties of the micropeptide are critical factors to consider when designing the experiment 

and these modifications have potential to change the biochemical properties of the micropeptide.   

 

The coding potential of micropeptides can be demonstrated using the methods mentioned 

above, the next step is to find their biological relevance. Several functionally characterized 

micropeptides have been shown to engage with, or modulate, larger proteins or protein 

complexes; therefore, the key to elucidating their function often lies in identifying their interacting 

proteins. Functional proteomics has been successfully employed to identify binding partners of 

https://www.thermofisher.com/uk/en/home/references/ambion-tech-support/large-scale-transcription/general-articles/the-basics-in-vitro-translation.html
https://www.thermofisher.com/uk/en/home/references/ambion-tech-support/large-scale-transcription/general-articles/the-basics-in-vitro-translation.html
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candidate micropeptides (Matsumoto et al., 2017; D'Lima et al., 2017; van Heesch et al., 2019) 

For example, the biological significance of a novel micropeptide named NBDY or NoBody (non-

annotated P-body dissociating polypeptide) was characterized by performing 

immunoprecipitation and MS analysis (IP-MS) on the co-precipitated proteins (D'Lima et al., 

2017), the researchers found NoBody is a component of the mRNA decapping protein complex 

cross-linking to EDC4 (enhancer of mRNA decapping 4). The mRNA decapping complex 

removes the 5′ cap from mRNAs to promote 5′-3′ decay. Molecular components of this pathway 

localize to p-bodies. Manipulation of NoBody expression is anti-corelated with the P-body 

number. NoBody regulates the P-body number in cells by interacting with decapping proteins. 

Even though finding interacting proteins of micropeptides has been shown a useful method, it is 

not always the case that binding means function; robust functional validation will be needed 

after the binding partners of micropeptides are identified. 

1.5 smORF categories 

Small ORFs can be present at different positions on their host transcripts, relative to other 

longer and usually annotated ORFs, including the annotated 5’-untranslated region (5’UTR), 3’-

untranslated region (3’UTR), or the CDS of an mRNA. Additionally, they may be found in 

ncRNAs or transcripts annotated as pseudogenes. Based on this smORFs have been classified 

by their location (Figure 1.4 and Table 1.3) (Ji et al., 2015; Fields et al., 2015; Delcourt et al., 

2017).  
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Figure 1.4 | smORF classification. smORFs can be present at different positions on their host 

transcripts. They will be classified by their location relative to the transcript (left). Another way is 

a functionally relevant classification based on transcript type, size, conservation, rate of 

translation (number of amino acid residues per second), peptide structure properties and 

function (right, adapted from Couso and Patraquim, 2017). There is direct mapping between 

these two types of classification for canonical, extended, truncated and noncoding smORFs, but 

not for overlapping uORF, dORF, overlapping dORF and within (internal) smORFs.  

 

Class (location-based) Description 

canonical an ORF which exactly coincides with an 
annotated CDS 

canonical_extended or extended an ORF starts upstream of an annotated CDS 
and has the same stop codon as the CDS 

canonical_truncated or truncated an ORF starts downstream of an annotated CDS, 
have the same stop codon as CDS 

five_prime or uORF an ORF which is completely in the annotated 
5’UTR of a protein-coding transcript and does not 
overlap the annotated CDS 

five_prime_overlap or overlapping 
uORF (ouORF) 

an ORF in the annotated 5’UTR of a protein-
coding transcript but which overlaps the 
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annotated CDS 

three_prime or dORF an ORF in the annotated 3’UTR of a protein-
coding transcript and does not overlap the 
annotated CDS 

three_prime_overlap or overlapping 
dORF (odORF) 

an ORF in the annotated 3’UTR of a protein-
coding transcript but which overlaps the 
annotated CDS 

within or internal an ORF in the interior of an annotated CDS, but in 
a different frame relative the CDS 

noncoding or ncORF an ORF from a transcript annotated as 
noncoding, such as a lncRNA or pseudogene 

 

Table 1.3 | smORF classification. Table shows the smORF classes which is based on the 

relative location to their host transcripts, and the description of each class. 

 

A functionally relevant classification of smORFs was introduced by linking their sequence to 

biochemical properties and molecular functions (Couso and Patraquim, 2017). It was proposed 

to classify smORFs based on distinctive transcript organization, size, conservation, mode of 

translation, amino acid usage and peptide structure properties (Figure 1.4). The translation 

products of smORFs are micropeptides. Micropeptides will be categorised to the annotated and 

the non-annotated. Among the annotated, some are having known biological function, some are 

having unknown function. For the non-annotated ones, we do not know their function yet and we 

can not rule out the possibility that some of them do not have function (Figure 1.5).  
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Figure 1.5 | Micropeptide categories. Micropeptides can be grouped as annotated and non-

annotated. Annotated micropeptides have known or unknown biological functions, and non-

annotated have not yet been identified. 

 

Canonical smORFs 

Canonical smORFs are annotated ORFs of 100 codons and fewer. We divided canonical 

smORFs into “short CDS” and “short isoforms”. Short CDSs are located on monocistronic 

transcripts with higher probability; and their host transcripts are structurally shorter and simpler 

compared with canonical mRNAs (Couso and Patraquim, 2017). They appear translated as 

frequently and as strongly as canonical longer proteins sand appear to be conserved. There are 

hundreds of putative short CDSs in flies, mice and humans, but only a small fraction has been 

functionally characterized, the examples suggest that they have membrane-related functions as 

regulators of canonical proteins. short isoforms are generated by alternative splicing of 

canonical protein-coding gene. Annotated short isoform amino acid sequences are closer to 

canonical proteins as expected, but alternative splicing can result in loss of protein domains. 

Short isoforms have the potential for functions related to their canonical protein paralogues if the 

functional domains retain.  

 

Upstream ORFs  

The presence of smORFs within the 5’ untranslated regions (UTRs) of mRNAs is common. 

They were referred to as upstream ORFs or uORFs. They were noted in the first systematic 

survey of mRNA sequences (Kozak, 1987). uORFs act to attenuate the main ORF (usually a 

CDS in the downstream of a protein-coding transcript) translation in an inhibitory manner. In the 

standard scanning model (Kozak, 1989), translation usually initiates via 5’-cap of the mRNA and 

scan from 5’ to 3’ until the first initiation codon AUG is recognized. Ribosomal reinitiation 

efficiency of downstream CDS after translation of an uORF is constrained partly by the length, 

sequence arrangement, structural features of uORF, and intercistronic distance (Luukkonen et 

al., 1995; Kozak et al., 2001; Jackson et al., 2010). Re-initiation efficiency decreases quite 

abruptly with increasing length of the uORF (Luukkonen et al., 1995), or if the uORF includes 

stable RNA secondary structures that cause pausing of elongation (Kozak et al., 2001). It 

suggests it is the time taken to translate the uORF rather than the length that is crucial; 

translation initiation factors (e.g. eIF4F and eIF4B) will not be in place if the uORF translation 

takes longer to complete (Jackson et al., 2010). In the simplest case, the uORF peptides do not 
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appear to participate, but the reduction in efficiency of downstream CDS translation could be an 

important regulatory feature (Morris and Geballe, 2000; Iacono et al., 2005). Conservation of 

position and length, but not sequence, of an uORF could be taken as an indication that its 

translation is important (Crowe et al., 2006). Translation of uORFs has been reported in several 

studies (Wang and Rothnagel, 2004; Calvo et al., 2009; Fritsch et al., 2012; Ji et al., 2015). In 

general, the process of uORF translation might be important, but the encoded peptide itself 

might not be functional (Zhang et al., 2019). However, a small fraction of uORF-encoded 

micropeptides has been confirmed by mass spectrometry (Oyama et al., 2004, 2007; Slavoff et 

al., 2013; Vanderperre et al., 2013; Andrews and Rothnagel, 2014; Johnstone et al., 2016), and 

for an even smaller fraction their subcellular localization, protein interactions and cellular 

function have been revealed (Jousse et al., 2001; Diba et al., 2001, Akimoto et al., 2013, Chen 

et al., 2020). One study shows that some uORF-encoded peptides formed complexes with the 

proteins encoded by the corresponding main ORFs (Chen et al., 2020), however the functional 

importance of such interactions remains to be tested. Another example shows that there is 

evidence to support the hypothesis that uORF peptides have physical interactions with 

ribosome complex to cause it to pause or disassociate from the transcript (Jousse et al., 2001). 

The sequence conservation of uORFs is an import feature to take into account during the 

identification of uORF-encoded peptides.  

 

Downstream smORFs 

In contrast to the study of 5’-UTR, the study of 3’-UTR has attracted little attention with respect 

to identifying and characterizing downstream smORFs or dORFs because they were considered 

not to be translated nor indeed translatable (Ingolia et al., 2011). However, as most 3’-UTR 

sequences are generally much longer than 5’-UTR (Crowe et al., 2006; Mercer et al., 2010), 

they could be expected to contain more smORFs. There is not yet any characterized dORF. 

 

smORFs in non-coding RNAs 

Non-coding ORFs (ncORFs) are smORFs that are found in annotated lncRNAs and 

pseudogenes. Tens of thousands of lncRNAs and transcripts of unknown function (TUFs) 

(Carninci et al., 2005; Willingham et al., 2006; ENCODE Project Consortium, 2007; Kapranov et 

al., 2007) are identified by genome-wide analysis. By definition, non-coding RNAs are not 

translated into protein. However, annotated lncRNAs have been predicted from their sequences 

to contain six smORFs on average (Couso and Patraquim, 2017). Recent studies have 
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suggested that ncRNAs represent the greatest source for smORFs, which were previously 

overlooked because of their small size and the lack of evidence for “codingness” (Frith et al., 

2006; Cohen, 2014; Pauli et al., 2015). Several cases of RNAs initially classified as long non-

coding have been shown to actually encode and translate peptides with biomedically important 

functions in development and physiology, and to be conserved (Table 1.1). 

1.6 Importance of smORFs to health and disease  

In recent years, studies have indicated a diverse range of functions for smORF-encoded 

micropeptides. These include muscle regeneration, DNA replication, phagocytosis, metabolism 

and cancer. For example, micropeptide Myoregulin specifically expressed in skeletal muscle. 

Loss of function studies revealed the importance of Myoregulin in vivo, as mice lacking this 

micropeptide had increased endurance when compared to their WT counterparts. These studies 

reveal new research directions to the specific regulation of contraction in different muscles and 

muscle types and may prove important in the future development of therapeutic approaches to 

muscle diseases or aging. Another example is the identification of the smORF-encoding 

gene Boymaw, which is linked to an inherited form of schizophrenia (Ji et al., 

2015). Boymaw activity affects rRNA expression and protein translation and is found at high 

levels in the post-mortem brains of people with neuropsychiatric diseases. Interestingly, 

the Boymaw micropeptide also localizes to mitochondria, and in flies, both mitochondrial 

localisation and putative electron transport functions appeared as favoured amongst translated 

micropeptides (Aspden et al., 2014). These highly interesting findings reveal the potential for 

micropeptides to regulate mitochondrial-based physiology. In addition, biochemical studies 

demonstrate that micropeptides utilize short sequences (usually 2–4 amino acids) (Arnoult et 

al., 2017) to bind to more massive protein complexes to regulate biology. Interactions that utilize 

short peptide interactions are amenable for small molecule inhibition, and, therefore, 

microprotein-protein interactions will reveal new druggable targets for medicine. These 

examples indicate that micropeptides are essential for cell functions and could be used to 

develop new therapeutics (Rathore et al., 2018). 

1.7 Research objectives 

As of August 2019, UniProtKB (UniProt Consortium, 2018) listed 1,987,752 entries (56,792 

manually annotated and reviewed) for possible peptides and small proteins of less than 100 AA 
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in all organisms, of which 37,841 are in human (748 reviewed) and 13,585 are in mouse (484 

reviewed). Currently experimental evidence shows that, only approximately 1.2% of smORFs 

are expressed. However, even this small percentage of functional smORFs could theoretically 

produce tens of thousands of as yet uncharacterized peptides. Even if only a small proportion of 

these peptides have biological activity, we could be missing hundreds of peptides that could 

shed light on many aspects of biology and medicine. Thus, micropeptides offer an area of 

significant interest that currently is largely unexplored. 

 

In the immune system, we propose important micropeptides are yet to be discovered. We are 

interested to find out how widespread micropeptides are in the immune system and what their 

functional roles might be. To answer these questions, a search for this class of micropeptides 

will be undertaken. Furthermore, identifying their functions will be essential and potentially lead 

to useful applications. 

 

The identification of novel biologically active micropeptides in the immune system will be an 

important discovery, we are highly motivated to carry out this project. We aim to address the 

questions proposed above by firstly taking an in-silico approach to predict novel functional 

smORFs from lymphocytes and then categorise smORFs and learn their properties 

bioinformatically, secondly validate the existence of the prediction and thirdly perform functional 

characterization.  
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2.1 Datasets 

In the Turner lab, we have successfully generated ribosome profiling libraries (see Appendix B 

for additional information about Ribo-Seq and RNA-Seq experiments). We were among the first 

to publish datasets of this kind using immune cells (Diaz-Muñoz et al., 2015; Tiedje et al., 2016). 

Ribosome profiling and RNA-Seq (total RNA sequencing) or mRNA-Seq (polyA-selected RNA 

sequencing) experiments have been carried out on mouse lymphocytes including (ex vivo) 

resting B cells; two independently generated datasets of LPS-activated B cells; stimulated naïve 

CD4+ T cells (see Table 2.1 and Materials and Methods). In addition, a published time-course 

dataset from Elke Glasmacher’s group of Th1 T cells re-stimulated with anti-CD3+anti-CD28 

was used in our study (Davari et al., 2017). 

 

Cell type Source Treatment Experiment 

type 

Number of 

biological 

replicates 

(N)  

Illumina 

sequencin

g run type 

Sequencing 

read count 

B cell 

setup 1 

Spleen Resting Ribo-Seq 4 50bp 

Single-End 

29,776,606 

19,730,128 

28,869,948 

29,399,992 

mRNA-Seq 4 100bp 

Single-End 

39,791,941 

30,347,645 

38,143,451 

41,826,586 

LPS+IL-4-

activated 

(48H) 

Ribo-seq 5 50bp 

Single-End 

27,802,753 

29,904,842 

24,847,188 

24,521,162 

27,010,038 

mRNA-Seq 4 100bp 

Single-End 

38,437,221 

46,565,378 

35,764,459 

36,383,343 

B cell 

setup 2 

Lymph 

nodes 

LPS+IL-

4+IL-5-

activated 

(48H) 

Ribo-seq 5 50bp 

Single-End 

43,527,344 

34,062,948 

38,992,152 

44,782,997 

37,566,709 

RNA-Seq 5 100bp 44,896,153 
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Single-End 45,275,501 

69,059,677 

54,317,942 

25,724,660 

CD4+ T 

cell 

Spleen, 

peripheral 

and 

mesenteric 

lymph 

nodes 

anti-

CD3/CD28 

stimulated 

(24H) 

Ribo-Seq 5 50bp 

Paired-End 

46,252,019 

101,717,087 

28,346,186 

35,123,808 

32,225,196 

mRNA-Seq 3 100bp 

Single-End 

37,223,659 

47,677,540 

44,258,974 

 

Table 2.1 | Sample summary. 

 

There are two independent experimental setups for B cells. For the first setup, purified B cells 

from spleen are a mixed collection of follicular and marginal zone B-2 cells. At resting status, 

cells from 4 biological replicates (mice) were processed individually for ribosome profiling 

libraries, and 4 different biological replicates were processed for mRNA-seq. To induce strong 

proliferation, B cells were treated with mitogen LPS (Lipopolysaccharide) to be stimulated for 48 

hours. At 40 hours, stimulated cells went into their first cycle of cell division. At 48 hours, most 

cells had divided once, and some started second division. As in this setup, experiment was not 

designed for paired Ribo-Seq and RNA-Seq, 5 biological replicates were processed for 

ribosome profiling libraries, and 4 biological replicates from a different group of mice were 

processed for mRNA-Seq. For the second setup, B cells are from lymph nodes, they are mainly 

follicular B-2 cells. Cells were treated with LPS plus interleukin IL-4 and IL-5 to be stimulated for 

strong proliferation for 48 hours. There is no major difference between LPS treated only cells 

and LPS+IL-4+IL-5 treated cells at 48 hours. The difference will appear at a later stage in terms 

of class switch recombination. Five biological replicates were processed. Ribosome profiling 

and RNA-Seq libraries were prepared from the same sample. For the stimulated naïve CD4+ T 

cell experiment, the purified naïve CD4+ T cells are from multiple sources, including spleen, 

peripheral and mesenteric lymph nodes, because they are scarce. In addition, we have 

downloaded a time-course dataset of Th1 T cells re-stimulated with anti-CD3+anti-CD28 (Davari 

et al., 2017). We extended our prediction from mouse to human to address questions such as 

whether predicted smORFs are also conserved in human and are there human specific 

smORFs. We collected Ribo-Seq and RNA-Seq data of human lymphoma cell lines (Activated 
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B-cell (ABC)-Diffuse large B-cell lymphoma (DLBCL), germinal center B-cell (GCB)-DLBCL and 

Burkitt’s lymphoma, 29 cell lines in total) and human primary B cells from collaborators 

(unpublished). 

 

Ribo-Seq and RNA-Seq assays were prepared with ARTseqTM Ribosome Profiling Kit-

Mammalian (Epicentre, Illumina) (see Appendix B). Ribosome profiling is commonly performed 

using cycloheximide (CHX) to stall elongating ribosomes on mRNA. A different protocol enables 

the identification of alternative start codons through drug treatment using harringtonine (HARR) 

or lactimidomycin (LTM) that immobilises initiating ribosomes at the translation initiation site 

(TIS). In our experimental setups, elongation was targeted using protein synthesis inhibitor CHX.  

 

Datasets have been submitted or are in the process of submission to Gene Expression 

Omnibus (GEO) database (Table 2.2). 

 

Cell type RNA-Seq Ribo-Seq 

B cell setup 1 GSE62129 GSE62134 

B cell setup 2 Prepare for submission Prepare for submission 

CD4+ T cell Prepare for submission Prepare for submission 

Th1 reactivation GSE83351 GSE83351 

 

Table 2.2 | Sequencing data GEO primary accession codes. 

 

2.2 Reference genome, transcriptome and 

annotation 

GENCODE (Harrow et al., 2012) reference genome sequences (mouse GRCm38/mm10 and 

human GRCh38/hg38) are downloaded from the GENCODE website (Table 2.3). 

Transcriptome sequences and gene annotation are used to search for putative ORFs, they are 

also downloaded from the same GENCODE source, note that the transcriptome sequences are 

cDNA sequences. Ribosomal RNA (rRNA) and Transfer RNA (tRNA) content in Ribo-Seq library 

need to be removed by mapping the sequencing reads to rRNA and tRNA sequences. tRNA 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62129
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62134
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83351
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83351
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sequences are downloaded from UCSC Table Browser (Karolchik et al., 2004). rRNA 

sequences are downloaded from GENCODE (version M20, we have also tested M13 and M15) 

as well as published studies (Bazzini et al., 2014; Fields et al., 2015). The transcriptome is 

defined as the collection of all transcripts on the reference chromosomes. GENCODE Transcript 

biotypes are defined here - https://www.gencodegenes.org/pages/biotypes.html. In our pipeline, 

we remove the following biotypes: 

• IG_* and TR_* (Immunoglobulin variable chain and T-cell receptor genes) 

• miRNA 

• misc_RNA 

• Mt_rRNA and Mt_tRNA 

• rRNA and ribozyme 

• scaRNA, scRNA, snoRNA, snRNA and sRNA 

• nonsense_mediated_decay 

• Non_stop_decay 

 

File Type Region Source 

Genome sequence, 

primary assembly 

Nucleotide sequence 

of the GRCm38 

primary genome 

assembly (Fasta 

format)  

PRI (reference 

chromosomes and 

scaffolds) 

GENCODE 

Transcript sequences Nucleotide 

sequences of all 

transcripts (Fasta 

format)  

CHR (reference 

chromosomes only) 

GENCODE 

Protein-coding 

transcript sequences 

Nucleotide 

sequences of coding 

transcripts (Fasta 

format)  

CHR GENCODE 

LncRNA transcript 

sequences 

Nucleotide 

sequences of lncRNA 

transcripts (Fasta 

format)  

CHR GENCODE 

Comprehensive gene The main annotation CHR GENCODE 

https://www.gencodegenes.org/pages/biotypes.html
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annotation file (GTF and GFF 

format) 

LncRNA gene 

annotation 

comprehensive gene 

annotation of lncRNA 

genes (GTF and GFF 

format) 

CHR GENCODE 

tRNA sequences Nucleotide 

sequences of tRNA 

genes predicted by 

UCSC using 

tRNAscan-SE 

CHR UCSC Table Browser 

rRNA sequences Nucleotide 

sequences of rRNA. 

In Ensembl Biomart, 

restrict search Gene 

biotype as rRNA will 

give the organism 

specific list of rRNA 

regions in the 

genome. 

CHR Ensembl Biomart 

Small RNA 

sequences 

Nucleotide 

sequences of snRNA, 

snoRNA, misc_RNA 

and miRNA 

CHR GENCODE 

 

Table 2.3 | List of public sequences and annotation files used in the pipeline. Reference 

genome and transcriptome sequences, gene annotation (mouse and human) are from 

GENCODE. Ribosomal RNA (rRNA) and Transfer RNA (tRNA) sequences are from UCSC 

Table Browser. rRNA sequences are from Ensembl. 

2.3 Identifying putative smORFs 

Using the nucleotide sequences of all transcripts downloaded from GENCODE (release M13) 

(Frankish et al., 2018) as a reference, we searched for ORFs that begin with a start codon (XUG) 

and end with a stop codon, with no intervening stop codon, in all three reading frames for each 

transcript. All ORFs that have 100 codons or fewer were designated putative smORFs.  
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2.4 Sequencing data processing 

Quality control: Raw sequencing data from RNA-Seq and Ribo-Seq was demultiplexed, 

adaptor trimmed with Trim Galore v0.4.5 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore), quality checked with FastQC 

v 0.11.8 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). 

  

Contaminant removal: Ribo-Seq reads were aligned to mouse rRNA or tRNA sequences using 

Bowtie v1.2.2 (Langmead et al., 2009), the reads that were not aligned were kept for alignment 

to the reference genome. 

  

Alignment to reference genome: The reads were mapped to the GRCm38/mm10 reference 

genome using the STAR aligner v2.5.2a (Dobin et al., 2013). The aligner only reports uniquely 

mapped reads. The following shows an example command, and parameters are in bold:  

 

STAR --runThreadN $THREAD \ 

     --genomeDir $REFGENOMESTAR \ 

     --readFilesIn $OUTPATH/bowtie-contanminant-

removal/${NAME}_trimmed_unfiltered.fq.gz --readFilesCommand zcat \ 

     --outReadsUnmapped Fastx \ 

     --outFileNamePrefix $OUTPATH/star-genome/$NAME/ \ 

     --alignIntronMin $ALIGNINTRON_MIN \ 

     --alignIntronMax $ALIGNINTRON_MAX \ 

     --alignEndsType EndToEnd \ 

     --outFilterMismatchNmax $MISMATCH_MAX \ 

     --outFilterMismatchNoverLmax $MISMATCH_NOVERL_MAX \ 

     --outFilterType $FILTER_TYPE \ 

     --outFilterIntronMotifs RemoveNoncanonicalUnannotated \ 

     --outSAMattributes $SAM_ATTR \ 

     --outSAMtype BAM SortedByCoordinate \ 

     --outBAMsortingThreadN $THREAD 

  

Transcript expression quantification: In each experiment, sequence alignments (in BAM format) of 

all biological replicates were combined for both RNA-Seq and Ribo-Seq. After that transcript 

expression was quantified using StringTie v1.3.6 (Pertea et al., 2015) in RPKM (Reads Per 

Kilobase per Million for single-end read) or FPKM (for paired-end read). From a given dataset, a 

minimal expression level was set to RPKM > 0.5 (Hart et al., 2013) to exclude non-expressed 

transcripts. 
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P-site offset determination: Majority of RPFs are having a length between 28-31 nucleotides 

(nt). P-site offsite defined as a distance from the 5’ end of an RPF to the P-site of the ribosome 

was estimated for each read length using plastid python library v0.4.8 (Dunn et al., 2016). We 

observed P-site offsets are 12 nt long for RPF in 28-31 nt in our experiments. 

2.5 ORF discovery 

RPF coverage: To filter ORFs which are insufficiently covered by reads, we calculated the 

proportion of codons being covered by RPFs. We consider a codon covered if there is a 

mapped RPF with the P-site aligned to nucleotide 1 of that codon. An ORF is discarded if the 

ratio of covered codons to the total number of codons in the ORF < 0.1 (Bazzini et al., 2014). 

  

ORFScore: ORFScore was proposed by Bazzini and colleagues (Bazzini et al., 2014), I re-

implemented the ORFScore algorithm in R. The ORFScore was then calculated as: 

 

where 𝐹n is the number of reads in reading frame n, 𝐹 is the total number of reads across all 

three frames divided by 3. RPFs were counted at each position within an ORF, excluding the 

first and last coding codons. To filter out putative artefactual peaks, the most abundant read 

position was masked if reads aligning to that position comprised more than 70% of the total 

reads in the ORF. The ORFScore is a log-scaled chi-squared goodness of fit test statistic, the p-

values associated with the test were adjusted using Benjamini-Hochberg FDR-controlling 

method and smORFs with ORFScore > 0 and adjusted p-value < 0.01 were retained. 

  

Ribosome Release Score (RRS): Firstly, I defined the 3’UTRs of smORFs. For canonical 

smORFs, we used annotated 3’UTRs. For other classes of smORFs, their 3’UTRs were defined 

as the region between the stop codon and the next possible start codon in any frame. The RRS 

score is defined as the ratio of the two normalized ratios and calculated with the following 

equation: RRS = (RPKM_RF ORF/RPKM_RF 3’-UTR)/(RPKM_RNA ORF/RPKM_RNA 3’-UTR). 

Based on the original study, smORF with RRS > 5 is considered to be translated (Guttman et al., 

2013). 
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Inside/outside read ratio: The ribosome footprints typically show precise positioning between 

the start and the stop codon of translated ORFs. Low density of footprints before start codons 

and after stop codons and high inside/outside ratio is expected. By considering read distribution 

of the nearest 3 upstream codons outside and the first 3 codons inside an ORF, we devised a 

feature called inside/outside read ratio (total RPF of inside codons/total RPF of outside codons) 

to assess whether genuine translation takes place. ORFs will retain if the ratio ≤ 1 (more reads 

mapping outside than inside). 

2.6 Analysis of predicted smORFs  

Translation efficiency (TE): A measure of the rate of translation for a given feature (e.g. the 

CDS of a mRNA or a smORF), obtained in ribosome profiling experiments. It was calculated as 

the base 2 logarithmic ratio of RPF expression (RPKM) over mRNA expression (RPKM). 

  

Conservation of the amino acid sequences: To examine the conservation of smORF-

encoded micropeptide sequences between species, we performed PhyloCSF (Lin et al., 2011), 

a likelihood-based method to analyse signatures of evolutionary conservation in multiple 

species sequence alignments. PhyloCSF assigned a score to each smORF based on 

conservation within 100 vertebrate species (https://github.com/mlin/PhyloCSF/wiki#available-

phylogenies). For each smORF, the corresponding multiple species alignments were obtained 

from a publicly available whole genome multiple alignment using Galaxy “stitch gene blocks” 

tool (Blankenberg et al., 2011). smORFs were considered conserved if their PhyloCSF score 

was > 50 (Guttman et al., 2010), and weakly conserved if they had a PhyloCSF score > 0. 

PhyloCSF score = 0 indicates that there is no DNA sequence alignment cross species and 

PhyloCSF score < 0 is considered not conserved. 

  

Gene ontology (GO) enrichment analysis: We used the g:Profiler server (Raudvere et al., 

2019) to perform GO analysis in two unranked lists of genes mode. The background list 

comprised the combined expressed transcripts (RPKM > 0.5) of B and T cells. The target list 

contains the host transcripts of the smORFs. For the significance threshold, we chose the 

default option g:SCS threshold and the default value 0.05. 

  

Secreted micropeptide prediction: I used the SignalP 4.1/5.0 server (Petersen et al., 2011; 

Armenteros et al., 2019) to predict signal peptides present at the N-terminus of the micropeptide 
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amino acid sequences. I used default parameters. For selected candidates, we ran prediction of 

transmembrane helices using the TMHMM 2.0 Server (Krogh et al., 2001) (default parameters) 

to rule out transmembrane peptides. 

2.7 Plasmid design and smORF cloning 

We have designed a customized plasmid based on a commercial gene expression vector from 

Cyagen/VectorBuilder (Figure 2.1A and Table 2.4). We inserted a 3xFLAG-tag and a following 

stop codon to the vector.  Unique BamHI and BglII sites were added around the tag, this adds 

the option to remove the tag if required (Figure 2.1B).  A unique EcoRI site was added, so the 

smORF sequence without a stop codon can be cloned between EcoRI and BamHI. During 

protein expression, 3xFLAG-tag will be added to the C-terminus of the micropeptide. We 

validated the construct by Sanger sequencing to be certain the new inserts were correctly 

placed. 
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Figure 2.1 | Expression vector design. (A) Vector map. (B) Sequence to show the three 

restriction sites and 3xFLAG tag. (C) Example of a smORF cDNA was optimized for codon 

usage (red, start codon highlighted in green) and overlapping ends were added for Gibson 

Assembly. Vector was designed together by Fengyuan Hu and Alexander Saveliev. 

 

In order to have a stronger production of the micropeptides, smORFs sequences were 

optimized to improve codon usage in mouse and human cell lines using IDT Codon 

Optimization Tool. This tool was written using a codon sampling strategy in which the reading 

frame is recoded based on the frequencies of each codon’s usage in the new organism 

(Robison, 2009). As an example, codon optimizations of sequences that will be expressed in 

human cell lines assign the phenylalanine codon UUU 46% and UUC 54% of the time. The 

optimized sequence then was added overlapping ends (Figure 2.1C) and synthesized by a 
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commercial service (Integrated DNA Technologies). Then the synthetic DNAs were cloned into 

the vector by the Gibson Assembly method (Gibson et al., 2009). 

 

 
 
Table 2.4 | Vector components. 
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3.1 Summary 

In order to address the question “how widespread smORFs are in the immune system”, I 

planned to take an in-silico approach to discover novel functional smORFs from lymphocytes 

using next generation sequencing data. Here I describe a new analytical pipeline “ORFLine” that 

performs a comprehensive and systematic analyses of RNA-Seq and Ribo-Seq to identify 

actively translated smORFs (Figure 3.1). In comparison to previously published pipelines, this 

pipeline is more stringent at smORF prediction. We have applied ORFLine to data from mouse 

B and T cells and discovered 5744 actively translated smORFs and their predicted translation 

products. smORFs were classified, and for each class, we performed analyses to look at their 

conservation, translation efficiency, and the biological processes linked to them. It has been 

shown in the UniProt database that a small subset of chemokines and majority of cytokines are 

between 101 and 200 AA long. With this in mind, we extended our analysis to candidate 

proteins of up to 200 AA in length and found evidence for translation of 945 such polypeptides. 

We further investigate whether the predicted micropeptides possess features of signal peptides 

which have a potential to be secreted and could act as immune regulators. 
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Figure 3.1 | Computational pipeline to identify translated smORFs. Sequencing data for 

RNA-Seq and Ribosome profiling is processed and the reads mapped to the reference genome. 

In parallel, putative smORFs were predicted by scanning the annotated transcriptome. Several 

experimental metrics for each putative smORF were quantified and the smORFs exceeding a 

high confidence level for each metric were kept for downstream analysis. 

 

3.2 Overview of the pipeline 

The pipeline takes Ribo-Seq data and the paired RNA-Seq data, reference genome, 

transcriptome and gene annotation as input. The output of the pipeline is a list of predicted 

smORFs with genomic coordinates and classification. There are three main pipeline 

components to process the raw Illumina sequences and perform smORF prediction: 

 

• Prediction of putative smORFs 

• Sequencing data QC and processing 

• ORF discovery 

 

Prediction of putative smORFs and sequencing data processing are independent components 

and can be executed in parallel. ORF discovery component utilizes the output of previous two 

components as input (Table 3.1). The pipeline is built for general purpose and potentially 

applicable to data from any species. I have applied it to mouse and human data. 

 

Component Step Description Cut-offs and 

rationales 

Input Output 

Putative 

smORF 

prediction 

Computational 

prediction 

Search for all 

theoretical 

smORFs in 

silico 

Scan all 

annotated 

transcripts 

Transcriptome 

sequences; 

user defined 

start codons 

(default: 

“AUG”, “TUG”, 

“CUG”, “GUG”) 

List of 

genomic 

regions for 

predicted 

smORFs 

Ribo-Seq Quality and Trim Trim “N” bases Ribo-Seq and Trimmed 
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and RNA-

Seq QC and 

processing 

adapter 

trimming 

sequencing 

adapter and 

low-quality 

bases 

at the end of 

reads 

RNA-Seq 

FASTQ files 

FASTQ 

files 

Ribo-Seq 

contamination 

removal 

Remove 

rRNA/tRNA 

reads 

Align all reads to 

rRNA/tRNA 

sequences 

Trimmed Ribo-

Seq FASTQ 

files; 

rRNA/tRNA 

sequences 

Contaminat

ion 

removed 

FASTQ 

files; 

rRNA/tRNA 

alignment 

BAM files 

Alignment to 

reference 

genome 

Align reads 

to the 

genome 

Unique mapped 

reads are kept; 

read length < 36 

nt 

Contamination 

removed 

FASTQ files 

Genome 

alignment 

BAM files; 

unmapped 

FASTQ 

files 

Ribo-Seq P-

site offset 

calling 

Infer P-site 

offset for 

each read 

length 

5’ end mapping 

rule 

Genome 

alignment 

BAM files 

List of P-

site offset 

values for 

each read 

length 

Ribo-Seq read 

phasing 

estimation 

Ribosome 

protected 

fragments 

(RPFs) show 

triplet 

periodicity 

First reading 

frame shows 

greater read 

proportion (> 

50%) 

Genome 

alignment 

BAM files 

Summary 

of read 

proportion 

for each 

reading 

frame 

Transcript 

expression 

estimation 

Estimate 

FPKM value 

for each 

transcript 

FPKM > 0.5 is 

considered 

expressed (Hart 

et al., 2013) 

Genome 

alignment 

BAM files 

List of 

FPKM 

values for 

each 
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transcript 

ORF 

discovery 

Read length 

filter 

Filter out 

read lengths 

that do not 

show triplet 

periodicity 

Only keep read 

lengths that 

show triplet 

periodicity 

Merged 

genome 

alignment 

BAM file; read 

phasing 

summary 

Read 

length 

filtered 

BAM files 

Read count 

filter 

Filter out 

smORF 

regions 

where there 

is no read 

aligned to 

Read count > 0 Read length 

filtered BAM 

files; full list of 

predicted 

smORFs 

Read count 

filtered 

smORFs 

RPF count 

filter 

Filter out 

smORF 

regions 

where there 

is no RPF 

aligned to 

RPF count > 0. 

Not all reads are 

RPFs. 

Filtered BAM 

files; read 

count filtered 

smORFs 

RPF count 

filtered 

smORFs 

Transcript 

expression 

filter 

Filter out 

smORFs 

whose host 

transcripts 

are not 

expressed 

Only keep 

smORFs whose 

host transcript 

FPKM > 0.5 

Host transcript 

FPKM values; 

RPF count 

filtered 

smORFs 

Transcript 

expression 

filtered 

smORFs 

Class 

assignment 

Assign class 

to a smORF 

based on its 

relative 

location on 

its host 

transcript 

Class is added 

as annotation, 

the number of 

smORFs are the 

same as last 

step 

Transcript 

expression 

filtered 

smORFs 

Class 

annotated 

smORFs 

ORFScore Calculate RPF coverage > Class ORFScore 
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filter ORFScore 

for each 

smORFs 

0.1, ORFScore > 

0 and adjusted 

p-value < 0.01 

annotated 

smORFs 

filtered 

smORFs 

Region filter Test if a 

smORF is 

overlapped 

with a CDS 

The estimated 

ratio (RPF 

countCDS/RPF 

countsmORF) > 1 

Read length 

filtered BAM 

files; 

ORFScore 

filtered 

smORFs 

Region 

filtered 

smORFs 

Ribosome 

release score 

(RRS) filter 

Calculated 

RRS 

RRS > 5 

(Guttman et al., 

2013) 

Read length 

filtered BAM 

files; RNA-Seq 

alignment 

BAMs; Region 

filtered 

smORFs 

RRS 

filtered 

smORFs 

Nested filter smORFs can 

possibly be 

nested in 

other 

smORFs 

(same stop 

code but 

different start 

codons) 

the one with the 

maximum 

ORFScore is 

retained, 

otherwise a 

smORF with 

AUG start codon 

is retained 

RRS filtered 

smORFs 

Nested 

filtered 

smORFs 

Inside/outside 

(I/O) ratio filter 

Translated 

regions in a 

Ribo-Seq 

data typically 

show higher 

read density 

outside start 

codon  

inside/outside 

read ratio ≤ 1 

(more reads 

mapping outside 

than inside) 

Read length 

filtered BAM 

files; nested 

filtered 

smORFs 

I/O ratio 

filtered 

smORFs 
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Table 3.1 | Pipeline step summary. 

 

3.3 Prediction of putative smORFs 

Given transcriptome sequences (see Materials and Methods 2.3), I exhaustively search for 

theoretical putative ORFs beginning with a start codon (“AUG”, “TUG”, “CUG”, “GUG”) and 

ending with a stop codon ("UAG", "UAA", "UGA") without an intervening stop codon in between 

in each of the three reading frames. We then remove ORFs that are not n*3 (n > 1) nucleotides 

long and keep the ones that are 100 codons or shorter in length as putative smORFs. The ORF 

coordinates are initially transcript coordinates and are converted to genomic coordinates given 

exon location information in the gene annotation (in GTF/GFF format), the output of the 

smORFs are their genomic  coordinates and strands in BED format 

(https://genome.ucsc.edu/FAQ/FAQformat.html#format1). Each ORF will be assigned two 

different identifiers, one is called RegionId, the second is called ORFId. RegionId is created 

based on genomic coordinates, ORFId is created based on the transcript coordinates. An ORF 

has a unique genomic location, so RegionId is unique, but it may be from multiple transcripts 

(overlapping transcripts), so it may have multiple ORFIds (Figure 3.2). This step is carried out 

only once and needs to be updated when transcriptome annotation is changed.  

 

 

Figure 3.2 | RegionId and ORFId explained. RegionId is genomic-based, it indicts the unique 

location of a smORF on the genome. ORFId is transcript-based, it contains information 

regarding the smORF’s relative position on its host transcript. 

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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3.4 Sequencing data QC and processing  

Raw Illumina sequencing data is in FASTQ format (see Materials and Methods 2.2). I assessed 

the similarity between biological replicates by calculating their correlation (estimated transcript 

FPKM values from Ribo-Seq and RNA-Seq alignment BAM files) and showed that they are 

closely related (Figure 3.3). Then Illumina adapter sequences are trimmed off from the raw 

reads. The resultant reads are then mapped to a collection of rRNA/tRNA (see Materials and 

Methods 2.3) and small RNA sequences to filter out contaminants. The remaining reads are 

aligned to the reference genome (GRCm38). The alignment files (BAM format) will be the input 

for ORF calling steps. 

 

 

 

Figure 3.3 | Ribo-Seq biological replicates correlation. Example of LPS-activated B cell 

experiments (two setups, setup 1: N=5, setup 2: N=5). Replicate name is prefixed with WT. 

Correlation coefficients are added.    

 

Adapter trimming 

We trimmed sequencing adapters using TrimGalore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and Cutadapt (Martin, 2011) 

and QC reporting programme FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality trimming programmes 

assume a loss of quality from the 3’ end. As long as there are good quality bases further into the 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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read it will trim back the 3’ end until it gets to better quality sequence. I observed a lone poor 

quality “N” base (unknown quality) at the 5’ end of some of the reads (<0.2%). “N” bases were 

trimmed by Cutadapt which provides the flexibility of trimming low quality bases at 5’ end of the 

read.  

 

According to the manufacturer’s specification (ARTseqTM Ribosome Profiling Kit-Mammalian 

protocol), RPFs will be ~28-30 nt in length. We have kept trimmed reads that have a length 

between 25 and 35 nt, as they account for ~75% of the total reads on average.  

 

Contaminant removal 

rRNA is the most abundant unwanted data in a sequencing library. Depletion of rRNAs 

biochemically can remove 99.5% of them from the library. However, rRNAs are still highly 

dominant in a typical ribosome profiling sample. In addition to rRNA, a sample can have other 

contaminating sequences, such as tRNA. Due to the compact nature, size (~75 nt), and stable 

structure of tRNAs, RNase I digestion can cleave the individual tRNA molecules in half. This 

results in two fragments that are roughly similar in size to RPFs and can thus become a major 

contaminant in the samples. The use of sufficiently high levels of ribonuclease can overcome 

this problem, although a significant fraction of tRNA contamination can remain. 

 

In order to remove and quantify rRNA/tRNA content or other contaminants in the sample, I use 

Bowtie 1 (Langmead et al., 2009) to align the trimmed reads against specific contaminant 

sequences assembled from a collection of rRNA, tRNA, Mt_rRNA and Mt_tRNA snRNA, 

snoRNA, misc_RNA and miRNA sequences.  

 

FastQ screen  

After the contaminant removal step, it is useful to confirm the composition of our sequencing 

libraries matches with mouse rather than other species. To do this, I sample a subset of our 

libraries (10,000 reads) and search them against a set of standard reference set including 

mouse, rat, human, rRNA, Phix, vectors and other model organisms using FastQ Screen (FastQ 

Screen allows the user to screen a library of sequences in FastQ format against a set of 

sequence databases so the user can see if the composition of the library matches with what 

he/she expects. https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/). I expect to 

see the reads would be mainly mapped to the mouse genome.  

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
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Sequence alignment to the reference genome 

We use STAR aligner (Dobin et al., 2013) to align filtered reads (non-contaminant) to the 

reference genome. We only keep the uniquely mapping reads (mapping quality MAPQ = 255). 

For Ribo-Seq, parameters are tuned for reads that are shorter than 35 nt (see Materials and 

Methods). 

 

Metagene Analysis 

A metagene analysis is an average (typically median) of quantitative data over one or more 

genomic features/regions (e.g. genes or transcripts) aligned at some internal features (e.g. start 

codon). Metagene analysis reveals patterns across features that may not be obvious when 

looking at any individual feature. We firstly fetch vectors of quantitative data – the raw read 

counts surrounding start codon of each annotated CDS. Secondly, we normalize each vector to 

the same scale by dividing by the total number of aligned reads in a window (200 nt 

downstream of start codon). Then we align each vector at the start codon. Finally, we take the 

median of all the normalized vectors at each aligned nucleotide position (Figure 3.4), this is 

useful to estimate P-site offsite. 
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Figure 3.4 | Metagene analysis of ribosome protected fragments. A metagene plot is used 

as a summary statistic to visualize the distribution of ribosome protected fragments along the 

positions of a gene often starting/ending at the start/stop codon. This is useful for estimating P-

site offsets. Blue boxes: protein-coding transcript models. Thick boxes: coding regions. Thin 

boxes: 5’ UTRs. Above transcript models, normalized vectors of RPFs were shown. Final 

metagene average over the four transcripts shown at the bottom. 

 

RPF mapping rules and P-site offsets calculation 

When mapping RPFs to reference sequences, reads typically are mapped to their 5’ or 3’ ends, 

there are other mapping rules including variable 5’ end mapping, Stratified variable 5’ end 

mapping, entire or centre-weighted mapping 

(https://plastid.readthedocs.io/en/latest/concepts/mapping_rules.html). 5’ end mapping has been 

applied in previous studies (Ingolia, et al., 2011; Bazzini et al., 2014), each read alignment is 

https://plastid.readthedocs.io/en/latest/concepts/mapping_rules.html
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mapped at a fixed distance from its 5’ end, where the distance is determined by the length of the 

read, we use this mapping in our study as well. The distance is called P-site offset. The P-site 

(P for peptidyl) is the ribosomal site most frequently occupied by peptidyl-tRNA, i.e. the tRNA 

carrying the growing peptide chain, it is also where peptide elongation starts. P-site covers start 

codon of a translatable ORF. Ribosome profiling reads are frequently mapped to their P-sites. 

The 5’ P-site offset is the distance from the 5’ end of the read to the ribosomal P-site (Figure 

3.5).  

 

Figure 3.5 | A ribosome containing a footprint after digestion. This shows an example of a 

28 nt long read with the 5’ P-site offset 12 nt. 

 

The strategy we used to determine P-site offset is as follows: 

1. Separate footprints into groups based upon their lengths 

2. For each length: 

a. Perform a metagene analysis at the start codon, in which the footprints are 

mapped to their 5’ ends. 

http://plastid.readthedocs.io/en/stable/glossary.html#term-footprint
http://plastid.readthedocs.io/en/stable/glossary.html#term-metagene
http://plastid.readthedocs.io/en/stable/glossary.html#term-footprint
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b. Measure the distance between the highest peak 5’ of the start codon and the 

start codon. This distance is the offset to use for reads of this length. 

 

Read phasing in Ribo-Seq 

Triplet periodicity or sub-codon phasing is a feature of ribosome profiling data. Ribosomes step 

three nucleotides along the mRNA in each cycle of peptide elongation and this physical process 

creates triplet periodicity which becomes observable when the reads are aligned to their P-site 

offsets (Ingolia et al., 2019).  

 

This feature allows inference of the reading frame(s) in which a coding region is translated. This 

is also the principle of several ORF calling methods (Table 1.2). To calculate phasing proportion, 

we use read alignments and annotated canonical transcripts (with start codon, CDS and stop 

codon locations) as input. For each transcript and each read length, we counted the number of 

reads that are aligned at each position of each codon in the CDS region, then summed over 

three codon positions (frame 1, 2 and 3 or phase 0, 1 and 2).  

 

Transcript expression estimation 

We estimate transcript expression (FPKM value) using StringTie (Pertea et al., 2015). The cut-

off for expressed transcripts is FPKM > 0.5 (Hart et al., 2013). We will only consider smORF(s) 

that locate on an expressed transcript.  

3.5 ORF discovery 

This component takes the gene annotation, putative smORFs, Ribo-Seq and RNA-Seq 

alignment as input to predict actively translated smORFs (ORF calling). We combine alignment 

files of all biological replicates to increase the signal intensity in case the smORFs are lowly 

expressed. This component consists of several metrics and filters, putative smORFs that have 

exceeded a confidence threshold for each metric (see Materials and Methods) were kept.  

 

ORF discovery steps 
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Read length filter: Sequencing reads of different read lengths show different phasing patterns 

(see above). We determine the read length populations that show a strong periodicity pattern 

towards reading frame 1. Reads that are not in these lengths are filtered out.  

 

Read count filter: This step filters out smORFs that have no read aligned to their regions. The 

filtered smORFs are considered not expressed. Rather than give an arbitrary cut off (e.g. 10 

reads), I set read count equals zero. 

 

RPF count filter: A sequencing read could be obtained by a scanning ribosome, or other RNA-

binding proteins (Ji et al., 2016), the ones that are protected by ribosomes are truly RPFs. A 

RPF will be mapped to P-site at each codon in an ORF. A smORF with no reads mapping (0 

RPF) is considered not translated and will be filtered out (same reasoning as read count filter 

above).  

 

Transcript expression filter: Expressed host transcripts are retained after expression values 

are estimated. smORFs that are not from expressed transcripts are filtered out. 

 

Class assignment: smORFs are classified to nine categories according to their relative location 

to an annotated CDS (Table 1.3). Each smORF is assigned a class label. 

 

ORFScore filter: ORFscore is a model to compare the triplet periodicity distribution in an ORF 

to a uniform distribution (Figure 3.6). ORFScore for each smORF is calculated and smORFs 

with RPF coverage > 0.1, ORFScore > 0 and adjusted p-value < 0.01 were retained (see 

Materials and Methods). 
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Figure 3.6 | Triplet periodicity pattern appears in Ribo-Seq data. Because ribosomes step 

three nucleotides in each cycle of translation elongation, in our ribosome profiling datasets a 

triplet periodicity is observable in the distribution of ribosome-protected footprints, in which 70-

90% of the reads on a codon fall within the first of the three codon positions. This allows 

deduction of translation reading frames, if the reading frame is not known a priori. Comparing to 

Ribo-Seq, reads of RNA-Seq are uniformly distributed. Figure shows the whole transcriptome 

triplet periodicity distribution in Ribo-Seq compared to a uniform distribution in mRNA-Seq in 

LPS-activated B cell setup 1 sample.  

 

Region filter: If a smORF region is overlapping with a CDS, the proportion of signal it absorbs 

from the CDS is estimated as (RPF countCDS/RPF countsmORF), if the ratio is greater than 1, it 

means that the smORF is inside the CDS and absorbs all its signal from the CDS, this smORF 

will be filtered out. 

 

Ribosome release score (RRS) filter: Ribosomes release at bona fide stop codons. Unlike 

RNA-Seq, we expect a very low level of reads (none or background noise) at an ORF’s 3’UTR. 

The Ribosome Release Score measures ribosome release to detect translation through ORFs. 

A pseudo 3’UTR was defined for noncoding ORFs (see Materials and Methods).  

 

Nested filter: ORFs may have the same stop codon but different start codon, the short ones 

are nested in the longest one, among the nested ORFs, we examine the ORFScores and start 
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codons of those nested ORFs, the one with the maximum ORFScore is retained, if more than 

one ORFs have the same ORFScore, an ORF with AUG start codon is retained. 

 

Inside/outside ratio filter: Ribosome footprints typically show precise positioning between start 

codon and stop codon of a coding region (Brar and Weissman, 2015). Protein synthesis 

inhibitors stall ribosome elongation, the elongating ribosomes pause and accumulate at the start 

codon, a peak of reads can be seen in the sequence alignment. By considering read distribution 

or density outside and inside an ORF, we devised a feature called inside/outside read ratio to 

assess whether a genuine translation takes. 

3.6 Pipeline Output 

The output of the pipeline is a list of smORFs that have passed the filters in ORF discovery 

component. They are identified as actively translated smORFs supported by strong 

experimental evidence. In the output file, the genomic location and splicing information 

(including number of exons and exon lengths) of a smORF is clearly annotated and can be 

loaded and visualized in a genome browser. The quantitative information about a smORF is 

also calculated including translation efficiency, RNA expression and Ribosome expression 

(FPKM value). The nucleotide sequences are retrieved and translated into amino acid 

sequences (Table 3.2). The information will be used for downstream analysis including 

translation efficiency, cross-species conservation, uORF regulation, host transcript expression 

and signal sequence prediction. 

 

Column  Description 

1 - 12 The first 12 columns are in BED12 format, the fields are described 
here - https://genome.ucsc.edu/FAQ/FAQformat.html#format1. The 
4th column is ORFId (transcript-based). 

13 smORF class 

14 Peptide length 

15 RegionId (genomic-based) 

16 Ensembl transcript Id 

17 Gene symbol 

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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18 Gene description 

19 ORF score 

20 Ribosome release score 

21 Ribo FPKM 

22 RNA FPKM 

23 Translation efficiency (TE) 

24 CDS TE (NA if host transcript is noncoding) 

25 AA sequence 

 

Table 3.2 | Pipeline final output format. 

3.7 Results 

Ribosome profiling data quality control 

I carried out data quality control (QC) for all RNA-Seq and Ribo-Seq data. The reads are 50 bp 

single end. Firstly, I examined the sequencing base quality using FastQC.  In the raw data, base 

calls that fall in the green area are of very good quality (Figure 3.7A). The blue line represents 

the mean quality that drops towards the sequencing adapter at the 3’ end of the reads. I 

trimmed the sequencing adapter and kept reads that are likely protected by ribosomes (read 

length between 25 nt and 35 nt). I also removed reads that are from rRNA/tRNA and other 

classes of small RNAs as described above. The remaining reads are of good quality for 

downstream analysis (Figure 3.7B and Table 3.3).  
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Figure 3.7 | Per base quality of Ribosome Profiling sequencing data. (A) Base quality of the 

raw Ribo-Seq data of LPS-activated B cell setup 1 sample (WT1). (B) Base quality after adapter 

trimming and contaminant removal. 
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Experiment Raw read 

count 

Read count and 

proportion after adapter 

trimming 

Read count and 

proportion after 

contaminant removal 

B cell setup 1 

Resting (N=4) 

29,776,606 29,776,606 (100%) 13,380,423 (44.9%) 

19,730,128 19,730,128 (100%) 8,326,016 (42.2%) 

28,869,948 28,869,948 (100%) 12,833,039 (44.5%) 

29,399,992 29,399,992 (100%) 11,605,385 (39.5%) 

B cell setup 1 

LPS-activated 

(N=5) 

27,802,753 17,041,834 (61.3%) 12,187,070 (43.8%) 

29,904,842 22,943,205 (76.7%) 15,547,757 (52%) 

24,847,188 17,676,038 (71.1%) 12,374,227 (49.8%) 

24,521,162 19,784,374 (80.7%) 14,200,808 (57.9%) 

27,010,038 21,866,707 (81%) 16,338,358 (60.5%) 

B cell setup 2 

LPS-activated 

(N=5) 

43,527,344 35,769,394 (82.2%) 23,375,471 (53.7%) 

34,062,948 28,962,088 (85%) 20,807,177 (61.1%) 

38,992,152 33,953,299 (87.1%) 24,536,458 (62.9%) 

44,782,997 38,213,769 (85.3%) 26,139,506 (58.4%) 

37,566,709 31,760,261 (84.5%) 22,708,490 (60.4%) 

CD4+ T cell (N=5) 46,252,019 34,073,573 (73.7%) 32,653,025 (70.6%) 

101,717,087 87,210,021 (85.7%) 84,155,705 (82.7%) 

28,346,186 23,265,159 (82.1%) 22,109,646 (78%) 

35,123,808 31,637,542 (90.1%) 30,249,887 (86.1%) 

32,225,196 27,771,252 (86.2%) 26,270,808 (81.5%) 

 

Table 3.3 | Ribo-Seq QC summary. Read count of the raw sequencing data and read count 

and proportion to the raw read count after each step of QC. The remaining reads will be used 

for genome alignment. For B cell setup 1, adapters have already been removed when I obtained 

the Fastq files. 

 

Missing rRNA reference sequences 

I screened mouse libraries against a collection of reference genomes using FastQ Screen. I 

found that around 25% of reads mapped to the rat genome due to the overall similarity between 

mouse and rat. I also noticed that in a LPS-activated B cell sample, 5% of the reads were 

mapped to the human genome only at multiple locations, while 40% of the reads didn’t find a 
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place in the reference genomes (no hits) which means they are from unknown sources other 

than the reference set (Figure 3.8A). In a resting B cell sample, 25% of the reads were mapped 

to the human genome only at multiple locations, 20% of the reads were no hits (Figure 3.8B). 

 

I investigated the nature of the suspicious alignment to human and no hits. Regarding the reads 

that aligned to human genome only, we noticed that the reported mapping qualities were low. 

Mapping quality estimates the probability that the alignment does not correspond to the read's 

true origin. Low mapping quality means a read can be mapped to multiple locations, thus 

indicates the read is a low-complexity sequence. I did not see reads accumulated at any specific 

regions with the exception of the mitochondrial genome (Figure 3.8C). The human 

mitochondrial genome sequence is GC-rich and GC-rich reads are a class of low-complexity 

sequence. This issue was noted in the case that the library is composed of low complexity or 

short sequences which are very easily mapped (Andrews, 2016). In a LPS-activated B cell 

sample, where more transcripts were expressed, more reads were mapped to mouse 

specifically. 

 

I searched the most overrepresented no hits reads using NCBI BLAST. The top hits were: 

• TPA_exp: Mus musculus ribosomal DNA, complete repeating unit (BK000964.3) 

• Mus musculus 45S pre-ribosomal RNA (Rn45s), ribosomal RNA (NR_046233.2) 

• Mus musculus 28S ribosomal RNA (Rn28s1), ribosomal RNA (NR_003279.1) 

• Mus musculus strain BALB/c 45S ribosomal RNA region genomic sequence 

(GU372691.1) 

Those sequences were not included in our initial rRNA sequences. I added them to the 

incomplete annotation and now have a better filter for rRNA contaminants. 
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Figure 3.8 | Sequence contaminant estimation using FastQ Screen against a collection of 

reference genomes. (A) A read was mapped to multiple genomes due to sequencing similarity 

between species. In LPS-activated B cell setup 1 sample (WT1), 5% of the reads were mapped 

to the human genome only at multiple locations. (B) Followed the same alignment procedure, in 

a resting B cell sample, 25% of the reads were mapped to human only multiple times. (C) Ribo-

Seq reads accumulated at human mitochondrial genome. Legend for (A) and (B): blue – one 

hit\one genome; navy – multiple hits\one genome; red – one hit\multiple genomes; crimson – 

multiple hits\multiple genomes. 

 

Genome alignment 

Ribo-Seq raw sequencing data was processed through adapter trimming, size selection and 

contaminant removal. After contaminant removal, reads were mapped to the mouse genome. 

Ribo-Seq alignment looks different to RNA-Seq, with reads positioned precisely from the start 

codon (Figure 3.9). Taking the data from LPS-activated- and resting-B cells as an example, on 

average, 25% of the reads were discarded after trimming adapters and size selection to retain 

reads between 25-35 nt. On average 52% of reads from LPS-activated B cell samples and 44% 

from resting B cell samples remained after rRNAs and tRNAs been removed. On average 26.9% 

(varying from 22.5% to 31.3%) of reads from LPS-activated B cell samples and 19.7% (varying 

from 16.9% to 21.5%) from resting B cell samples were uniquely mapped to genome 

respectively. As expected, more reads were mapped for LPS-activated B cell samples than 

resting B cells as LPS-activated B cell expressed more transcripts. I also tried to map the reads 

to reference transcriptome using Bowtie, but the alignment showed a higher count than genome 

alignment because a read would be double-counted if it was mapped to multiple transcript 

isoforms of the same gene (Figure 3.10).  
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Figure 3.9 | Ribos-Seq reads mapped to Cxcr5 transcript. Reads position precisely from the 

start codon of Cxcr5 CDS (the thick blue block on the bottom track represents CDS, thin block 

represents UTRs) 
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Figure 3.10 | Read counts of LPS-activated (N=5) and resting (N=4) B cell samples at each 

step of QC. Firstly, reads were trimmed and those were not of 25-35 nt were removed. 

Secondly, contaminant reads were removed. The remaining reads that were not uniquely 

mapped to the reference genome were removed. Black horizontal bar represents the mean. 

 

There are different options of sequence alignment tools for genome alignment. I tested three 

widely used tools - TopHat (Trapnell et al., 2009), HISAT2 (Kim et al., 2015) and STAR aligner. 

It was noted that TopHat has incorrectly reported reads as unique mapping (Andrews, 2016). 

TopHat initially maps reads to the transcriptome, and only if it does not find a hit does it then 

map to the genome. Reads can be reported as uniquely mapped to the transcriptome when they 

are actually mapped to many locations within the genome. On the other hand, HISAT2 and 

STAR do not have this limitation as they map directly to the genome. By comparing HISAT2 and 

STAR alignment, I noticed that STAR aligned additional reads at splice junctions, for example, 

gene Mrpl15 (Figure 3.11). We searched some of those reads in the transcriptome alignment 

and found them to be aligned uniquely to the transcript of Mrpl15. The reason for differential 

alignment between HISAT2 and STAR is unknown and we have raised this question with the 

authors of HISAT2 and STAR. If STAR alignment is true, it will help to increase the coverage 

thus to improve ORF detection. If the alignments of STAR are genuine, it might have 

implications for other work such as studies of splicing. 
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Figure 3.11 | Ribo-Seq reads mapped to Mrpl15 transcript. STAR aligned additional reads at 

splice junctions and HISAT2 missed the splice junction alignment. The upper track shows 

HISAT2 alignment. The lower track shows STAR alignment. 

 

Determine P-site offset and sub-codon phasing 

Ribo-Seq reads are frequently mapped to their P-sites. In the initial study of ribosome profiling 

(Ingolia et al., 2009), it was found that the positions of the 5′ ends of the footprints started 

abruptly 12 to 13 nt upstream of the start codon. Therefore, I would expect to see a peak at a 

fixed distance upstream of the start codon. In our data, reads with length from 29 to 32 nt 

showed P-site offset of 12 or 13 nt, matching our expectation and indicating good data quality 

(Figure 3.12). Reads that had low or no peaks were likely not RPFs. Using P-site offset results, 

I calculated the sub-codon phasing proportion of each read length. It showed that 29-mers to 

33-mers were abundant and highly phased in frame 1 (or phase 0) (Figure 3.13 and Table 3.4). 

So I used read length from 29 to 33 nt for the downstream ORF calling. 
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Figure 3.12 | P-site offsets of reads in different length. (A) 29-mers to 32-mers showed 

strong peaks from LPS-activated B cell setup 1 sample (WT1). (B) 28-mers to 32-mers showed 

strong peaks from a resting B cell setup 1 sample (WT1). Vertical dotted line cross first base of 

start codon. 

 

 

 

Figure 3.13 | Sub-codon phasing. (A) and (B) show the read length distribution and triplet 

periodicity of LPS-activated B cell setup 1 sample (WT1) respectively. (C) and (D) show the 

same information for resting B cell setup 1 sample (WT1). 

 

Read 
length 

P-site 
offsite 

Reads 
counted 

Fraction 
reads 
counted 

Phase 0 Phase 1 Phase 2 

25 7 19781 0.015942                      0.332946   0.443304 0.223750 

26 8 26675 0.021498                       0.331621  0.264105 0.404274 



 75 

27 9 47856 0.038568                     0.588829  0.177094 0.234077 

28 12 97003 0.078176                       0.461099  0.166923  0.371978 

29 12 216829 0.174745                       0.607806  0.175069 0.217125 

30 12 374353 0.301695                       0.699292 0.086186 0.214522 

31 12 298826 0.240827                       0.534723 0.052951 0.412327 

32 13 121240 0.097709                       0.592610 0.329627 0.077763 

33 13 30141 0.024291                       0.567732 0.313991 0.118277 

34 13 6519 0.005254                       0.557908 0.312931 0.129161 

35 13 1609 0.001297                       0.517091 0.324425 0.158484 

 

Table 3.4 | P-site offset and sub-codon phasing of LPS-activated B cell setup 1 sample 

(WT1). 

 

Sufficient read coverage to predict smORFs 

I would like to find out if our datasets have enough reads to call smORFs. One way is to 

compare our data to published datasets of similar cell types or data that has previously been 

used for ORF prediction. Firstly, we compared our activated T cell dataset to a published 

reactivated Th1 cell dataset (Davari et al., 2017), it showed our data had 30% more reads on 

average. We also looked at another study by Crappé and colleagues (Crappé et al., 2013), they 

have identified smORFs using a mouse embryonic stem cells (mESCs) dataset (Ingolia et al., 

2011). In order to have a fair comparison, we looked at genes that expressed in both their 

dataset and our dataset. For example, we selected one predicted smORF on a non-coding RNA 

Snhg12 and loaded their data and one of our LPS-activated B cell data into a genome browser. 

It showed our data has better coverage in this case (Figure 3.14), it indicated that we have 

stronger signal to call this smORF. The comparisons increased our confidence that our datasets 

have sufficient reads to make predictions. 
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Figure 3.14 | Sequencing read coverage of two datasets on a smORF on Snhg12 

transcript. The read block shows the smORF region. The upper track shows a public dataset 

(Ingolia et al., 2011). The lower track shows our LPS-activated B cell data. 

 

Reproduce the published smORFs 

We tested our pipeline to see if we can reproduce the smORFs predicted from a published 

study by Fields and colleagues (Fields et al., 2015). The cell type is mouse bone marrow 

derived dendritic cells. There are Ribo-Seq data of nine time points (unactivated and LPS-

activated for 0.5h, 1h, 2h, 4h, 6h, 8h, 9h or 12h). We processed the raw sequencing data of all 

nine time points and aligned them to the reference genome allowing multiple mapping (N=64, 

same as the original study setting), then we combined at all time points for smORF prediction in 

ORFLine. Out of 46 smORFs reported in their study, we reproduced 23 (50%). We manually 

checked the other 23 that we had not predicted, they were all on long terminal repeat (LTR) 

sequences (ERV1 or ERVL-MaLR), and they all have low expression levels. The 23 

reproducible smORFs are mainly from annotated lincRNAs, processed transcripts and protein-

coding transcripts. Among the reproducible smORFs, there is only one LTR smORF which has 

a very high expression. We were uncertain if those LTR-derived smORFs truly encode peptides 

or they were false positives by absorbing a huge amount of signals (reads which are supported 

to be aligned to their origins). We searched the literature for peptides encoded in LTR regions in 

mammalian genomes, but could not find any supportive information. In practice, LTRs regions 

always result in wrong sequence alignment and they are commonly ignored. 
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Comparison between ORFLine and RiboCode 

We applied a recently published ORF-detection pipeline called RiboCode (Xiao et al., 2018) its 

default settings on the B and T cell datasets. RiboCode assesses the triplet periodicity of RPFs 

in an ORF with modified Wilcoxon signed-rank test and is claimed to outperform other existing 

pipelines including RiboTaper, Rp-Bp and ORF-RATER. There are differences between 

ORFLine and RiboCode to predict smORFs. ORFLine scans a transcript sequence from the 5’ 

end, when it detects a start codon it will continue and stop when meeting a stop codon. 

RiboCode does it in a reverse way, it finds a stop codon first, then goes from 3’ to 5’, so 

RiboCode will predict nested ORFs with the same start codon. For example, if an ORF starting 

with AUG exists on a transcript, at the same time there is another AUG inside this ORF in the 

same reading frame, then it is a shorter ORF nests in the first ORF, both ORFs will be predicted 

by RiboCode, but ORFLine will only predict the longer ORF. RiboCode maps Ribo-Seq reads to 

the transcriptome, but ORFLine maps reads uniquely to the genome. As we mentioned earlier, 

for transcriptome alignment, reads can be mapped to multiple transcripts and potentially this 

may increase false signals. As RiboCode does not take RNA-Seq into account, it will not be 

able to estimate host transcript expression and potentially maps reads to non-expressed 

transcripts. 

 

In total, using the B and T cell datasets RiboCode predicted 15920 unique smORFs, in which 

3667 are smORFs nested in longer smORFs in the same reading frame and 48 smORFs are 

from non-expressed transcripts. We removed those 3715. In the remaining 12205 smORFs, 

3337 were predicted as internal or frameshift smORFs. These are found nested in the CDS, but 

in a different reading frame. Considering that frameshift translation is a rare event (Michel et al., 

2012), they are not included in our results. We removed all 3337 frameshift smORFs predicted 

by RiboCode and compared the remaining 8868 non-internal smORFs predicted by RiboCode 

with 5744 predicted from our pipeline (Figure 3.15). Of these, 1957 (22% in RiboCode and 34% 

in ORFLine) are found as exact genomic coordinate matches by both pipelines. For the un-

annotated smORFs, we are not certain they are translated, and we lack a reference set of true-

positives, therefore we sampled the smORFs which are different between the two pipelines and 

noticed that smORFs predicted by RiboCode typically have low RPF coverage or are assigned 

a low or negative ORFScore, or low RRS, and they are filtered out by our pipeline. Our criteria 

for metrics have shown to be robust in smORF prediction in previous studies (Bazzini et al., 
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2014, Guttman et al., 2014). We also predict smORFs encoded by low abundance transcripts 

that are not predicted by RiboCode (Figure 3.16). Therefore, it appears our pipeline is more 

stringent at predicting smORFs.  

 

 

 

Figure 3.15 | Number of smORFs used for a comparison between RiboCode and ORFLine. 

Initially, 15920 smORFs were predicted by RiboCode, 3367 were removed as they were nested 

in longer smORFs in the same frame frame. 48 were removed as they were from non-

expressed host transcripts, and 3337 were removed as they were internal smORFs. The 

remaining 8868 were used to compare with ORFLine result. 
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Figure 3.16 | smORFs predicted by ORFLine but not by RiboCode. (A) uORF from Mnt 

transcript. (B) smORF from noncoding transcript 6530402F18Rik. Tracks show alignment of the 

datasets used in the pipeline comparison. 
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3.8 Pipeline availability  

Pipeline code is publicly available on the source code hosting platform GitHub. The URL is  

https://github.com/boboppie/ORFLine. We also create a Singularity image 

(https://singularity.lbl.gov/) which enables the users to execute and test the pipeline easily in a 

virtual environment. All dependencies including bioinformatics tools are pre-installed in the 

image, the URL is https://github.com/boboppie/ORFLine-singularity. 

 

3.9 Discussion  

In a typical ribosome profiling library, it was noted that many sequencing reads do not 

correspond to translated regions (Ji et al., 2016). Ribosomes are not specifically selected during 

the biochemical isolation procedure for ribosome profiling, and therefore non-ribosomal RNA-

protein complexes (e.g. RNA binding proteins) may also be present. There are different ways to 

purify ribosomes, for example, we can generate a transgenic mouse model to add a tag (e.g. 

GFP protein) to the ribosome and fish them out using antibodies, however it is expensive and 

we risk to changing the ribosome’s properties. The sequencing reads can be a mix of RPFs and 

non-ribosomal RNA-protein complex protected fragments. RPFs span the entire translated 

region and show triplet periodicity. In contrast, non-ribosomal RNA-protein complex protected 

fragments should be highly localized (Ji et al., 2016). It is possible to carry out further QC steps 

to distinguish different RNA species, so far, we retain the reads that show strong triplet 

periodicity. 

 

Regarding gene annotation, another commonly used annotation is NCBI RefSeq (Pruitt et al., 

2013), in our study, we chose GENCODE instead of RefSeq because a comparison study 

between those two has been recently carried out and shown that the GENCODE 

Comprehensive set is richer in alternative splicing, novel coding sequences (CDSs), novel 

exons and has higher genomic coverage than RefSeq (Frankish et al., 2015). It is also possible 

to use a combined set, but the issue will be that the more complete we try to make our set, the 

more we will include transcripts which are not functionally relevant and which might add 

substantial numbers of false positives to our study. We think making use of higher quality 

annotation is more advantageous in this study.  

 

https://github.com/boboppie/ORFLine
https://singularity.lbl.gov/
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Regarding novel transcripts, we would expect to discover novel transcripts or alternative 

isoforms expressed in our data which potentially have ORFs embedded. We have tried to use 

RNA-Seq to assemble de novo the transcriptome using Cufflinks, a few hundreds of novel 

transcripts were predicted, but we decided not to include them to the reference transcriptome. 

Studies have shown that when using computational approaches (both genome-guided such as 

Cufflinks and de novo assembly) to infer the set of transcripts expressed in RNA samples using 

RNA-seq, those approaches produce a large number of artefacts (false positives), which 

absorbed a substantial proportion of the reads from truly expressed transcripts and were 

assigned large expression estimates (Jänes et al., 2015, Steijger et al., 2013). It is known that 

the validation of those novel transcripts is not trivial. Computational predictions could be made 

more conservative by using reconstructed transcripts detected by several methods (Steijger et 

al., 2013). Alternatively, the use of long read technologies (Oxford Nanopore sequencing or 

PacBio SMRT sequencing) to identify the distinct set of transcripts in a sample combined with 

RNA-Seq to estimate expression levels may be the optimal approach for the time being for 

accurate characterization of RNA samples. One way to validate novel ORFs and transcripts is to 

detect triplet periodicity pattern in them. 

 

In this chapter we have developed and validated a new small ORF-calling pipeline. In the 

following chapter we will use this to characterise smORF in the lymphocyte datasets. 
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4.1 Summary 

I systematically characterized smORFs in mouse lymphocytes using data from (ex vivo) resting 

B cells; two independently generated datasets of LPS-activated B cells; stimulated naïve CD4+ 

T cells; and a time-course of Th1 T cells re-stimulated with anti-CD3+anti-CD28 (Davari et al., 

2017). I processed the data using the pipeline described in the previous chapter and I identified 

a total of 5744 unique smORFs in all samples analysed (union of 2607 smORFs predicted in B 

cells and 4935 smORFs predicted in T cells). A lower number (568) of smORFs were predicted 

for the resting B cells than for LPS-activated B cells (2444), most likely reflecting the elevated 

rates of transcription and translation in activated B cells. I aim to categorise smORFs as it is an 

important step allows us to group and properly learn their properties in each group 

bioinformatically, next, with the help with other members in the Turner lab, we can validate the 

existence of the predicted smORFs and further perform functional characterization.  

4.2 Predicted smORFs 

In total, 5744 unique smORFs were identified in B and T cells (Table 4.1). 1291 smORFs were 

identified in LPS-activated B cell setup 1 and 1859 in setup 2. 706 smORFs appear in both 

datasets and 2444 unique smORFs were identified in the union of the two LPS-activated B cell 

datasets (Figure 4.1A). The different sample treatments between these two setups (setup 1 

was LPS+IL-4, setup 2 was LPS+IL-4+IL-5) might have resulted in different expression profiles 

and influenced the smORF prediction. 568 smORFs were identified in resting B cells and 415 of 

these were also found in LPS-activated B cells (Figure 4.1B). It is shown that the number of 

smORFs identified in Th1 reactivation 2h dataset (1084) is ~40% less than other two time points 

(2580 for 0h, 2697 for 4h) (Figure 4.1C), this was caused by the low read depth in this dataset 

(~40% less reads compared to 0h and 4h). 

 

Experiment Canonical Extended uORF ouORF dORF odORF ncORF Total 

Resting B 

cell 

175 6 330 40 4 0 13 568 

LPS-

activated B 

cell (setup 1) 

180 14 907 119 9 1 65 1295 
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LPS-

activated B 

cell (setup 2) 

207 15 1367 101 38 6 132 1866 

Stimulated 

CD4+ T cell 

220 9 1675 120 77 2 187 2290 

Th1 cell 

reactivation 

0h 

257 14 1812 171 102 7 217 2580 

Th1 cell 

reactivation 

2h 

135 9 774 98 19 0 49 1084 

Th1 cell 

reactivation 

4h 

256 17 1917 188 114 5 200 2697 

Merged 

(unique) 

338 30 4174 441 243 17 501 5744 

 

Table 4.1 | Predicted smORFs in each experiment. 
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Figure 4.1 | Number of actively translated smORFs in this study. (A) Predicted smORFs 

were classified into seven groups according to their relative location in the host transcript. The 

number of smORFs in each class is shown in parenthesis. (B) Pie chart showing the proportion 

of smORFs of different classes. (A) 706 smORFs are present in both LPS-activated B cell 

datasets. (B) 415 smORFs are predicted in both resting B cell and LPS-activated B cell (union). 

(C) 504 smORFs are present in all three time points of Th1 reactivation datasets. 
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4.3 smORF classification 

We classified smORFs according to their relative position within and the nature of their host 

transcript (Figure 4.2A, B). We predicted canonical smORFs and extended variants of 

annotated coding DNA sequences (CDS) of 100 codons or less in protein-coding mRNAs. We 

also find upstream ORFs (uORFs) and uORFs overlapping with coding regions (ouORFs) 

located in the 5’ untranslated region (5’ UTR) of annotated protein-coding mRNAs. uORFs are 

known to be prevalent in the genome and, in our data, they represent 80% of all smORFs found 

(Figure 4.2B). In addition, we predicted downstream ORFs (dORFs) and overlapping dORFs 

(odORFs) that are located in 3’UTRs of known protein-coding mRNAs as the rarest class of 

smORFs in this study. Lastly, 501 smORFs in putative non-coding RNAs (long non-coding 

RNAs and pseudogenes) were predicted, which are termed ncORF. Direct biochemical and 

functional evidence is available for only a fraction (~7%) of canonical smORFs in protein 

databases such as UniProt (UniProt Consortium, 2018) for their protein products, it includes 

diverse entities such as chemokines and subunits of mitochondrial complexes. The remainder 

(~5340) have either not been functionally characterised or have not been annotated at all. 
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Figure 4.2 | Identification of different classes of actively translated smORFs in this study. 

(A) Predicted smORFs were classified into 7 groups according to their relative location in the 

host transcript. The number of translated smORFs in each class is shown in parentheses. (B) 

Pie chart showing the proportion of smORFs of different classes. 

4.4 Start codon usage in smORFs 

Alternate start codons (non-AUG) are very rare in eukaryotic genomes, naturally occurring non-

AUG start codons have been reported for some cellular mRNAs (Ivanov et al., 2011). However, 

recent advancements in Ribo-Seq have revealed a strong enrichment (~60%) for non-AUG start 

codons at initiation sites (Ingolia et al., 2009, 2011). In a Ribo-Seq dataset of mouse embryonic 

stem cells, it has been shown that AUG is the most efficient start codon, followed by CUG, GUG, 

UUG, ACG, AGG, AUC, AUU, AAG, AUA (Ingolia et al., 2011). Another study also has shown 

near-cognate start codons CUG, ACG and AUU were frequently used in yeast, Neurospora 

crassa and mammalian cell line HEK293T (Kearse and Wilusz., 2017). 
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In our study, AUG is the most dominant start codon used by translated smORFs overall (Figure 

4.3A), as well as in uORFs (Figure 4.3B), dORFs (Figure 4.3C) and ncORFs (Figure 4.3D). 

Not all near-cognate start codons are equally enriched, CUG are most enriched followed by 

GUG and UUG, also different smORFs have different distribution. Our pipeline has the flexibility 

to search for putative smORF with alternative start codons, it is possible to predict smORFs with 

a start codon beyond XUG.   

 

 

 

Figure 4.3 | Distribution of AUG start codons and near-cognate start codons in smORFs. 

AUG is the most dominant start codon used by smORFs overall (A), as well as in uORFs (B), 

dORFs (C) and ncORFs (D) near-cognate start codons are not enriched equally, with CUG 

being most enriched, followed by GUG and UUG. 
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4.5 smORF conservation 

To examine the conservation of smORF-encoded micropeptides between species, we employed 

PhyloCSF to analyse signatures of evolutionary conservation. We prepared a cross-species 

nucleotide sequence alignment (or whole-genome multiple alignments) of smORFs as input to 

PhyloCSF. We used the Galaxy “Stitch Gene blocks” tool (Blankenberg et al., 2011) to extract 

alignments from pre-cached whole-genome multiple alignments cross 100 species. To match 

the 100-species alignments, we selected PhyloCSF “100 vertebrate-phylogenies” 

(https://github.com/mlin/PhyloCSF/wiki#available-phylogenies). PhyloCSF outputs a score that 

is positive if the alignment is likely to represent a conserved coding region and negative 

otherwise. 

 

11.4% of smORFs showed strong evidence of conservation (PhyloCSF score > 50 which has 

been shown to accurately separate known protein-coding genes from known noncoding 

sequences) (Figure 4.4A), with canonical smORFs being enriched among them (Figure 4.4B). 

A small subset (~6.5%) of uORFs, ncORFs and dORFs shows high PhyloCSF scores, pointing 

to the smORFs that may produce functional micropeptides. There are over 60% of smORFs 

lacking signs of selective pressure to maintain their amino acid sequences (no cross-species 

sequence alignment and not conserved, Figure 4.4A), in which uORFs, ncORFs and dORFs 

are enriched (Figure 4.4B). The majority of smORFs are shorter than 100 nt (Figure 4.5A). The 

median length of canonical smORFs is 79 codons, however, the median length of uORF, dORF 

and ncORF are 24, 34 and 33 codons respectively. By comparison with other classes, canonical 

smORFs are, on average, longer and more highly conserved (Figure 4.4C, Figure 4.5B). 

Having distinct transcript organization, size, conservation and peptide structure, canonical 

smORFs, uORFs, dORFs and ncORFs are likely to have different cellular and molecular 

functions. Below we speculate the potential roles of individual classes.  

 

https://github.com/mlin/PhyloCSF/wiki#available-phylogenies
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Figure 4.4 | smORFs showing different conservation and length distributions according to 

their classes. (A) Most smORFs are not conserved at the peptide level. Pie chart represents 

the coding potential (PhyloCSF score). smORFs with PhyloCSF score ≥ 50 are considered 

conserved. smORFs are considered weakly conserved if their PhyloCSF scores are positive but 

smaller than the threshold 50. (B) Canonical and extended smORFs are enriched in conserved 

peptides. Enrichment heatmap depicts log 2 ratio of the number of smORF observed (obs) to 

the number of smORF that would be expected (exp) by chance given overall distributions of 

smORF classes and conservation levels. (C) Scatter plot shows the distributions of codon 

length and PhyloCSF score for each smORF type. Marginal densities of length and PhyloCSF 

score are also shown on the top and the right-hand side of the scatter plot. Green dashed line 

indicates PhyloCSF score of 50. Here the original classification in Fig 3.1A was simplified by 

combining the canonical and canonical extended ORFs as canonical; uORF and ouORF as 

uORF; and dORF and odORF as dORF. Canonical smORFs are on average longer and more 

conserved than other type. 
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Figure 4.5 | smORF length distribution. (A) Overall smORF length distribution and all 

annotated ORF (GENCODE) length distribution. Majority of smORFs are shorter than 100 nt. (B) 

Violin plots of smORF length distribution for each class. Canonical and canonical extended are 

longer on average.  Non-canonical smORFs tend to be shorter. 

4.6 Canonical smORFs 

A total of 338 canonical smORFs were predicted in B and T cells. The majority (88%) of these 

are conserved or weakly conserved between species (Figure 4.6A). As suggested by Couso 

and Patraquim (Couso and Patraquim, 2017), I divided canonical smORFs into “short CDS” and 

“short isoforms”.  There are hundreds of putative short CDSs in mouse and human; they are 

located on monocistronic transcripts with higher probability; and their host transcripts are 

structurally shorter and simpler compared with canonical mRNAs (Couso and Patraquim, 2017). 

We have predicted 184 short CDSs and they have a median size of 79 codons. By contrast, 

short isoforms are the products of alternative splicing of transcripts from genes annotated as 

encoding proteins > 100 amino acids.  We find these have a median size of 80 codons and 

resemble short CDSs in size and conservation (Figure 4.6B). However, short isoforms are 

distinct from short CDSs in that they share conserved amino acid sequences with their long 

canonical protein isoforms, thus they have the potential for functions that are directly related to 

their longer protein isoforms. Among the predicted canonical smORFs, 54.4% are short CDSs 

and 45.6% are short isoforms. 

 

I calculated the translation efficiency of short CDSs and short isoforms. When compared to long 

CDSs of expressed protein-coding transcripts, we found their median translation efficiency to be 

greater (Figure 4.6C) for LPS-activated B cells. This is also the case for other conditions in our 

datasets). We also conducted GO term enrichment analysis separately for 159 short CDS and 

136 short isoforms against 3481 background genes. The top hits of short CDS are related to 

chemokine activity and mitochondrial biology (Figure 4.6D). Seven chemokines are predicted 

(Ccl1, Ccl22, Ccl3, Ccl4, Ccl5, Cxcl10, Cxcl11). We also see gene products enriched in 

mitochondrial complexes, for example, Uqcr10 is a subunit of Coenzyme Q:cytochrome c 

oxidoreductase (Complex III); this complex has a critical role in oxidative phosphorylation 

pathway for the generation of ATP. Another mitochondrial protein is Romo1, which is located in 

the mitochondrial membrane and is responsible for increasing the level of reactive oxygen 

species (ROS) in cells (Na et al., 2008). Romo1 also has antimicrobial activity against a variety 



 93 

of bacteria by penetrating the bacterial membrane (Sha et al., 2012). Short isoform encoding 

genes are associated with a broad range of GO terms, however, there are no GO biological 

processes terms enriched in for them.  

 

 

Figure 4.6 | Canonical smORFs consist of short CDSs and small isoforms. (A) Pie chart 

shows 87.8% of canonical smORFs are conserved or weakly conserved. (B) Canonical 

smORFs were further divided to short CDSs (54.4%) and small isoforms (45.6%). Short CDSs 

are annotated ORFs of 100 codons or fewer. Small isoforms are ORFs of 100 codons and fewer, 

which are products of alternative splicing of canonical mRNAs. (C) Translation efficiency (log2) 

distributions of long CDS (CDSs greater than 100 codons), short CDSs and small isoforms. 

Mean and standard deviation are shown. Significance was computed using two-sided Wilcoxon 

test. (D) Biological process gene ontology terms found to be significantly enriched in the short 

CDS gene list. 
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4.7 uORFs 

Approximately 50% of annotated animal mRNAs contain uORFs (Andrews and Rothnagel, 2014; 

Johnstone et al., 2016; Couso and Patraquim, 2017) and translation of uORFs has been widely 

reported in different organisms (Wang et al., 2004; Calvo et al., 2009; Johnstone et al., 2016). 

We have predicted 4615 translated uORFs (including ouORFs) and about 30.4% of these are 

considered conserved or weakly conserved (Figure 4.7A). We observed that the median 

translation efficiency of uORFs is greater than that of long CDS (Figure 4.7B). About 4% of the 

uORFs have a high PhyloCSF score and TE (above the median TE of long CDS) and potentially 

encode conserved functional micropeptides (Figure 4.7C, for LPS-activated B cells). However, 

the sequences of the majority of uORFs are not conserved, suggesting that any potential 

function is largely independent of the encoded peptide. It has been demonstrated uORFs may 

regulate the translation of the downstream CDS. Several studies have shown a repressive effect 

of uORFs on the translation of CDS (Johnstone et al., 2016; Chew et al., 2016; Zhang et al., 

2019). The proportion of expressed uORF-containing transcript in B cells and T cells is between 

6.2% and 12.4%, except resting B cells (2.7%), we analysed the effect of uORFs on mRNA 

translation by comparing the translation efficiency of the CDS in all uORF-containing transcripts 

versus those lacking uORFs. As expected, the presence of uORFs and overlapping uORFs was 

associated with a translation repression (Figure 4.7D). We performed GO enrichment analysis 

for all uORF-containing genes to discover their associated biological processes (2881 target 

genes against 3481 background genes) and these genes are mostly enriched in protein 

modification process, regulation of gene expression and cellular response to stimulus (Figure 

4.7E). This indicates that uORF-containing genes are broadly involved in complex biological 

pathways such as protein or RNA production and cell signalling. Regulatory uORFs may be 

suited to allow the rapid expression of genes in response to stress and environmental stimuli.  
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Figure 4.7 | uORFs regulate the translation of their downstream CDS. (A) Pie chart shows 

14.4% of noncoding smORFs are conserved or weakly conserved. (B) Translation efficiency 

distributions of long CDS and uORF. Significance was computed using two-sided Mann-Whitney 

test. (C) Scatter plot of uORF translation efficiency and PhyloCSF score. Green broken line 

represents a PhyloCSF score value of 50 used as a threshold for conservation, blue broken line 

represents the median TE of long CDS. uORFs that are conserved and having high TE are 

highlighted. (D) Cumulative distribution of translation efficiency in expressed uORF-containing 

transcripts versus transcripts lacking uORFs as control. Significance was computed using two-

sample Kolmogorov–Smirnov test for each uORF set compared to the control. (1 uORF P = 

1.321e-14, 2+ uORFs P = 1.828e-6).  (E) Biological process gene ontology terms found to be 

significantly enriched in the uORF-containing gene list. 

 

Dynamic regulation of CDS by uORFs 
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We also investigated the influence of uORFs on the downstream CDS during the first few hours 

of T cell activation (Figure 4.8) and between LPS-activated and resting B cells. Upon T cell 

activation, RNA abundance is increased (comparison between 2h vs 0h and 4h vs 2h) for both 

non-uORF-containing (P < 2.2E-16, Mann-Whitney test) transcripts and transcripts containing 1 

uORF (P = 1.349E-11, it is not statistically significant for transcripts containing 2+ uORFs, P = 

0.5179). However translational efficiency is decreased for all transcripts (P < 2.2E-16 for non-

uORF-containing transcripts; P < 2.2E-16 for transcripts containing 1 uORF; P = 0.001625 for 

transcripts containing 2+ uORFs). We then noticed that the RPF abundance of uORF-containing 

transcripts did not change (P = 0.1573 for transcripts containing 1 uORF; P = 0.3934 for 

transcripts containing 2+ uORFs; but statistically significant for non-uORF-containing transcripts, 

P = 2.034E-12). As translation efficiency is the level of mRNA translated into protein, it suggests 

that by 4 hours, transcription is increased, but translation machinery is limited and not caught up. 

Further experimental evidence will be required to validate the hypothesis.  

 

 



 97 

Figure 4.8 | Dynamic regulation of downstream CDSs by uORFs 

during T cell activation. Logarithmic transformed fold change of CDS RNA 

abundance (RPKM), RPF abundance (RPKM) and TE between two time points (2h vs 0h, 4h vs 

2h and 4h vs 0h) in 0,1, 2+ uORF-containing transcripts.  

4.8 smORFs in non-coding RNAs 

Non-coding ORFs (ncORFs) are smORFs that are found in annotated long non-coding RNAs 

(lncRNAs) and pseudogenes. They are typically short with an median length of 33 codons. By 

definition, non-coding RNAs are not translated into protein. However, annotated lncRNAs have 

been predicted from their sequences to contain six smORFs on average (Couso and Patraquim, 

2017). We have predicted 501 translated ncORFs and about 14.4% of these are considered 

conserved or weakly conserved (Figure 4.9A). We noticed very different distributions of size 

and PhyloCSF score between ncORFs and canonical smORFs (Figure 4.9B). The translation 

efficiency distribution for ncORFs is also different from long CDS, the median TE of ncORFs is 

greater than long CDS (Figure 4.9C). Three ncORFs Cct6a, Gm16675 and 6330418K02Rik 

were found to have a high PhyloCSF score (> 100) and TE (log2TE > 2), so we infer them to be 

functional micropeptides (Figure 4.9D). We searched the micropeptides they encode in NCBI 

BLASTp database (Altschul et al., 1990), but did not find any match for Gm16675. The 

6330418K02Rik gene is annotated as an antisense lncRNA gene in GENCODE, only one match 

was found for its predicted micropeptide (124 AA). The micropeptide was fully aligned to part of 

an uncharacterized protein of 201 AA with 88.5% identity in Mus caroli. The third smORF’s host 

transcript Cct6a (chaperonin containing Tcp1-subunit 6a), which is annotated as a processed 

transcript (defined as a noncoding transcript that does not contain an ORF) and has a human 

ortholog which is annotated as protein-coding and encodes two isoforms of 486 AA and 532 AA 

in length respectively. The Cct6a micropeptide (45 AA) was 100% identical to a small part of 

human CCT6A protein, which may suggest this micropeptide has a function in a protein 

complex. 
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Figure 4.9 | Translated smORFs predicted in noncoding RNAs. (A) Pie chart shows 14.4% 

of noncoding smORFs are conserved or weakly conserved. (B) Canonical smORFs and 

ncORFs showing very different distributions in length and PhyloCSF score. (C) Translation 

efficiency distributions of long CDS and ncORF. Significance was computed using two-sided 

Mann-Whitney test. (D) Translation efficiency and PhyloCSF score are shown for ncORFs (LPS-

activated B cells). Scatter plot of ncORF translation efficiency and PhyloCSF score. Green 

broken line represents a PhyloCSF score value of 50 used as a threshold for conservation, blue 

broken line represents the median TE of long CDS. ncORFs that are conserved and having high 

TE are highlighted. Three genes (Cct6, 6330418K02Rik, Gm16675) potentially encode 

micropeptides. (E) Translation efficiency and PhyloCSF score are shown for ncORFs of 101-

200 codon in length (T cell activation). Three genes (Trmt61b, A430093F15Rik, Gm6204) 

potentially encode proteins between 101 and 200 AA. 
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4.9 dORFs 

243 downstream ORFs and 17 overlapping downstream ORFs were predicted. The median 

length is 34 AA. Only 20 (~7.7%) are conserved or weakly conserved. The translation efficiency 

of dORFs is lower than the long CDSs in general. In transcripts that contain multiple ORFs, a 

translation re-initiation mechanism is able to prevent recycling of some or all ribosome subunits 

upon termination of the first translated ORF and thereby enable the translation of the dORF 

(Gunišová et al., 2018). The low TE indicates a very low level of translational re-initiation after 

the stop codon of the upstream CDS. We are also interested to know whether or not dORFs 

play a regulatory role for their upstream CDSs’ translation similar to uORFs for their 

downstream CDSs. We compared the TE of the CDS in all dORF-containing transcripts versus 

those lacking dORFs, however we did not find evidence of dORFs having a repressive effect for 

CDSs (Figure 4.10).  

 

Figure 4.10 | dORF-containing transcripts are not translationally repressed. Cumulative 

distribution of translation efficiency in expressed dORF-containing transcripts versus transcripts 

lacking dORFs as control. Significance was computed using two-sample Kolmogorov–Smirnov 

test, P = 0.437. 
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4.10 Signal sequence containing micropeptides 

An N-terminal signal peptide sequence of 16-30 amino acids is characteristic of proteins 

destined to be secreted or resident within cellular membranes. We predicted the presence of 

signal peptides in amino acid sequences of micropeptides using SignalP server (Petersen et al., 

2011; Armenteros et al., 2019). This predicted 80 candidates including known chemokines 

(CCL-1, -2, -4, -5 and -22) and the cell surface protein CD52, as well as a recently identified 

lncRNA encoded Aw112010 micropeptide (Jackson et al., 2018) (Table 4.1). In total, we 

predicted 28 canonical micropeptides which typically have high levels of conservation. By 

contrast, the majority (77%) of non-canonical micropeptides have poor conservation (Figure 

4.11A).  

 

Source Annotation 

status 

Total number of 

proteins 

Signal peptide 

containing 

proteins 

Secreted 

proteins 

Human proteome – 

all  

UniProt 

reviewed 

(manually 

annotated) 

20,365 3,596 (17.7%) 1,864 (9.2%) 

Human proteome - 

micropeptides 

745 157 (21.1%) 137 (18.4%) 

Mouse proteome -

all 

17,038 3,153 (18.5%) 1,438 (8.4%) 

Mouse proteome - 

micropeptides 

485 146 (31.9%) 133 (29%) 

Mouse lymphocyte 

micropeptides  

Predicted 5,744 80 (13.9%) 15 (0.3%) 

 

Table 4.1 | Proportion of signal peptide containing protein/micropeptide in different 

datasets. Human and mouse proteome information was queried from UniProt (date to 03 May 

2020), and only manually annotated data was considered. Signal peptide containing proteins 

include secreted proteins and other types (e.g. transmembrane proteins). Our mouse 

lymphocyte micropeptides are predicted using our in-house pipeline and SignalP server. 

 

RNA expression in a particular cell is a proxy for protein expression when direct quantitative 

information for the proteins of interest is not available. In order to examine the secreted 
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micropeptide-host transcript expression in lymphocytes in various conditions, we used public 

mouse RNA-Seq datasets of B cell terminal differentiation including Follicular B cell (FoB), 

marginal zone B cell (MZB), B-1 cell (B1), germinal center B cell (GCB), spleen plasma cell 

(SplPC) and bone marrow plasma cell (BMPC) (Shi et al., 2015), Th1 cell activation at three 

time points (0h, 2h and 4h) (Davari et al., 2017), resting and activated regulatory T cells (Luo et 

al., 2016) as well as an epidermis cell dataset (Sendoel et al., 2017). These data revealed dynamic 

expression patterns for several of the host transcripts (Figure 4.11B). For example, BC031181 was 

downregulated during B cell development but upregulated during Th1 cell activation, it was also 

highly expressed in epidermis cells (Figure 4.11B). Host transcript expression pattern provides 

a lead to where and what stage of cell differentiation micropeptides may be produced and can 

help with experimental validation of micropeptide prediction.  

 

 

 

Figure 4.11 | Predicted signal sequence containing micropeptides and their host 

transcripts expression under different conditions. (A) Scatter plots show the distributions of 

length (codon) and PhyloCSF score for each predicted signal peptide containing micropeptides. 

(B) Heatmap analysis of host transcript expression during B cell terminal differentiation, Th1 cell 

activation, resting/activated regulatory T cells and epidermal cells (Epi). Selected micropeptides 

are shown in the heatmap, they are conserved in humans and there is limited or no information 

regarding their function. They are ordered by the length.  
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4.11 Signal sequence containing proteins of 101-200 

AA  

The power of ribosome profiling is not limited to detecting smORFs but can detect novel ORFs 

encoding larger proteins. We therefore used our pipeline to predict candidate signal sequence 

containing proteins of between 101 and 200 AA in length. 74 candidates were predicted, among 

which 71 are annotated and 3 are unannotated ORFs (Figure 4.12A). The 71 annotated 

peptides included the chemokine Ccl9, interferon gamma and four interleukins (Il3, Il13, Il17, 

Il22) which confirmed the predictive power of our pipeline. We also predicted mesencephalic 

astrocyte-derived neurotrophic factor (Manf) which was originally identified as a secreted trophic 

factor for dopamine neurons (Petrova et al., 2003). In the expression heatmap, we noticed that 

Phf21a and Ly86 are downregulated during B cell differentiation, and Manf is upregulated during 

B cell differentiation as well as Th1 cell activation at RNA level (Figure 4.12B), it indicates that 

Manf might play a role in plasma cells. The three unannotated ORFs are an uORF (103 AA) in 

Osbpl8; an overlapping uORF (108 AA) in Dcun1d5 and a ncORF (139 AA) in 4930481A15Rik. 

All three unannotated ORFs start from CUG. PhyloCSF analysis shows that both uORFs are 

conserved (PhyloCSF score for Osbpl8 uORF is 147.4 and for Dcun1d5 ouORF is 61.5) but the 

ncORF is not. Further manual curation has shown that, for Dcun1d5 ouORF, the true translation 

might start from the downstream of the start codon we predicted. We looked at the published 

initiation Ribo-Seq data in GWIPZ (Michel et al., 2013) and noticed a peak at a downstream 

CUG of the predicted ORF (Figure 4.12C). However, signal sequence was not predicted in the 

resulted truncated protein. We also found that the Osbpl8 uORF human sequence was 

predicted to contain a signal peptide, but the alignment between mouse and human became 

poor towards the C-terminus (Figure 4.12D), indicating that the functional domain is not 

conserved. 

 



 103 

 

Figure 4.12 | Predicted signal sequence containing proteins of 101-200 AA. (A) Scatter 

plots show the distributions of length (codon) and PhyloCSF score for each predicted signal 

peptide containing proteins. (B) Heatmap analysis of host transcript expression during B cell 

terminal differentiation, Th1 cell activation, resting/activated regulatory T cells and epidermal 

cells. Selected proteins are shown in the heatmap, they are conserved in humans and there is 

limited or no information regarding their function. They are ordered by the length. (C) Initiation 

Ribo-Seq peak shows there exists a truncated protein of the Dcun1d5 ouORF predicted by 

ORFLine. (D) Pair-wise amino acid alignment between mouse and human of Osbpl8 uORF. The 

alignment becomes poor towards C-terminus. Predicted cleavage site is highlighted in green. 
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4.12 Functional validation of candidate secreted 

micropeptides 

Being an immunology lab, we are particularly interested in knowing whether the micropeptides 

are secreted, as they might be candidate immunoregulators. We have further established the 

prediction of signal sequence containing micropeptides and proteins (101-200 AA). Among the 

candidate secreted micropeptides, we selected eight to test their secretion (Table 4.2). They 

were prioritized as they are conserved in humans as well as having limited or no information 

regarding their function. Among the longer proteins (101-200 AA), Manf has shown a striking 

expression profile in plasma cells (Figure 4.13A).    

 

Gene name Class Length AA sequence 

Zdhhc5 uORF 37 MSYTLICLTLHGFHLQLFACIQPTVCLHVLNCTSCV
S 

Tbpl1 uORF 42 METGERTRFIFILVLQLLLRVRRNQQQRCRRVLYD
RPVFPRM 

Slc39a9 uORF 43 MKRCHLAAMAAVVLATQGQGLAEGSTMGSTGCR
AETASCRLCC 

Phf21a uORF 51 MKKSSLLLLLLLLLLRVPASSCQGGQPASSRRGT
GELKERQLLQNWTSQNL 

Opa1 uORF 67 MRHWEGLGGCSMPLLLRASSWVIVGAGIGLGPTR
GSPRGRLSACVWSALAGCGEQVGRPWPVKSANP 

1190007I07Rik Canonical 68 MPGGVPWSAYLKMLSSSLLAMCAGAQVVHWYY
RPDLTIPEIPPKPGELKTELLGLKERRHEPHVSQQ 

BC031181 Canonical 72 MVCIPCIVIPVLLWIFKKFLEPYIYPVVSRIWPKKAV
QQSGDKNMSKVDCKGAGTNGLPTKGPTEVSDKK
KD 

1500011B03Rik Canonical 72 MLRSGWMRLLPMLCSLLLGRAEAPSPGVPPEQS
QPYAVLRRQSLVLMGTIFSILLVTVLLMAFCVYKPIR
RR 

 

Table 4.2 | Eight candidate secreted micropeptides. Signal peptide is in bold. 
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4.13 CRISPR/Cas9-mediated knockout of Manf in 

plasmablasts 

From the prediction of secreted proteins within the 101-200 range, we found the 182 AA 

mesencephalic astrocyte-derived neurotrophic factor (MANF). MANF was firstly described as a 

survival-promoting factor for embryonic midbrain dopaminergic neurons (Petrova et al., 2003). It 

is later reported to have high expression in Drosophila hemocytes and CD11b+ innate immune 

cells in mouse (Neves et al., 2016), as well as human peripheral white blood cells (Chen et al., 

2015), human plasma cells and macrophages in the spleen (Liu et al., 2015). Recent studies 

suggest that MANF plays a role in endoplasmic reticulum (ER) stress response (Tadimalla et al., 

2008; Glembotski et al., 2012; Cheng et al., 2013; Zhao et al., 2013; Yan et al., 2019). Under 

most conditions, MANF was not secreted but was retained in cells, however, its expression and 

secretion were upregulated by ER calcium depletion (Glembotski et al., 2012), secreted MANF 

could function in an autocrine and/or paracrine manner to protect cells from death in response 

to ER calcium depletion (Apostolou et al., 2008). To achieve the secretion of extensive levels of 

immunoglobulins, the ER of plasma cells undergoes expansion in a process that requires 

continuous ER stress and activation of the unfolded protein response. The expression of MANF 

in plasma cells may be required to maintain ER homeostasis (Cheng et al., 2013). Recently 

MANF was reported to act directly on immune cells and modulate their inflammatory phenotype 

by reducing pro-inflammatory signalling and promote pro-reparative activation of macrophages 

(Sousa-Victor et al., 2018). 

 

It has shown that Manf expression is upregulated during B cell differentiation (Figure 4.12B). In 

addition, the Immunological Genome Project (Heng et al., 2008; Yoshida et al., 2019) RNA-Seq 

data also reveals Manf mRNA is most abundant in spleen plasma cells (Figure 4.13A). Manf is 

found to be expressed in human lymphoma cell lines and primary B cells (unpublished RNA-

Seq) (Figure 4.13B) as well as in human tissues (Genotype-Tissue Expression (GTEx) project 

RNA-Seq) (Yizhak et al., 2019) (Figure 4.13C). MANF was also identified by mass 

spectrometry in a proteomics study of plasmablasts (unpublished, in this M/S datasets, in total 

2853 annotated proteins are identified, among them, 27 are micropeptides. 13 out 27 are 

predicted by my pipeline as canonical smORFs) carried out in the Turner lab. Based on this 

information, we brought forth a hypothesis that Manf plays a role in plasmablasts. 
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To test the hypothesis, my colleague David Turner performed CRISPR/Cas9-mediated knockout 

of Manf during mouse B cell differentiation to plasmablasts (CD138+) (Nojima et al., 2011). We 

observed a reduction in the proportion of cells that were plasmablasts compared to the non-

targeting guide RNA on day 8 (Figure A.1A in Appendix B). As a positive control we observed a 

reduced proportion of cells were plasmablasts upon CRISPR/Cas9 knockout of the transcription 

factor IRF4 which initiates plasmablast differentiation (Sciammas et al., 2006) and is required for 

plasmablast survival (Tellier et al., 2016). Our assay did not distinguish between a role for Manf 

in differentiation or reduced survival of cells that have differentiated. To test whether Manf has a 

cell intrinsic effect we co-cultured Cas9+ and Cas9- B cells and observed that CRISPR/Cas9 

knockout of Manf specifically lead to a reduction in the proportion of plasmablasts in the Cas9+ 

population (Figure A.1B). Previous studies have described a cell intrinsic role for Manf in 

response to ER stress through interaction with the major ER chaperone GRP78 (Cheng et al., 

2013; Lindström et al., 2016). The loss of MANF protein may lead to an aberrantly regulated 

unfolded protein response and consequently reduced plasmablast viability. 
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Figure 4.13 | Manf RNA expression patterns. RNA-Seq data has shown Manf were widely 

expressed in (A) mouse immune cells (Immunological Genome Project), and much higher in 
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spleen plasma cells (B.PB.Sp), (B) human lymphoma cell lines (ABC SUDHL2 and HBL1) and 

primary B cells (unpublished data from collaborator) and (C) human tissues (Genotype-Tissue 

Expression project or GTEx). It shows MANF expression (log transformed TPM value) in various 

tissues and cell types (colours based on tissue types), for example, MANF is highly expressed 

in EBV-transformed lymphocytes (purple) and thyroid (dark green), but lowly expressed in brain 

tissues (yellow) and skeletal muscle cells (light blue). 

4.14 Expression of secreted micropeptides 

We designed an expression vector which the synthetic DNA of smORFs can be cloned into (see 

Materials and Methods). smORFs will be translated and secreted peptides will be produced in 

mammalian cell lines and harvested from tissue culture supernatants. The design of the ORFs 

will allow a polypeptide protein tag (e.g. epitope tags) to be added, the resulting epitope tag 

allows the antibody to find the micropeptide for localization (e.g. cell surface binding), and 

further molecular characterization, e.g. in vitro assays of proliferation, survival, differentiation 

and chemotaxis (Figure 4.14). 

 

 
 
Figure 4.14 | Proposed approaches to study the function of secreted micropeptides. 

 

 

Expression plasmid validation 
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My colleague Jia Lu performed experiments to test the expression plasmid (Figure A.2A in 

Appendix B) and developed western-blot-based detection of cellular and secreted micropeptides. 

293T cells were mock transfected and transfected with empty vector, and two candidate 

secreted micropeptides (1500011B03Rik and Phf21a), both micropeptides have shown high 

probabilities to be secreted in a in silico prediction (Figure 4.15). 44 hours post transfection, 

supernatant was harvested, the protein products were then analysed by gel electrophoresis to 

visualize the secreted micropeptides. Firstly, FLAG and GFP signals were detected which 

demonstrated that the plasmid works. Both Phf21a and 1500011B03Rik were detected by anti-

FLAG antibodies in the supernatant (Figure A.2B). We noticed a band between 17 and 26.6 

kDa for 1500011B03Rik from supernatant, it is possibly a dimer. We also observed GFP signals 

in supernatant in both constructs (Figure A.2C), it might be caused when the transfection 

condition was not optimized. 

 

 



 110 

Figure 4.15 | Signal peptide prediction for 1500011B03Rik and Phf21a by SignalP server. 

Red line shows the probability of a sequence being signal peptide, green dash line indicates the 

cleavage site. SP – signal peptide, CS – cleavage site. 

4.15 Discussion 

In this study I have predicted 5744 unique smORFs that show evidence of transcription and 

translation in B and T lymphocytes. Apart from 368 being annotated as short CDSs or isoforms, 

the others are novel and located in long non-coding RNAs, pseudogenes and the 5’UTR and 

3’UTRs of canonical protein coding transcripts. By assessing the conservation of the amino acid 

sequences compared with long proteins I can infer whether the translation products of these 

smORFs have any potential functions. 

  

Among the predicted smORFs, 80% were located within 5’UTRs. The biological functions of the 

majority of uORFs are unknown, but specific examples are known which play important roles in 

gene expression; that is regulating the translation of the downstream ORF. For example, MDM2, 

which is an important negative regulator of the p53 tumor suppressor, is mainly expressed in 

normal cells from a transcript isoform that contains two uORFs. However, following a switch in 

promoter usage, a transcript isoform without uORFs produces more MDM2 protein in human 

soft tissue tumours (Brown et al., 1999). CD36 encodes a cell-surface receptor expressed by B 

cells that regulates uptake of lipids and modulates antibody responses during bacterial infection 

(Won et al., 2008). A study shows this uORF is involved in atherosclerosis development in 

diabetics (Griffin et al., 2001). Under high glucose conditions, due to ribosomal re-initiation 

following translation of this uORF, CD36 main CDS translation efficiency is increased thus 

resulting in increased expression of CD36, and providing a mechanism for accelerated 

atherosclerosis in diabetics. In addition, a recent study has shown that non-canonical 

Hoogsteen-paired G-quadruplex (rG4) structures are present upstream of uORFs and promote 

80S ribosome formation on upstream start codons, causing inhibition of translation of the 

downstream main CDSs (Murat et al., 2018). Searching for rG4 motifs in an uORF upstream 

context will help to distinguish regulatory uORFs. 

 

About four percent of our predicted smORFs are dORFs. A number of ribosome profiling and 

mass spectrometry studies reported translation events in the 3′ UTR and dORF-encoded 

micropeptide detection (Slavoff et al., 2013; Ingolia, 2016). Amongst these, human protein 
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HTD2 (hydroxyacyl-thioester dehydratase type 2, 168 AA), is the most completely functionally 

characterized one to date (Autio et al. 2008). HTD2 was identified as a 3’ open reading frame on 

the RPP14 transcript which is known to encode the RPP14 (ribonuclease P protein subunit p14), 

a subunit of human ribonuclease P (RNase P) complex (Figure 4.16). HTD2 has been shown to 

be involved in mitochondrial fatty acid biosynthesis (Autio et al., 2008). In our prediction for 101-

200 AA small proteins, mouse Rpp14 canonical protein (122 AA) and a downstream protein 

(158 AA, annotated as a Rpp14 isoform in Ensembl) are predicted. RPP14 downstream protein 

is 79.6% identical to human HTD2 protein. Phylogenetic analysis of RPP14 and HTD2 

sequences highlight a conserved bicistronic relationship over 400 million years and therefore 

suggest a functional link between RNA processing and vertebrate mitochondrial biology. 

 

 

 

Figure 4.16 | Human HTD2 and RPP14 genes. HTD2 was identified as a dORF on the RPP14 

transcript which is known to encode the RPP14 (ribonuclease P protein subunit p14). Thick 

blocks represent the coding sequences. 

 

We predicted that ~9% of smORFs reside within annotated noncoding RNAs. Several 

micropeptides have been identified from transcripts previously annotated as noncoding 

(Anderson et al., 2015; Nelson et al., 2016; D’lima et al., 2017; Matsumoto et al., 2017). We 

predicted Nbdy (68 AA), a recently discovered micropeptide that binds to the mRNA decapping 

complex and promotes dispersal of P-body components (D’lima et al., 2017). A recent study 

characterised the Aw112010 peptide from a lncRNA as being secreted in macrophages and 

playing a role in host defence and inflammatory disease models (Jackson et al., 2018).  We also 

discovered Aw112010, but we noted that this gene does not have a human homolog. 

  

A classical model for the structure of a eukaryotic gene is that it codes for a single polypeptide 

(Beadle and Tatum, 1941). An evolutionary conserved micropeptide called tarsal-less (tal) has 

been identified in Drosophila, in which four tandem smORFs located on the tal transcript are 

independently translated to micropeptides of 11 and 32 AA (Savard et al., 2006; Galindo et al., 

https://genome.cshlp.org/content/28/5/609.long#ref-13
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2007; Kondo et al., 2007). Additionally, several mammalian polycistronic mRNAs have been 

characterized in recent years (Karginov et al., 2017). Studies have provided evidence that 

uORF- and dORF-encoded micropeptides can be expressed and function in trans (Andreev et 

al., 2015; Ma et al., 2016; Autio et al., 2008). Traditionally polycistronic mRNAs were thought to 

occur mainly in prokaryotes, a classical example is the lac operon of E. coli. However, emerging 

evidence is revealing that there are many more polycistronic mRNAs in eukaryotes than was 

originally thought. We have predicted hundreds of uORFs in mouse, however the function of 

their translation products is still unknown and needs more effort to investigate. 

 

Validating the coding potential of smORFs after they were identified by computational 

approaches is an essential step towards the characterization of their function. In vitro translation 

assays have been reported to assess smORF coding potential (Anderson et al., 2015,2016; van 

Heesch et al., 2019). The full-length cDNA of a smORF is cloned into a vector and then 

expression of the construct is evaluated using a cell-free protein-synthesizing system in the 

presence of 35S-methionine. The protein products are analysed by gel electrophoresis and 

autoradiography is performed to visualize the synthesis of a 35S-labeled micropeptide. This is a 

valuable method to screen potential candidates, however there is a possibility that the smORF 

can be translated in vitro but not in vivo. Our approach takes one step forwards, the vector is 

expressed in mammalian cells which maintain the translation apparatus and mechanism, it will 

show stronger evidence that the micropeptides are expressed in vivo.  

 

We used antibodies to detect FLAG-tagged micropeptides using gel electrophoresis. One 

concern is that if a micropeptide is expressed at a low level, the antibody may not be sufficient 

to generate strong enough signals for detection. During the experiment, we experienced issues 

in gel resolution. 15% Tricine seemed to give desired molecular weight range for separation, but 

the resolution is poor for proteins of 1-6 kDa. We could try to increase cross-linker percentage to 

increase resolution at low molecular weight, this will also allow analysis of signal peptide 

cleavage.  

 

In this project, we will focus on developing DNA based approaches including the expression of 

smORFs and micropeptide production in mammalian cell lines. Once the coding potential of 

smORFs is tested. Those that are secreted will be tested to identify their localization, for 

example, whether the peptide binds to the cell surface and what cell types they bind to. This is 

critical as the information will guide us to design experiments to identify their biological functions. 
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In the meanwhile, we are interested in protein-based approaches using synthetic peptides and 

single-domain antibodies, and this will be a route to develop the project further.  
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Future Directions 
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Recent advances in computational and experimental techniques have revealed that a much 

larger portion of the genome is translated than was previously recognized. Functional smORFs 

have emerged as a class of genetic elements to deepen the understanding of the coding 

potential of the genome. They are now representing a frontier in biochemistry, molecular biology, 

and physiology that is at its inception. It is likely that many more smORFs and micropeptides 

await discovery and characterization. smORFs have been relatively neglected as genome 

annotations arbitrarily excluded ORFs of less than 100 codons. However, this is changing 

rapidly as more investigation conducted in recent years have indicated a diverse range of 

functions for smORF-encoded micropeptides. These include muscle regeneration, DNA 

replication, phagocytosis, metabolism and cancer. These examples indicate that micropeptides 

are essential for cell functions and could be used to develop new therapeutics. Thus, 

micropeptides offer an area of significant interest that currently is largely unexplored. 

 

The immune system as a host defence system protects organisms against disease. Several 

peptides and small proteins including host defense antimicrobial peptides, hormones and 

cytokines that are known to have important functions in normal and pathological immune 

reactions. However, little was known how widespread micropeptides are in the immune system 

and what their functional roles might be. In this study, we have tried to address those questions.  

 

We have taken an in-silico approach to discover novel functional smORFs from lymphocytes. 

We have built a computational pipeline “ORFLine” to systematically analyse RNA-Seq and 

Ribosome profiling to identify actively translated smORFs. ORFLine was applied to mouse B 

(resting and LPS-activated) and T (activated CD4+ T cells and reactivated Th1 cells at different 

time points). We have considered two classes based on their size: micropeptides encoded by 

smORFs of 100 codons or fewer and small proteins in the size range of 101-200 amino acids. In 

total, 5744 actively translated smORFs and their predicted translation products as well as 945 of 

101-200 AA were identified and described. Among the 5744 smORFs, 338 are canonical and 

annotated (5.9%), 5404 are unannotated and novel (94.1%). Specifically, micropeptides 

possess signal peptides which are potentially to be secreted were further investigated. Our 

identification of thousands of translated smORFs in the mouse lymphocytes provides an entry 

point to investigate their functions in vivo. 

 

Although there is now robust evidence for the translation of smORFs, there is still a large 

amount of work that needs to be carried out to experimentally characterize each of the smORFs 
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to understand their biological function. Based on the current state of the field, several questions 

and challenges remain to be addressed, and several future directions seem likely.  

 

Firstly, methods for the elucidation of smORFs only reveal their existence, but not provide 

insight into the functions of these genes. With so many smORFs already discovered, higher 

throughput methods in the form of gain- or loss-of-function screens with smORFs are needed to 

find the most interesting smORFs and micropeptides for further investigation. What is the 

fraction of smORFs that are translated to stable micropeptides and function in their own right, 

versus those that are incidental unstable by-products of random translational events that merely 

transcriptional/translational noise? If they have a function, complete understanding of their 

action may play an important role in therapeutic purposes, where a drug may be designed by 

modulating or mimicking their functions to regulate any biological pathway they may be involved 

in or inhibit their activities. 

 

Secondly, how will researchers overcome the many unique technical obstacles that come with 

working with micropeptides and small proteins? They might be in low abundance or short lived 

as their stability is unknown. It has been suggested that many peptide products are selectively 

and rapidly degraded within cells, and hence are difficult to detect biochemically (Oyama et al., 

2007; Slavoff et al., 2013). These factors impede their identification by mass spectrometry as 

they are often lost in the sample preparation thus not available for detection. Ideally, an antibody 

against a micropeptide can be generated and validated to demonstrate its specificity, however 

there might be lack of available antibodies and means to generate custom antibodies for 

reasons including that the small size of micropeptide provides limited choices for designing 

antibodies and the 3D structure of the micropeptides is unknown, it might limit the regions for 

epitope design. 

 

Thirdly, the integration of smORFs into big data will provide additional methods to identify and 

prioritise interesting smORFs. For example, combining smORF discovery with GWAS data can 

identify disease-associated smORFs, or mining expression profiling data can identify smORFs 

that are up or down regulated in different diseases (Jackson et al., 2017; Jagannathan et al., 

2019; Whiffin et al., 2019). A related question is that whether we are missing smORFs that 

express under specific conditions and timing? Comparison between smORFs identified in 

resting B cells and LPS-activated B cells shows more smORFs expressed in an activated 

condition. The transcription profile of cells will certainly be different during perturbation (e.g. 
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stimulation and stress) compared to a normal state. Ideally, Ribo-Seq will be generated for 

lymphocytes responding to different stimulations, and potential smORFs in specific condition 

can be identified, however, the public available Ribo-Seq datasets are limited for lymphocytes. It 

is also useful to consider datasets of cell types that are directly interacting with lymphocyte or in 

the same immune response context but secret novel cytokines to bind to lymphocytes.  

 

Secreted micropeptides and small proteins have particularly drawn our attention. Living cells 

communicate with their surroundings by the secretion of biomolecules including proteins and 

peptides. Chemokines and cytokines are paradigms of this class and have proven to be a rich 

source of therapeutic targets. For example, selective inhibition TNF (tumor necrosis factor) by 

monoclonal antibodies or soluble TNF receptor analogues has been clinically and commercially 

highly successful in a number of diseases. The monoclonal antibody Mogamulizumab is 

approved for the treatment of cutaneous T-cell lymphoma and has the potential to treat allergic 

disease, as it targets CCR4 chemokine receptors necessary for T-helper type 2 cell entry into 

the lung. Thus, blocking cytokines/chemokines can have utility in multiple diseases.  In addition 

to antibodies small molecule approaches to cytokines/chemokines or their receptors have 

proven efficacy. Plerixafor is a small molecule CXCR4 antagonist that has approval to mobilize 

hematopoietic stem cells. Maraviroc is an FDA-approved chemokine receptor-targeting drug 

clinically used for the treatment of HIV-1 infection.  The discovery of new cytokines or 

chemokines offers a starting point for the development of further therapeutic modalities or 

biomarkers.  

 

A recent study characterised the Aw112010 peptide as being important for mucosal immunology 

(Jackson et al., 2018). We also discovered Aw112010, but we noted that this gene does not 

have a human homolog. This raises the question of why lymphocytes produce this. In addition 

to known micropeptides, we identified further candidate-secreted micropeptides that are 

conserved between human and mouse; some of these originate from transcripts annotated as 

non-coding and upstream ORFs of protein-coding transcripts. Amongst the group of proteins 

sized between 101 and 200 amino acids we identified known cytokines and chemokines (e.g. 

IFNγ), but also candidate or known secreted proteins not previously associated with 

lymphocytes including the 182 AA Mesencephalic Astrocyte-derived Neurotrophic Factor as well 

as a number of genes of unknown function. 
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Our informatic approach has suggested the existence of numerous secreted proteins which 

have either remained undiscovered, and are thus totally novel, as well as secreted proteins that 

have been previously identified but not yet assigned a role in lymphocyte biology.  Here we 

propose to pursue the biology of the novel class of micropeptides by hypothesising that they will 

have immunoregulatory cytokine-like function.  As such, they will turn out to be entities for which 

it will be desirable to inhibit or augment their function in human disease.  

 

We have described the effort to apply DNA based approach including the expression of 

smORFs and micropeptide production in mammalian cell lines to validate coding potential of the 

candidate secreted micropeptide. We will further develop this approach. Following the validation, 

we will test micropeptides binding to cells. Supernatants will be screened for binding to a variety 

of human and mouse cell lines and cells from peripheral blood by microscopy in the case of 

adherent cells or by flow cytometry for non-adherent cells. Positive binding will be subject to 

competitive inhibition with increasing amounts of supernatant derived from cells expressing a 

version of the protein with a different tag. Although there is precedent that C-terminal tagging of 

chemokines does not inhibit binding (Kawamura et al., 2014), it is possible that a tag may 

interfere with the binding and as an alternative approach direct labelling of lysine or cysteine 

residues or a different tagging strategy could be used. Given that we can analyse numerous 

proteins with this approach, it seems probable that we will identify candidates to take to the next 

stage of the analysis. The information gained in this part of the project will guide the design of 

functional experiments where we will test the capacity of micropeptides to mediate an effect on 

cell function. 

 

Cell types bound by micropeptides will be exposed to different dilutions of the supernatant from 

micropeptide expressing transfectants. The exact nature of the assay will depend on the cell 

types under study, but we envisage using assays of cell proliferation and apoptosis as an initial 

screen. Additional assays of lymphocyte properties can include the expression of cell surface 

markers indicative of activation and differentiation state. For example, culturing naïve mouse T 

cells in the presence of blocking antibodies to IFNγ and then re-stimulating them and staining 

for intracellular IL-4 as an assay of Th2 differentiation. 

 

smORF and micropeptide research is basic research, even though the identification of a novel 

biologically active micropeptide must still be an important discovery. It would raise the question 

of whether the micropeptide was involved in human disease and whether augmenting or 
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inhibiting its function was desirable, or whether the micropeptide might be a biomarker of 

disease state. We strongly believe that continued investigations will begin to find more smORFs 

and micropeptides linked to human disease, and in the future new medicines may emerge from 

these studies, all the fundamental research will be translated to benefit humanity. The 

identification of a cell type to which the micropeptide bound would open the door to the isolation 

of molecular clones of the receptor. We will pursue this biology further, in particular using animal 

models of loss of function of the micropeptide, or its receptor if we find one. The generation of 

monoclonal antibodies will also be pursued and careful consideration will be given how exactly 

to do this as antibodies may turn out the be key reagents for commercial development. If 

promising results turn up, we will approach potential collaborators in medicine to understand the 

biology of the micropeptide in human disease and seek means for commercialization. 
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Appendix A. Pipeline Instructions 

 
The most updated pipeline source code and instructions are available on GitHub at  – 

https://github.com/boboppie/ORFLine.  

 

We also create a Singularity image which enables the users to execute and test the pipeline 

easily in a virtual environment, All dependencies including bioinformatics tools are pre-installed 

in the image, the URL is https://github.com/boboppie/ORFLine-singularity.  

 

In case the above links are broken, the source code and instructions can be downloaded from a 

shared folder - https://bit.ly/2mSh6Fm.  

 

ORFLine 

This repository holds the pipeline for prediction of actively translated small open reading frames 

(smORFs) in the immune system. 

 

Obtaining 

To download the source code, please use git to download the most recent development tree. 

Currently, the tree is hosted on github, and can be obtained via: 

git clone git://github.com/boboppie/ORFLine.git 

Dependencies 

• Samtools and HTSlib 

• bedtools 

• BEDOPS 

• Bowtie 

• STAR 

• FastQC 

• Trim Galore 

• plastid 

https://github.com/boboppie/ORFLine
https://github.com/boboppie/ORFLine-singularity
https://bit.ly/2mSh6Fm
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• StringTie 

• EMBOSS 

• GNU Parallel 

• R 

• Bioconductor 

R/Bioconductor packages: 

• riboSeqR 

• GenomicFeatures 

• rtracklayer 

Dataset 

We will use Diaz-Muñoz et al, 2015 LPS activated B cell dataset as an example to demonstrate 

typical workflow. 

 

Download raw sequencing data from EBI: 

 

RNA-Seq  -  
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR160/001/SRR1605271/SRR1605271.fastq.gz 
 
Ribo-Seq -  
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR160/004/SRR1605304/SRR1605304.fastq.gz 

Workflow 

1. Check if all the dependencies are installed 

 bash ./module-check.sh 

2. Download and generate files that are used in the pipeline 

 bash ./ref-download.sh -o mouse -r M22 -t 4 

3. Generate putative ORFs 

 bash ./orf-prediction.sh -o \"Mus musculus\" -t 8 

4. Ribosome profiling (Ribo-Seq) data processing 

 bash ./riboseq-process.sh -f ./out/data/ribo-seq/ribo.fastq.gz -a 
AAAAAAAAAAA -t 4 

https://www.nature.com/articles/ni.3115
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5. RNA-Seq data processing 

 bash ./rnaseq-process.sh -f ./out/data/rna-seq/rna.fastq.gz -t 4 

6. ORF calling 

 bash ./orf-calling.sh -o mouse -x 10090 -m 32 -n 28 -t 8 

 

Output 

The final output file in info_table directory is in BED12 format with extension. 

 

Column  Description 

1 - 12 The first 12 columns are in BED12 format, the fields are described 
here - https://genome.ucsc.edu/FAQ/FAQformat.html#format1. The 
4th column is ORFId (transcript-based). 

13 smORF class, including canonical, five_prime... 

14 Peptide length 

15 RegionId (genomic-based) 

16 Ensembl transcript Id 

17 Gene symbol 

18 Gene description 

19 ORF score 

20 Ribosome release score 

21 Ribo FPFM 

22 RNA FPKM 

23 Translation efficiency (TE) 

24 CDS TE (NA if host transcript is noncoding) 

25 AA sequence 

 

 

 

 

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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Run the pipeline in a virtual machine 

We recommend running a test on a virtual machine, e.g. VirtualBox with a minimal ISO 

(e.g. CentOS 7 minimal). Users can install all dependencies via Miniconda, for example: 

 

# Tools to install on CentOS before miniconda 
yum -y install gcc tar bzip2 git which 
 
curl -fsSL https://repo.anaconda.com/miniconda/Miniconda2-latest-Linux-x86_64.sh -o 
miniconda2.sh 
 
# assume miniconda is installed in the home directory 
bash miniconda2.sh -b -p ~/miniconda2 
 
export PATH=~/miniconda2/bin:$PATH 
export PYTHONPATH=~/miniconda2/lib/python2.7/site-packages 
 
conda install -y -c conda-forge wget  
conda install -y -c conda-forge parallel 
conda install -y -c bioconda samtools 
conda install -y -c bioconda htslib  
conda install -y -c bioconda bedtools  
conda install -y -c bioconda bedops  
conda install -y -c bioconda bowtie  
conda install -y -c bioconda fastqc 
conda install -y -c bioconda cutadapt  
conda install -y -c bioconda trim-galore  
conda install -y -c bioconda star  
conda install -y -c bioconda stringtie  
conda install -y -c bioconda sra-tools 
conda install -y -c bioconda emboss  
conda install -y -c bioconda plastid 
conda install -y -c bioconda bioconductor-rhtslib 
Rscript -e 'install.packages("BiocManager", repos="http://cran.us.r-project.org"); 
BiocManager::install(c("riboSeqR", "GenomicFeatures", "rtracklayer"))' 
 

We have a main.sh script to run all the steps mentioned above, you can simply pull the source 

code and run it as: 

 

git clone https://github.com/boboppie/ORFLine.git 
cd orf-discovery 
chmod +x *.sh 
   
bash ./main.sh 
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Run the pipeline in a Singularity image 

An easier way to test the pipeline is to run a Singularity image we created (see the following 

section “ORFLine Singularity Image” for more information). This will avoid installing all the 

dependencies. 

 

ORFLine Singularity Image 

We have created a Singularity image, the image was automatically build by Singularity Hub 

(https://singularity-hub.org/). During image build, all ORFLine dependencies were installed, 

specifically, bioinformatics tools were installed via Miniconda to /opt/miniconda/bin and pipeline 

source code was pulled to ~/project/. 

 

Usage 

Install singularity via Conda: 

 

# Assuming Linux and root privilige 
curl -fsSL https://repo.anaconda.com/miniconda/Miniconda2-latest-Linux-x86_64.sh -o 
miniconda2.sh 
 
# Install miniconda to user home directory 
bash miniconda2.sh -b -p ~/miniconda2 
 
# Add conda bin to $PATH 
export PATH=~/miniconda2/bin:$PATH 
 
# Install singularity 
conda install -y -c bioconda singularity 
 

Pull the container to your machine: 

 

singularity pull shub://boboppie/ORFLine-singularity 
 

Shell into the container: 

 

singularity shell ORFLine-singularity_latest.sif 
 

Run the container: 
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singularity run ORFLine-singularity_latest.sif 
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Appendix B. Additional information of 

the materials and experiments 

RNA-Seq and Ribo-Seq experiments 

Mice 

Mice used in the experimental setups were on the C57BL/6 background. B cell setup 1: These B 

cells were from Elavl1fl/fl mice (Diaz-Muñoz et al., 2015). B cell setup 2: Zfp36l1fl/fl mice were 

used. CD4+ T cell setup: Zfp36fl/flZfp36l1fl/fl mice. These mice were littermate controls used for 

comparison with B or T cell specific Cre mice that are not part of this study. For CRISPR/Cas9-

mediated knockout of Manf the mice used were derived by crossing strains: Cd79acre 

(Cd79atm1(cre)Reth) (Hobeika et al., 2006) and Cas9-GFP (Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh) 

(Platt et al., 2014). 

Tissue culture 

B cells from spleen or peripheral lymph nodes (LNs) were isolated using the B Cell Isolation Kit 

(Miltenyi Biotec). For activation, B cells were cultured for 48 hours in RPMI 1640 Medium (Dutch 

Modification) supplemented with 10% FCS, 100 IU/ml penicillin, 100 μg/ml streptomycin, 2 mM 

L-GlutaMAX (Gibco), 1 mM Sodium Pyruvate and 50 μM β-mercaptoethanol in the presence of 

10 mg/ml of LPS (Sigma, E. Coli 0127: B8), 10 ng/ml of IL4 and 10 ng/ml of IL5. T cells from 

spleen, peripheral and mesenteric LNs were isolated with CD4+CD62L+ T Cell Isolation Kit 

(Miltenyi Biotec) and stimulated in the same medium as for B cells using plate bound anti-CD3 

(2C11) and 1 g/ml of anti-CD28 (37.51) for 24 hours. 

Sequencing library preparation 

RNA-Seq libraries were obtained using TruSeq Stranded mRNA Sample Prep Kit (Illumina Inc). 

After isolation B cells were either processed directly for RNA extraction (ex vivo samples, n=4) 

or were stimulated with LPS (two experiments one with n=3 and one n=5) prior to RNA 

preparation. Ribo-Seq libraries were prepared with ARTseq™ Ribosome Profiling Kit (Epicentre, 
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Illumina). Ex vivo or LPS-activated B cells (n=4-5) were treated with cycloheximide (CHX, 100 

μg/ml) three minutes before a rapid cooling of the culturing plate; then cells were collected, and 

RNA extracts were prepared according to the kit manual. cDNA libraries were sequenced using 

Illumina HiSeq2000 system in a 100-bp single-end (RNA-Seq) or 50-bp single-end (Ribo-Seq) 

mode. 

CRISPR/Cas9-mediated knockout of Manf in B cells 

iGB cell culture 

B cells from Cd79cre+ and Cd79cre- Cas9-GFP mice were purified via negative isolation (Miltenyi 

130-090-862) and seeded at a ratio of 4:1 (3x104 cells per well in a 12 well plate) in the 

presence of pre-seeded irradiated 40LB cells (120Gy). From day 0 to day 4 B cells were 

cultured with 10 ng/ml rIL-4 (Peprotech 214-14). On day 3, B cells underwent retrovirus 

transduction of sgRNA constructs by spinfection (1000 g, 32 oC, 45 minutes) in the presence of 

4ng/ml polybrene. On day 4 cells were re-plated on pre-seeded irradiated 40LB cells. From day 

4 to day 8 B cells were cultured with 10 ng/ml rIL-21 (Peprotech 210-21). Throughout the culture 

B cells were maintained in a humidified atmosphere at 37 °C with 5% CO2 in RMPI-1640 

medium (Gibco 21870076) supplemented with 10% FBS (Gibco 12657011), 50µM 2-ME (Gibco 

31350010), 100 units ml−1 penicillin (Gibco 15070063) and 100 μg ml−1 streptomycin (Gibco 

15070063).  
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Figure A.1 | CRISPR/Cas9-mediated knockout of Manf in B 

cells limit plasmablast numbers in culture. 

 

Figure A.1 | CRISPR/Cas9-mediated knockout of Manf in B cells limit plasmablast 

numbers in culture. (A) Flow-cytometry analysis, pre-gated on CD19+Cas9+Thy1.1+ cells, of 

the expression of the plasmablast marker CD138 in iGB cells transduced with non-targeting 

sgRNA, a sgRNA against transcription factor Irf4; and a sgRNA against Manf. Numbers in 

outlined areas indicate percentage of cells in each gate. (B) A ratio between the CD138+ 

proportions of Cas9+ and Cas9- populations in co-culture. Analysis limited to CD19+Thy1.1+ 

cells. Each symbol represents an individual sgRNA. *** P < 0.001. Significance was computed 

using two-tailed unpaired t-test. Data shown are three independent sgRNAs and representative 

of two independent experiments. Cell culture and flow cytometry was performed by David 

Turner. 
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Expression of micropeptides in 293T cells 

293T cells were seeded at 7.5 × 105 cells/well in 6-well plates overnight. Cells were transfected 

with 1 μg of empty vector (EV), 1500011B03Rik (clone 6) or Phf21a (clone 12), with 3 μl 

TransIT 293 reagent, mixed in 250 μl OptiMEM for 30 min at room temperature before added to 

2.5 ml antibiotics-free complete media drop-wise. 4 hours post transfection, one well of 

1500011B03Rik and Phf21a each were replaced with 2.5 ml OptiMEM containing 2% FBS, 

other wells replaced with 2.5 ml antibiotics-free complete media containing 10% FBS. 44 hours 

post transfection, supernatant was harvested by spinning at 300 x g for 5 minutes at 4 and 

collected supernatant. Total cell lysates were washed twice with PBS, spun at 300 × g for 5 

minutes at 4 oC, resuspended with 50 μl PBS and lysed with 50 μl 2x RIPA buffer containing 

1:100 protease inhibitors cocktails. Cells were lysed on ice for 10 minutes and centrifuged at 

21,000 × g for 5 minutes at 4 oC and protein concentrations determined by BCA assay. 80 μg 

total cell lysates and 30 μl supernatant were analysed. Samples were separated by Tris/Tricine 

SDS-PAGE (15% T, 2.6% C) at 120V, transferred with 30 minutes 0.2 A constant for membrane 

1, followed by 70 minutes 0.2 A constant for membrane 2. Membranes were stained with 

Ponceau S, blocked with Odyssey® blocking buffer, then stained with 1:1000 mouse anti-FLAG 

antibody (Sigma) (Roosild et al., 2006) at 4 oC overnight. After 3 × washes with 1× TBST, Goat 

anti-mouse 800CW was added at 1:10000 in blocking buffer and incubated at room temperature 

for 1 hour. The membranes were washed twice with 1 × TBST and once with 1 × TBS and milliQ 

water before drying and scanned. Rabbit anti-GFP (Clontech 8367) were added to membrane at 

1:1000 followed by first scan and developed with Goat anti-rabbit 680IR at 1:10000. 
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Figure A.2 | In vitro expression of epitope-tagged 

micropeptides 

 

 

 
 

Figure A.2 | In vitro expression of epitope-tagged micropeptides. (A) Dicistronic mammalian 

expression constructs of micropeptides containing C’ 3xFLAG tags upstream of EMCV IRES 

and GFP. 293T were mock transfected or transfected with plasmids encoding: empty vector 

(EV), 1500011B03Rik (clone 6) or Phf21a (clone 12). 44 hours post transfection, total cell 

lysates (C) and supernatant (S) were collected and analysed by western blot against: B) FLAG, 

and C) GFP. 

 

 


