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Summary: Elucidating oncogenic mechanisms in human B cell malignancies 

Rebecca Caeser 

This study consists of two pieces of work investigating haematological malignancies; 

Acute Lymphoblastic Leukaemia (ALL) and Diffuse Large B Cell Lymphoma 

(DLBCL). Firstly, Pre-B ALL represents the most common paediatric malignancy and 

despite increasingly improved outcomes for patients, ~ 20% of all patients diagnosed 

with ALL relapse. Activating mutations in the RAS pathway are common (~50%) and 

result in hyperactivation of the MAPK pathway. I identified Erk negative feedback 

control via DUSP6 to be crucial for NRASG12D-mediated pre-B cell transformation and 

investigated its potential as a therapeutic target. I showed that a small molecule 

inhibitor of DUSP6 (BCI) selectively induced cell death in patient-derived pre-B ALL 

cells; with a higher sensitivity observed in relapse pre-B ALL. I also discovered that a 

high level of Erk activity is required for proliferation of normal pre-B cells, but 

dispensable in leukemic pre-B ALL cells. In addition, I found that human B cell 

malignancies can be grouped into three categories that fundamentally differ in their 

ability to control Erk signalling strength. 

Secondly, DLBCL is the most common haematological malignancy and although 

potentially curable with chemotherapy, 40% of patients still succumb from their 

disease. Recent exome sequencing studies have identified hundreds of genetic 

alterations but, for most, their contribution to disease, or their importance as 

therapeutic targets, remains uncertain. I optimised a novel approach to screen the 

functional importance of these mutations. This was achieved by reconstituting non-

malignant, primary, human germinal centre B cells (GC B cells) with combinations of 

wildtype and mutant genes to recapitulate the genetic events of DLBCL. When 

injected into immunodeficient mice, these oncogene-transduced GC B cells gave rise 

to tumours that closely resemble human DLBCL, reinforcing the biological relevance 

of this system. To screen potential tumour suppressor mutations in this system in a 

high throughput fashion, I developed a lymphoma-focused CRISPR library of 692 

genes recurrently altered in B cell lymphomas. These experiments identified GNA13 

as an unexpectedly potent tumour suppressor in human GC B cells and provided 

new understanding to its mechanism of action. 

These findings provide novel understanding of the complexity of oncogenic 

mechanisms in human B cell malignancies.   
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Chapter 1 ERK feedback regulation in B cell malignancies 

1 Abstract 

     Pre-B acute lymphoblastic leukaemia (ALL) is the most common paediatric 

malignancy. Despite increasingly improved outcomes for patients, ~ 20% of all 

patients diagnosed with ALL relapse. Activating mutations in the RAS pathway are 

common (~50%) at presentation and lead to hyperactivation of the MAPK pathway. I 

identified ERK negative feedback control via the Dual Specificity Phosphatase 6 

(DUSP6) to be essential for NRASG12D-mediated transformation of mouse pre-B cells 

and investigated its potential as a therapeutic target. I showed that a small molecule 

inhibitor of DUSP6 (BCI) selectively induced cell death in patient-derived pre-B ALL 

cells; with a higher sensitivity observed in relapsed pre-B ALL. I also discovered that 

a high level of ERK activity is required for proliferation of normal pre-B cells, but 

dispensable in leukaemic pre-B ALL cells. In addition, I found that human B cell 

malignancies can be grouped into three categories that fundamentally differ in their 

ability to control ERK signalling strength. Albeit counterintuitive, these findings 

highlight the negative feedback regulator DUSP6 as a potential therapeutic target. 
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2 Introduction 

2.1. Pre-B acute lymphoblastic leukaemia 

       Pre-B acute lymphoblastic leukaemia (Pre-B ALL) accounts for nearly a quarter 

of all childhood cancers, representing the most common paediatric malignancy13. It is 

caused by multiple factors including genetic susceptibility, exogenous/endogenous 

exposures, genetic alterations and chance14. Despite the high percentage of children 

with ALL, survival rates have greatly improved for patients, from 10% to more than 

85%, over the last four decades13. Yet ALL remains one of the leading causes of 

person-years of life lost in the US (362,000 years in 2010; National Center of Health 

Statistics). 5,430 patients were diagnosed in the US in 2008 (Leukemia and 

Lymphoma Society) and 654 patients in the UK in 201115. The 5 year disease-free 

survival rate is ~85% for children and ~55% for adults13.   

The survival rate in paediatric ALL is now approaching 90% with new advances in 

combination therapy tailored to patient pharmacodynamics and pharmacogenomics, 

personalized chemotherapy and improvements in supportive clinical care14. The cure 

rate is likely to increase further due to the discovery of additional molecular lesions 

that will lead to the development of novel targeted drugs and treatment strategies16. 

Nevertheless, 20% of all patients diagnosed with ALL will relapse and the outlook for 

those children is poor; only around one-third of children survive long-term after 

disease recurrence17. As such, innovative approaches to improve survival while 

reducing adverse effects are needed. 

 

2.2. The molecular and genetic landscape of ALL 

       Acute lymphoblastic leukaemia is a neoplasm of immature lymphoid progenitors. 

Approximately 80% are B cell in origin5. It is caused by transforming genetic events in 

early progenitors followed by the acquisition of further genetic alterations that often 

play an important role in cell survival, differentiation and proliferation18. Normal B 

cells derive from blood stem cells in the bone marrow19. These cells go through an 

orderly development, involving a strictly regulated maturation and selection process 

by means of the expression of cell surface markers, transcription factors and by 

immunoglobulin gene arrangements19. These cells eventually become memory B 

cells or plasma cells19,20. During their orderly development, B cells undergo selection 
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at several checkpoints based on the expression and antigen-specificity of the B cell 

receptor (BCR)9,21,22. This ensures that autoreactive B cells are eliminated from the B 

cell repertoire. The majority of B-ALLs in children exhibit a developmental arrest at 

the pre-pro-B and pre-B stages18 (Figure 1).  

 

 

 

 

 

 

 

 

Next-generation sequencing has given us a better understanding of the genetic 

lesions that characterize ALL. Mullighan argued that many ALL types can be traced 

back to chromosomal rearrangements, sequence mutations and changes in 

submicroscopic DNA copy number5. In B-ALL, almost 80% exhibit aneuploidy, 

Figure 1 B cell ontogeny B cell differentiation starts in the bone marrow and 

progresses from hematopoietic stem cells through to pro-B, pre-B cells and 

immature pre-B cell stages. During this development, VDJ rearrangements at the 

immunoglobulin locus leads to surface expression of the pre-B cell receptor (pre-

BCR) which comprises of an IgM heavy chain and surrogate light chains (VpreB 

and λ-5). Signalling from the pre-BCR results in progression of B cell 

development and eventually the expression of a mature BCR composed of 

rearranged heavy and light chains. Cells that have successfully passed this 

checkpoint leave the bone marrow and further differentiate into marginal-zone B 

cells and mature follicular B cells in the spleen.10 
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hyperdiploidy, hypodiploidy and chromosomal rearrangements such as t(12;21) 

ETV6-RUNX1 (TEL-AML1), t(1;19) TCF3-PBX1 (E2A-PBX1), t(9;22) BCR-ABL1 and 

rearrangement of MLL at 11q23 to a number of other fusion partners5 (Figure 2A). 

Such chromosomal rearrangements are most probably acquired early in 

leukaemogenesis leading to transcriptional and epigenetic dysregulation and 

aberrant self-renewal5. The result of this is an accumulation of immature B cells. 

However, rearrangements alone are not sufficient for leukaemogenesis and it is now 

known that leukaemogenesis requires further structural and genetic alterations in 

genes involved in tumour suppression, cell cycle regulation and chromatin 

modification5. Furthermore, heterogeneity of the diagnosed ALL samples and genetic 

alterations in minor clones may result in resistance to therapy and disease relapse5. 

 

 

  

 

 

 

 

Figure 2 Frequency of cytogenetic subtypes of paediatric ALL Blue 

and red represent the relative frequency of B-ALL and T-ALL genetic 

subtypes, respectively. Yellow represents the BCR-ABL1–like subtype 

and BCR-ABL1–positive ALL.5  
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2.3 RAS/RAF/MAPK pathway signalling 

      The mitogen-activated protein kinase (MAPK) cascade plays an important role in 

a number of diverse cellular functions like survival, differentiation, angiogenesis, 

migration and cell proliferation23. The pathway initiates at the cell surface by various 

receptors such as receptor tyrosine kinases (RTK), GPCRs, T cell receptors or B cell 

receptors23. Ligand binding leads to recruitment of RAS.  

RAS belongs to a family of monomeric membrane-associated GTPases, consisting of 

HRAS, KRAS and NRAS24. These proteins cycle between an active GTP bound state 

and an inactive GDP bound state through the catalyzation of guanine nucleotide 

exchange factors (GEFs), such as son of sevenless (SOS)24. Interaction with 

upstream activators and downstream effectors occurs at the inner surface of the 

plasma membrane. RAS is negatively regulated by GTPase activating proteins 

(GAPs) that stimulate GTP hydrolysis and leave RAS in the inactive GDP bound 

state23. When in its GTP bound form, RAS triggers the activation of RAF (MAPKKK) 

which subsequently phosphorylates MEK (MAPKK) on serine residues, which further 

phosphorylates ERK (MAPK) on tyrosine and threonine residues25 (Figure 3). 

The MAP kinases ERK1 and ERK2, also known as MAPK3 and MAPK1 are 44- and 

42-kDa serine/threonine kinases that regulate growth factor-responsive targets in the 

cytosol and also in the nucleus where it regulates gene expression26. ERK1 and 

ERK2 are activated via threonine and tyrosine phosphorylation at Thr202/Tyr204 and 

Thr185/Tyr187, respectively26. It is known that strong ERK activation needs 

phosphorylation at both sites, with tyrosine being phosphorylated before threonine26. 

ERK1 and ERK2 share many similarities; they are 84% identical at the amino acid 

level and are ubiquitously expressed27. They also share the same activators and 

substrates with no known agonist able to activate only one of the two kinases28. 

However, Erk1−/− mice are viable and fertile29 whereas Erk2−/− present with early 

embryonic death due to placental defects30. 

In resting cells, ERK is mainly found in the cytoplasm. Upon activation, ERK 

translocates to the nucleus where it phosphorylates a number of transcription factors 

such as FOS, JUN and MYC, as well as inducing the expression of its own negative 

feedback regulators at three levels31. First, via SPRY2, a sprouty family signalling 

inhibitor that negatively regulates the activation of RAS. Second, via DUSP6, a dual 
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specificity phosphatase that dephosphorylates ERK. And third, via ERK itself by 

cooperating with transcription factors like ETV1, ETV4 and ETV5 that drive 

transcription of DUSP6 and SPRY24. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Schematic of the MAPK pathway illustrating negative feedback 

signalling In human tumours, the RAS-RAF-MEK-ERK pathway is activated by 

a number of mechanisms for example binding of a ligand to or mutational 

activation of Igα, Igβ ITAM-bearing receptors and mutations in RAS or RAF. 

Activated ERK translocates to the nucleus where it drives transcriptional 

activation of its own negative feedback regulators (Etv5, Dusp6, Spry2) as well 

as other targets involved in negative in cell cycle progression and proliferation 

(modified from 4). 
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2.4 RAS pathway mutations in human cancer 

     Activated RAS genes were first discovered in cancer in 198232 and attempts to 

target RAS pharmaceutically have been the focus of many research groups ever 

since – with disappointing results to date. It is not surprising that the RAS pathway 

plays an important role in cancer therapy seeing as it is a key regulator of normal cell 

growth and malignant transformation. Therefore the rationale behind targeting this 

pathway is to inhibit the survival, growth, and spread of tumours33. RAS genes are 

the most common targets for somatic gain-of-function mutations; occurring in around 

30% of human cancers1. KRAS mutations are most frequent in pancreatic, colorectal, 

endometrial, biliary tract, lung and cervical cancers; NRAS and HRAS mutations are 

prevalent in melanoma and bladder cancer, respectively and KRAS and NRAS 

mutations predominate in myeloid malignancies1 (Figure 4). 

 

 

A high incidence of RAS mutations in human cancer has made RAS a common 

target in cancer therapy. Cancer therapeutic agents include Farnesyltransferase 

inhibitors, antisense oligonucleotides against RAS and RAF, and kinase inhibitors, 

targeting pathways upstream of RAS and also RAS effector pathways1. However, it is 

still difficult to design drugs with a sufficient therapeutic window that eliminate tumour 

cells but not normal, healthy cells1. 

Figure 4 HRAS, KRAS, NRAS and BRAF mutations in human cancer1. 
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2.5 RAS pathway mutations in ALL 

      Deregulation of the MAPK pathway is not only found in solid tumours but also in 

children with ALL24. This is usually caused by gene deletion, chromosomal 

translocation and point mutations24. Mutations in NRAS and KRAS are highly 

prevalent in ALL. NRAS mutations are common in ALL and other haematological 

diseases, while KRAS mutations are more common in epithelial malignancies24. The 

majority of NRAS/KRAS mutations identified in ALL occur in codons 12, 13, and 61, 

which lead to constitutive activation and subsequent hyperactivation of ERK and 

other MAP kinases (MAPK). Zhang2 reported a 50% frequency of somatic alterations 

in the RAS signalling pathway in 187 high-risk childhood B-precursor ALL (Figure 5).  

 

 

Moreover, RAS pathway mutations are also highly prevalent in children with relapsed 

ALL, occurring in 78 out of 206 patients from the ALL-REZ BFM 2002 trial with 

mutations usually being mutually exclusive34. Out of that cohort, 47 matched 

diagnostic patient samples were studied and it was found that mutations in the RAS 

pathway are often predominate at relapse but may be detected as a subclone at 

diagnosis34. Therefore, MAPK pathway activation can be pharmacologically exploited 

and may guide new therapies needed for relapsed ALL. 

 

Figure 5 Frequency of key signalling pathway mutations in 

187 ALL patients2. 
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 2.6 Negative feedback regulators 

       Negative feedback regulation is a critical component in many signalling 

pathways within normal cells35. Signalling pathways have to be precisely regulated by 

positive and negative regulation to drive robust cellular response and to avoid 

dangerous errors leading to disease35. Different mechanisms of negative regulation 

are responsible for a variety of diverse cellular behaviours such as differentiation and 

developmental processes35. Feedback loops can account for such regulation and are 

able to induce the expression of self-inhibitors which dampen the signalling duration 

once a threshold has been reached35. This control of signalling protects cells from 

oncogenic signalling which otherwise might lead to tumour development4. In many 

transformed cells, the level of signalling is increased due to mutations or deletions of 

negative regulators such as PTEN. Interestingly, Pratilas showed that in BRAF 

mutated cancers, increased levels of signalling often results in increased activity of 

negative feedback regulators36. Similar levels of MAPK pathway activation were 

observed in tumours with mutant BRAF and with RTK activation. But only BRAFV600E 

driven tumours were dependent on ERK signalling for proliferation and its activation 

resulted in increased levels of MAPK negative feedback regulators such as DUSP6 

and SPRTY36. Remarkably, in BRAFV600E mutated tumours the high activity of 

negative feedback did not prevent tumour growth, suggesting that the ERK signalling 

pathway is insensitive to feedback inhibition36.  

 

 2.6.1 MAPK Negative feedback regulator, DUSP6 (MKP3) 

 

        Signalling in the MAPK pathway occurs via phosphorylation hence MAPK 

phosphatases (MKPs) represent the main form of negative feedback regulation and 

play a key role in determining the magnitude and duration of kinase activation37.  

Dual specificity phosphatase 6 (DUSP6, also known as MKP3) belongs to the family 

of 10 mitogen-activated protein kinase (MAPK) phosphatases that are key players in 

the negative regulation of three major components of the MAPK pathway; ERK1/2, 

JNK and P38alpha38-40. It does so by dephosphorylating either the serine/threonine or 

tyrosine residue, or both, of the kinase39,41,42. DUSP6 negatively regulates signalling 

from receptor tyrosine kinases (RTKs) such as EGFR43, FGFR and their downstream 
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effector RAS44. It is regulated at the promoter level by ETS1, a well-known nuclear 

target of ERK and plays a role in developmental and pathological conditions43.  

While DUSP5, DUSP6 and DUSP7 only dephosphorylate ERK1/2, the phosphatases 

DUSP1, DUSP4 and DUSP9 target both ERKs, p38 and JNK37,40. It appears that 

DUSP6 serves as a cytoplasmic anchor for ERK, determining its subcellular 

localization and mediating a spatio-temporal mechanism of ERK signalling 

regulation45. The cytoplasmic localization is mediated by the leucine-rich nuclear 

export signal located within its N-terminal domain45.  

All DUSPs share a common structure; with a C-terminal phosphatase domain that 

confers phosphatase activity for both phosphoserine/threonine and phosphotyrosine 

residues and a N-terminal non-catalytic domain (Figure 6)8,39. 

 

 

 

                                                                                                    

 

 

Dusp6-/- mice are viable, fertile and have increased basal ERK1/2 phosphorylation in 

many organs like heart, spleen, kidney, brain and fibroblasts but do not show a 

prolonged ERK1/2 activation after stimulation, suggesting that DUSP6 plays a more 

profound role in basal ERK1/2 signalling tone46. There is no change in ERK5, p38 or 

JNK activtion46. It is known that DUSP6 plays a role during otic development; 

inactivation of DUSP6 leads to partially penetrant postnatal lethality, hearing loss and 

skeletal malformations47.  

Figure 6 Structure of the DUSP6 (MKP-3) gene 

DUSP6 consists of a C-terminal catalytic domain and an 

N-terminal non-catalytic domain. Exon 3 and half of Exon 

2 encode the functional phosphatase domain.8  
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The role of DUSP6 in cancer differs between tumour types and functions in a dual 

manner; pro-oncogenic or tumour-suppressive40. DUSP6 as well as other negative 

feedback regulators of ERK such as ETV5 and SPRY2 were found to be frequently 

inactivated in solid tumours and mature B cell lymphoma and have an important role 

as tumour suppressors in attenuating oncogenic signalling31,40,48. In pancreatic 

cancer, low expression levels of DUSP6 and gain-of-function mutations in KRAS 

might synergize, resulting in constitutive activation of ERK1/2 and thus uncontrolled 

cell growth49. Such behaviour has been observed in non-small lung cancer (NSLC) 

and ovarian cancer. In NSLC cell lines, DUSP6 expression levels were reduced and 

restoration of DUSP6 resulted in growth suppression, suggesting anti-tumour 

effects50. In human ovarian cancer cells, loss of DUSP6 mediated by oxidative stress 

resulted in increased ERK1/2 activity which in turn contributed to tumorigenicity and 

chemoresistance51. DUSP6 has also been reported to have a tumour-suppressive 

role in oesophageal squamous cell carcinoma and nasopharyngeal carcinoma40.  

In contrast, its pro-oncogenic role can be observed in other cancer types that harbour 

an activating mutation in the MAPK pathway. For instance, DUSP6 can be found at 

high levels in melanoma cell lines with a BRAFV600E or NRASQ61R mutation52. 

Moreover, high levels of DUSP6 expression have also been reported in breast 

epithelial cells expressing oncogenic HRAS and also in myeloma cells harbouring 

NRAS activating mutations53. These findings suggest that over-expression of DUSP6 

has a compensatory role in the negative feedback control of the MAPK pathway due 

to activating mutations in RAS or RAF. The tumour-promoting role of DUSP6 has 

also been observed in human glioblastoma, endometrial carcinoma and thyroid 

carcinoma40. Interestingly, elevated DUSP6 expression was reported to be correlated 

with a poor prognosis in NSCLC patients as part of a five gene signature model54. 

However, elevated DUSP6 expression in KRAS mutant colon cancer has no effect on 

survival outcome55. 

Furthermore, colleagues in the Müschen laboratory found that primary samples from 

patients with pre-B ALL (n=83) showed significantly lower levels of CpG methylation 

in the promoters of DUSP6, ETV5 and SPRY2 as well as higher protein expression 

levels compared to normal pre-B cells (Figure 7)4. 
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Conventional treatment regimens for cancer usually focus on agents that will 

suppress the signalling strength of transforming oncogenes below the minimum level 

that is needed for survival and proliferation56. However, in those cancers that have 

high levels of DUSP6 expression, inhibiting DUSP6 might be beneficial and open up 

new treatment options. Molina identified a small-molecule inhibitor of Dusp6 — (E)-2-

benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) — using a 

transgenic zebrafish chemical screen44. It also inhibits DUSP1 at low micromolar 

concentrations44. 

BCI treatment inhibited DUSP6 activity and resulted in increased FGF signalling 

leading to an expansion in cardiac progenitors in zebrafish embryos and in cultured 

cells44. Here, DUSP6 regulates heart organ size. In vitro studies show that BCI 

inhibits the catalytic activation of DUSP6 by ERK2 substrate binding44. Molina 

predicted that BCI binds on the DUSP6 phosphatase domain, suggesting an 

allosteric mechanism of action44. 

Such observations demonstrate the complex role of DUSP6 in cancer and therefore 

different aspects such as cancer cell type, etiology or disease stage need to be 

considered before targeting this negative feedback regulator as a therapeutic tool.  

 

 

 

Figure 7 Negative feedback regulators of ERK (DUSP6, ETV5, SPRY2) are 

selectively activated in human pre-B ALL cells4. 
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2.7 Aims of this Study 

 

         I set out to test the hypothesis that in addition to the oncogene itself, other 

factors also confer permissiveness to oncogenic signalling and allow a normal pre-B 

cell to tolerate an oncogenic level of signalling strength.  

In particular, I examined the role of the ERK negative feedback regulator DUSP6 in 

RAS-mutant acute lymphoblastic leukaemia and tested its potential as a therapeutic 

target using genetic mouse models and a small molecule inhibitor targeting DUSP6 

(BCI).  
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3 Materials & Methods 

3.1 Materials 

3.1.1 Overview of mouse strains used in this study 

 

3.1.2 Overview of genotyping primers used in this study 

Mouse strain Source   Purpose       

Dusp6-/- 
 

Jackson Laboratories Genetic loss-of-function experiments 

Mapk1fl/fl 
Dr. Martin McMahon, 
UCSF 

Inducible deletion of  
Mapk1fl/fl   

LSL-NRASG12D 
MD Kevin Shannon,  
UCSF Inducible hyperactivation of NRAS 

BRAFF-V600E 
Dr. Martin McMahon, 
UCSF Inducible hyperactivation of BRAF 

Mb-1-Cre 
 

Jackson Laboratories 
Cre recombinase 
expression 

 
CD21-Cre   Jackson Laboratories 

Cre recombinase 
expression   

NOD/SCID Jackson Laboratories Transplant recipient mice   

Primer Sequence Band size bp 

Dusp6 C_ 5’-CATTGACTCGGAGAGTGATCTGGT-3’  

WT_ 5’-CAGTCCATCAGCAGCAGCTGTTCG-3’ 

M_ 5’-GGCTCTATGGCTTCTGAGGCGGA-3’ 

Wild type   321 

Mutant       250 

Mapk1fl/fl F_ 5’-CAGAGCCAACAATCCCAAAC-3’ 

R_ 5’-GGCTGCAACCATCTCACA-3’ 

Wild type   278 

Mutant       350 

LSL-

NRASG12D 

WT F_ 5’-AGACGCGGAGACTTGGCGAGC-3’  

WT R_ 5’-GCTGGATCGTCAAGGCGCTTTTCC-3’  

M_ 5’-

AGCTAGCCACCATGGCTTGAGTAAGTCTGCA-3’ 

Wild type   487 

Mutant       345 

BRAFF-V600E F_ 5’-TGAGTATTTTTGTGGCAACTGC-3’ 

R_ 5’-CTCTGCTGGGAAAGCGGC-3’ 

Wild type   185 

Mutant       307 

Mb1 F_ 5’-TTCAGCCTTCAGTCTAACATC-3’ 

R_ 5’-ATCTGTGAAGACAGGGTGC-3’ 

Wild type   375 

Mb1-Cre F_ 5’-CCCTGTGGATGCCACCTC-3’ 

R_ 5’-GTCCTGGCATCTGTCAGAG-3’ 

Mutant    450 

CD21-Cre F_5’-GCGGTCTGGCAGTAAAAACTATC-3’ 

R_5’-GTGAAACAGCATTGCTGTCACTT-3’ 

Mutant    100 
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3.1.3 Retroviral vectors; Constitutive expression 

 

 

 

 

        

 

        Retroviral vectors; Inducible expression  

Construct   Overexpression of 

MSCV ERT2 IRES-GFP 
 

GFP 
 pRetroX-Tet3G   Tet-On   

pRetroX-TRE3G-NRASG12D  Tet-On NRASG12D 

MSCV Cre ERT2 IRES-GFP   Cre; GFP   

MSCV ERT2 IRES-Puro  Puromycin  

MSCV Cre ERT2 IRES-Puro  Cre; Puromycin  

  

3.1.4 Overview of western blot antibodies used in this study 

 

Antigen Clone ID Company 

Beta-actin Polyclonal (ab8227) Abcam 

NRAS F155  
Santa Cruz 
Biotechnology 

DUSP6 G-4  
Santa Cruz 
Biotechnology 

ERK1/2 Polyclonal (9102) Cell Signaling 

Phospho -ERK1/2 (T202/Y204) D13.14.4E  Cell Signaling 

BCL6  D8 
Santa Cruz 
Biotechnology 

STAT5 Polyclonal (9363) Cell Signalling 

Phospho-STAT5 (Y694) D47E7 Cell Signalling 

Phospho-SHP-1 (Tyr564) D11G5 Cell Signalling 

SHP-1 C14H6 Cell Signalling 

p27 Kip1  D69C12 Cell Signalling 

P21 Waf1/Cip1 12D1 Cell Signalling 

SPRY2 D3G1A Cell Signalling 

Akt Polyclonal (9272) Cell Signalling 

Phospho-Akt (Ser473) Polyclonal (9271) Cell Signalling 

Construct   Overexpression of 

MSCV IRES-Neo 
 

Neomycin 

MSCV IRES-Puro   Puromycin 

MSCV BCR-ABL1 IRES-Neo BCR-ABL1 

MSCV IRES-NRASG12D-Puro NRASG12D 
pCGDNsam-IRES- NRASG12D- 
Kusabira Orange NRASG12D 
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3.1.5 Overview of patient-derived pre-B ALL samples studied here 

 

Case Disease Karyotype 

LAX7 at diagnosis  

LAX7R at relapse KRASG12V 

Notes: All primary samples are bone marrow biopsies, blast content >80%; LAX, Los 

Angeles 

 

3.1.6 Overview of cell lines used in this study 

 

Cell line Type Source 

REH Pre-B ALL Müschen 

697 Pre-B ALL Müschen 

SMS-SB Pre-B ALL Müschen 

NALM6 Pre-B ALL Müschen 

Gumbus Burkitt lymphoma Dr. D. Hodson 

Jeko-1 
Mantle Cell 
Lymphoma DSMZ 

HBL-1 DLBCL Dr. D. Hodson 

DOHH-2 DLBCL Dr. D. Hodson 

JJN3 Multiple Myeloma Müschen 

JSC-1 

B-NHL -Primary 
effusion 
lymphoma Dr. J. Jung, USC 

L428 Hodgkin’s lymphoma Müschen 

KM-H2 Hodgkin’s lymphoma DSMZ 
 

3.1.7 Overview of qRT-PCR Primers used in this study 

 

Primer Sequence 

Bcl6_F 5’ – CCTGCAACTGGAAGAAGTATAAG – 3’ 

Bcl6-R 5’ – AGTATGGAGGCACATCTCTGTAT – 3’ 

Hprt_F 5’ – GGGGGCTATAAGTTCTTTGC - 3’ 

Hprt_R 5’ – TCCAACACTTCGAGAGGTCC - 3’ 
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3.2 Methods 

3.2.1 Patient samples, cell lines and human cells  

         Primary cases were obtained in compliance with the Institutional Review 

Boards of the University of California, San Francisco (UCSF). Primary human ALL 

samples (LAX7, LAX7R) were cultured on OP9 stroma in Minimum Essential Medium 

(MEMα, Life Technologies) with GlutaMAX containing 20% FBS (Fetal Bovine 

Serum), 100 IU ml-1 penicillin, 100 µg ml-1 streptomycin and 1mM sodium pyruvate at 

37°C in a humidified incubator with 5% CO2. Human cells were cultured in Roswell 

Park Memorial Institute medium (RPMI-1640, Invitrogen, Carlsbad, CA) with 

GlutaMAX containing 20% FBS, 100 IU/ml penicillin and 100 µg/ml streptomycin and 

kept at 37°C in a humidified incubator (5% CO2 and 95% atmosphere). See 3.1.5 and 

3.1.6 for a list of cell lines and patient samples used in this study. 

 

3.2.2 Extraction of bone marrow cells from mice 

         Bone marrow cells were extracted from young (> 6 weeks) transgenic mice as 

follows: Cavities of femur and tibia were flushed with PBS, filtrated through 40 µM 

filters and depleted of erythrocytes using lysis buffer (BD PharmLyse, BD 

Biosciences) before washed cells were either frozen or cultured for experiments. All 

mouse experiments were subject to institutional approval by University of California, 

San Francisco (UCSF). See 3.1.1 for a list of mouse strains used in this study. 

 

3.2.3 Genotyping and Polymerase Chain Reaction 

         For molecular genotyping, blood samples from mice were obtained as a source 

of genomic DNA and used in a Polymerase Chain Reaction (PCR). The Thermo 

Scientific Phusion Blood Direct PCR Kit was used to amplify DNA from whole blood 

using a Phusion Hot Start II High-Fidelity DNA Polymerase. Following the PCR, the 

samples were analysed by agarose gel electrophoresis. This method of tissue 

collection has been approved by the University of California San Francisco 

Institutional Animal Care and Use Committee. See 3.1.2 for a list of genotyping 

primers used in this study. 
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3.2.4 Retroviral production / transduction 

         Lipofectamine 2000 (Invitrogen) and Opti-MEM media (Invitrogen) were used 

for transfecting MSCV-based retroviral constructs. 293FT cells plated in a 20 cm2 

dish were co-transfected with 20 μg of plasmid pHIT60 (gag-pol), 5 μg of pHIT123 

(ecotropic envelope, provided by D.B. Kohn, University of California, Los Angeles, 

Los Angeles, CA) and 20 μg of a retroviral construct. Dulbecco’s modified Eagle’s 

medium (DMEM, Invitrogen) with Glutamax containing 10% fetal bovine serum, 100 

IU/ml penicillin, 100 ug/ml streptomycin, 25mM HEPES, 1mM sodium pyruvate and 

0.1 mM non-essential amino acids were used for cultivation. After 16 hours, regular 

media was replaced by growth media and 10mM sodium butyrate was added. 

Following 8 h incubation, the media was replaced with regular growth media and 18 h 

later the virus supernatant was filtered through a 0.45 μM filter. For retroviral 

transduction, the virus was loaded by centrifugation (2000 x g, 90 min at 32°C) on 50 

ug/ml Retronectin (Takara) coated non-tissue 6-plates. 2-3 x 106 pre-B cells were 

loaded on the retronectin coated plate and centrifuged at 600 x g for 30 minutes and 

maintained at 37°C with 5% CO2 for 2 days before transferring into culture flasks. 

See 3.1.3 for a list of retroviral vectors used in this study.  

 

3.2.5 Transformation of competent cells 

         50 μl of competent Eschericia coli (E.coli, Invitrogen) cells were mixed with 1 μl 

DNA, gently mixed by flicking the bottom of the tube and placed on ice for 20-30 min. 

The tube was then placed into a 42°C water bath for 30-60 sec and immediately put 

on ice for 2 min. 500 μl of LB media was added and grown in 37°C shaking incubator. 

After 45 min, the samples were plated onto a pre-warmed 10 cm LB agar plate 

containing the appropriate antibiotic and left overnight at in 37°C. Next day, bacterial 

colonies were selected and put into a culture consisting of LB media and the 

appropriate antibiotic and left for 6-8 h in a 37°C shaking incubator before it was 

added to a larger overnight culture and left overnight. Next morning, the bacterial 

plasmids were purified using MAXI or MINI prep (Qiagen).  

 

3.2.6 Plasmid Purification 

        Bacterial cells from an overnight culture were harvested by centrifugation at 

6000 x g for 15 min at 4°C and then plasmids were purified using the QIAGEN 

Plasmid Maxi Kit following the manufacturer’s instructions. 
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3.2.7 Maintaining Bone Marrow cells in culture with IL7 and generation of 

inducible NRASG12D Tet-On 3G Gene Expression Systems 

        Bone marrow cells from young age-matched mice were harvested and 

retrovirally transformed with pRetroX-Tet3G (Clontech) retrovirus in the presence of 

10ng IL7/ml (Peprotech) and selected for neomycin (1000 µg/ml) for 1-2 weeks. After 

neomycin selection, cells were further transduced with inducible pRetroX-TRE3G-

NRASG12D (Clontech) retrovirus and selected for puromycin (1 µg/ml) for 1-2 days. 

Addition of 1µg/ml Doxycycline (Clontech) to the culture medium leads to induction of 

NRASG12D. Cells were cultured in Iscove's Modified Dulbecco's Medium (IMDM, Life 

Technologies) with Glutamax containing 20% FBS, 100 IU ml-1 penicillin, 100 µg/ml 

streptomycin and 2-ME and kept at 37°C in a humidified incubator (5% CO2 and 95% 

atmosphere). 

 

3.2.8 FACS (Fluorescence-activated cell sorting) 

        FACS antibodies were used to stain human and mouse samples according to 

manufacturer’s instructions. FC block was used, as well as respective isotype 

controls. For cell sorting, cells were collected in a Falcon tube with FBS and were 

centrifuged at 400 g for 5 min before putting them back in culture. 

 

3.2.9 Dead Cell Apoptosis Analysis 

        Alexa Fluor® 488 Annexin V/Dead Cell Apoptosis Kit (Life Technologies) was 

used for the detection of apoptotic cells according to the manufacturer’s instructions. 

Externalization of phosphatidylserine (Annexin V, Alexa Fluor® 488 Conjugate) and 

DNA content (DAPI, 4',6-diamidino-2-phenylindole) were measured and gating on all 

cells was used for further analysis.  

 

3.2.10 Western blotting 

      Cell extracts were prepared as follows: CelLytic buffer (Sigma) supplemented 

with 1% protease inhibitor cocktail (Roche), 1% Phosphatase inhibitor cocktail 

(Calbiochem Millipore) and 1mM PMSF (Life Technologies) was used to lyse the 

cells followed by loading the same amount of protein per sample on NuPAGE 

(Invitrogen) 4-12% Bis-Tris gradient gels and were further transferred on PVDF 

membranes (Invitrogen). Primary antibodies were used with the HRP 
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immunodetection system (Life Technologies/Millipore) to detect mouse and human 

proteins. Western blot antibodies were obtained from Abcam, Cell Signaling or Santa 

Cruz Biotechnology. See 3.1.4 for a list of western blot antibodies used in this study. 

 

3.2.11 Colony Forming Assay for mouse ALL 

          10,000 transformed lymphoid cells (or 100,000 for myeloid B cells) were 

resuspended in murine MethoCult™ GF M3630 (StemCell Technologies) and 

cultured on 3 cm dishes with an extra water supply to prevent evaporation. Colonies 

were counted after 7-14 days and photos of the dishes and colonies were taken.  

 

3.2.12 Cell viability assay for human or murine cells 

          100,000 human derived xenograft cells or NRASG12D/BCR-ABL transformed 

mouse ALL cells were plated in a volume of 100 µl medium on Opilux Falcon Clear 

96-well plate (BD Biosciences). After 2-3 h incubation at 37°C, agonist/antagonist 

were diluted in medium and added to each well at the indicated concentration in a 

total culture volume of 120 µl. After 3 days culturing, 12 μl of Cell Counting Kit 8 

solution (CCK-8; Dojindo Inc.) was added to each well, incubated for 1-4 hours at 

37°C and absorbance was measured at 450 nm. Baseline values of untreated cells 

were used as a reference to calculate fold changes (set to 100%).  

 

3.2.13 Extraction of genomic DNA from cultured cells 

          Genomic DNA from up to 10 x 106 cells was extracted using NucleoSPIN 

Tissue kit (Macherey-Nagel). Briefly, cells were resuspended in a final volume of 200 

μl Buffer T1 and 25 µl proteinase K solution and 200 μl Buffer B3 were added. After 

incubation at 70°C for 10-15 min, 210 μl ethanol (96-100%) was added to the sample 

and vigorously vortexed. This was followed by DNA binding to the silica membrane in 

the columns and pure genomic DNA was eluted in 100 μl Buffer BE. 

 

3.2.14 RNA purification 

          Total RNA from cells was extracted using NucleoSPIN RNA from Macherey-

Nagel and cDNA was produced from 1 μg of total RNA using qScriptTM cDNA 

SuperMix (Quanta Biosciences). 
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3.2.15 Quantitative real-time PCR (qRT-PCR) 

          After RNA purification, quantitative real-time PCR was performed with FAST 

SYBR® Green Master Mix (Applied Biosystems) and the Vii7 real-time PCR system 

(Applied Biosystems) according to standard PCR conditions. See 3.1.7 for a list of 

qRT-PCR Primers used in this study. 

 

3.2.16 Statistical Analysis 

          All pairwise comparisons between the means were calculated by a two-tailed t 

test using GraphPad software. 
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4 Results 

4.1 Examining the role of DUSP6 in RAS-mediated transformation of 

pre-B cells  

4.1.1 DUSP6 deletion reduced colony formation in BRAFV600E driven mouse pre-

B cells 

 

      The RAS pathway is frequently activated in pre-B ALL2. Yet others in the 

Muschen laboratory have observed surprisingly high expression levels of negative 

feedback regulators such as DUSP6, ETV5 and SPRY24. To test whether this 

negative feedback might actually be beneficial to leukaemic cells, I took advantage of 

two existing mouse lines to create an inducible model of BRAF activation with and 

without DUSP6 deletion. I crossed BrafV600E CA/CA with Dusp6+/+ or Dusp6-/- mice 

resulting in the desired genotype after 2 generations (F2 generation, Figure 1A). In 

BrafV600E CA knock-in mice, exons 15-18 and a STOP cassette are flanked by loxP 

sites and followed by exons 15-18 containing the activating V600E mutation in exon 

15. Following Cre-mediated excision of the loxP-flanked region, transcripts are 

generated using the V600E mutant exon 15 (Figure 1B).  

 

B cell precursors from BrafV600E CA/+ Dusp6+/+ and BrafV600E CA/+ Dusp6-/- mice were 

cultured in interleukin 7 (IL-7)-containing media and retrovirally transduced with GFP-

tagged, 4-hydroxy tamoxifen (4-OHT)-inducible Cre-ERT2 (Cre) or empty vector (EV; 

ERT2). Figure 1C illustrates a schematic of the experimental outline. The Cre 

recombinase is fused with a mutated form of the oestrogen receptor that is further 

bound to the heat shock protein (Hsp90)57. Upon binding of 4-hydroxytamoxifen (4-

OHT) to the mutant estrogen receptor, Hsp90 dissociates from the complex and the 

Cre recombinase translocates to the nucleus where it excises genomic segments 

flanked by loxP sequences57.  

 

4-OHT-mediated activation of BrafV600E resulted in a strong increase in ERK 

phosphorylation in Dusp6+/+ pre-B cells. In Dusp6-/- pre-B cells, basal ERK activity 

was already elevated but increased further upon activation of BRAFV600E (Figure 2A). 

This confirmed the Cre/loxP system was functioning properly. 
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Next, I performed a competitive fitness assay and colony forming assay to identify 

whether the oncogene BRAFV600E provides a growth benefit for pre-B cells and 

whether DUSP6 has a positive or negative effect on BRAFV600E driven pre-B cell 

growth. IL7-dependent pre-B cells were monitored for GFP+ cells by flow cytometry 

over a period of 10 days after induction of BRAFV600E. BRAFV600E activation resulted 

in a growth advantage in pre-B cells, regardless of DUSP6 status (Figure 2B). 

Deletion of DUSP6 had no effect on cell growth either in the presence or absence of 

BRAFV600E induction (Figure 2B).  

 

However, in a colony forming assay, induction of BRAFV600E in Dusp6+/+ pre-B cells 

resulted in increased colony formation whereas Dusp6-/- pre-B cells expressing 

BRAFV600E only moderately induced colony formation (Figure 2C). The EV controls, 

Dusp6-/- and Dusp6+/+ pre-B cells alone failed to transform and induce significant 

colony formation. 

 

These findings show that in a colony forming assay, deletion of DUSP6 impaired 

colony formation in BRAFV600E driven pre-B cells compared to BRAFV600E driven 

Dusp6+/+ pre-B cells. However, in a competitive fitness assay, pre-B cells driven by 

BRAFV600E exert a growth advantage regardless of their DUSP6 status. 
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Figure 1 Schematic of mouse crosses and experimental design outline 

(A) Schematic diagram of the development of the transgenic mouse            

BrafV600E CA/+ Dusp6-/- and BrafV600E CA/+ Dusp6+/+. 

(B) Knock-in mice carry the transcript encoded by endogenous exons 1-14 and 

loxP-flanked human exons 15-18 prior to Cre-mediated recombination. 

Following Cre-mediated excision, the transcripts are subsequently generated 

using the mutant exon 15 (which contains constitutively active BrafV600E) and 

the endogenous downstream exons 16-18. Blue boxes: mouse exons, 

orange box: human exon, green box: mouse exon modified to harbour a 

V600E amino acid substitution. 

(C) Bone marrow from age-matched BrafV600E CA/+ Dusp6-/- and BrafV600E CA/+ 

Dusp6+/+ mice was harvested and pre-B cells were selected with IL7 and 

cultured for 7-14 days before transduced with GFP-tagged, 4-OHT-inducible 

Cre or empty vector (EV). After the addition of 4-OHT, Western Blot, Growth 

Competition Assay and Colony Forming Assay were performed.  

x 



36 
 

Figure 2 Dusp6 deletion reduced colony formation in BRAFV600E driven mouse 

pre-B cells 

(A) Western blot analysis on Dusp6+/+ and Dusp6-/- IL7-dependent pre-B cells in 

the presence and absence of BRAFV600E. Total and phosphorylated ERK1/2 

is shown and β-actin was used as loading control. Representative of > 3 

experiments. 

(B) Dusp6+/+ BrafV600E/+ and Dusp6-/- BrafV600E/+ pre-B cells were transduced with 

GFP-tagged, 4-OHT inducible Cre or empty vector control (EV). Following 

induction with 4-OHT, enrichment or depletion of GFP+ cells was monitored 

by flow cytometry. Illustrated is time course showing the average relative 

changes (± SD) of GFP+ cells following induction (n = 3). Representative of 

2 experiments with 3 replicates/experiment.  

(C) Representative images and quantification (mean values ± SD, n = 3) of the 

colony-forming ability of Dusp6+/+ BrafV600E/+ and Dusp6-/- BrafV600E/+ pre-B 

cells. Following induction with 4-OHT for 48 hours; 10, 000 cells were 

seeded in semi-solid methylcellulose and monitored for colony formation for 

14 days. The p value was calculated from t test. Representative of 3 

experiments with 3 replicates/experiment. 
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4.1.2 DUSP6 is essential for NRASG12D-mediated pre-B cell transformation 

 
      To further investigate the significance of DUSP6-mediated negative control of 

ERK signalling in RAS-driven pre-B ALL, I used a doxycycline-inducible vector 

system for expression of oncogenic NRASG12D. Here, NRASG12D is under the control 

of a TRE3G promoter that only activates transcription when cultured in the presence 

of doxycycline (Dox), a synthetic tetracycline derivative58. Doxycycline binds to the 

Tet-On 3G transactivator protein which in turn binds the TRE3G promoter, activating 

transcription58. 

 Dusp6+/+ and Dusp6-/- IL7-dependent pre-B cells were transduced with the described 

doxycycline-inducible vector system for regulated gene expression of NRASG12D. 

Figure 3A illustrates a schematic of the experimental outline. I performed a colony 

forming assay in methylcellulose to study self-renewal ability in the presence and 

absence of NRASG12D and found that Dusp6+/+ pre-B cells expressing NRASG12D 

were able to transform and increase colony formation whereas Dusp6-/- pre-B cells 

expressing NRASG12D failed to transform or induce colony formation (Figure 3B). A 

western blot was performed to detect changes in ERK phosphorylation levels. 

Induction of NRASG12D in Dusp6+/+ pre-B cells caused a moderate increase in ERK 

phosphorylation. In Dusp6-/- pre-B cells, the basal level of ERK is higher and further 

increased upon induction of NRASG12D (Figure 3C).  

Interestingly, I found that in Dusp6-/- pre-B cells, acute activation of NRASG12D caused 

acute toxicity, leading to a decrease in cell viability whilst in Dusp6+/+ pre-B cells 

there was no significant impact on cell viability after 3 days (Figure 3D).  

These findings suggest that DUSP6 is required for RAS-driven B cell lineage ALL, 

presumably through negative feedback control in buffering ERK signal strength. In 

contrast, in other tumour types (e.g. solid tumours) negative feedback regulation of 

ERK acts as a tumour suppressor and opposes RAS-driven malignant 

transformation31. Thus, there appears to be a lineage specific requirement for DUSP6 

in ERK mediated transformation of precursor B cells.  
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Figure 3 DUSP6 is essential for NRASG12D - mediated pre-B cell transformation 

(A) Bone marrow from age-matched Dusp6+/+ and Dusp6-/- mice was harvested 

and IL7 dependent pre-B cells were engineered to carry a doxycycline (Dox)-

inducible TetOn-NRASG12D mutant. After the addition of Dox; Western Blot, 

Apoptosis and Colony Forming Assay were performed. 

(B) Representative images and quantification (mean values ± SD, n = 3) of the 

colony-forming ability of Dusp6+/+ and Dusp6-/- IL7-dependent pre-B cells 

transduced with doxycycline inducible NRASG12D. 10, 000 cells were seeded in 

semi-solid methylcellulose and monitored for colony formation for 14 days.   

The scale bar represents 1mm. The p value was calculated from t test. 

(C) Western blot analysis on Dusp6+/+ and Dusp6-/- IL7-dependent pre-B cells in 

the presence and absence of NRASG12D. NRAS, total and phosphorylated 

ERK1/2 are shown and β-actin was used as loading control. Representative of 

3 experiments. 

(D) Cell Viability of Dusp6+/+ and Dusp6-/- IL7-dependent pre-B cells upon acute 

induction of NRASG12D was measured by Annexin V/DAPI, and analyzed by 

flow cytometry. Illustrated is time course showing the average relative changes 

(± SD) of cell viability. Representative of 3 experiments with 3 

replicates/experiment. 
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4.1.3 Pharmacological inhibition of DUSP6 in human relapsed pre-B ALL can 

overcome drug-resistance 

 

To examine whether DUSP6 represents a potential therapeutic target for the 

treatment of pre-B ALL, I used a recently developed small molecule inhibitor of 

DUSP6, 2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI, Figure 

4A). BCI acts within the phosphatase domain of DUSP6 to prevent the catalytic 

stimulation of phosphatase activity induced by ERK244. 

I studied two patient-derived pre-B ALL cells that were isolated either at time of 

diagnosis (LAX7) or at the time of relapse (LAX7R) when cells had acquired a 

KRASG12V mutation. The patient relapsed 11 months after the initial diagnosis and 

whole exome sequencing verified the acquisition of the new KRASG12V mutation 

(Figure 4B). This provided a system for me to test DUSP6 inhibition in a paired 

human cell system with and without ERK activation.  Both samples were treated with 

BCI with increasing concentrations and a western blot performed to study ERK 

phosphorylation levels.  

 As expected, I found oncogenic activation of ERK in LAX7R due to the acquired 

RAS mutation whereas LAX7 (KRAS wild-type) showed no phosphorylation of ERK 

(Figure 4C). DUSP6 small molecule inhibition using BCI in the KRAS wild-type 

sample (LAX7) had no biochemical effect. However, in the KRASG12V mutant LAX7R 

cells, constitutive ERK activity was strongly increased with increasing concentrations 

of BCI (Figure 4C). This is expected as inhibiting ERK negative feedback regulation 

should result in an increase in MAPK signalling. 

Typically, relapsed ALL cells are considered to be more resistant to therapy than de 

novo disease13. However, when I performed a cell viability assay on KRAS wild-type 

LAX7 and KRASG12V mutant LAX7R cells, I found that the relapse ALL cells were 

more sensitive to BCI than cells from the diagnostic sample (LAX7) (Figure 4D).  

Acquisition of mutations in the RAS pathway frequently occur in pre-B ALL and 

hence this finding highlights a potential strategy that may be of use to overcome 

drug-resistance in such patients.  

 

 



40 
 

Figure 4 KRASG12V mutant cells are more sensitive to small molecule inhibition 

of DUSP6 than KRAS WT cells 

(A)  Chemical structure of DUSP6 inhibitor (E/Z)-BCI hydrochloride. 

(B)  Whole exome sequencing identified mutations shared between LAX7 and 

LAX7R as well as unique mutations (Analysis performed by Christian Hurtz). 

(C) Chromatogram showing the absence of the KRASG12V mutation in LAX7 and 

the presence in LAX7R. Western blot analysis showing the biochemical effect 

BCI has on ERK activity in LAX7 and LAX7R. β-actin was used as loading 

control. Representative of 2 experiments. 

(D) Cell Viability assay with LAX7 and LAX7R when incubated with BCI at 

increasing concentrations for 72 hours. Illustrated are the average relative 

changes (± SD) of cell viability. Representative of 2 experiments with 3 

technical replicates/experiment. 



4.2 Examining the role of DUSP6 in mature B cell malignancies 

4.2.1 Mature B cell lymphomas without functional BCR were non-responsive to 

DUSP6 inhibition whereas pre-B ALLs are highly sensitive  

 

        Since we had shown that DUSP6 was highly upregulated and a tumour activator 

in pre-B ALL (Shojaee and Caeser4), I wondered if the same phenomenon would 

apply to mature B cell malignancies. Previous work had reported epigenetic 

inactivation of another MAPK pathway inhibitor Spry2 led to B cell lymphoma 

progression, suggesting a tumour suppressor role48. This prompted me to examine 

the role of DUSP6 in late B cell development. 

 

Here, I studied the effect of pharmacological inhibition of DUSP6 by the small 

molecule inhibitor BCI in a range of ALL (REH, 697, SMS-SB, NALM6), lymphoma 

(Gumbus, Jeko-1, HBL-1, DOHH2, JSC-1, L428, KM-H2) and multiple myeloma 

(JJN3) cell lines. I performed a cell viability assay with increasing concentrations of 

BCI and discovered three groups of human B cell malignancies that differ with 

respect to their sensitivity to experimental perturbation by BCI (Figure 5). These 

groups were:  

 
1.) Pre-B ALL (REH, 697, SMS-SB, NALM6): highly sensitive to experimental 

perturbation by BCI at approximately 1 μM  

2.) Mature B cell lymphomas (Gumbus, Jeko-1, HBL-1, DOHH2): largely resistant 

to perturbations by BCI up to 4 μM  

3.) Mature B cell lymphomas (JSC-1, L428, KM-H2) and multiple myeloma 

(JJN3): completely non-responsive to perturbations by BCI up to 4 μM  

 
Interestingly, one factor that distinguished Group 2 and 3 was their B cell receptor 

status. Group 2 consists of Gumbus (Burkitt lymphoma), Jeko-1 (Mantle cell 

lymphoma), HBL-1 and DOHH2 (Diffuse large B cell lymphoma) that harbour a 

functional BCR9. Group 3 consists of JJN3 (Multiple myeloma), JSC-1 (Primary 

effusion lymphoma), L428 and KM-H2 (Hodgkin’s lymphoma) that typically lack a 

functional BCR9. The differences seen in respect to their sensitivity to ERK 

hyperactivation may relate to stage specific differences BCI might have due to 

different autoimmunity checkpoints such as central and peripheral tolerance and I will 

further elaborate on this in the Discussion section. 
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 To investigate a potential role of DUSP6 at controlling ERK signalling strength in 

these cell lines, I treated each cell line with increasing concentrations of BCI for 2 

hours and then performed a western blot studying ERK phosphorylation levels 

(Figure 6). As expected, pre-B ALL cells showed an increase in ERK phosphorylation 

with increasing concentrations of BCI (Group 1). Interestingly, mature B cell 

lymphomas that were largely resistant to BCI (Group 2) showed the opposite effect 

and a decrease in ERK phosphorylation could be seen. This group might have 

evolved other highly robust feedback control mechanisms such as SPRY2. Mature B 

cell lymphomas and multiple myeloma in Group 3 showed mostly no change in ERK 

phosphorylation levels or no clear pattern with increasing BCI concentrations. BCI 

selectively inhibits DUSP6 and DUSP1 and is not reported to block any other 

phosphatases44. 

 

This finding highlights that human B cell malignancies differ with respect to ERK 

signalling strength and have different sensitivities towards experimental 

perturbations. 
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Figure 5 Mature B cell lymphomas and multiple myeloma without a functional 

BCR are non-responsive to DUSP6 inhibition whereas pre-B ALLs are highly 

sensitive 

Cell Viability assay with pre-B ALL cell lines (REH, 697, SMS-SB, NALM6), mature B 

cell lymphomas with a functional BCR (Gumbus, Jeko-1, HBL-1, DOHH2) and mature 

B cell lymphomas and multiple myeloma without a functional BCR (JJN3, JSC-1, 

L428, KM-H2) when incubated with BCI at increasing concentrations for 72 hours. 

Illustrated are the average relative changes (± SD) of cell viability (n = 3).  

Representative of 2 – 3 experiments per cell line with 3 replicates/experiment.  
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Figure 6 Human B cell malignancies differ with respect to ERK signalling 

strength 

Western blot analysis showing the biochemical effect increasing concentrations of 

BCI has on ERK activity in all three groups identified. Total and phosphorylated 

ERK1/2 is shown and β-actin was used as loading control. Representative of 2 – 3 

experiments per cell line. 
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4.3 Examining the consequences of loss of ERK2 function 

4.3.1 Loss of ERK2 function resulted in reduced colony forming ability of pre-B 

cells but has no effect in NRASG12D- or BCR-ABL1-driven pre-B ALL cells 

 

           Given that activating lesions in the RAS pathway resulting in ERK1/2 

phosphorylation are found in ~50% of high-risk childhood pre-B ALL at diagnosis2, I 

have focused here on the effector kinases ERK1/2. It is not entirely clear yet whether 

ERK1 and ERK2 have distinct physiological functions or whether they operate 

redundantly. ERK2 (MAPK1) is known to be crucial in T cell development59 and here, 

I investigated the specific role of ERK2 in B cell proliferation. 

To do so, I used a 4-hydroxy tamoxifen-inducible Cre-loxP Activation system of 

Mapk1fl/fl mutant mice. These Mapk1fl/fl mutant mice carry loxP sites flanking exon 2 of 

the Mapk1 gene that is deleted following cre-mediated recombination. 

Progenitor B cells from Mapk1fl/fl mice were transduced with either NRASG12D-MIP or 

BCR-ABL1Neo (p210-Neo). After respective selection with puromycin or neomycin, 

BCR-ABL1Neo pre-B cells were further transduced with 4-OHT-inducible Cre-MIP and 

empty vector control (EV-MIP). NRASG12D-MIP pre-B cells were transduced with GFP-

tagged, 4-OHT-inducible Cre or empty vector control (EV) and sorted for GFP 

expression. Cre activity was induced using 4-hydroxy tamoxifen (4OHT) resulting in 

deletion of MAPK1 (ERK2), which was confirmed by western blot (Figure 7A). 

Interestingly, phosphorylation of ERK1 seems to compensate for the loss of ERK2.  

Next, I performed a colony forming assay in methylcellulose to study proliferation 

ability in the presence and absence of MAPK1/ERK2 in pre-B cells, NRASG12D and 

BCR-ABL1 driven ALL cells. Cre-mediated deletion of Mapk1/Erk2 in Mapk1fl/fl pre-B 

cells resulted in significantly decreased colony formation in comparison to empty 

vector control (Figure 7B). By contrast, those ALL cells driven by either NRASG12D or 

BCR-ABL1 were able to transform and showed strong colony formation regardless of 

MAPK1 status (Figure 7C & Figure 8A). However, an effect was seen in a serial re-

plating assay that is based on their self-renewal ability. Serial re-plating showed that 

loss of MAPK1 significantly decreased colony formation in comparison to empty 

vector control (Figure 7C & Figure 8A). Transformed pre-B cells expressing either 

NRASG12D or BCR-ABL1 exert impaired self-renewal ability.  
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Additionally, Cre-mediated deletion of Mapk1 in NRASG12D expressing pre-B ALL 

cells led to depletion of cells in a growth competitive assay over 7 days (Figure 8B). 

Here, Mapk1fl/fl pre-B cells were transduced with NRASG12D- Kusabira Orange 

followed by GFP-tagged, 4-OHT-inducible Cre or empty vector control (EV).  

These findings suggest that MAPK1/ERK2 activity is required for proliferation of non-

malignant cells, however ALL cells driven by an oncogene (NRASG12D and BCR-

ABL1) do not need ERK2 activity for proliferation. This might be due to ERK1 

compensating for the loss of ERK2 however this did not rescue the impairment 

observed in cell proliferation in pre-B cells.  
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Figure 7 Deletion of Mapk1 resulted in reduced colony forming ability in pre-B 

cells but had no effect in Mapk1fl/fl BCR-ABL1-driven ALL   

(A) Mapk1fl/fl pre-B cells were transduced with 4-OHT inducible Cre or empty 

vector control (EV). Following 4-OHT treatment for 48 and 72 hours, 

western blotting showed successful deletion of Mapk1/Erk2. ERK1 and 

ERK2 are indicated. Representative of > 3 experiments. 

(B) Mapk1fl/fl pre-B cells were transduced with puromycin tagged, 4-OHT-

inducible Cre or empty vector control (EV). After puromycin selection, cells 

were treated with 4-OHT for 48 hours and 10, 000 cells seeded in semi-

solid methylcellulose and monitored for colony formation for 14 days. 

Representative images and quantification (mean values ± SD, n = 3) are 

shown. The p value was calculated from t test. Representative of > 3 

experiments with 3 replicates/experiment. 

(C)  Colony forming ability of Mapk1fl/fl pre-B cells expressing BCR-ABL1 was 

examined by serial re-plating upon deletion of Mapk1. The p value was 

calculated from t test. Representative of 3 experiments with 3 

replicates/experiment for 1° plating. 



48 
 

Figure 8 Deletion of Mapk1 in NRASG12D-ALL cells had no effect on colony 

formation but shows a growth disadvantage compared to empty vector control 

(A) Mapk1fl/fl-NRASG12D-ALL cells were transduced with GFP-tagged, 4-OHT-

inducible Cre or empty vector control (EV) and sorted for GFP expression. 

Cells were treated with 4-OHT for 48 hours and 10, 000 cells were seeded in 

semi-solid methylcellulose and monitored for colony formation for 14 days. 

Representative images and quantification (mean values ± SD, n = 3) are 

shown. The p value was calculated from t test. Representative of 3 

experiments with 3 replicates/experiment. 

(B) Mapk1fl/fl pre-B cells expressing KO1 tagged-NRASG12D were transduced with 

GFP-tagged, 4-OHT-inducible Cre or EV.  Following induction with 4-OHT, 

enrichment or depletion of double positive KO1+/GFP+ cells was monitored by 

flow cytometry. Illustrated is time course showing the average relative changes 

(± SD) of GFP+ cells following induction (n=3). 
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4.3.2 ERK2 activity proved to be redundant for colony formation in myeloid 

progenitor B cells and in NRASG12D or BCR-ABL1 CML-like cells 

 

       I have shown that MAPK1/ERK2 activity is required for colony formation in pre-B 

cells but is redundant in pre-B cells driven by an oncogene such as NRASG12D and 

BCR-ABL1 (Figure 7+8). Interestingly, Shojaee and Caeser4 showed that even 

though robustness of ERK negative control is a predictor of poor clinical outcome in 

B cell-lineage, it is not in myeloid leukaemia. The question arises whether my finding 

is also a lineage specific effect. Therefore, I tested potential divergent-specific 

functions by performing colony forming assays in a myeloid environment for pre-B 

cells cultured in IL-3/IL-6/SCF and NRASG12D and BCR-ABL1 CML-like cells.  

Bone marrow from Mapk1fl/fl mice was harvested and B cell progenitors were cultured 

in the presence of IL-3/IL-6/SCF before transduction with either NRASG12D-MIP or 

BCR-ABL1Neo. After respective selection with Puromycin or Neomycin, cells were 

transduced with GFP-tagged, 4-OHT inducible Cre or empty vector control (EV) and 

sorted for GFP expression. I found that Cre-mediated deletion of Mapk1/Erk2 in 

Mapk1fl/fl myeloid pre-B cells resulted in no significant difference in colony forming 

ability in comparison to empty vector control (Figure 9A). Myeloid ALL cells driven by 

NRASG12D or BCR-ABL1 were able to form colonies regardless of MAPK1 status 

(Figure 9B&C).  However, I observed that those cells transduced with NRASG12D 

formed three times more colonies than BCR-ABL1 transduced cells.  

This finding suggests that ERK activity is redundant for colony forming ability in 

myeloid progenitor B cells and in NRASG12D or BCR-ABL1 CML-like cells. This is in 

contrast to the requirement for ERK activity for colony formation in lymphoid 

progenitor B cells. 
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Figure 9 Deletion of Mapk1 in myeloid progenitor B cells and NRASG12D or BCR-

ABL1 CML-like cells had no effect on colony formation ability 

Mapk1fl/fl pre-B cells were cultured with IL-3/IL-6/SCF (A) and transduced with either 

BCR-ABL1Neo (B) or NRASG12D-MIP (C) followed by infection with GFP+ tagged, 4-

OHT-inducible Cre or empty vector control (EV). Cells were treated with 4-OHT for 48 

hours and 100, 000 cells were seeded in semi-solid methylcellulose and monitored 

for colony formation for 14 days. Representative images and quantification (mean 

values ± SD, n = 3) are shown. The p value was calculated from t test. 
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4.4 Examining the role of BCL6 in RAS-mediated transformation of 

pre-B cells  

        Aberrant activation of oncogenic RAS can lead to oncogene-induced senescence 

(OIS) which is characterized by Arf/p53 induction and irreversible cell cycle arrest in 

the G1 phase60. The transcriptional repressor and protooncogene BCL6 was identified 

as a factor that rescues RAS-induced senescence61.  BCL6 is also known to cause 

drug resistance in Ph+ acute lymphoblastic leukemia (ALL)62, highlighting the 

importance of developing new therapeutic targets. Given that activating lesions in the 

RAS pathway are found in ~50% of high-risk childhood pre-B ALL at diagnosis2, I 

tested the hypothesis that BCL6 may facilitate RAS-mediated transformation of pre-B 

cells. 

 

4.4.1 Activation of the RAS-ERK signalling pathway upregulated BCL6 

expression 

               My previous experiments shown here demonstrated that negative feedback 

regulation of ERK signalling is required for oncogenic transformation. Here, I 

examined the consequences of acute activation of BRAFV600E on BCL6 expression in 

the presence and absence of DUSP6.  

 

As before (Figure 1A), induction of BRAFV600E by 4-OHT in murine pre-B cells led to 

increased phosphorylation of ERK in Dusp6+/+ pre-B cells. ERK signalling was 

constitutively active in Dusp6-/- pre-B cells and was further increased upon induction 

of BRAFV600E (Figure 10A). Interestingly, BCL6 expression was upregulated following 

BRAFV600E activation at the protein (Figure 10A) and mRNA (Figure 10B) level. 

Dusp6+/+ pre-B cells had higher BCL6 protein expression level than Dusp6-/- pre-B 

cells, however this is reversed at the mRNA level suggesting post-transcriptional 

gene regulation. Consistent with this, elevated BCL6 levels in association with 

hyperactivation of ERK were observed in a patient-derived KRASG12V mutant LAX7R 

cells but not in the LAX7 diagnostic sample (Figure 10C). 

 

These findings suggest that increased BCL6 protein expression was a consequence 

of ERK activation.  
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Figure 10 Activation of the RAS-ERK pathway upregulates BCL6 expression 

(A) BrafV600E/+ Dusp6+/+ and BrafV600E/+ Dusp6-/- pre-B cells were transduced with 4-

OHT inducible Cre or empty vector control (EV). Following 4-OHT treatment 

for 48 hours, western blotting was used to examine levels of BCL6, phospho-

ERK1/2-T202/Y204, ERK1/2 and β-actin. Representative of 3 experiments. 

(B)  Expression levels of Bcl6 were also examined following treatment with 4-OHT 

for 24 hours by qRT-PCR (n=3). 

(C) Levels of BCL6, phospho-ERK1/2-T202/Y204, ERK1/2 and β-actin in patient-

derived LAX7 (KRAS WT) and LAX7R (KRASG12V) cells were examined by 

western blotting.  This western blot was performed by Christian Hurtz. 
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4.4.2 Oncogenic RAS signalling induced BCL6 expression by suppressing 

STAT5 Activity 

 

         Next, I wished to identify the mechanism by which RAS pathway activation 

induced BCL6 expression. Previous work by Duy62 showed that STAT5 represses 

BCL6 in BCR-ABL1-transformed pre-B ALL.  

Here, I took advantage of the doxycycline-inducible vector system for expression of 

oncogenic NRASG12D (described in 4.1.2) in murine pre-B cells. Interestingly, while 

overexpression of NRASG12D resulted in oncogenic activation of ERK in pre-B cells, 

phosphorylation of STAT5Y694 was strongly inhibited (Figure 11A). Similarly, 

treatment of patient-derived KRASG12V mutant pre-B ALL cells (LAX7R) with 

increasing concentrations of BCI, (2-benzylidene-3-(cylohexylamino)-1-lndanone 

hydrochloride), a small molecule inhibitor of ERK - DUSP6, resulted in reduced 

phosphorylation of STAT5Y694 and hyperactivation of ERK (Figure 11B). 

It was previously reported that imatinib increases BCL6 expression in BCR-ABL1-

transformed pre-B ALL cells62.  Here, I found that Cre-mediated deletion of 

Mapk1/Erk2 suppressed imatinib-mediated induction of BCL6 in BCR-ABL1-driven 

ALL cells, as well as phosphorylation of STAT5 which was seen to be mutually 

exclusive with ERK phosphorylation levels (Figure 11C). STAT5 signalling is known 

to be negatively regulated by a SH2-domain protein tyrosine phosphatase PTPN663. 

Here, I found that whilst oncogenic NRASG12D signalling resulted in lower STAT5 

activity (Figure 11A&B), expression of NRASG12D strongly induced the inhibitory 

protein tyrosine phosphatase PTPN6 in association with ERK hyperactivation (Figure 

11D).  

Furthermore, BCL6 is known to mediate transcriptional repression of cell cycle 

checkpoint regulators p21 (CDKN1A) and p27 (CDKN1B)62 so here I examined the 

role of such transcriptional repressors upon NRASG12D induction. I observed that in 

murine pre-B cells, induction of NRASG12D following Dox treatment resulted in 

upregulation of p27, p21 as well as p53 (Figure 11E).  

Those findings suggest that activation of oncogenic RAS induced BCL6 expression 

through PTPN6-mediated dephosporylation of STAT5 and upregulation of 

transcriptional repressors.  
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Figure 11 Activation of oncogenic RAS induced BCL6 expression through 

PTPN6-mediated dephosporylation of STAT5 and upregulation of 

transcriptional repressors 

(A) Levels of phospho-STAT5-Y694, STAT5, phospho-ERK1/2-T202/Y204, ERK1/2, 

NRAS, and β-Actin were examined in murine pre-B cells expressing EV or 

NRASG12D. Western blot was performed by Seyedmehdi Shojaee. 

(B) Patient-derived pre-B ALL samples at diagnosis (LAX7; KRAS WT) and at 

relapse (LAX7R; KRASG12V) were treated with increasing concentrations of 

BCI.  Western blotting was used to examine levels of phospho-STAT5-Y694, 

STAT5, phospho-ERK1/2-T202/Y204, ERK1/2 and β-actin. Representative of 2 

experiments. 
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(C) Mapk1fl/fl BCR-ABL1-driven pre-B cells were transduced with 4-OHT inducible 

Cre or empty vector control (EV). Following 4-OHT treatment for 48 hours, 

cells were treated with imatinib (1μM) or vehicle control for 24 hours. Western 

blot for BCL6, phospho-STAT5-Y694, STAT5, phospho-ERK1/2-T202/Y204 and 

ERK1/2 was performed using β-actin as loading control. Representative of 3 

experiments. 

(D) Levels of phospho-PTPN6-Y564, PTPN6, phospho-ERK1/2-T202/Y204, ERK1/2, 

NRAS, and β-Actin were examined in murine pre-B cells expressing EV or 

NRASG12D.   

(E) Levels of NRAS, phospho-ERK1/2-T202/Y204, ERK1/2, p27, p21, p53 and β-

actin were examined in murine pre-B cells expressing EV or NRASG12D.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

5 Discussion 

     It is known that in solid tumours, acute hyperactivation of oncogenes such as RAS 

or BRAF can cause oncogene-induced senescence which functions to limit tumour 

development31. It is believed that the activation of such pathways initially leads to a 

burst of proliferation followed by cellular senescence and therefore can be described 

as a tumour suppression mechanism that prevents the progression of benign 

lesions31. The cause of oncogene-induced senescence is suggested to be due to 

strong activation of negative feedback pathways such as RasGEFs, Sprouty proteins, 

RasGAPs, and DUSPs rather than hyperactive RAS signalling itself31. These 

negative pathway regulators are designed to inhibit RAS/PI3K signaling which in turn 

activate mediators of the senescence response such as Rb and p5331. Therefore, it is 

not surprising to see that in advanced BRAFV600E- and RAS-driven solid tumours, 

negative feedback regulators of ERK are frequently disabled by being deleted, 

mutated or hypermethylated36.  

In apparent contrast to this paradigm, negative feedback regulators of the MAPK 

pathway are highly expressed in pre-B ALLs. Using genetic mouse models and a 

small molecule inhibitor targeting DUSP6, I have shown that in RAS-driven pre-B 

ALL, ERK-negative feedback control enables malignant transformation; making it a 

therapeutic target in human pre-B ALL. This might seem counterintuitive to current 

treatment strategies that aim to inhibit oncogenic signalling as this study proposes 

the opposite strategy56. For instance, I have shown that cells lacking hyperactive 

ERK signalling (LAX7) were less dependent on ERK-negative feedback control and 

are spared when treated with the small molecule inhibitor BCI in comparison to RAS-

driven ALL cells (LAX7R) that showed a high sensitivity towards BCI.  This 

hypothesis was not supported by the growth competition assay I performed using a 

BRAFV600E genetic mouse model. Here, pre-B cells driven by BRAFV600E exerted a 

growth advantage regardless of their DUSP6 status. This experiment was conducted 

over 10 days and it is possible that initially pre-B cells driven by BRAFV600E get a 

strong proliferative boost regardless of DUSP6 status and exert growth changes later 

on.  

B cell malignancies that originate from different stages of B cell development are 

under intense selective pressure and unlike other types of cancer, are uniquely 
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susceptible to negative selection of self-reactive clones9. B cell malignancies remain 

fully sensitive to autoimmunity checkpoints (AIC), that lymphocytes have evolved 

during early stages of B cell development to protect against autoimmune disease9.  

An autoreactive BCR that binds self-antigen results in strong BCR signalling above 

the maximum signalling threshold. This leads to negative selection and cell death at 

AICs, enforcing central B cell tolerance64. Cells that signal below the minimum 

threshold owing to a non-functional BCR are eliminated by neglect65. Positive 

selection of nonautoreactive immature B cells requires tonic BCR signalling resulting 

in intermediate BCR signaling strength and survival66. According to this scenario, 

ERK hypersignalling, a distal BCR signaling substrate, would induce cell death 

equivalent to checkpoint activation for the deletion of autoreactive B cells (Figure 

5.1). To avoid elimination of these RAS-driven B cells due to hypersignalling, tumour 

cells highly express negative feedback signalling to bring signalling below the 

maximum threshold4. This sensitivity of B cells to different ERK signalling strengths 

makes ERK negative feedback a potential therapeutic target in pre-B ALL. As 

described in this thesis, DUSP6 inhibition by BCI led to hyperactivation of ERK and 

subsequent cell death in human pre-B ALL cells – most likely due to AIC activation. 

Colleagues in the Müschen laboratory have subsequently tested this hypothesis in an 

in vivo setting and demonstrated that BCI treatment induced remission in 

immunodeficient mice injected with patient derived pre-B ALL cells (Shojaee and 

Caeser4). Furthermore, albeit seemingly paradoxical given the well-known role of 

PTEN as a tumour suppressor, small molecule inhibition of PTEN, which induced 

strong AKT hyperactivation, was also toxic in pre-B ALL cells67. Acute hyperactivation 

of BCR signalling can also be achieved by inhibition of phosphatases such as SHP1 

and SHIP1 resulting in cell death in pre-B ALL cells68. The concept of blocking 

negative feedback regulators and pushing signalling above the maximum threshold 

resulting in AIC activation and cell death might represent a promising therapeutic 

avenue in oncogene-driven ALL and could broaden currently available treatment 

strategies9. 

In contrast, inhibiting signalling from tyrosine kinase receptors pushes signalling 

below the minimum signalling level needed for their survival56 (Figure 5.1). Over the 

last few decades, new molecular and genomic technologies have been developed 

which led to enormous progress in oncology.  Many tyrosine kinase inhibitors have 

been approved by the FDA for the use in humans such as imatinib (Gleevec) against 
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BCR-ABL1-leukaemia69 or erlotinib against EGFR in non-small cell lung cancer70. 

Furthermore, Irving proposed the use of MEK inhibitors such as selumetinib to 

attenuate oncogenic ERK signaling in RAS pathway-mutated ALL cells34. 

 

 

However, the proposed treatment strategy of pharmacological autoimmunity 

checkpoint agonists in human pre-B ALL has two main limitations. First, oncogenic 

signalling from SYK, PI3K and ERK are well-known drivers of several different 

cancers, and whether prolonged treatment with AIC agonists may lead to the 

development of new cancers through activation of dormant pre-malignant cells in 

other organs is unclear9. A solution to this might be short pulses of AIC treatment that 

are potentially sufficient to commit pre-B ALL cells to cell death9. Secondly, a major 

limitation of TKI’s and potentially AIC agonists is the development of drug resistance 

due to newly acquired genomic alterations. Big efforts have been put into combatting 

such drug resistance and ponatinib, a third-generation TKI, is of particular note 

because it suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-

positive (Ph+) leukaemia, including the drug resistance mediator BCR-ABL1T315I 71. 

Figure 5.1 Regulation of BCR signalling 

strength in normal B cells and B cell 

leukaemia (modified from Markus  

Müschen9). 
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Hence, as with any targeted therapy, it seems likely that inhibition of DUSP6 will 

select for subclones resistant to DUSP6 inhibition. In our paper (Shojaee and 

Caeser4) we discuss a strategy to avoid this scenario by alternating therapies so that 

selective pressures from opposite ends are applied sequentially (Figure 5.2).   

 

 

 

    

 

 

 

This sequential treatment regimen starts with using TKI or MEK inhibitors to 

attenuate oncogenic signalling, driving those cells into a ‘‘signal starvation zone’’.  It 

is believed that leukaemic cells may adapt to low levels of oncogenic signalling, 

leaving them in a ‘‘comfort zone’’4. This is followed by a second round of treatment 

with an AIC agonist to push signalling in the opposite direction. In this scenario, TKI 

treatment and selection for resistant clones do not confer adaptive fitness in the 

subsequent second treatment round4. While this treatment strategy is promising and 

might represent a new therapeutic concept, detailed studies of negative feedback 

inhibitors such as BCI will be needed in an in vivo setting. 

The discovery of three groups of human B cell malignancies in this study that 

fundamentally differ with respect to their ability to control ERK signalling strength 

Figure 5.2 Proposed treatment regimen to overcome drug-

resistance Treatment with tyrosine kinase inhibitors drives 

malignant cells into signal starvation; however, a majority of 

patients develop drug resistance. Subsequent treatment with BCI 

causes excessive signalling and forces such surviving cells out of 

their comfort zone leading to cell death. (Markus Müschen9) 
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might also be explained on the basis of autoimmunity checkpoints. The first group 

consisting of pre-B ALL cells have high levels of negative feedback regulators such 

as DUSP6 and treatment with BCI results in overwhelmingly strong BCR signalling 

and subsequent cell death at low concentrations of BCI. These cells are subject to 

central B cell tolerance; triggering negative selection and AICs induced cell death9. 

Signal hyperactivation was seen on the protein level when blotting for phospho-ERK. 

The second group consisting of BCR+ B cell lymphomas are likely to be driven by 

constitutively active signalling from an autoreactive BCR and have potentially 

escaped elimination at the central B cell tolerance checkpoint. Following BCI 

treatment, these cells are now being subject to peripheral tolerance; the second 

checkpoint of immunological tolerance22 and undergo cell death at high 

concentrations of BCI. Following treatment with BCI at increasing concentrations, 

phospho-ERK levels decrease suggesting these cells have most likely evolved other 

highly robust feedback control mechanisms and are therefore largely resistant to 

perturbations.  

The third group consists of B cell lymphomas that lack a B cell receptor and are 

completely non-responsive to BCI and do not exhibit significant activity of ERK 

feedback control. Mature B cell lymphomas such as classical Hodgkin Lymphomas or 

Primary Effusion Lymphoma often lack a BCR due to crippling somatic mutations that 

were acquired during affinity maturation in the germinal centre9. This group might 

already be beyond autoimmunity checkpoints making them resistant to perturbations.  

Moreover, I have shown that ERK2 deletion leads to impaired B cell proliferation in 

murine pre-B cells but is redundant in NRASG12D and BCR-ABL1-driven pre-B ALL. 

This suggests one functional isoform is sufficient for proliferation in oncogene-driven 

pre-B ALL but not in normal pre-B cells. ERK1 protein expression increased after 

ERK2 deletion suggesting a compensatory effect; however, this did not rescue the 

impairment observed in cell proliferation in pre-B cells. Studies have shown that the 

loss of ERK2 usually has a greater effect than loss of ERK1, despite them being 

highly similar28,72. The greatest effect can be seen in Erk2-/- mice that are 

embryonically lethal30 whereas Erk1-/- mice are viable and fertile29. Interestingly, 

transgenic expression of Erk1 rescues the placental developmental defects seen in 

Erk2-/- mice73. Furthermore, in neural development, loss of ERK2 resulted in impaired 

proliferation of neural progenitors and production of fewer neurons resulting in loss of 
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higher-order functionality in the mature brain72. However, loss of ERK1 did not result 

in an overt learning phenotype74. Cell proliferation was also slowed down in 

fibroblasts after reducing expression of ERK228. Busca hypothesized that the 

determinant factor to achieve ERK function is not isoform specificity but the global 

ERK quantity75 which might have been the determinant factor in my experiments 

described here. NRASG12D and BCR-ABL1-driven pre-B ALL mouse cells have 

stronger signalling through the ERK pathway than normal pre-B cells so loss of ERK2 

in these cells had no effect as the overall global ERK quanitity was strong enough to 

achieve ERK function. However, in normal pre-B cells, loss of ERK2 proved to be 

detrimental as global ERK quantity was reduced. Despite the vast amount of studies 

performed on ERK signalling, the functional differences between ERK1 and ERK2 

remain controversial75. 

In addition to DUSP6 as a potential therapeutic target in pre-B ALL, I also propose 

that pharmacological inhibition of BCL6 may provide another therapeutic option in 

RAS-driven ALL. BCL6 was identified to cause drug resistance in Ph+ ALL and 

genetic ablation of BCL6 impaired leukaemogenesis62. In RAS-driven ALL, activation 

of ERK upregulated BCL6 expression at the protein and mRNA level. Interestingly, 

NRASG12D signalling inhibited the negative regulator of BCL6, STAT5 by activating 

the inhibitory protein tyrosine phosphatase PTPN6. Notably, BCL6 deletion in 

NRASG12D expressing pre-B cells suppressed the development of leukaemia in 

immunodeficient mice whereas expression of NRASG12D in Bcl6+/+ mice resulted in 

fatal leukaemia (unpublished data, Muschen laboratory). Interestingly, whilst I 

showed that KRASG12V mutant LAX7R cells were sensitive to pharmacological 

inhibition by DUSP6, these cells also showed sensitivity towards a BCL6 inhibitor RI-

BPI (unpublished data, Muschen laboratory). These findings suggest BCL6 to be a 

potential therapeutic target in RAS-driven pre-B ALL. In contrast, during normal 

germinal centre formation, activation of MAPK signalling results in BCL6 

phosphorylation, which in turn leads to its rapid degradation by the 

ubiquitin/proteasome pathway76. Given that germinal centre derived lymphomas 

express the BCL6 protein77, the MAPK-mediated degradation of BCL6 might be 

blocked by genetic alterations suggesting a potential relevance for treatment of B cell 

lymphoma76. 

In conclusion, I have demonstrated the importance of the MAPK pathway in pre-B 
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ALL and exploited its negative feedback regulators to treat pre-B ALL. I identified 

ERK negative feedback control via the Dual Specificity Phosphatase 6 (DUSP6) as 

well as BCL6 to be crucial for NRASG12D-mediated pre-B cell transformation, 

suggesting their potential as therapeutic targets.  I also discovered that a high level of 

ERK activity is required for proliferation of normal pre-B cells, but dispensable in 

leukaemic pre-B ALL cells. In addition, I found that human B cell malignancies can be 

grouped into three categories that fundamentally differ in their ability to control ERK 

signalling strength. These are novel findings shedding light on the functional role of 

MAPK signalling and its negative regulators in pre-B ALL.  
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Chapter 2 Synthetic lymphomas as a tool for the functional 

prioritisation of driver genes 
 

1 Abstract 
 

Diffuse Large B Cell Lymphoma (DLBCL) is the commonest form of non-Hodgkin 

lymphoma. Although potentially curable with chemotherapy, 40% of patients still 

succumb to their disease. Recent exome sequencing studies have identified 

hundreds of recurrently mutated genes. However, for most, their contribution to 

disease, or their importance as therapeutic targets, remains uncertain. I optimised a 

novel approach for the functional screening of these mutant genes. This was 

achieved by reconstituting non-malignant, primary, human germinal centre B cells 

(GC B cells) with combinations of wildtype and mutant genes to recapitulate the 

genetic events of DLBCL. When injected into immunodeficient mice, these 

oncogene-transduced GC B cells gave rise to tumours that closely resemble human 

DLBCL, reinforcing the biological relevance of this system. To screen potential 

tumour suppressor mutations in this system in a high throughput fashion, I developed 

a lymphoma-focused CRISPR library of 692 genes recurrently altered in B cell 

lymphomas. These experiments identified GNA13 as an unexpectedly potent tumour 

suppressor in human GC B cells and provided new understanding to its mechanism 

of action.  
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2 Introduction 

 2.1 Diffuse Large B Cell Lymphoma (DLBCL) 

         Diffuse large B cell lymphoma (DLBCL) is the commonest form of non-Hodgkin 

lymphoma78. Although potentially curable with immunochemotherapy (R-CHOP; 

rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone), 40% of 

patients succumb to their disease, many within a year of diagnosis79. So far, targeted 

small molecule inhibitors against distinct molecular pathways have shown 

disappointing results in clinic. This is mainly due to the high genetic heterogeneity of 

DLBCL and the lack of understanding of how many of these mutations contribute 

functionally to the disease3,80-82.  

 

2.2 Germinal Centre Reaction  

         The cell of origin of DLBCL is the germinal centre B cell (GC B cell). Germinal 

centres are transient structures that form in secondary lymphoid organs once a naïve 

B cell encounters a T-cell dependent antigen in the context of T cell help12,83. An 

outline of the germinal centre reaction can be seen in Figure 1. Antigen-activated B 

cells differentiate into centroblasts that undergo rapid proliferation and somatic 

hypermutation (SHM) in the dark zone12,83. During the process of SHM, point 

mutations are introduced into the variable region (IgV) of the heavy and light chain 

resulting in a change in the amino-acid sequence and altered affinity for an 

antigen12,83. Centroblasts then migrate to the light zone as centrocyctes where they 

compete for survival signals based upon affinity of the (mutant) antigen receptor83. 

Centrocyctes may also undergo class-switch recombination (CSR)12,83. Successfully 

selected centrocytes eventually differentiate into antibody-secreting plasma cells and 

memory B cells that protect against invading pathogens. This process is very efficient  

as both cell types appear within one week of antigen encounter83. Centroblasts and 

centrocytes are able to cycle between dark and light zone through a process guided 

by chemokine gradients12.  

Survival signals are provided to centrocytes by follicular dendritic cells (FDC) and co-

stimulatory B cell surface receptors like the tumour-necrosis factor (TNF)-receptor 

family member CD40 and its ligand CD154 expressed by T follicular helper (Tfh) 

cells12. FDCs capture and retain unprocessed antigen as intact Ag-Ab complexes 

through Fc and complement receptors for antigen presentation to a GC B cell84-86. 
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FDCs are intimately associated with GC B cells providing a microenvironment 

stimulating GC B cell proliferation, activation and viability84. They do so by expressing 

a large number of cofactors such as adhesion molecules (ICAM-1 and VCAM-1) that 

enhance cell-cell contact, anti-apoptotic molecules (BAFF/BLys) that prevent 

apoptosis and proliferation stimuli (8D6,IL-15,IL-6)84-86. It is suggested that FDCs 

express many more molecules of importance not yet identified84. T follicular helper 

(Tfh) cells also produce an array of cytokines such as IL-4, IL-10 and IL-2187. These 

cytokines play an important role in GC B cell proliferation, differentiation and antibody 

class switch87. 

  

 

 

 

 

The GC reaction is orchestrated by a large network of transcriptional modulators and 

its initiation is dependent on a transitory peak in NF-κB, IRF4 and MYC, which are 

later transcriptionally suppressed in the dark zone11 (Figure 2). MYC is then 

temporarily re-expressed in those light zone B cells that are primed to cycle back to 

Figure 1 Outline of the germinal centre reaction Once a B cell 

encounters an antigen, it moves to the dark zone where it undergoes 

rapid proliferation and somatic hypermutation. Selection for the BCR 

with the highest affinity occurs in the light zone before GC B cells 

differentiate into memory B cells or plasma cells.12  
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the dark zone3,88. During GC initiation, IRF8, IRF4 (through activation by NF-κB) and 

MEF2B all contribute to expression of BCL6, considered the master regulator of the 

GC reaction3. After the initial peak of MYC expression, BCL6 then transcriptionally 

represses MYC and multiple other cellular processes that affect many signalling 

pathways. For instance, BCL6 downregulates the response to DNA damage, 

prevents premature B cell activation and blocks terminal differentiation3. The 

importance of BCL6 in the GC reaction can be seen in BCL6-deficient mice where 

GC formation is completely absent3. Conversely, translocation of BCL6 leading to 

constitutive expression results in lymphomagenesis in both humans and mice3. 

Paired box 5 (PAX5) is expressed throughout the entire germinal centre reaction and 

is only downregulated in cells committed to plasma cell differentiation by IRF4, 

BLIMP1 and XBP1 expression3. NF-κB (which activates IRF4) contributes to GC 

initiation by BCL6 induction; however, at the GC exit stage this pathway promotes 

plasma cell differentiation by downregulating BCL63. This in turn releases the 

repression on PRDM1 (encoding BLIMP1). BLIMP1 is required for plasma cell 

differentiation as it inhibits cell proliferation and also makes the switch to a plasma 

cell-specific transcriptional programme including the activation of XBP1 by repressing 

PAX53. 

The importance of the germinal centre reaction can be seen in patients that are 

unable to form GCs because of inherited immunodeficiency syndromes such as 

Hyper-IgM syndrome. 

 

 

 

Figure 2 Network of transcriptional modulators in the GC 

reaction (modified from3).   
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2.3 Mechanisms of genetic lesions in DLBCL 

         The pathways driving tumourigenesis are often hijacked by genetic aberrations 

including amplifications, deletions and point mutations leading to gain-of-function 

mutations that activate signalling effectors and loss-of-function mutations that 

inactivate negative feedback signalling89. Interestingly, DLBCL is also characterized 

by two further genetic alterations; chromosomal translocations and aberrant SHMs 

which arise from errors in V(D)J recombination, somatic hypermutation (SHM) and 

class-switch recombination (CSR)90. Those remodelling mechanisms are often 

hazardous because they take place in an environment where B cells proliferate 

rapidly and DNA damage checkpoints are silenced by BCL63,12. Chromosomal 

translocations in DLBCL typically involve recombination between the 

immunoglobulin loci and a proto-oncogene locus commonly affecting genes that 

regulate GC B cell development3,12. This is notably different from acute leukaemias 

where chromosomal translocations result in fusion genes12. Common chromosomal 

translocations are the t(14;18) translocation between the immunoglobulin heavy 

chain locus (IgH) and BCL2 loci or the t(8;14) translocation between the 

immunoglobulin and MYC loci3,12.  

Aberrant SHM, another hallmark of DLBCL, is the aberrant process of SHM on 

non-immunoglobulin loci3,12. It causes dysregulated expression of proto-oncogenes 

(for example MYC and PIM1) by introducing somatic mutations in the 5’ regulatory 

region affecting the correct function of the corresponding gene91. BCL6 is often 

dysregulated through translocation of the intact protein coding sequence to 

regulatory regions such as promoters by a partner chromosome or as the result of 

aSHM that prevents the silencing of BCL6, resulting in a block in GC 

differentiation92. 

 

2.4 Evolving classification of DLBCL 

         In the past, gene expression profiling had identified different subgroups of 

DLBCL which research groups have used to classify DLBCL ever since; the activated 

B-cell-like (ABC), germinal-centre-B-cell-like (GCB) subgroup and unclassified93. 

ABC and GCB DLBCL are made up of different transcriptional modules consisting of 

hundreds of genes93. The GCB subgroup expresses genes characteristic of germinal 

centre B cells whereas the ABC subgroup corresponds to a slightly later stage of GC 
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development and is characterized by chronic active signalling through the B cell 

receptor94. The groups differed in overall survival after R-CHOP with GCB DLBCL 

having a better prognosis than ABC DLBCL94. The two subtypes also showed a 

differential response to targeted agents such as ibrutinib which is preferentially 

effective in patients with relapsed or refractory ABC DLBCL94.  

With the advent of next-generation sequencing (NGS), studies have revealed a 

remarkable high molecular and clinical heterogeneity in DLBCL. Many recurrent 

genetic alterations are present at low frequency and there is evidence for the 

existence of at least five molecular subtypes80-82. Previously, this high heterogeneity 

made it difficult to identify these low-frequency mutations due to sample-size 

limitations95. Pan-cancer analysis suggested that to achieve 90% power, 400 tumour-

normal DLBCL pairs are necessary to identify those genes mutated at a frequency of 

5% or higher95. To better understand DLBCL biology, three groups have recently 

published large genomic studies which together converge on a few hundred genes 

recurrently mutated genes in DLBCL6,7,96.  

Reddy performed whole-exome and transcriptome sequencing on 1001 DLBCL 

patients that were treated with rituximab-containing regimens and including 400 

paired germline DNAs7. They identified 150 genetic drivers of the disease (Figure 3) 

and sought to describe their clinical significance7. The most frequently mutated gene 

is KMT2D (MLL2), followed by BCL2 and MYD887. The sample size provided >90% 

power to identify mutations at a frequency of 5%7. Notably, 27 out of the 150 driver 

genes (for example SPEN, KLHL14, MGA) were not previously associated with 

DLBCL7. Using an unbiased CRISPR screen in cell lines, Reddy identified that the 

knockout of 35 driver genes (for example EBF1, IRF4, CARD11 in ABC DLBCL and 

XPO1, PTPN6, ZBTB7A in GCB DLBCL) resulted in a growth disadvantage, 

classifying them as oncogenes7. Caution must be exercised in the interpretation of 

these screens as several genes that could be considered “positive controls” for these 

experiments behaved aberrantly. An example is BTK, which is well established to be 

essential for the survival of ABC cell lines but not in those with mutant CARD11 such 

as OCI-Ly397. Completely opposite results are presented in the Reddy7 paper and 

the explanation for this is not clear. For 9 out of the 35 genes, targeted drugs are 

available which DLBCL patients that harbour mutations in one of these 9 genes 

(36%) might benefit from7. Existing drug targets include genes against MTOR, BCL2 
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or SYK7. However, it seems over-simplistic to infer sensitivity to a particular targeted 

agent purely from the presence of mutation within the target gene. 

A genomic risk model provided information on the link between combinations of 

genetic alterations and clinical outcome7. For instance, MYC genetic alterations with 

a high MYC expression are associated with the least favourable prognosis whereas 

GCB DLBCL with either CD70 or MYD88 alterations seemed to have the most 

favourable prognosis7.     

 

Figure 3 Recurrently altered genes in 1001 DLBCL cases This heatmap 

shows the top 60 out of 150 most frequently mutated genes (frequency >5%). 

Missense mutations are highlighted in yellow, copy number gain in red, truncating 

mutation in green and copy number loss in blue. The bargraph on the right 

displays the percentage of gene-level alteration.7 
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Another informative sequencing study by Chapuy and colleagues was published 

soon after96. This study carried-out whole-exome sequencing on 304 primary DLBCL 

from newly diagnosed patients (85% having been treated with R-CHOP)96. 55% of 

primary DLBCL samples lacked patient-matched normal samples so a computational 

approach was used to filter germline variants and artefacts from tumour-only 

samples96. Chapuy identified 40 previously undescribed genetic alterations such as 

LYN, HVCN1 and several histone genes96. Taking into account co-occurring 

alterations, this study identified 5 robust clusters with discrete genetic alterations and 

a further subset (C0) without any detectable genetic alterations96. Cluster 1 is 

characterized by genetic alterations in BCL6 and NOTCH2 pathway components as 

well as BCL10, TNFAIP3(A20), and FAS96. It also has multiple immune evasion 

strategies such as mutations in CD70 and B2M96. Transcriptional profiling suggests 

that cluster 1 is mainly ABC-type tumours. These mutations are also often found in 

marginal zone lymphoma (MZL) suggesting cluster 1 represents a transformed MZL 

precursor96. Cluster 2 presents with inactivation of tumour suppressor genes 

maintaining chromosome stability such as frequent biallelic inactivation of TP53 and 

17p copy loss96.  Somatic copy number alterations were observed in cell cycle 

modifiers like 9p21.13/CDKN2A and 13q14.2/RB196. This cluster can be associated 

with both GCB and ABC DLBCL96. Cluster 3 mainly has BCL2 mutations with 

BCL2/IgH rearrangements, mutations in chromatin modifiers such as KMT2D, 

CREBBP, and EZH2 and also PTEN alterations; making it more GCB-like96. Cluster 4 

is also GCB-like and harbours mutations in several key signalling pathways, such as 

BCR/PI3K, JAK/STAT, and BRAF pathway components96. Genetic alterations were 

also found in multiple histones and chromatin-modifying enzymes96. Clusters 3 and 4 

perturb chromatin by distinct mechanisms and both harbour unique targetable 

genetic alterations. This suggests that they are genetically distinct and might respond 

differently to targeted therapies96. Cluster 5, which is mainly ABC-like, has defining 

mutations in CD79B, MYD88, TBL1XR1, PIM1, BTG1, and ETV6 and has a distinct 

genetic mechanism to the ABC-like Cluster 196. Cluster 1 and 5 harbour different 

types and incidence of MYD88 mutations. Interestingly, cluster 1 has low or absent 

canonical AID (cAID) activity whereas cluster 5 shows increased cAID activity96.  

Chapuy attributed significant differences in progression-free survival (PFS) and 

overall survival (OS) across the different clusters96. Clusters C0, C1 and C4 DLBCL 

had more favourable outcomes than C3 and C596. 
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Another study by Schmitz and colleagues identified genetic subtypes of DLBCL that 

differ from each other by recurrent genetic aberrations6. Schmitz performed exome 

and transcriptome sequencing on 574 DLBCL biopsy samples and deep amplicon 

sequencing on 372 genes6. Based upon genetic abnormalities, four molecular 

subtypes were identified, termed MCD, BN2, N1 and EZB (Figure 4) that seem to 

have different outcomes after immunochemotherapy.  

 

 

 

 

 

Figure 4 Exome sequencing identifies four new genetic subtypes in DLBCL 

Subtype MCD is based on the co-occurrence of MYD88 and CD79 mutations, BN2 

is based on BCL6 fusions and NOTCH2 mutations, N1 is characterized by 

NOTCH1 mutations and EZB is based on EZH2 mutations and BCL2 

translocations. (modified from6) 



72 
 

MCD has a co-occurrence of genetic mutations previously associated with ABC 

DLBCL; MYD88L265P and CD79B6. This group is similar to Cluster 5 in Shipp’s study.  

The BN2 subgroup has BCL6 fusions and NOTCH2 mutations6. These are enriched 

for cases unclassified by gene expression and when compared to Shipp’s group 

shows similarities to Cluster 1. Interestingly, the third subgroup N1 shares a 

functional similarity with BN2; it has a NOTCH1 mutation but yet they differ 

genetically, phenotypically and clinically6. The last subgroup EZB is enriched for 

EZH2 mutations and BCL2 translocations that are usually seen in GCB DLBCL and 

can be attributed to Shipp’s Cluster 3. Both BN2 and EZB subgroups have a more 

favourable outcome after immunochemotherapy than MCD and N1 subgroups6. 

However, Chapuy reported that cluster 3, which correlates to the EZB subgroup, had 

a less favourable outcome96.  

 

All three studies suggest the possibility of precision-medicine in DLBCL, with the use 

of targeted agents in the context of a particular molecular subtype. However, caution 

is advised due to significant differences between these sequencing studies. Out of 

the few hundred genetic alterations these studies converged on, there were many 

mutations that were not shared between them and the same genetic alterations such 

as BCL2 mutations and chromatin modifier mutations (Cluster 3 and EZB subtype) 

were correlated with different outcomes between two studies. Moreover, the four 

subgroups suggested by Schmitz are derived from a pre-defined grouping where 

they used a set of “seed classes” and moved patient cases into and out of the 4 

defined subtypes using an algorithm-based approach6. Overall, only approximately 

50% of samples are classified into one of the 4 subgroups with the remaining 50% 

being attributed to other ABC, GCB or other unclassified subtypes. Clusters 2 and 4 

from Chapuy’s study 96 that do not match with any of the 4 subgroups suggested by 

Schmitz6 might fall into these remaining 50%. Furthermore, whilst Chapuy96 and 

Schmitz6 grouped genetic alterations into 4 – 5 subtypes, Reddy7 divided its identified 

mutations into 39 subtypes based upon their impact on prognosis. This large number 

makes it very difficult to compare to the other studies and impractical for use in clinic. 

It is highly likely that further subtypes will be identified in the future as technology 

develops. Finally, it is important to point out that these clusters were generated 

computationally. Although the gene expression profiling and differences in outcome 

support their existence as separate entities there is currently very little functional, 
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experimental evidence for co-operation between the various genetic alterations found 

within each cluster.  

 

2.5 DLBCL pathogenesis  

         The genome of DLBCL is strikingly complex, with a high intra- and inter- 

tumour variability80-82. Some of these mutations converge on common signalling 

pathways that are already well-characterized; however, for many mutations the 

functional mechanism and contribution to lymphomagenesis remains unclear80-82. 

As discussed in 2.4, DLBCL most likely consists of several subgroups; however, in 

this section I will focus on the main genetic lesions found in ABC and GCB DLBCL 

to date (Figure 5).  

 

 

In GCB- and ABC- DLBCL, epigenetic remodelling is disrupted in around 30% of 

cases11. Genetic inactivation of the acetyltransferase EP300 and/or CREBBP 

results in impaired acetylation of BCL6 and p53 leading to constitutive activation of 

the BCL6 proto-oncogene and decreased function of p5398. Mutations in the 

histone methyltransferase KMT2D are likely to have an effect on chromatin 

regulation by reprogramming the epigenome of the precursor cancer cell11,99,100. 

Genetic alterations affecting the BCL6 locus occur in roughly 35% of GCB- and 

ABC- DLBCL patients11. Chromosomal translocation of BCL6, as described in 2.3, 

is known to contribute to lymphomagenesis by suppressing DNA damage 

responses and blocking GC differentiation11. aSHM of BCL6 in the first nonconding 

Figure 5 Subtype-specific genetic alterations in DLBCL (modified from 11). 
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exon deregulates its activity by disrupting a negative autoregulatory loop that 

normally controls its own transcription and by preventing IRF4 from binding and 

subsequent transcriptional repression following CD40 signalling3. Moreover, gain 

of function mutations in MEF2B, a transcriptional activator of BCL6 are seen in 

around 10% of cases and inactivation of FBXO11, which leads to impaired 

proteasomal-mediated degradation of BCL6 is seen in around 4% of cases11. TP53 

being mutated and deleted in around 20% is also shared across both DLBCL 

subtypes11. 

Interestingly, 60% of lymphoma cells seem to escape immune surveillance by loss 

of MHC class I expression, making them invisible to cytotoxic T lymphocytes 

(CTLs) and natural-killer cells (NK)89,101. This is due to inactivation of beta-2-

microglobulin (B2M) which results in the inability to express HLA class I complex 

on the surface89,101. Inactivating mutations are also found in genes encoding HLA-

A, HLA-B, HLA-C101. 

In GCB DLBCL, common aberrations are chromosomal translocations of MYC and 

BCL2 in 35% and 15% of cases, respectively11. Gain-of-function mutations in 

EZH2 are seen in around 20% of cases and have been shown to contribute to 

lymphomagenesis by repressing CDKN1A, PRDM1 and IRF43. Additionally, 

mutations in the GNA13 pathway (~30%) result in impaired apoptosis and loss of 

confinement to the germinal centre102. This leads to dissemination to the lymph 

and bone marrow thereby promoting lymphoma102. Here, loss-of-function mutations 

in GNA13, S1PR2, ARHGEF1 and P2RY8 inactivate the GNA13 pathway11.   

ABC DLBCL is best characterized by the constitutive activation of NF-κB and the 

block of GC B cell differentiation to plasma cells11,89. Around 20% of cases harbour 

mutations in CD79A and/or CD79B, which contributes to chronic active BCR 

signalling by preventing endocytosis of the receptor and/or weakening the negative 

pathway regulator LYN97. Activating mutations in CARD11 (~10%) lead to 

constitutive NF-κB activation via the CARD-11-BCL-10-MALT1 complex103. 

Constitutive NF-κB activation is also achieved by mutations in MYD88 which forms 

a complex with IRAK1 and IRAK4, thereby activating NF-κB as well as the 

JAK/STAT3 pathway104. It is therefore not surprising to find the key negative 

regulator of the NF-κB pathway, TNFAIP3 (A20) to be mutated in around 30% of 

ABC DLBCL cases leading to prolonged NF-κB responses105. Pharmacological 
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inhibition of NF-κB by the BTK inhibitor ibrutinib resulted in cell death of ABC 

DLBCL cell lines, emphasising the importance of the NF-κB pathway106. The 

inability of ABC DLBCL cells to differentiate into plasma cells is partly due to 

mutations in PRDM1, which are observed in around 30% of cases11.  

Moreover, somatic mutations in CCND3 are found in approximately 14% of ABC 

DLBCL and 10% of GCB DLBCL107. CCND3, encoding Cyclin D3, belongs to the 

highly conserved cyclin family that regulates the CDK kinases driving cell cycle 

G1/S transition107. Mutations are often seen in the threonine residue at position 

283 (T283) which stabilizes the Cyclin D3 protein107. It does so by changing the 

phosphorylation motif at Thr283 which is essential for proteosomal degradation107.  

 

2.6 Genome editing using CRISPR 

         The emergence of genome-editing technologies has enabled researchers to 

precisely manipulate the sequence of the human genome; Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) being the most popular one to 

date108. Over the years there have been several attempts to edit the genome 

including RNA interference (RNAi)109, zinc finger nucleases (ZFNs)110 and 

transcription activator-like effector nucleases (TALENs)111. However, these 

approaches are costly, time-consuming to engineer, and have DNA binding 

specificity issues108. Therefore, CRISPR has evolved as the primary tool for genome 

editing, due to its simplicity, adaptability and high efficiency as a site-specific 

nuclease.  

The bacterial CRISPR/CAS9 system derived from Streptococcus pyogenes has 

proven to be highly versatile and effective in introducing double-strand breaks 

(DSBs) into mammalian cells108,112-114. The system requires the introduction of an 

RNA-guided CRISPR-associated endonuclease (CAS9) and a “guide” RNA 

(gRNA)108. The gRNA is a short synthetic RNA consisting of a ‘’scaffold’’ sequence 

and a user-defined 20 nucleotide region (“spacer”) at the 5’ end108. The ”scaffold” 

sequence is necessary for CAS9 binding whereas the “spacer” is designed so that it 

can target virtually any genomic location that is present immediately upstream of a 

Protospacer Adjacent Motif (PAM)108. In fact, even if the sequence is fully 

complementary, CAS9 does not cut without a PAM sequence115. Once the 

CAS9:gRNA complex has annealed to the target DNA in a 3’ to 5’ direction, RuvC 
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and HNH, two functional endonuclease domains in CAS9, cut both DNA strands, 

generating a double-stranded break (DSB) approximately 3-4 nucleotides upstream 

of the PAM sequence108. These DNA breaks are then repaired by either Homology-

directed repair (HDR) or Non-homologous end joining (NHEJ)108. HDR allows for 

gene correction or insertion of precise point mutations if a donor template is 

supplied108. In the absence of a homologous repair template, NHEJ results in 

insertions and/or deletions (indels) at the DSB site, disrupting the targeted locus116. 

Typically, indels give rise to in-frame amino acid deletions, insertions or frameshift 

mutations resulting in a loss-of-function mutation in the target gene116. The 

CRISPR/CAS9 system takes advantage of this, which makes it highly efficient and 

versatile.  

 

2.7 Unmet need in Lymphoma 

            A major goal in cancer research has been to identify a complete list of mutated 

cancer genes in the hope to elucidate the molecular basis and find potential 

therapeutic targets117. 

As discussed, exome, transcriptome and whole genome sequencing has revealed a 

striking degree of molecular and genetic heterogeneity in DLBCL in the last decade 

80-82. Three large genomic studies6,7,96 that in total have analysed almost 2000 

DLBCL patient samples have gained remarkable insight into genetic drivers and 

different genetic subtypes that may respond differently to targeted therapy. Although 

some new oncogenes and tumour-suppressor genes have been identified that occur 

at high frequency, most mutations are found in only a few percent of patients and for 

many of these mutant genes there is very little functional understanding as to how 

they contribute to lymphomagenesis and how they act cooperatively with other 

mutations. Therefore, this striking degree of genetic heterogeneity in DLBCL makes 

targeted therapy highly challenging. This is compounded by the fact that there is no 

ideal way to experimentally model all proposed genetic subtypes. Therefore, 

generating preclinical model systems to capture this genetic heterogeneity is a 

current research priority118.  

Current tools available for functional analysis of mutations are limited to lymphoma 

cell lines and transgenic mice. Cell lines represent the late stages of lymphoma, carry 

a high mutational burden and have often evolved in culture for many years. 
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Transgenic mice are costly, time-consuming to develop and oncogenic mechanisms 

in the mouse do not always accurately reflect those in humans. Thus, the available 

tools to address the most important questions in DLBCL tumour biology are currently 

inadequate. 

 

2.8 Aims of this study 

 

          I set out to develop a novel co-culture system that could be used to examine the 

functional importance of mutations and combinations of mutations in 

lymphomagenesis using a non-malignant, primary, human germinal centre B cell (GC 

B cell).  
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3 Materials & Methods 
 

3.1 Materials 
 

3.1.1 Overview of mouse strains used in this study 

    Mouse strain Source   Purpose       

NSG Jackson Laboratories Transplant recipient mice   
 

 

3.1.2 Retroviral vectors; Constitutive expression 

 

 

 

 

        

 

 

 

 

 

 

 

3.1.3 Lentiviral vectors; Constitutive expression 

 

 

Construct   Overexpression of 

MSCV-IRES-huDC2 
 

BCL6-t2A-BCL2 

MSCV-IRES-huDC2   MYC-t2A-BCL2 

MSCV-CAS9-2A-tagBFP CAS9 

MSCV-IRES-Thy1.1 p53dd 

MSCV-IRES-LyT2 CCND3 T283A 

MSCV-IRES-vLyT2. Empty 

MSCV-IRES-vLyT2. BCL6 WT  

MSCV MYC 

PBABE–TERT.Hygro hTERT 

MSCV-IRES-Thy1.1 CDK4 R24C 

MSCV-IRES-vxy-puro CD40L 

MSCV-IRES-LyT2 IL21 

Construct   Overexpression of 
 
  Source 

pKLV2-U6gRNA-Bbsi-PGK-GFP 
 

Lymphoma library  
and single gRNAs 

Modified from 
Addgene 
#67979 
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3.1.4 Overview of Western blot antibodies used in this study 

Antigen Clone ID Company 

Beta-actin 13E5 Cell Signalling 

AKT 9272 Cell Signalling 

Phospho-AKT (Ser473) 9271 Cell Signalling 

GNA13 EPR5436 Abcam 

PTEN 138GG Cell Signalling 

   

3.1.5 Overview of cell lines studied used in this study 

Cell line Type Source 

HBL-1 ABC DLBCL Dr. D. Hodson 

BJAB GCB DLBCL Dr. D. Hodson 

U2932 ABC DLBCL Dr. D. Hodson 

FDCs 
Tonsillar Follicular 
Dendritic Cells Chan-Sik Park 

 

3.1.6 Overview of Flow Cytometry Antibodies studied used in this study 

Surface antigen Clone ID Company 

CD38 HB7 BioLegend 

CD20 2H7 BioLegend 

CD19 HIB19 BioLegend 

CD10 97C5 BioLegend 

CD2 RPA-2.10 BioLegend 

CD90.1 Thy1.1 OX-7 BioLegend 

CD154 24-31 BioLegend 

CD8a  53-6.7 BioLegend 

CD22  HIB22 BioLegend 
 

3.1.7 Overview of PCR primers used in this study 

Primer Sequence 5' - 3' 

Zhang_F GTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTT
GTGGAAAGGACGAAACACC 

Zhang_R_modified ACTTTTTCAAGTTGATAACGGACTAGCCTTATTTAAACTTG
CTATGCTGTTTCCAGCATAGCTCTTAAAC 

gLibrary-
HiSeq_50bp-SE-U1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTGTGG
AAAGGACGAAACA 

gLibrary-
HiSeq_50bp-SE-L1 

TCGGCATTCCTGCTGAACCGCTCTTCCGATCTCTAAAGCG
CATGCTCCAGAC 

iPCRtagseq AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC 
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U6-Illumina-seq2 TCTTCCGATCTCTTGTGGAAAGGACGAAACACCG 

Indexing Adapter 
PE 1.0 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATC*T 

iPCRtagT1 CAAGCAGAAGACGGCATACGAGATAACGTGATGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT2 CAAGCAGAAGACGGCATACGAGATAAACATCGGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT3 CAAGCAGAAGACGGCATACGAGATATGCCTAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT4 CAAGCAGAAGACGGCATACGAGATAGTGGTCAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT5 CAAGCAGAAGACGGCATACGAGATACCACTGTGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT6 CAAGCAGAAGACGGCATACGAGATACATTGGCGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT7 CAAGCAGAAGACGGCATACGAGATCAGATCTGGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT8 CAAGCAGAAGACGGCATACGAGATCATCAAGTGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT9 CAAGCAGAAGACGGCATACGAGATCGCTGATCGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT10 CAAGCAGAAGACGGCATACGAGATACAAGCTAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT11 CAAGCAGAAGACGGCATACGAGATCTGTAGCCGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT12 CAAGCAGAAGACGGCATACGAGATAGTACAAGGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT13 CAAGCAGAAGACGGCATACGAGATAACAACCAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT14 CAAGCAGAAGACGGCATACGAGATAACCGAGAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT15 CAAGCAGAAGACGGCATACGAGATAACGCTTAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT16 CAAGCAGAAGACGGCATACGAGATAAGACGGAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT17 CAAGCAGAAGACGGCATACGAGATAAGGTACAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT18 CAAGCAGAAGACGGCATACGAGATACACAGAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT19 CAAGCAGAAGACGGCATACGAGATACAGCAGAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT20 CAAGCAGAAGACGGCATACGAGATACCTCCAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT21 CAAGCAGAAGACGGCATACGAGATACGCTCGAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT22 CAAGCAGAAGACGGCATACGAGATACGTATCAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT23 CAAGCAGAAGACGGCATACGAGATACTATGCAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT24 CAAGCAGAAGACGGCATACGAGATAGAGTCAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT25 CAAGCAGAAGACGGCATACGAGATAGATCGCAGAGATCG
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GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT26 CAAGCAGAAGACGGCATACGAGATAGCAGGAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT27 CAAGCAGAAGACGGCATACGAGATAGTCACTAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT28 CAAGCAGAAGACGGCATACGAGATATCCTGTAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT29 CAAGCAGAAGACGGCATACGAGATATTGAGGAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

iPCRtagT56 CAAGCAGAAGACGGCATACGAGATGTACGCAAGAGATCG
GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T 

 

3.1.8 Overview of qRT-PCR Primers used in this study 

Primer Sequence 

EBV F QP1L 5’ – GCCGGTGTGTTCGTATATGG – 3’ 

EBV R QP2L 5’ – CAAAACCTCAGCAAATATATGAG – 3’ 
 

3.1.9 G Blocks used for GaLV_WT_RC, GaLV_MTR_RC and GaLV_TR_RC 

envelope constructs 

 

G Block Sequence 5' - 3' 

5’ GaLV_WT CTAGAGTCGA CCTGCAGGAT ATCGAATCCA CCATGGTATT 
GCTGCCTGGG TCCATGCTTC TCACCTCAAA CCTGCACCAC 
CTTCGGCACC AGATGAGTCC TGGGAGCTGG AAAAGACTGA 
TCATCCTCTT AAGCTGCGTA TTCGGCGGCGGCGGGACGAG 
TCTGCAAAAT AAGAACCCCC ACCAGCCCAT GACCCTCACT 
TGGCAGGTAC TGTCCCAAAC TGGAGACGTT GTCTGGGATA 
CAAAGGCAGT CCAGCCCCCT TGGACTTGGT GGCCCACACT 
TAAACCTGAT GTATGTGCCT TGGCGGCTAG TCTTGAGTCC 
TGGGATATCC CGGGAACCGA TGTCTCGTCC TCTAAACGAG 
TCAGACCTCC GGACTCAGAC TATACTGCCG CTTATAAGCA 
AATCACCTGG GGAGCCATAG GGTGCAGCTA CCCTCGGGCT 
AGGACTAGAA TGGCAAGCTC TACCTTCTAC GTATGTCCCC 
GGGATGGCCG GACCCTTTCA GAAGCTAGAA GGTGCGGGGG 
GCTAGAATCC CTATACTGTA AAGAATGGGA TTGTGAGACC 
ACGGGGACCG GTTATTGGCT ATCTAAATCC TCAAAAGACC 
TCATAACTGT AAAATGGGAC CAAAATAGCG AATGGACTCA 
AAAATTTCAA CAGTGTCACC AGACCGGCTG GTGTAACCCC 
CTTAAAATAG ATTTCACAGA CAAAGGAAAA TTATCCAAGG 
ACTGGATAAC GGGAAAAACC TGGGGATTAA GATTCTATGT 
GTCTGGACAT CCAGGCGTAC AGTTCACCAT TCGCTTAAAA 
ATCACCAACA TGCCAGCTGT GGCAGTAGGT CCTGACCTCG 
TCCTTGTGGA ACAAGGACCT CCTAGAACGT CCCTCGCTCT 
CCCACCTCCT CTTCCCCCAA GGGAAGCGCC ACCGCCATCT 
CTCCCCGACT CTAACTCCAC AGCCCTGGCG ACTAGTGCAC 
AAACTCCCAC GGTGAGAAAA ACAATTGTTA CCCTAAACAC 
TCCGCCTCCC ACCACAGGCG ACAGACTTTT TGATCTTGTG 
CAGGGGGCCT TCCTAACCTT AAATGCTACC AACCCAGGGG 
CCACTGAGTC TTGCTGGCTT TGTTTGGCCA TGGGCCCCCC 
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TTATTATGAA GCAATAGCCT CATCAGGAGA GGTCGCCTAC 
TCCACCGACC TTGACCGGTG CCGCTGGGGG ACCCAAGGAA 
AGCTCACCCT CACTGAGGTC TCAGGACACG GGTTGTGCAT 
AGGAAAGGTG CCCTTTACCC ATCAGCATCT CTGCAATCAG 
ACCCTATCCA TCAATTCCTC CGGAGACCAT CAGTATCTGC 
TCCCCTCCAA CCATAGCTGG TGGGCTTGCA GCACTGGCCT 
CACCCCTTGC CTCTCCACCT CAGTTTTTAA TCAGACTAGA 
GATTTCTGTA TCCAGGTCCA GCTGATTCCT CGCATCTATT 
ACTATCCTGA AGAAGTTTTG TTACAGGCCT ATGACAATTC 
TCACCCCAGG ACTAAAAGAG AGGCTGTCTC ACTTACCCTA 
GCTGTTTTAC TGGGGTTGGG AATCACGGCG GGAATAGGTA 
CTGGTTCAAC TGCCTTAATT AAAGG 

3’ GaLV_WT GGGAATAGGT ACTGGTTCAA CTGCCTTAAT TAAAGGACCT 
ATAGACCTCC AGCAAGGCCT GACAAGCCTC CAGATCGCCA 
TAGATGCTGA CCTCCGGGCC CTCCAAGACT CAGTCAGCAA 
GTTAGAGGAC TCACTGACTT CCCTGTCCGA GGTAGTGCTC 
CAAAATAGGA GAGGCCTTGA CTTGCTGTTT CTAAAAGAAG 
GTGGCCTCTG TGCGGCCCTA AAGGAAGAGT GCTGTTTTTA 
CATAGACCAC TCAGGTGCAG TACGGGACTC CATGAAAAAA 
CTCAAAGAAA AACTGGATAA AAGACAGTTA GAGCGCCAGA 
AAAGCCAAAA CTGGTATGAA GGATGGTTCA ATAACTCCCC 
TTGGTTCACT ACCCTGCTAT CAACCATCGC TGGGCCCCTA 
TTACTCCTCC TTCTGTTGCT CATCCTCGGG CCATGCATCA 
TCAATAAGTT AGTTCAATTC ATCAATGATA GGATAAGTGC 
AGTTAAAATT CTGGTCCTTA GACAGAAATA TCAGGCCCTA 
GAGAACGAAG GTAACCTTTA AGAATTCATT GATCATAATC 
AGCCATACCA C 

3’ GaLV_MTR GGGAATAGGTACTGGTTCAACTGCCTTAATTAAAGGACCTATAGAC
CTCCAGCAAGGCCTGACAAGCCTCCAGATCGCCATAGATGCTGAC
CTCCGGGCCCTCCAAGACTCAGTCAGCAAGTTAGAGGACTCACTG
ACTTCCCTGTCCGAGGTAGTGCTCCAAAATAGGAGAGGCCTTGAC
TTGCTGTTTCTAAAAGAAGGTGGCCTCTGTGCGGCCCTAAAGGAA
GAGTGCTGTTTTTACATAGACCACTCAGGTGCAGTACGGGACTCC
ATGAAAAAACTCAAAGAAAAACTGGATAAAAGACAGTTAGAGCGC
CAGAAAAGCCAAAACTGGTATGAAGGATGGTTCAATAACTCCCCTT
GGTTTACCACCTTGATATCTACCATTATGGGACCCCTCATTGTACT
CCTATTGATTTTGCTCTTCGGACCCTGCATTCTTAATCGATTAGTC
CAATTTGTTAAAGACAGGATATCAGTGGTCCAGGCTCTAGTTTTGA
CTCAACAATATCACCAGCTGAAGCCTATAGAGTACGAGCCATAGG
AATTCATTGATCATAATCAGCCATACCAC 

3’ GaLV_TR GGGAATAGGT ACTGGTTCAA CTGCCTTAAT TAAAGGACCT 
ATAGACCTCC AGCAAGGCCT GACAAGCCTC CAGATCGCCA 
TAGATGCTGA CCTCCGGGCC CTCCAAGACT CAGTCAGCAA 
GTTAGAGGAC TCACTGACTT CCCTGTCCGA GGTAGTGCTC 
CAAAATAGGA GAGGCCTTGA CTTGCTGTTT CTAAAAGAAG 
GTGGCCTCTG TGCGGCCCTA AAGGAAGAGT GCTGTTTTTA 
CATAGACCAC TCAGGTGCAG TACGGGACTC CATGAAAAAA 
CTCAAAGAAA AACTGGATAA AAGACAGTTA GAGCGCCAGA 
AAAGCCAAAA CTGGTATGAA GGATGGTTCA ATAACTCCCC 
TTGGTTCACT ACCCTGCTAT CAACCATCGC TGGGCCCCTA 
TTACTCCTCC TTCTGTTGCT CATCCTCGGG CCATGCATCA 
TCAATCGATT AGTCCAATTT GTTAAAGACA GGATATCAGT 
GGTCCAGGCT CTAGTTTTGA CTCAACAATA TCACCAGCTG 
AAGCCTATAG AGTACGAGCC ATAGGAATTC ATTGATCATA 
ATCAGCCATA CCAC 
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3.2 Methods  

3.2.1 Cell lines and human primary GC B cells 

         Cell lines were cultured in Roswell Park Memorial Institute medium (RPMI-

1640, Invitrogen, Carlsbad, CA) and primary human GC B cells were cultured in 

Advanced Roswell Park Memorial Institute medium (Advanced RPMI-1640, 

Invitrogen, Carlsbad, CA) with GlutaMAX containing 20% FBS, 100 IU/ml penicillin 

and 100 µg/ml streptomycin and kept at 37°C in a humidified incubator (5% CO2 and 

95% atmosphere). All cell lines used in this study are negative for mycoplasma 

contamination. 

3.2.2 Isolation of germinal centre B cells from human tonsil tissue  

         Fresh, tonsil tissue was sourced from the Addenbrooke’s ENT Department and 

processed directly to preserve viability. Ethical approval for the use of human tissue 

has been granted by the Health Research Authority Cambridgeshire Research Ethics 

Committee (REC no. 07/MRE05/44). Germinal centre B cells were purified using the 

human B cell negative selection isolation Kit II (MACS, Miltenyi Biotec). This was 

modified to include negative selection antibodies IgD-BIOT (SouthernBiotech) and 

CD44-BIOT (SouthernBiotech). Cells were stained for CD38, CD20, CD19 and CD10 

and considered germinal centre B cells when positive (>90%) for all four cell surface 

markers. See 3.1.6 for a list of Flow Cytometry Antibodies used in this study. 

3.2.3 EBV screen of isolated GC B Cells using quantitative real-time PCR 

         GC B cells purified from tonsils were tested for EBV status using a quantitative 

real-time PCR (qPCR) assay119. Serial dilutions of EBV positive genomic DNA 

(Namalwa) and genomic DNA from an EBV negative cell line (239FT) were used. 

qPCR was set up using FAST SYBR Green Master Mix (ThermoFisher) with 4 

replicates per sample and run on a Vii7 real-time PCR system (Applied Biosystems). 

The following cycling conditions were used: 95 °C for 20 s, 40 cycles of 95 °C for 1 s, 

60 °C for 20 s and the final extension, 60 °C for 1 min. See 3.1.8 for a list of qPCR 

primers used in this study.  

3.2.4 Cloning of alternative retroviral and lentiviral envelope constructs used 

for transducing primary human GC B cells 

          pHIT123 (provided by D.B. Kohn, University of California, Los Angeles, Los 

Angeles, CA) containing the retroviral ecotropic envelope, human cytomegalovirus 

immediate-early promoter and the origin of replication from simian virus 40 was used 
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as the backbone. To produce the retroviral envelope construct GaLV_WT_RC, the 

vector backbone (pHIT123) was digested with EcoRI (NEB) at 37°C for 1 hour and 

PCR-purified (Life Technologies, Qiagen). A 20 μl Gibson ligation reaction (NEB) was 

performed using 50 ng of the PCR-purified vector (pHIT123) and 30 ng of the 5’ 

GaLV_WT (1585 bp) insert and 10 ng of 3’ GaLV_WT (571 bp) to produce the 

retroviral envelope construct.  5’ GaLV_WT and 3’ GaLV_WT are the original GaLV 

envelope sequence taken from NCBI. After incubation for 1 hour at 50°C, 1 μl of the 

ligated reaction was transformed into 25 μl of electrocompetent cells (C3040, NEB) 

according to the manufacturer’s protocol. G-Blocks were ordered from eurofins.  

Next, GaLV_WT_RC was digested with EcoRI-HF (NEB) and PacI (NEB) to cut out 

the 3’ GaLV WT insert and purified using the PCR purification kit (QIAGEN). A 20 μl 

Gibson ligation reaction (NEB) was performed using 50 ng of digested 

GaLV_WT_RC and 10 ng of 3’ GaLV_MTR (574 bp) or 10 ng of 3’ GaLV_TR (574 

bp). 3’ GaLV_MTR contains the 3’ GaLV envelope sequence replaced by the MuLV 

transmembrane region, cytoplasmic region and R peptide region120. 3’ GaLV_TR 

contains the 3’ GaLV envelope sequence replaced by the MuLV cytoplasmic region 

and R peptide region120. After incubation for 1 hour at 50°C, 1 μl of the ligated 

reaction was transformed into 25 ul of electrocompetent cells (C3040, NEB) 

according to the manufacturer’s protocol. GaLV_MTR_RC and GaLV_TR_RC were 

verified by Sanger sequencing. 3’ GaLV_MTR G Block was ordered from IDT and 

GaLV_TR_RC from eurofins. See 3.1.9 for a list of G Block sequences used in this 

study. 

 

3.2.5 Retroviral and lentiviral production for infecting human primary GC B 

cells 

        Using 1 ml of Opti-MEM media (Invitrogen) and 18 μl of TransIT-293 (Mirus), 

293FT cells plated in a 10 cm2 dish were co-transfected with 1 μg pHIT60 (gag-pol), 

1 μg GALV WT (envelope, built by Rebecca Caeser) and 4 μg of a retroviral 

construct. Using 1 ml of Opti-MEM media (Invitrogen) and 33 μl of TransIT-293 

(Mirus), 8.3 μg pCMVDeltaR8.91 (gag-pol) (kindly provided by Dan Webster, NCI), 

2.8 μg GALV MTR (envelope, built by Rebecca Caeser) and 11 μg of a lentiviral 

construct were used for a 10 cm2 dish. Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen) with Glutamax containing 10% fetal bovine serum, 100 IU/ml penicillin, 

100 μg/ml streptomycin were used for cultivation. After 48h, the virus supernatant 
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was filtered through a 0.45 μM filter. If needed, media was replenished and harvested 

again at 72 hours.  

3.2.6 Retroviral and lentiviral production for infecting cell lines 

        Virus was produced as in 3.2.5 with 8.3 μg pCMV DeltaR8.91 (gag-pol) and 2.8 

μg pUC.MDG (kindly provided by Dan Webster, NCI) encoding the VSVG envelope 

as well as 11 μg of a lentiviral construct were used for a 10 cm2 dish. 1 μg pHIT60 

(gag-pol) and 1 μg pHITEA3x6 (envelope) as well as 4 μg of a retroviral construct 

were used for a 10 cm2 dish. 

3.2.7 Retroviral and lentiviral transduction 

        For retroviral/lentiviral transduction, cells were resuspended with the virus and 

infected by centrifugation (1500 x g, 90 min at 32°C) with the addition of 10 μg/ml 

Polybrene (INSIGHT biotechnology) and 25 μM HEPES (ThermoFisher). After the 

spin, virus supernatant was replaced with fresh media straight away if transducing 

retroviral constructs or replaced after > 4 hours if transducing lentiviral constructs. 

Cells were maintained at 37°C with 5% CO2 for 2 - 4 days before analysing by 

FACS.  

3.2.8 Extraction of genomic DNA from cultured cells 

        Cells (up to 40 x 106) were resuspended in a final volume of 1200 μl Lysis Buffer 

(0.1M Tris pH8.0, 0.2M NaCl, 5mM EDTA, 0.4% SDS) and 30 μl Proteinase K 

(20mg/ml, final concentration: 0.5mg/ml) solution. After incubation at 60°C overnight 

or until the pellet is fully dissolved, genomic DNA was precipitated using isopropanol 

and washed with 70% Ethanol. Genomic DNA was resuspended in TE Buffer and 

concentration was measured using Nanodrop.  

3.2.9 Single gRNA cloning 

       Oligonucleotides were ordered from IDT with the appropriate overhang 

sequences (underlined) for cloning into the gRNA expression plasmid 

pKLV2_U6gRNA_Bbsi_PGK_GFP. The expression plasmid pKLV2_U6gRNA_Bbs1-

PGK-tagBFP-2A-GFP-W was purchased from Addgene (#67979) and the tagBFP 

protein removed, resulting in pKLV2_U6gRNA_Bbsi_PGK_GFP.  gRNAs that start 

with a G nucleotide at the first position result in an increased CAS9-mediated 

cleavage efficiency when using a U6 promoter 121. Therefore, the first nucleotide from 

a 20nt gRNA sequence was replaced with a G nucleotide. The final sequences 

ordered were as follows: 
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Forward 5’-CACCG-gRNA 19nt-3’ 

Reverse 5’-AAAC-gRNA 20nt-3’  

Forward and reverse oligos were annealed for 10 min at 95°C and cooled to room 

temperature. Annealed gRNAs were ligated into the Bbsi-cut expression plasmid 

using T4 DNA Ligase (NEB) and T4 Buffer (NEB) and incubated at 25°C for 2 hours. 

After transforming the ligation reaction into DH5α competent cells, positive clones 

were identified by Sanger sequencing. 

3.2.10 Generation of lymphoma-focused CRISPR guideRNA library  

              gRNA sequences were obtained from Kosuke Yusa’s study122 and David E 

Root’s study123. Root’s human gRNA list (Brunello) provides a 20nt-gRNA sequence 

so I appended the first nucleotide with a G nucleotide (as explained in 3.2.9). Yusa’s 

human gRNA list provides a 19nt-gRNA sequence so I appended a G nucleotide to 

the 5’ end. Appropriate overhang sequences (underlined) for cloning into the gRNA 

expression plasmid pKLV2_U6gRNA_Bbsi_PGK_GFP (modified from Addgene 

#67979) were appended to all 6000 gRNAs. A 70-mer oligo pool was purchased from 

TWIST BIOSCIENCE as follows:  

5’- TATCTTGTGGAAAGGACGAAACACCG-N19-GTTTAAGAGCTATGCTGGAAACAGC-3’ 

N19 represents each of the 6000 gRNA sequences.  The single-stranded oligo pool 

was converted to double-stranded DNA by PCR amplification using Q5 Hot Start 

High-Fidelity 2X Master Mix (NEB) with 3 ng of the oligo pool as a template and 

primers (Zhang_F and Zhang_R_modified). The following PCR conditions were used: 

95 °C for 2 min, 10 cycles of 95 °C for 20 s, 60 °C for 20 s and 72 °C for 30 s, and 

the final extension, 72 °C for 3 min. The 150bp PCR product was gel purified from a 

2% Agarose gel using the Gel Extraction kit (Qiagen) and eluted in 20 μl EB Buffer.  

Four Gibson Assembly reactions were performed using 14.4 ng of the purified 150bp 

fragment and 200 ng of the BbsI-digested pKLV2_U6gRNA_Bbsi_PGK_GFP with 

Gibson HiFi DNA Assembly Master Mix (NEB). Gibson Assembly reactions were 

pooled and column-purified using MinElute PCR purification kit (QIAGEN). Eight 

electroporations were performed using 1 μl of the purified Gibson reaction and 20 μl 

of Endura Competent Cells (Lucigen). The mixture was transferred to a 0.1 cm 

cuvette and electroporated at 1.8KV. Immediately after, 2 ml of prewarmed SOC 

media was added to each reaction and placed on a shaker at 37°C for one hour. The 

electroporated cells were combined and plated onto sixteen 24.5 cm2 LB + ampicillin 



87 
 

agar plates using ColiRollers Plating Beads (Merck Millipore) and left at 30°C 

overnight.  306 000 resulting bacteria from sixteen plates (51x library complexity) 

were scraped off and plasmid DNA was purified using a Plasmid Maxi kit (Qiagen). 

The decanted pellet was weighed as pellets bigger than 0.45g will block the Maxi kit 

column. The Staudt group have empirically determined that ~ 10-30x coverage is 

sufficient for 100% gRNA representation in the library (personal communication with 

James Phelan). See 3.1.7 for a list of PCR primers user in this study. 

3.2.11 Generation of mutant libraries and screening 

                GC B cells were transduced with the oncogene cocktail and CAS9-BFP 

retrovirus until CAS9-BFP reached between 50 and 80%. The number of cells being 

transduced was dependent on the percentage of CAS9 and the anticipated MOI of 

double positive cells. For example, for a cell population consisting of 60% CAS9-BFP 

and an anticipated 30% of double positive cells (CAS9-BFP and CRISPR library-

GFP); 31.7 x 106 were transduced with a pre-determined volume of lentiviral CRISPR 

library to obtain a coverage of 1000x the size of the library. Four days after 

transduction, BFP and GFP expression was analysed by flow cytometry and at every 

harvest timepoint going forward. At every passage, the numbers of cells that 

represent 1000x coverage of the library, taking into account only double positive cells 

were seeded in a new T75cm2 tissue culture flask. This was crucial to avoid genetic 

bottlenecking. Seeing that double positive cells enriched over time, the number of 

cells to passage became smaller. This also applied to the cell number that was 

harvested approximately every 14 days. Harvest timepoints may vary between 

different screens. 

3.2.12 Generation of Illumina sequencing library 

               Genomic DNA extraction was conducted as described in 3.2.8. For 

sequencing of all gRNAs in the CRISPR library, primers (gLibrary-HiSeq_50bp-SE-

U1 and −L1) were used to amplify the region containing the gRNA. For this PCR, it is 

crucial to use sufficient genomic DNA to capture every gRNA in the cell population. 

This depends on the complexity of populations to be analysed. For human cells, 106 

cells contain around 6.6 μg of genomic DNA (assuming normal copy number). 

Therefore, the number of cells (millions) harvested * 6.6 μg will correspond to the 

amount of genomic DNA needed in the first PCR. For example, if a cell population 

was 30% double positive for CAS9-BFP and CRISPR library-GFP, then 20 x 106 cells 

were harvested to achieve 1000x coverage (6000 guides x 1000 coverage / 0.3). In 
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this case 131 μg (20 x 6.6) of genomic DNA was used in the first PCR, with a 

maximum of 10 μg per 50 μl reaction. Therefore, 13 independent PCR reactions were 

performed using 10 μg of genomic DNA per reaction with Q5 Hot Start High-Fidelity 

2× Master Mix. The following PCR conditions were used: 98 °C for 30 s, 20-24 cycles 

of 95 °C for 10 s, 61 °C for 15 s and 72 °C for 20 s, and the final extension, 72 °C for 

2 min. 5 μl from each PCR reaction were run on 2% Agarose gel and PCR was run 

for a few more cycles if there was no PCR product or PCR bands were still faint. 

Expected band size was 262 bp. Next, 5 μl from each individual PCR reaction per 

sample was taken, pooled and purified using QIAquick PCR Purification Kit (Qiagen). 

DNA was eluted in 50 μl EB buffer (Qiagen) and concentration was quantified on the 

nanodrop. In the second PCR, nextgen sequencing adaptors (P5, P7) compatible 

with Illumina’s HiSeq4000 and a barcode were added. One nanogram of the purified 

PCR product was used with NEBNext Q5 Hot Start HiFi PCR Master Mix with the 

following conditions: 98 °C for 30 s, 9-12 cycles of 98 °C for 10 s, 65 °C for 75 s and 

the final extension, 65 °C for 5 min. Forward primer named Indexing Adapter PE 1.0 

and different reverse indexing primers (iPCRtagT1-56) were used in this second 

PCR. A different reverse indexing primer was used for each sample. 5 μl from each 

PCR reaction were run on 2 % agarose gel and checked for visible PCR bands. 

Expected band size was 262 bp. The PCR products were purified with Agencourt 

AMPure XP beads in a PCR-product-to-bead ratio of 1:0.7 and eluted in 30 μl EB 

Buffer (Qiagen). The purified libraries were quantified, pooled and sequenced on 

Illumina HiSeq4000 by 50-bp single-end sequencing. Two custom sequencing 

primers were used here; iPCRtagseq which reads through the indices and U6-

Illumina-seq2 which reads through the gRNA sequence. Joao Dias provided 

bioinformatics support to extract read numbers for each gRNA in the library and I 

further analysed the data. Enriched gRNAs were defined based upon enrichment 

relative to the plasmid pool counts. All primer sequences were obtained from 122. See 

3.1.7 for a list of PCR primers used in this study. 

3.2.13 Mouse injection and tumour harvest 

          Cultured human germinal centre B cells were injected subcutaneously into the 

left flank of NSG mice. Up to 10 x 106 cells were washed and resuspended with 

Matrigel (Corning) in a 1:1 ratio. Mice were culled when tumours reached 12 mm in 

size and organs like spleen, lymph nodes and liver checked for metastasis.  Tumours 

were processed as follows: 1.) 3-5 tumour pieces were snap frozen and stored at -
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80°C for further biochemical analysis. 2.) 2-3 tumour pieces were emerged in 

Formalin for further histological analysis. 3.) Immediately after harvest, tumours were 

mashed through a 70 μM strainer, washed and stained for GC B cell markers (CD38, 

CD20, CD19, and CD10) and other appropriate markers. Viable cells were frozen in 

10% DMSO and a cell pellet frozen for further analysis. See 3.1.6 for a list of Flow 

Cytometry Antibodies used in this study. 

3.2.14 Histology 

              Mouse tumours derived from human GC B cells were fixed in 10% Formalin 

after harvest and histological analysis performed by Dr Hesham Eldaly at the 

Addenbrooke’s Histology Department.  

3.2.15 FACS (Fluorescence-activated cell sorting) 

           Cells were stained with Fluorophore-labelled antibodies in 2% BSA in PBS for 

20 min at 4°C. The stained/or unstained cells were analysed on the LSRII (BD).  See 

3.1.6 for a list of Flow Cytometry antibodies used in this study. 

3.2.16 Immunofluorescent staining of intracellular cytokines 

               Intracellular staining of phosphorylated AKT was performed as follows: Cell 

suspension and pre-warmed Fixation Buffer (BD Cytofix) was gently mixed in a 1:1 

ratio and incubated at 37oC for 15min. Cell suspension was pelleted and washed with 

PBS twice at 350g for 5 min. Ice-cold True-Phos perm buffer (BD Cytofix) was added 

dropwise to the cell pellet whilst vortexing, followed by incubation at -20 oC for at 

least 60 min. Cells were further washed twice and resuspended in FACS buffer (PBS 

+ 2% FBS) containing the appropriate antibody at a dilution of 1:50 (Phospho-Akt 

Ser473, Cell Signalling, #11962). After staining for 30min, cells were washed and 

resuspended in FACS buffer followed by analysis on the LSRII (BD).  

3.2.17 Transformation of competent cells 

         As described in Chapter 1, Methods 3.2.5. 

3.2.18 Plasmid Purification 

          As described in Chapter 1, Methods 3.2.6. 

3.2.19 Western blotting 

          As described in Chapter 1, Methods 3.2.10. See 3.1.4 for a list of western blot 

antibodies used in this study. 
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3.2.20 RNA purification 

         Total RNA from cells was extracted using NucleoSPIN RNA from Macherey-

Nagel (Bethlehem, PA) and cDNA was produced from 1μg of total RNA using 

qScriptTM cDNA SuperMix (Quanta Biosciences, Beverly, MA). 

3.2.21 Cell Cycle Analysis 

          Click-iT® EdU Alexa Fluor® 647 Imaging Kit (Life Technologies) was used for 

cell cycle analysis according to the manufacturer’s instructions. EdU incorporation 

(APC-labelled anti-EdU antibodies) and DNA content (7-AAD, 7-aminoactinomycin D) 

were measured in fixed and permeabilized cells. Viable cells were identified based 

on scatter morphology and gated cells were further analysed. 

3.2.22 Illumina sequencing analysis  

          Reads in fastq format were demultiplexed by Joao Dias and read counts given 

to me for further analysis. All raw read counts were normalized to Reads Per 

Kilobase of transcript per Million mapped reads (RPKM).  

 

To calculate the gRNA score, the following equation was used: 

𝑔𝑅𝑁𝐴 𝑠𝑐𝑜𝑟𝑒 = 𝑧 − 𝑠𝑐𝑜𝑟𝑒 ⌊𝑙𝑜𝑔2 (
𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑋 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑔𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡
)⌋ 

 

To calculate the CRISPR gene score, the following equation was used: 

 

𝐶𝑅𝐼𝑆𝑃𝑅 𝑔𝑒𝑛𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑔𝑅𝑁𝐴 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒) 

 

To calculate Fold enrichment over time, the following equation was used: 

 

𝐹𝑜𝑙𝑑 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑋 =   ⌊𝑙𝑜𝑔2 (

𝑇𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑋 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑔𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑔𝑅𝑁𝐴 𝑐𝑜𝑢𝑛𝑡

𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑛𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
)⌋ 
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4 Results  

4.1 Optimization of novel co-culture system consisting of follicular dendritic 

cells and germinal centre B cells (GC B cells) 

4.1.1 Follicular dendritic cells expressing CD40Lg and IL21 allow for in vitro 

growth of isolated GC B cells from tonsil 

 

        To screen the functional importance of the numerous mutations found in DLBCL 

using a non-malignant, primary, human germinal centre B cell (GC B cell), we first 

needed to culture GC B cells in vitro, something that has proven notoriously difficult 

in the past. Several groups have attempted this with slightly different culturing 

methods. Banchereau and colleagues first pioneered a culture method that 

stimulates the proliferation of B cells by culturing on mouse fibroblastic L cells stably 

expressing FcyRII/CDw32 and by the addition of anti-CD40 and cytokines such as IL-

4124,125. A similar method was presented by Kwakkenbos and colleagues who 

isolated memory B cells from blood or frozen peripheral blood mononuclear cells 

(PBMC) and cultured these cells for a limited timespan on irradiated mouse 

fibroblastic L cells with CD40Lg and IL21126.  In the context of mouse B cells, Nojima 

and colleagues developed a culture system in which mouse naïve B cells proliferate 

and adopt a GC B cell phenotype127. This culture system consisted of fibroblasts 

transfected with CD40Lg and BAFF with the addition of soluble IL-4127.  

Another attractive approach was presented by Kim and colleagues who established a 

follicular dendritic cell (FDC) – like cell line, HK128. HK cells alone did not stimulate 

GC B cell proliferation but this could be induced with the addition of anti-CD40 to the 

co-culture128. This system mimics to some degree the germinal centre environment in 

the lymph nodes and allows for growth and survival of human tonsillar B cells. As 

mentioned earlier, FDCs play an important role in GC development; they are 

necessary for differentiation and proliferation of GC B cells by providing co-

stimulatory functions128,129. GC B cells die rapidly in the absence of FDCs. FDCs 

used by Kim and colleagues had a very slow growth rate and efforts to immortalize 

these cells had previously been unsuccessful due to difficulty of transduction 

(personal communication with Chan-Sik Park, University of Ulsan College of 

Medicine, Seoul, Korea). This meant FDCs had to be freshly isolated from tonsil and 

grown for individual experiments. 
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To bypass these problems and to improve on existing techniques, we optimized a 

new co-culture system based upon human tonsillar FDCs (Figure 1A). These cells 

were obtained from Chan-Sik Park. Similar to HK cells, these primary FDCs have a 

very slow growth rate and stop proliferating after approximately 20 population 

doublings. In order to eliminate the frequent need to re-establish FDC cultures from 

tonsils and to avoid variations between cultures, we decided to immortalize these 

FDCs to extend their replicative capacity. This allowed us to use the same FDCs 

throughout my experiments. We also wished to enhance B cell proliferation by 

transducing these FDCs to stably express CD40Lg and cytokines.  

Several methods for immortalizing cells exist, such as inactivation of tumour 

suppressor genes (e.g. p53, Rb and others), overexpression of mutants like Ras or 

CDK4; or through the expression of human Telomerase Reverse Transcriptase 

protein (hTERT). Studies have shown that co-expression of hTERT and p53 siRNA 

allows for immortalization of human, primary, ovarian, or epithelial cells130. Similarly, 

co-expression of hTERT and CDK4 can immortalize bronchial epithelial cells131. As 

different cell types seem to require different immortalisation strategies, we 

transduced primary FDCs with various combinations of immortalising vectors to 

identify the method that gives the best long-term growth advantage. Instead of p53 

siRNA, we used a dominant negative form of p53132 and the hyperactive mutant 

CDK4 R24C. The combinations were as follows: 

1.) hTERT 

2.) CDK4 R24C 

3.) P53dd 

4.) hTERT + CDK4 R24C 

5.) hTERT + P53dd 

6.) P53dd + CDK4 R24C  

7.) hTERT + P53dd + CDK4 R24C  

8.) Untransduced 

We identified the combination of hTERT, a dominant negative form of p53 and CDK4 

R24C to be able to immortalize FDCs (Figure 1B). FDCs transduced with hTERT 

alone stopped replicating after a similar timespan to untransduced cells, after 

approximately 85 days. The other combinations were also not able to immortalize 

these cells before they reached replicative senescence. This suggests that in this cell 

type, hTERT, P53dd and CDK4 R24C are required for full immortalization.  
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Studies have shown that B cells can be stimulated in vitro by CD40Lg and cytokines 

such as IL4, IL2, IL10 or IL21124,126,133,134. Unpublished data from Daniel Hodson 

shows that stimulation with IL21 results in better B cell proliferation than IL4, IL2, or 

IL10, and hence IL21 was used for the feeder system set up here. Therefore, 

immortalized FDC were further retrovirally transduced with membrane-bound 

CD40Lg-Puro and IL21. Transduced FDCs were selected with puromycin and two 

rounds of transduction with IL21 were necessary for >90% transduction efficiency 

(data not shown). This created an immortalised FDC-derived feeder system that 

expresses the dominant T-cell helper molecules CD40Lg and IL21. 

When GC B cells were cultured on this feeder system, we observed vigorous cell 

growth for a period of approximately 11 days. Withdrawal of any individual 

component of the system, such as feeder cells, IL21 or CD40Lg completely 

abrogated this proliferation (Figure 2A). Having identified a feeder system that 

supports B cell growth, the immortalized CD40Lg-IL21 expressing FDCs were further 

expanded large scale, irradiated (30 Gy) and frozen down in aliquots for future 

experiments. This allowed for consistency between experiments. 

The immortalized follicular dendritic cells expressing CD40Lg and IL21 allowed us to 

grow primary human GC B cells short term in vitro. The purity of human GC B cells 

was >90%, as assessed by expression of CD38+CD20+CD19+CD10+ (Figure 2B). In 

order to prolong growth of these cells, I introduced oncogenes into these human GC 

B cells which allowed for long term growth in vitro (as will be described in 4.1.3). A 

schematic of this approach can be seen in Figure 2B.   
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Figure 1 hTERT, P53dd and CDK4 R24C allow full immortalization of human 

tonsillar follicular dendritic cells  

(A) Representative images of adherent follicular dendritic cells at different 

confluency are shown.  

(B) Immortalization of follicular dendritic cells was achieved by transduction with 

different oncogenes. Cell proliferation rate was monitored by manual cell 

counting. Illustrated is time course showing the number of cells following 

transduction. The combination hTERT, P53dd and CDK4 R24C gave the best 

proliferation advantage closely followed by the combination hTERT and CDK4 

R24C. Other single genes and combinations that had stopped proliferating 

and underwent replicative senescence are marked with an x at their final 

timepoint. Experiment was performed with Miriam Di Re (Hodson Laboratory). 
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Figure 2 Immortalized follicular dendritic cells expressing CD40Lg and IL21 

allow for in vitro growth of isolated GC B cells 

(A) On the left, representative images are shown of GC B cells, GC B cells on 

FDCs, GC B cells on FDCs + CD40Lg and GC B cells on FDCs + CD40Lg + 

IL21. On the right, quantitative analysis of the number of viable cells at three 

different timepoints; Day 4, Day 7 and Day 11. Experiment was performed with 

Miriam Di Re (Hodson Laboratory). 

(B) GC B cells were isolated from tonsil tissue using a MACS human B cell 

negative selection kit as well as anti-IgD and anti-CD44. After purification, cells 

were stained with CD38, CD20, CD19 and CD10. These cells were only used 

for experiments if the purity was >90%. GC B cells were co-cultured on    

irradiated follicular dendritic cells expressing CD40Lg and IL21 and further 

transduced with an oncogene cocktail to allow for long-term growth in vitro. 

Representative plots are shown. 
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4.1.2 A newly engineered retroviral and lentiviral envelope allows for high 

transduction efficiency in GC B cells 

 

         Transducing primary human GC B cells has been notoriously difficult. 

Conventional enveloped viruses such as VSV-G and amphotrophic retro and 

lentivirus are unable to transduce human B cells at high efficiency135-137. 

Pseudotyping, the process of replacing the native envelope with different viral fusion 

proteins allows vectors to transduce cells that would not be possible with the native 

envelope120. The murine leukaemia virus (MuLV) is one of the most commonly used 

vectors for gene transfer and often pseudotyped by envelope proteins from other 

type C mammalian retroviruses such as the Gibbon ape leukaemia virus (GaLV)120. 

GaLV uses an internalization receptor, SLC20A1 that is highly expressed on human 

B cells and renders them susceptible to retroviral infection138-140. In fact, previous 

studies showed that retrovirus packaging cells containing the Moloney murine 

leukaemia virus (MoMLV) gag-pol proteins and the Gibbon ape leukaemia virus 

(GaLV) env protein were able to infect human B cells141,142.  

However, the envelope protein from GaLV does not form functional pseudotyped 

lentiviral vectors120. The reason for this is not fully understood but Christodoulopoulos 

suggested that this is due to the cytoplasmic tail being incompatible to be 

incorporated into lentiviral vector particles120. The cytoplasmic region (cytoplasmic tail 

(T) and R peptide (R)) belongs to the transmembrane subunit which also consists of 

the transmembrane region (M) (Figure 3A). Christodoulopoulos showed that 

replacing the whole transmembrane region (MTR) or the cytoplasmic region (TR) with 

the corresponding MuLV region produced high titers of lentivirus vectors120.  

Here, I took advantage of the homology between the GaLV and MuLV envelope 

proteins and constructed retroviral and lentiviral vectors that are able to efficiently 

transduce primary human GC B cells (Methods 3.2.4). pHIT123 containing the Mo-

MuLV Env protein, human cytomegalovirus immediate-early promoter and the origin 

of replication from simian virus 40 was used as the backbone. I cloned the GaLV 

envelope into this backbone with the MTR or TR region replaced by the 

corresponding MuLV region, creating two lentiviral vectors named GaLV_MTR_RC 

and GaLV_TR_RC, respectively. A schematic can be seen in Figure 3A. 

GaLV_MTR_RC and GaLV_TR_RC achieved transduction efficiencies of 

approximately 80% and 50%, respectively as was determined by expression of GFP 
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(Figure 3B). As expected, VSV-G, the ecotropic MuLV and the full GaLV envelope 

(GaLV_WT_RC) were not able to transduce primary human GC B cells (Figure 3B).  

Additionally, all three newly engineered constructs were able to achieve high 

retroviral transduction efficiencies in GC B cells as was determined by expression of 

GFP (~80%) in these cells (Figure 3C). 

The engineered retroviral and lentiviral envelopes described here, allowed us to 

efficiently transduce human GC B cells which is critical to genetically modify these 

cells. 
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Figure 3 A newly engineered retroviral and lentiviral envelope allows for high 

transduction efficiency in human GC B cells 

(A) Schematic of the retroviral and lentiviral envelopes, GaLV_WT_RC, 

GaLV_MTR_RC and GaLV_TR_RC. M = transmembrane region, T = cytoplasmic 

tail, R = R peptide, SU = surface subunit, TM = transmembrane subunit120. 

(B&C) Primary human GC B cells were transduced with a lentiviral control (B) or 

retroviral control (C) construct using the newly engineered envelope constructs as 

well as VSV-G and MuLV. Three days after transduction, transduction efficiencies 

in primary human GC B cells were determined by expression of GFP using a flow 

cytometer. Representative of 3 experiments is shown when error bar is indicated 

on the bar graph. 
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4.1.3 A minimum of two oncogenic hits are necessary for long term survival of 

human GC B cells 

 

        As described, human GC B cells proliferate vigorously on immortalized follicular 

dendritic cells expressing CD40Lg and IL21 for up to 11 days. In order to prolong 

growth of these cells in vitro and to allow for long term experiments, I introduced 

some of the most common genetic alterations into these human GC B cells using the 

viral envelope described in 4.1.2. The platforms were as follows: 

1.) BCL2  

2.) BCL6 

3.) MYC 

4.) BCL2 + BCL6 

5.) BCL2 + MYC 

6.) Untransduced 

 

I identified two oncogene combinations that after transduction, allowed GC B cells to 

grow and proliferate in vitro for months. Successful cocktail combinations were BCL2 

+ BCL6 and BCL2 + MYC. For combination experiments, I cloned each oncogene 

into a single t2A linked vector (BCL6-t2A-BCL2 and MYC-t2A-BCL2). These two 

platforms allowed cell growth with continuous rapid proliferation for >3 months, at 

which point the cells were discarded due to logistical reason (Figure 4A). Oncogenes 

on their own; such as BCL2 alone, BCL6 alone or MYC alone were not sufficient to 

transform cells and cells died rapidly (Figure 4A). 

FACS staining for the cell surface marker CD2 linked to the t2A linker showed that > 

90% of cells were positively transduced three days after infection (Figure 4B). Even 

in cases where the transduction efficiency did not reach 90%, GC B cells rapidly self-

selected for BCL6-t2A-BCL2 or MYC-t2A-BCL2 within a week.  

It is likely that these are not the only combinations that allow for long-term growth of 

GC B cells and I am currently screening additional combinations.  

The ability to grow oncogene transduced GC B cells for months in vitro makes them a 

suitable tool for long-term studies and for further exploitation.  
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Figure 4 A minimum of two oncogenic hits are necessary for long term survival 

of human GC B cells 

(A) Cell Viability of human GC B cells transduced with different oncogenes was 

measured. Illustrated is time course showing normalized change in cell 

viability. Representative of 2-3 experiments. 

(B) Human GC B cells transduced with MYC-t2A-BCL2 or BCL6-t2A-BCL2 were 

stained for its marker CD2 and analysed by flow cytometry three days after 

transduction. Representative of > 3 experiments. 

 

 



101 
 

4.2 Immunodeficient mice injected with transduced GC B cells develop human 

tumours that closely resemble human DLBCL 

     

       I wished to examine whether oncogene transduced human GC B cells, described 

in this study, would model lymphomagenesis in immunodeficient mice 

(NOD/SCID/gamma mice) and would therefore provide a tool to study DLBCL 

genetics. 

I performed subcutaneous injections to elucidate the mechanism of local tumour 

formation and intravenous injection (IV) to learn about metastatic tumour formation. 

GC B cells (as well as FDCs) transduced with 4 different oncogene cocktails were 

injected into four immunodeficient mice per cohort. Pilot experiments showed that GC 

B cells transduced with only two oncogenes (such as BCL2 and BCL6) were 

insufficient to form tumours and therefore three and four gene combinations were 

used. The cohorts were as follows:  

1.) MYC, BCL2, P53dd,  

2.) MYC, BCL2, P53dd, CCND3 T283A 

3.) BCL6, BCL2, P53dd,  

4.) BCL6, BCL2, P53dd, CCND3 T283A 

As described before (2.5), somatic mutations in CCND3 are found in approximately 

14% of ABC DLBCL and 10% of GCB DLBCL107. Mutations are often seen in the 

threonine residue at position 283 (T283) which produces a highly stable isoform. 

High CCND3 expression has been shown to be a prognostic factor with poor clinical 

outcome in patients with DLBCL143. Hence, CCND3 plays an important role in GC 

development and DLBCL lymphomagenesis. Unpublished results of a mutant open 

reading frame (ORF) screen in human GC B cells from our laboratory identified 

CCND3 T283A to allow for increased cell proliferation when overexpressed. To 

confirm this and further explore the function of the CCND3 T283A mutation, I injected 

cells transduced with MYC/BCL6, BCL2, P53dd +/- CCND3 T283A.  

I did not detect any engraftment when cells were injected intravenously (5M cells per 

mouse, data not shown) but subcutaneous injection of 10M cells (in Matrigel) per 

mouse gave rise to tumours that closely resembled human DLBCL. Tumours were 

very fast growing and time from first detectable tumour to reaching its maximum 
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allowed size of 12 mm was usually within one week. Hence, Kaplan-Meier Curve in 

Figure 5A is illustrated as survival and not as tumour growth time. Cohorts injected 

with cocktail 1 had the most aggressive phenotype and mice had to be culled due to 

tumours reaching its maximum allowed size (12mm) after a median time of 35 days. 

Cohorts injected with cocktail 2 and 3 had to be culled at similar times with a median 

survival time of 111 days for both. 2 mice in cohort 3 and 1 mouse in cohort 2 were 

found dead with no tumour. The survival curve suggests that MYC is a stronger 

oncogene than BCL6 and CCND3 T283A accelerates tumour formation regardless of 

whether it is on a MYC or BCL6 background. I did not observe any spleen, liver or 

lymph node enlargement in any of these cohorts. The fourth cohort with BCL6, BCL2 

and P53dd is still alive with no visible tumour formation at > 6 months post injection.  

Tumours were processed immediately after harvest and analysed by flow cytometry 

for their immunophenotype. Figure 5B shows a representative example of surface 

expression markers; >90% of cells were positive for GC B cell markers CD19, CD10 

and CD38 as well as for the oncogene cocktail markers CD2 (MYC-t2A-BCL2 or 

BCL6-t2A-BCL2), Thy1.1 (P53dd) and LyT2 (CCND3 T238A/Cntrl).    

In addition, tumours were evaluated with a panel of immunohistochemical markers 

(haematoxylin & eosin, CD20, CD10, CD79A, MUM1 (IRF4), PAX5, BCL2, P53 and 

CD3) which showed that these tumours closely resembled the histological 

appearances of human DLBCL. Tumours stained positive for CD20, CD10, CD79A, 

MUM1 (IRF4), PAX5, BCL2, P53 and negative for the T cell marker CD3 (Figure 6); 

all markers that are currently used to diagnose DLBCL patients in clinic. All tonsil 

donors were screened for their EBV status with a highly sensitive PCR to rule out 

expansion of an EBV-infected cell population (Methods 3.2.3). The EBV status was 

confirmed using EBER in situ hybridization (Figure 6). All donors used in experiments 

here were EBV negative.  

Re-transplantation experiments showed that tumour formation was much faster than 

in the initial transplantation. For example, cells from cohort 2 resulted in tumour 

formation at a median time of 36 days instead of 111 days for the initial transplant 

(data not shown). Immunohistochemistry also confirmed these tumours to be of B cell 

origin. 

This reinforces the biological relevance of this co-culture system as a tool to study 

DLBCL genetics and allows for user-defined mutational human lymphoma models.  
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Figure 5 Immunodeficient mice injected with transduced GC B cells develop 

human tumours that closely resemble human DLBCL 

(A) GC B cells (as well as FDCs) transduced with four different oncogene 

cocktails were injected subcutaneously into NOD/SCID/gamma mice (n = 4 

per cohort) and checked regularly for palpable tumours. Overall survival of the 

recipient mice is plotted as a Kaplan-Meier curve.  

(B) Cells isolated from tumours were stained for oncogene cocktail markers CD2 

(MYC-t2A-BCL2 or BCL6-t2A-BCL2), Thy1.1 (P53dd), LyT2 (CCND3/Cntrl) 

and B cell markers CD19, CD20 and CD10 and were analysed by flow 

cytometry. A representative example is shown.  
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Figure 6 Immunodeficient mice injected with transduced GC B cells develop 

human tumours that closely resemble human DLBCL 

Immunohistochemistry images for H&E, CD20, CD10, CD79A, MUM1 (IRF4), PAX5, 

BCL2, P53, CD3 and EBER are shown (Magnification 10x). A representative 

example is shown. Histology was performed by Dr. Eldaly, Consultant 

Histopathologist  Addenbrooke’s Hospital. 
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4.3 Optimisation of the CRISPR-CAS9 system in primary human GC B cells 

4.3.1 Optimising CAS9 expression in primary human GC B cells 

 

          I wished to use the described co-culture system to screen tumour suppressor 

genes in DLBCL using CRISPR. The Streptoccocus pyogenes CRISPR system 

requires the guide RNA and the endonuclease CAS9 to create a double-strand break 

that will subsequently edit the genomic DNA108. The CAS9 component is available in 

multiple formats and here, I screened three different CAS9 constructs (Retroviral 

CAS9-Puromycin, Lentiviral CAS9-Blasticidin and Retroviral CAS9-BFP) in order to 

identify the one that results in the highest CAS9 expression in human GC B cells. 

CAS9 is a particular challenge to transduce because its large size puts it at the limits 

of packaging ability for retro and lentivirus. To minimise construct size, we 

constructed a CAS9-BFP vector that contains only the MSCV backbone with no IRES 

or structure other than CAS9-t2A-BFP between the 5’ and 3’ LTR (Miriam Di Re, 

Hodson laboratory). 

Isolated GC B cells were transduced with fresh CAS9 virus or 10x concentrated 

CAS9 virus (with Lenti-X, Clontech) for all three constructs. Western blot for CAS9 

showed the concentrated CAS9-BFP virus to give the strongest protein expression 

along with unconcentrated CAS9-Puro virus (Figure 7). CAS9-BFP is a smaller 

retroviral construct that, with its fluorescence marker, allows for convenient tracking 

of CAS9 over time. This will be important for future experiments. CAS9-Puro and 

CAS9-Blast did not have a fluorescence marker but flow cytometry showed that 

concentrated CAS9-BFP resulted in 31.4% BFP+ cells (Figure 7). To increase the 

percentage of CAS9-BFP+ cells, sequential rounds of transduction with CAS9-BFP 

were necessary until 50-80% CAS9-BFP+ cells were achieved. Further optimisation 

for the ideal virus harvest timepoint was performed and I identified concentrated 48h 

CAS9-BFP virus to give the best transduction efficiency (data not shown). 

Successful retroviral infection with CAS9-BFP allowed me to now further transduce 

these GC B cells with the gRNA to edit genomic DNA. 
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Figure 7 The retroviral CAS9-BFP construct resulted in the highest CAS9 

expression in human GC B cells 

GC B cells were transduced with unconcentrated or 10x concentrated (with Lenti-X) 

CAS9-Puro, CAS9-BFP and CAS9-Blast. Western blotting was used to show CAS9 

protein expression, using β-actin as a loading control. Flow cytometry gating on BFP+ 

cells identified 10x concentrated CAS9-BFP to give the highest CAS9 transduction 

efficiency. 
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4.3.2 Knock-down of endogenous CD19 and CD22 in GC B cells validates the 

feasibility of CRISPR in this system and cell type 

 

         Before large-scale high-throughput CRISPR experiments could be conducted 

using the optimised co-culture feeder system, it was necessary to test whether 

knock-down of single genes using CRISPR was feasible and functional in primary 

human GC B cells. 

To test this, I transduced GC B cells with CAS9-BFP as well as the oncogene cocktail 

BCL2 and BCL6. Cells were further transduced with two gRNAs against CD19, two 

gRNAs against CD22 or non-targeting control (NTC). Six days after gRNA 

transduction, FACS analysis showed efficient knock-down of endogenous CD19 and 

CD22 in comparison to NTC when gated on double positive CAS9 (BFP) and gRNA 

(GFP) expressing cells, approximately 30% of the cell population (Figure 8A). At this 

point, cells were > 90% positive for BCL2 and BCL6 so gating on double positive 

CAS9 and gRNA expressing cells was sufficient to detect knock-down in this setting.  

This confirmed that gene knock-down using CRISPR is feasible in primary human 

GC B cells and suggested that large-scale CRISPR experiments would be successful 

in this cell type. 

 

4.3.3 Monitoring the competitive survival of GC B cells after knock-down of 

tumour suppressor genes validates the feasibility of CRISPR knock-down in 

this system and cell type 

 

          After the CRISPR knock-down feasibility was verified in primary GC B cells, it 

was necessary to test whether knock-down of tumour suppressor genes would result 

in a phenotype such as a growth advantage. To do so, I performed a small pilot 

CRISPR screen in primary human B cells. 

I transduced GC B cells with CAS9-BFP as well as the oncogene cocktail BCL2 and 

BCL6. Cells were further transduced with gRNAs against known tumour suppressor 

genes TP53, PTEN, A20, the cell-essential gene RPS6 and non-targeting control. 

The gRNA constructs expressed a trackable GFP marker. Following transduction of 

gRNAs, percentage of CAS9/gRNA-expressing cells was monitored by flow 
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cytometry and the fold change relative to the baseline was plotted. At this point, cells 

were > 90% positive for BCL2 and BCL6. Figure 8B shows that, as expected, GC B 

cells had a growth advantage if known tumour suppressor genes, such as TP53, 

PTEN and A20 were knocked-down. The most enriched gene was TP53. Ribosomal 

Protein S6 (RPS6) seemed to have a growth disadvantage which is consistent with 

its function as a ribosomal component and a recognised cell-essential gene.  

This small pilot CRISPR screen confirmed that human GC B cells can be exploited to 

study genes that provide a growth advantage or disadvantage using CRISPR.  
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Figure 8 Validation of functional CRISPR knock-down in human primary GC B 

cells 

(A) GC B cells were transduced with BCL2, BCL6 and CAS9-BFP and 

subsequently with gRNAs against CD19, CD22 and non-targeting control. 

Staining for CD19 and CD22 was performed 6 days after gRNA transduction 

and gated on double positive CAS9 (BFP) and gRNA (GFP) expressing cells, 

Red histograms show CD19/CD22 expression in cells transduced with the 

indicated gRNA. Grey histograms show expression of CD19/CD22 transduced 

with a non-targeting control.  

(B) GC B cells were transduced with BCL2, BCL6 and CAS9-BFP and 

subsequently with gRNAs against TP53, PTEN, A20, RPS6 and non-targeting 

control (NTC). Following transduction with gRNAs, enrichment or depletion of 

BFP+GFP+ cells was monitored by flow cytometry. Illustrated is time course 

showing the relative changes of BFP+GFP+ cells following transduction. 
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4.4 Design, construction and validation of a lymphoma-focused CRISPR gRNA 

library targeting 692 genes 

 

 

       I wished to use the described co-culture system to screen putative tumour 

suppressor genes in DLBCL using CRISPR in a high-throughput fashion. To do so, I 

designed and constructed a lymphoma-focused CRISPR gRNA library, which 

contains 6000 gRNAs targeting 692 genes. Here, I illustrate the design, construction 

and validation of the lymphoma-focused CRISPR library. 

I designed the CRISPR gRNA library to target genes that are recurrently mutated or 

deleted in DLBCL, Follicular Lymphoma and Burkitt Lymphoma. Manual selections 

from published transcriptome and exome studies (TCGA, Pan Cancer Atlas and 

Broad81) as well as screening through the literature (11,80,82,107,144-160) identified 692 

genes to be included in the library. gRNAs for each gene were obtained from two 

recent whole genome gRNA libraries: 1.) Kosuke Yusa’s study used a new design 

pipeline to identify all possible gRNA target sites, remove unwanted gRNAs, compute 

design scores and select suitable gRNAs122. This approach generated an optimal 

human gRNA library.  2.) David E Root’s study used computational design rules to 

create a fully optimised human gRNA library that minimizes off-target effects but at 

the same time maximizes on-target activity123. This library is named Brunello. 

Combining gRNAs from each list resulted in almost all selected genes being targeted 

by nine gRNAs. The library consisted of 6000 gRNAs in total, including 250 non-

targeting controls (NTC) acting as a robust inert control.  

To construct the library, forward strand sequences were designed with appropriate 

overhangs added. These were synthesised (Twist Bioscience) as a pool of 6,000 

oligos. The single-stranded oligo pool was converted to double-stranded DNA by 

PCR amplification. The resulting PCR product was gel extracted and cloned into the 

BbsI-digested gRNA expression vector, which expressed the gRNA from a U6 

promoter. Additionally, the vector contains the green fluorescence protein (GFP) to 

allow for convenient tracking of the library over time using a flow cytometer. In order 

to maintain representation of the library, a total of approximately 300 000 bacterial 

colonies were harvested, representing at least a 50-fold coverage of the library. See 

Methods 3.2.10 for a more detailed description of the construction of the lentiviral 

gRNA library. After construction, the library was subjected to next generation 
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sequencing (NGS) of a PCR product across the gRNA sequences to assess the 

coverage of gRNAs in the library. Reads in fastq format were demultiplexed by Joao 

Dias and further analysis was performed by myself.  

Illumina sequencing at a depth of >6 x 106 mapped reads showed that all 6000 

gRNAs were present in the library with 1100 median sequencing reads. Analysis of 

the gRNA read counts showed that 99% of all read counts were within four times of 

the mean (Figure 9A). The gRNA sequence reads had a frequency of 99% being four 

times of the mean, making this a very even distribution (Figure 9B). A shRNA 

CRISPR library is considered to be adequately represented when the sequence 

reads have a frequency of 80-90% within a 10-fold range161. Hence, the library 

constructed in this study should be considered to be adequately represented. 

Analysis of the genes represented in the library shows that 88% of genes were 

represented by at least 8 or 9 gRNAs (Figure 9C). The remaining genes had less 

than 8 gRNAs due to difficulty identifying 8 or 9 separate high-quality gRNAs. The 

non-targeting controls are not represented in the graph but are present with 250 

gRNAs. Figure 9D shows the library read counts from two different sequencing runs 

plotted against each other. It shows that for the majority of gRNAs, the read counts 

are identical and hardly differ between two separate sequencing runs.  

Analysis of the gRNA representation verified that the lymphoma-focused CRISPR 

library was adequately represented and allowed me to use this library for positive 

CRISPR screens in human GC B cells which will be described next.  
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Figure 9 Successful construction of a lymphoma-focused CRISPR library with 

an adequate representation of all 6000 gRNAs 

(A) Illumina sequencing revealed that 99% of read counts were within 4 times of 

the mean. Illustrated are the CRISPR library read counts vs number of 

gRNAs. 

(B) Illumina sequencing revealed that 99% of sequence reads were within 4 times 

of the mean. Illustrated is the gRNA frequency vs log2 sequence reads. 

(C) Illumina sequencing revealed the number of gRNAs present per gene. The 

non-targeting control with 250 gRNA is not shown here.  

(D) Illumina sequencing revealed the correlation of library read counts between 

two different sequencing runs. 
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4.5 Functional high-throughput screening of tumour suppressor gene 

mutations on a user-defined mutational background in human GC B cells 

4.5.1 Positive CRISPR screen in GC B cells on a BCL2 and BCL6 background 

identified GNA13 as a potent tumour suppressor  

 

            I wished to screen tumour suppressor genes in DLBCL using the described co-

culture system and the lymphoma-focused CRISPR library to identify these mutations 

that drive the malignant phenotype. To do so, I conducted a positive-selection 

CRISPR screen to identify genes, that when knocked-down, result in a growth 

advantage in GC B cells. 

As most cases of DLBCL are not driven by the Epstein Barr Virus (EBV), only EBV 

negative GC B cells were used for all my experiments. Therefore, every tonsil donor 

was screened for their EBV status with a highly sensitive PCR that we have 

optimised119 (Methods 3.2.3).  

Isolated GC B cells were transduced with BCL2 and BCL6 and CAS9 was retrovirally 

introduced through several rounds of transduction until > 50% of cells expressed 

CAS9. Using the lymphoma-focused CRISPR library (as described in 4.4), I 

conducted an enrichment screen to identify genes whose depletion provide a survival 

advantage in combination with the oncogene platform (here, BCL2 and BCL6). The 

CAS9, BCL2, BCL6-expressing cell population was transduced with the lymphoma-

focused CRISPR library containing 6000 gRNAs including 250 non-targeting controls. 

Two things had to be taken into consideration here: 1.) To avoid multiple gRNAs 

integrating into one cell, cells were infected at a low multiplicity of infection (MOI).  

Approximately 10-30% of the cell population were CAS9/gRNA expressing cells. This 

assured that the effect seen in a particular cell is due to a single gRNA and not 

multiple gRNAs ‘’piggy backing’’ on the observed result. 2.) To make sure that every 

gRNA was adequately represented in the population, cells were infected at 1000 x 

coverage. These calculations took into account that only around 50-80% of the cell 

population expressed CAS9. For example, to get a 1000 x coverage with a library the 

size of 6000 and an estimated 30% of CAS9/gRNA expressing cells = 6000 (gRNAs) 

x 1000 (representation) x 2 (50% CAS9) x 3.3 (30% CAS9/gRNA expressing cells) = 

I infected 40 x 106 cells. This cell number was maintained throughout the entire 

screen to prevent genetic bottlenecking. 
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This was performed in three biological replicates (Donors KB, AT and AG) and a 

schematic of the CRISPR screen is shown in Figure 10A. Cells were allowed to 

proliferate for approximately 70 days and it was expected that cells expressing 

gRNAs against tumour suppressor genes would be selectively enriched in the cell 

population. The screen was designed to detect tumour suppressor genes and not 

oncogenes which would be selectively depleted from the culture. This is because at 

the outset of the experiment only 50% of cells express CAS9. Therefore, whilst there 

is ample room for gRNAs to enrich, it will be much harder to detect those that drop 

out.  

After the gRNA library was introduced into the CAS9, BCL2, BCL6-expressing GC B 

cells, cells were harvested roughly every two weeks (Day 4, 14, 28, 57 and 70) for 

genomic DNA. To define the enrichment in the screen, abundance of gRNAs present 

at different timepoints in the cell population was measured from genomic DNA by 

PCR across the gRNA sequences using a two-step strategy. First, the gRNA 

sequences were amplified and then the appropriate adaptors (P5 and P7) added for 

next-generation sequencing. In order to sequence multiple libraries in one 

sequencing run, I also added a barcode at the 3’end. Following next-generation 

sequencing, the libraries were de-multiplexed and the abundance of gRNAs in the 

plasmid pool was compared. The number of cells being harvested at each timepoint 

was dependent on the percentage of cells that were double positive for CAS9 and 

the library. This was important to make sure every gRNA is captured in the cell 

population. Hence, the number of cells collected was 1000 times more complex than 

the gRNA library, when considering only CAS9/gRNA expressing cells.  

Genes were ranked according to their CRISPR gene score (Figure 10B), which is, in 

essence, the number of standard deviations away from the mean of all gRNAs 

targeting a specific gene (z-score). The z-score is a useful statistical tool, allowing me 

to compare scores from different populations/distributions. This will be helpful later 

when comparing different mutational platform screens. It also provides an exact 

position of a score in a normal distribution. A positive z-score indicates the data point 

is above the mean of the population whereas a negative z-score is below the mean. 

It also reveals the number of standard deviations a data point is above or below the 

mean.  
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Illumina sequencing revealed some of the most enriched genes to be, as expected, 

established tumour suppressors such as TP53 and CDKN2A (Figure 10B). Strikingly, 

in three replicated experiments, performed in cells from three different tonsil donors, 

GNA13 presented with the most potent or among the most potent enrichment, being 

many log2 folds higher than for any other gene. For example, GNA13 had a 3.7 log2-

fold higher enrichment than PTEN, a well-known potent tumour suppressor. Even 

though this was designed as an enrichment screen and not a drop-out screen, genes 

that were depleted in the screen included BCL6, MYC, BCL2, CD79B, CARD11, 

POU2AF1 – all known B cell oncogenes (Figure 10B). The 250 gRNAs against the 

non-targeting control had a CRISPR gene score of 0.22.   

Enrichment of tumour-suppressor genes GNA13, TP53, CDKN2A was consistent 

between three different donors (KB, AT and AG). The CRISPR gene score looks at 

the average gRNA score for a particular gene, so I next analysed the gRNA score for 

each individual gRNA. Wang stated that a gRNA “scores” if the z-score is more than 

2 162. Figure 10C shows the gRNA score for genes that had more than 2 gRNAs 

significantly enriched (gRNA score >2) and circles represent gRNAs for the indicated 

gene. Remarkably, 8 out of 9 gRNAs against GNA13 had enriched significantly at 

Day 70 and 6 out of 8 and 5 out of 9 for TP53 and CDKN2A, respectively. Notably, 9 

other genes presented with 2 or 3 gRNAs with a score of > 2. This highlighted the 

variability of biological processes that are altered in this experiment, including cell 

adhesion (KANK2 and ACTG1), transcription (TP63), signalling (NFKB2, PTEN, 

GSK3B), cell cycle (PTPRO), chromatin remodelling (ATRX) and mitochondrial 

function (VPS13C).  

From this list, only NFKB2 and PTEN were listed as recurrently altered genes in 

Reddy’s7 and Chapuy’s96 sequencing study. NF-κB signalling is essential for B cell 

growth and survival and in many B cell cancers, is found to be abnormally activated 

by genetic mutations, promoting lymphomagenesis163. However, in this study here, 

knock-down of NFKB2, the nuclear factor NF-kappa-B p100 subunit, is associated 

with a growth advantage. This may relate to the feeder system used, which includes 

strong CD40Lg (and thereby NFKB activation) or perhaps to inhibition of plasma cell 

differentiation. PTEN, the widely known negative regulator of PI3K signalling, is one 

of the most frequently mutated genes in human cancers, including GCB-DLBCL164. 

GSK3, glycogen synthase kinase 3, is a downstream target of AKT, involved in cell 

survival165. PTPRO is a protein tyrosine phosphatase and believed to function as a 
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tumour suppressor166. TP63 is a member of the TP53 family of transcription factors, 

exerting similar biological functions to those of TP53. However, unlike TP53, TP63 is 

rarely inactivated in cancer167. KANK2 and ACTG1 are both genes involved in 

cytoskeletal formation and found to be mutated in Burkitt lymphoma and primary 

central nervous system lymphoma, respectively107,168. ATRX is a chromatin 

remodelling factor and has been identified to cause alternative lengthening of 

telomeres (ALT) when mutated169. Lastly, loss of VPS13C causes mitochondrial 

dysfunction.   

Next, I wished to examine whether the gRNAs for my top three hits, GNA13, TP53 

and CDKN2A had a gradual enrichment over time or an acute enrichment at a certain 

timepoint. I calculated the log2 fold enrichment, followed by division of the median 

scores of the 250 non-targeting controls for each gRNA for GNA13, TP53 and 

CDKN2A over six different timepoints (Day 4, 14, 28, 57 and 70). It can be seen that 

from Day 14, gRNAs gradually enriched over time in donor KB (Figure 11). 

Consistency between the three donors can be seen in Figure 11. Figure 12 shows 

the same graph as in Figure 11 with gRNAs being connected by a line for clarity. In 

all three donors for GNA13 and TP53, a single outlier gRNA can be seen with an 

enrichment many log2-folds lower than for the other gRNAs.  

I next tested whether these GNA13 gRNAs resulted in efficient knock-down of its 

protein. To do so, I transduced the CAS9 expressing lymphoma cell line HBL1-CAS9 

with nine GNA13 gRNAs, four PTEN gRNAs and four non-targeting control gRNAs 

that were used in the lymphoma-focused CRISPR library. A western blot after 10 

days of transduction confirmed successful knock-down of 8 out of 9 GNA13 gRNAs 

and all PTEN gRNAs in comparison to the NTC (Figure 13A). Interestingly, gRNA 6 

which was the only gRNA that failed to enrich in the CRISPR screen in all three 

donors (Figure 11 and Figure 12) was highly toxic to HBL1 cells soon after 

transduction and was therefore not included in the western blot. This could also be 

seen in a competitive fitness assay where knock-down of gRNA 6 in HBL1 resulted in 

a growth disadvantage in comparison to non-targeting controls (n=4) (Figure 13B). 

The knock-down of the remaining GNA13 and PTEN gRNAs showed no effect in cell 

growth. This supports the fact that the primary GC B cells system provides a more 

powerful tool to study genetic drivers in DLBCL than cell lines, where the required 

oncogenic pathways may already be activated through other mechanisms. 
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All 9 GNA13 gRNAs are spread throughout the entire length of the gene with gRNA 6 

targeting the gene in the switch domain, which is important for its GTP binding 

affinity. However, two other gRNAs also target the switch domain and therefore it is 

not clear how gRNA 6 caused cell death, but presumably due to off-target activity. To 

conclude, 8 out of 9 GNA13 gRNAs and 4 out of 4 PTEN gRNAs were functional. 

Here, I identified GNA13 as an unexpectedly potent tumour suppressor in human GC 

B cells on a BCL2 and BCL6 background.  

 

 

 

 

 

 

 

 



118 
 

Figure 10 Enrichment CRISPR screen in primary GC B cells transduced with 

BCL2 and BCL6 identified GNA13 as a potent tumour suppressor  

(A)  Outline of experimental design and mathematical formulas used. 

(B)  Genes were ranked from highest to lowest according to their CRISPR gene 

scores at Day 70 (log2 scale). Selected tumour suppressor genes as well as 

oncogenes are highlighted in green and red, respectively. Everything above 

the horizontal line is positively enriched. CRISPR gene score for non-targeting 

control (NTC) (n=250) was 0.22. Representative of 3 experiments. 

(C)  gRNA scores for genes with more than 2 gRNAs with a gRNA score >2 are 

shown at Day 70 (log2 scale). Every circle represents a gRNA for the indicated 

gene. The mean of all 250 non-targeting controls (NTC) +/- Standard 

Deviation is shown.  
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Figure 11 GNA13, TP53 and CDKN2A are top hits in three different biological 

donors 

Normalized log2 fold enrichment for GNA13, TP53 and CDKN2A is shown over 

different timepoints after transduction with the CRISPR library in three different 

donors (Donor KB, AT and AG). Circles represent individual gRNAs for the indicated 

gene and everything above the horizontal line is positively enriched.  
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Figure 12 GNA13, TP53 and CDKN2A are top hits in three different biological 

donors 

Same as in Figure 11. Dots representing individual gRNAs are connected for clarity.  

 

 

 

 

 

 



121 
 

 

Figure 13 Validation of GNA13 gRNAs functionality in the ABC-DLBCL cell line 

HBL1 

(A) HBL1-CAS9 cells were transduced with 8 gRNAs against GNA13, 4 against 

PTEN and 4 against non-targeting control. Cells were harvested 10 days after 

transduction and a western blot performed to validate knock-down. β-actin 

was used as a loading control. Representative of > 3 experiments. 

(B) HBL1 cells were transduced with 9 GNA13, 4 PTEN and 4 non-targeting 

control gRNAs and enrichment or depletion of GFP+ cells was monitored by 

flow cytometry. Illustrated is time course showing the log2 fold-change relative 

to baseline (± Standard Deviation) of GFP+ cells following transduction (n = 3). 

Representative of 3 experiments with 3 replicates/experiment. 

 

 

gRNA 6 
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4.5.1.1 GNA13 may provide a survival advantage to human GC B cells that is 

independent of its canonical functions 

 

      The identification of GNA13 as an unexpectedly potent tumour-suppressor 

prompted us to investigate its mechanism.  GNA13 is a G protein alpha subunit 

downstream of the receptors S1PR2/P2RY8 and upstream of RhoA. When activated, 

GNA13 is known to have two mechanisms; 1.) Local confinement of germinal centre 

B cells and 2.) Growth regulation by suppressing phospho-AKT102. In our model 

system of cells being confined to a tissue culture flask, there is no potential for 

migration and hence, mechanism one seems unlikely to be the cause of the 

enrichment. Whilst the effect on pAKT signalling is an attractive explanation, it is 

pertinent that GNA13 had a considerably higher enrichment score than S1PR2, 

P2RY8 or PTEN (Figure 10B) despite them all having similar proposed effects on 

AKT phosphorylation.  

To further investigate whether GNA13 knock-down results in an increase in phospho-

AKT, we performed phospho-flow cytometry for the analysis of AKT activation in 

primary GC B cells. To do so, GC B cells were transduced with CAS9, BCL2, BCL6 

and 9 individual gRNAs against GNA13, 4 against PTEN and 4 against non-targeting 

controls (NTC). PTEN served as a positive control as knock-down of PTEN, a 

negative regulator of the AKT pathway, will result in an increase in phospho-AKT 

levels. After gRNA transduction, intracellular                                                                                                        

staining of phospho-AKT (Ser473) was performed and analysed on a flow cytometer. 

FACS analysis showed, as expected, a robust increase in phospho-AKT levels for all 

4 PTEN gRNAs in comparison to NTC when gated on double positive CAS9 and 

gRNA expressing cells (Figure 14). GNA13 knock-down, on the other hand, did not 

lead to an increase in phospho-AKT compared to NTCs. This was the case for all 9 

GNA13 gRNAs.  

The experiment suggests that loss of GNA13 may provide a proliferative or survival 

advantage to human germinal center B cells through a mechanism independent of its 

canonical functions.   
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Figure 14 GNA13 knock-down does not activate AKT in primary GC B cells 

Intracellular FACS staining for pAKT (S473) in GC B cells transduced with CAS9, 

BCL2, BCL6 and 4 gRNAs against PTEN, 9 gRNAs against GNA13 and 3 gRNAs 

against non-targeting control (NTC). Shown are 4 PTEN gRNAs (Blue) against 3 

NTC gRNAs (Red shades) and a representative example of 4 GNA13 gRNAs 

(Green) against 3 NTC gRNAs. Barchart illustrates the mean fluorescence intensity 

of all gRNAs for the indicated gene (± SD). The p value was calculated from t test. 

This experiment was performed with Jie Gao, Hodson laboratory.  
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4.5.2 Positive CRISPR screen in GC B cells on a BCL2 and MYC background  

 

       To identify how different mutations cooperate with each other and identify potent 

tumour suppressor genes on a different mutational background, I transduced GC B 

cells with CAS9, BCL2 and MYC and further transduced them with the lymphoma-

focused CRISPR library. The experiment was conducted as described in 4.5.1.  

This screen was performed in three biological replicates (Donor AG, TADB and WK) 

and cells were allowed to proliferate for approximately 70 days. Illumina sequencing 

revealed the most enriched gene to be TP53 followed by CDKN1B (Figure 15A). The 

250 gRNAs against the non-targeting control have a CRISPR gene score of 0.05. 

With this mutational background, GNA13 only presents with a CRISPR gene score of 

1.3 instead of 4.9 which was seen on a BCL2 and BCL6 background. It is also 

interesting to note that the highest enriched genes on a BCL2 and BCL6 background 

have a CRISPR gene score several times higher than genes on a BCL2 and MYC 

background. Figure 15B shows that there are only 3 genes that have more than 2 

gRNAs significantly enriched (gRNA score >2). 6 out of 8 gRNAs significantly 

enriched for TP53. 3 out of 6 and 3 out of 8 gRNAs were significantly enriched for 

CDKN1B and ZFP36L1, respectively.  

Despite there being less enrichment than in the BCL2 and BCL6 background, several 

interesting results emerged from this screen. Members of the Zinc Finger Protein 

(ZFP36) family, such as ZFP36, ZFP36L1 and ZFP36L2 enriched with a CRISPR 

gene score of approximately 1.5. ZFP36 and its family members are RNA-binding 

proteins and control gene expression by regulating mRNA turnover170. It is known 

that MYC directly suppresses the tumour suppressor ZFP36 to induce 

tumourigenesis170. ZFP36 suppression is often seen in malignancies with MYC but 

enforced expression of ZFP36 impairs lymphomagenesis in an E-mu MYC mouse 

model170. 

The CRISPR screen on a MYC and BCL2 platform does not show as much 

enrichment as with the BCL2-BCL6 screen and suggests that MYC, in combination 

with BCL2, is already a powerful oncogenic hit with less “oncogenic space” to be 

filled by knock down of other tumour suppressors.  
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Figure 15 Enrichment CRISPR screen in primary GC B cells transduced with 

BCL2 and MYC  

(A) Genes were ranked from highest to lowest according to their CRISPR gene 

scores at Day 75 (log2 scale). Selected tumour suppressor genes as well as 

oncogenes are highlighted in green and red, respectively. Everything above 

the horizontal line is positively enriched. CRISPR gene score for non-targeting 

control (n=250) is 0.05. Representative of 3 experiments. 

(B)  gRNA scores for genes with more than 2 gRNAs with a gRNA score >2 are 

shown at Day 75 (log2 scale). The mean of all 250 non-targeting controls ± 

Standard Deviation is shown. 
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4.5.3 Positive CRISPR screen in GC B cells on a background with MYC alone  

 

           I have shown a minimum of two oncogenic hits are necessary for long term 

survival of human GC B cells on the described feeder system. However, GC B cells 

transduced with one oncogene alone, such as MYC do not allow for long term growth 

in-vitro. Cells die after approximately two weeks in culture (4.1.3, Figure 4A). 

However, subsequently transducing these cells with the CRISPR library rescued this 

effect and cells were able to grow in culture for weeks.  

I transduced GC B cells with CAS9 and MYC and further transduced them with the 

lymphoma-focused CRISPR library. The experiment was conducted as described in 

4.5.1 unless otherwise stated here. CRISPR screens with a “one oncogene” platform 

were more difficult to manage. Initially, cells were slower at proliferation than when 

transduced with a “two oncogenes” platform. Therefore, cells could often not be 

harvested at a 1000x gRNA representation in the cell pool. This meant either 

skipping timepoints to allow for an increased cell number at a later timepoint or 

lowering the gRNA representation to 500x. Cells were never harvested at a 

representation less than 500x. The MYC-alone screen was performed in one tonsil 

donor (JJ) and cells were allowed to proliferate for approximately 40 days. The 

screen was stopped here as the GFP+ percentage had already reached almost 

100%. Illumina sequencing revealed some of the most enriched genes to be NCOA1, 

NFKBIE and ZFP36L1 (Figure 16A). ZFP36L1 scored before in the BCL2+MYC 

screen (4.5.2) and here, it significantly enriched with 4 out of 8 gRNAs. Interestingly, 

ZFP36L1 has a higher CRISPR gene score here of 1.6 than in the BCL2+MYC 

screen (CRISPR gene score of 1). ZFP36 and ZFP36L2 did not enrich in the MYC 

alone screen here. The top hit NCOA1 is a transcriptional activator and has histone 

acetyltransferase activity. Out of 8 gRNAs, it only enriched with 1 gRNA, suggesting 

this to be an off-target effect. NFKBIE, a known tumour suppressor, inhibits NF-κB 

signalling but again, only enriches with 1 out of 8 gRNAs.  In this screen, GNA13 and 

TP53 were not among the most potent tumour suppressor genes and have similar 

CRISPR gene scores than in the BCL2-MYC screen (4.5.2).  

As mentioned before, the CRISPR gene score takes into account the average of all 

the gRNA scores for a particular gene. Given that several genes in this screen, 

especially the top hits such as NCOA1, only had one gRNA significantly enriched; the 

question arises whether taking the median of gRNA scores for a particular gene is 
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more suitable in this case. This would avoid single values that are most likely off-

targets effects, skewing the results. Hence, for this screen I also calculated the 

CRISPR gene scores according to the median of gRNA scores for a particular gene 

(Figure 16B). Using this formula, NCOA1 and NFKBIE now have a CRISPR gene 

score similar to the non-targeting control. ZFP36L1 emerged as the top hit followed 

by SETD2, which enriched with 3 out of 8 gRNAs. SETD2 plays a role in chromatin 

modification and has been reported to be somatically mutated in DLBCL80. Using this 

formula for screens where top hits have most gRNAs enriched for a particular gene 

does not make a difference. For the BCL2-BCL6 screen described in 4.5.1, the 

results were very similar with GNA13/TP53/CDKN2A emerging as the top hits (data 

not shown). This suggests that taking into account the median for the CRISPR gene 

score might be more suitable for screens that emerge with several genes having only 

one highly enriched gRNA. 

Interestingly, both formulas showed an enrichment of ZFP36L1 which was also 

enriched in the BCL2-MYC screen (4.5.2). This suggests that ZFP36L1 and MYC 

might be cooperating mutations resulting in a survival advantage regardless of BCL2 

status. 
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Figure 16 Enrichment CRISPR screen in primary GC B cells transduced with 

MYC alone 

GC B cells transduced with CAS9, MYC and the CRISPR library. CRISPR gene 

scores were calculated using either the average of all gRNA scores for a particular 

gene (A) or the median of all gRNA scores for a particular gene (B) at Day 41 and 

ranked from highest to lowest (log2 scale). Selected tumour suppressor genes as 

well as oncogenes are highlighted in green and red, respectively.  
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4.5.4 Positive CRISPR screen in the ABC-DLBCL cell line HBL1 shows that the 

primary GC B cells system is a more powerful tool for the functional 

characterization of tumour suppressor, driver genes   

          As described earlier, cell lines represent the late stages of lymphoma, carry a 

high mutational burden and have often evolved in culture for many years. Knock-

down of tumour suppressor genes in cell lines therefore seems unlikely to render 

them “more oncogenic” than they already are. For example, GNA13 knock-down in 

the ABC-DLBCL cell line HBL1 did not result in a survival advantage (Figure 13B) 

whereas in primary GC B cells it was the most potent tumour suppressor identified. I 

hypothesized that the defined genetics of the primary GC B cell system is superior to 

cell lines for screening potential tumour suppressor genes. To test this, I performed a 

parallel, positive selection CRISPR screen in the cell line HBL1. 

HBL1 stably expressing CAS9 was transduced with the CRISPR library and allowed 

to proliferate for 70 days, a timepoint similar to most other screens. This allowed me 

to compare these screens with each other. Here, the cell population is 100% CAS9+ 

so only GFP+ (CRISPR library) cells were monitored over time. Illumina sequencing 

revealed the most enriched gene to be CBL, an E3 ubiquitin-protein ligase with a 

CRISPR gene score of 2.2 (Figure 17). 5 out of 9 gRNAs for CBL had a gRNA score 

of >2, considering them significantly enriched. CBL was not listed as frequently 

mutated in the three large genomic studies6,7,96 recently published. However, in 

Phelan’s171 CRISPR screen in HBL1, CBL ranked 23rd out of 19117 genes with a 

CRISPR screen score of 1.37 at Day 21. Moreover, CBLB, a member of the CBL 

gene family, was among the 150 most frequently mutated genes in Reddy’s7 1001 

DLBCL sequencing study. CBL was followed by PTEN with a CRISPR gene score of 

1.8. To put this into context, the highest enriched gene with the BCL2-BCL6 platform 

(GNA13) had a CRISPR gene score of 4.9 at Day 70 (Figure 10B). This is more than 

twice as high as for the highest enriched gene in HBL1 at the same timepoint. 

Moreover, in a cell line, GNA13 shows up with a CRISPR gene score of 0.7 at Day 

70. This is 7 log2-fold less than that seen for GNA13 in the BCL-BCL6 screen.  

Moreover, it is noteworthy that in the cell line experiment, most genes (427 out of 692 

genes) have a CRISPR gene score of < 0. In contrast, the majority of genes in 

screens performed in primary GC B cells had a CRISPR gene score of > 0. This 

confirms that the primary GC B cell system is a more powerful tool than cell lines to 

screen potential tumour suppressor genes in lymphoma. 
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Figure 17 Enrichment CRISPR screen in the ABC-DLBCL cell line HBL1  

HBL1 expressing CAS9 was transduced with the CRISPR library. Genes are ranked 

from highest to lowest according to their CRISPR gene scores at Day 70 (log2 scale). 

Selected tumour suppressor genes as well as oncogenes are highlighted in green 

and red, respectively. Everything above the horizontal line is positively enriched.  
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5 Discussion 

 

    Despite DLBCL being heterogenous clinically, morphologically and molecularly, 

patients are currently grouped together as a single disease and receive the same 

treatment. This heterogeneity has been highlighted by recent mutation analysis 

papers that now suggest at least several genetic subtypes. What these genetic 

subtypes mean for the selection of optimal therapy remains unclear. The 

development of novel preclinical models of lymphoma, and its genetic subtypes is 

paramount at this stage. The model system described here has the potential to be a 

starting point for functional high-throughput screening of tumour suppressor gene 

mutations on a user-defined mutational background. An unlimited number of genetic 

combinations could be tested with this system. This will help to better understand the 

importance of the numerous somatic mutations in DLBCL and subsequently their 

implications for treatment. Moreover, as shown, this system also provides a reliable 

model of disease in vivo. I show that injecting human GC B cells transduced with 

oncogenes into immunodeficient mice is feasible and an effective tool to generate 

genetically customized lymphoma models. There are currently many new drugs in 

development and testing all of these, in combinations, in patients and in an empiric 

way will not be possible. Pre-clinical model systems to nominate the most effective 

and safest drug combinations are needed and I suspect this to be a promising 

system that might aid drug development in the future.  

 

It was striking to see the rapid tumour onset in mice injected with human GC B cells 

that were transduced with MYC, BCL2, P53dd and CCND3 T283A. Replacing MYC 

with BCL6 in this group slowed down tumour onset of injected mice by 76 days 

(median time). This group presented with a similar tumour onset time to mice injected 

with MYC, BCL2, P53dd. It suggests that MYC is a strong oncogene that is 

necessary for tumour formation. However, the combination of MYC and CCND3 

T283A resulted in a more aggressive phenotype. The oncogene platform BCL6, 

BCL2, P53dd only formed tumours when CCND3 T283A was added. This highlights 

the role of CCND3 T283A in DLBCL lymphomagenesis. Its highly important role in 

Burkitt lymphoma is already known107. Furthermore, I have collected viable cells, cell 

pellets and frozen tumour pieces from each mouse in order to perform a 

comprehensive biochemical analysis such as western blotting for downstream genes 
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and signalling pathways and RNA-sequencing.  

 

Exploiting the unlimited number of different mutational backgrounds that can be 

introduced into human GC B cells, I also created a lymphoma model expressing 

BCL2, BCL6 and MYC. Injecting human GC B cells transduced with these 

oncogenes into immunodeficient mice resulted in a median survival time of 108 days 

(data not shown). These tumours stained positive for B cell markers (CD38, CD19 

and CD10). The in vivo work described here reinforces the biological relevance of 

this system and allows for user-defined mutational human lymphoma models. 

 

Moreover, I hypothesized that the selective pressures in vivo and in vitro are different. 

The enrichment of GNA13 in vitro, which was described in this study, might not 

reflect of what is needed for tumour formation in vivo. Therefore, I performed in vivo 

positive selection CRISPR screens to identify those gRNAs associated with tumour 

formation. I performed screens on a BCL2-MYC and BCL2-BCL6 platform and these 

human GC B cells were injected into immunodeficient mice seven days after 

transduction with the CRISPR library (n = 4 per cohort). Some mice have started to 

form tumours and subsequent work will focus on analysing these and identifying 

those gRNAs that were needed for tumour formation. Mice with only the BCL2-MYC 

and BCL2-BCL6 platform alone were also injected, serving as a control.  It might be 

necessary to redesign the library and remove any especially potent tumour-

suppressing genes such as TP53 that would dominate tumour formation and mask 

weaker tumour suppressor genes. 

 

In this study, the guanine nucleotide-binding protein subunit alpha-13 (GNA13) 

demonstrated unexpected potency as a genetic driver in DLBCL. These subunits are 

part of so-called guanine nucleotide-binding proteins (G proteins) that function as 

signal transducers172. G proteins and their G protein coupled receptors (GPCRs) 

represent the largest class of cell-surface molecules173. GPCRs are crucial for 

transducing signals involved in multiple processes such as cell growth, proliferation, 

survival or motility173. Once an extracellular ligand binds to a GPCR, it undergoes 

conformational change and initiates signal transduction173. It does so by coupling to 

and acting as a guanine nucleotide exchange factor (GEF) to a GDP-bound 

heterotrimeric G protein consisting of α, β and γ subunits173. The Gα subunit can be 

divided into four main families: Gαs, Gαi, Gαq and Gα12 (including Gα13 which is 
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encoded by GNA13)173. GPCRs are overexpressed in many different cancer types 

with Gαs being the most mutated G protein in cancer172. GNA13 is reported to be 

highly upregulated in several different cancers such as hepatocellular carcinoma174, 

prostate cancer cells175 and breast cancer cells176. High GNA13 mRNA levels, but 

interestingly not GNA12, are associated with poor survival and metastases in 

patients with head and neck, ovarian, lung and gastric cancers177. In head and neck 

squamous cell carcinoma (HNSCC), GNA13 induces drug resistance and modulates 

a Tumour-Initiating Cell (TIC) phenotype in vitro and in vivo via NFκB and MAPK 

signalling pathways177. Blockade of GNA13 or downstream pathway effectors with 

small molecule inhibitors re-sensitized cells to chemotherapy177. These findings make 

GNA13 a potential prognostic biomarker for tumour progression in many solid 

tumours. Understanding the mechanistic action of GNA13 is critical to identifying how 

it might be targeted therapeutically. GNA13 and GNA12 signal through multiple key 

signalling pathways such as Rho, c-jun N-terminal kinase (JNK), extracellular 

signal-regulated kinase (ERK), p38, ERK5/6 or NFκB but these events have yet to 

be fully elucidated177,178.  

Although high expression of G proteins and GPCRs have been linked to poor 

outcome in solid tumours, my data and other studies102,179,180 suggest that in 

lymphoma, GNA13 has a tumour suppressor role. Inactivating mutations of GNA13 

are found in approximately 25% of GCB-DLBCL and 30% of Burkitt Lymphoma 

(BL)11. The mechanism by which GNA13 mutations promote lymphomagenesis is not 

fully elucidated.  Studies have shown that GNA13 antagonizes AKT phosphorylation, 

which protects against cell death, and promotes germinal centre confinement102,180. I 

did not see this in my experiments. In my model system, I am unable to observe how 

loss of homing to the germinal centre might provide a competitive advantage. If 

GNA13 worked through the AKT pathway, I would have expected for PTEN to also 

score at least as strongly in the enrichment screen. This was not the case (Results 

4.5.1). This was further confirmed by intracellular staining for phospho-AKT (Ser473) 

in GNA13 depleted human GC B cells transduced with BCL2 and BCL6. Whilst 

phospho-AKT increased in PTEN-deleted GC B cells, AKT signalling did not 

significantly change in GNA13 depleted cells (Results 4.5.1.1). This was supported 

by Stelling’s study that showed TGF-β -induced S1PR2 expression in SU-DHL-6 had 

no effect on AKT activation, as assessed by western blotting for phospho-AKT 

(Ser473)181. These findings suggest that GNA13 might work through a mechanism 
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independent of its canonical functions in lymphoma. RhoA, downstream effector of 

GNA13, is also found to be recurrently mutated in DLBCL and BL but surprisingly, I 

did not see enrichment of RhoA gRNAs. In my system, deletion of S1PR2 and 

P2RY8, both part of the Gα13/RhoA axis, did not provide a growth advantage as 

strongly as GNA13. Performing a phosphoproteomics experiment in BCL2/BCL6-

transduced GC B cells to elucidate which pathway(s) are targeted by GNA13 in my 

system would be highly interesting and I am currently pursuing this. Whether a 

S1PR2/P2RY8 agonist in GNA13 depleted BCL2/BCL6 transduced GC B cells would 

rescue the effect and result in a growth disadvantage, would he highly informative 

too. This approach is rather counterintuitive to treatment strategies in solid tumours 

where GNA13 is upregulated and treatment aims to inhibit the GNA13 pathway.   

Furthermore, the potency of GNA13 as a tumour suppressor seems to be limited to 

the BCL2 and BCL6 platform. Whilst GNA13 did enrich in the BCL2 and MYC screen 

with a CRISPR gene score of 1.3 at a comparable timepoint, it was enriched 3.8 

log2-fold higher in the BCL2-BCL6 transduced GC B cells. I suspect this is because 

the BCL2-BCL6 platform mimics more of a GCB-type DLBCL and GNA13 mutations 

are frequently found in GCB-DLBCL whereas the BCL2-MYC platform resembles 

more of an ABC-like DLBCL. Calado showed that MYC positive mature GC B cells 

had a phenotype of recently activated lymphocytes, which displays a later stage of 

development182. Moreover, Healy reported that GNA13 loss in combination with MYC 

overexpression resulted in lymphoma development in mice102. Additionally, loss of 

S1PR2 in mice harbouring a c-MYC transgene accelerated lymphomagenesis 

compared to S1PR2+/+ c-MYC transgenic mice181. This discrepancy might be due to 

different selective pressures in vivo and in vitro.  

Furthermore, whilst the CRISPR screen on a BCL2-MYC background did not show 

as much enrichment as with the BCL2-BCL6 background, it was interesting to see 

the ZFP36 family members enrich specifically with BCL2-MYC and ZFP36L1 also 

with MYC alone as a platform. As mentioned, ZFP36 and its family members 

ZFP36L1 and ZFP36L2 regulate gene expression by controlling mRNA turnover170. 

These AU-binding proteins (AUBPs) do so by marking AU-rich elements (AREs), 

found within many transcripts, for deadenylation and degradation by mRNA decay 

enzymes183. Interestingly, MYC is known to target AUBPs such as ZFP36 and 

directly suppresses its transcription which is often seen in cancers with MYC 

involvement170. It was therefore interesting to see a similar result in my CRISPR 
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screen; knock-down of ZFP36, ZFP36L1 and ZFP36L2 resulted in a survival 

advantage in BCL2-MYC transduced GC B cells. Reddy7 and Schmitz6 also identified 

ZFP36L1 to be recurrently mutated in DLBCL but this was not reported in Chapuy’s96 

study. Numerous studies have shown that the ZFP36 protein family is associated 

with multiple other malignancies. ZFP36 is a negative regulator of several 

proinflammatory cytokines such as TNF-α and a decrease in ZFP36 expression can 

therefore result in the development of immune-related malignancies such as 

ulcerative colitis or rheumatoid arthritis184. Reduced ZFP36 expression levels are 

reported in aggressive prostate and breast cancer and predict poor outcome185. In 

addition, inactivation of ZFP36L1 and ZFP36L2 in mice during thymopoiesis leads to 

T cell acute lymphoblastic leukemia186. A study by Campbell and colleagues 

highlighted increased rates of inactivating mutations in ZFP36L1 and ZFP36L2 in 

several cancers such as bladder, breast and colorectal cancer187. These findings 

highlight that the ZFP36 family members are implicated in tumourigenesis and 

suggest a tumour suppressor role. 

Moreover, positive CRISPR screens performed on single platform backgrounds such 

as MYC were only performed using one biological donor and will have to be 

repeated. Therefore, I am cautious to interpret too much into these screens.  What I 

can conclude is that human GC B cells transduced with BCL6 alone, MYC alone or 

BCL2 alone die rapidly but adding a second oncogene or the CRISPR library to these 

cells allows for long term growth. A minimum of two oncogenic hits are necessary for 

long term survival of human GC B cells grown on the feeder system described here.  

I recognise that the screens performed here are not exhaustive. GC B cells were 

always grown on Follicular Dendritic Cells (FDC) expressing CD40Lg and IL21, 

though necessary for the survival and proliferation of GC B cells, our results may be 

limited to this feeder set up. It is possible that FDCs expressing other B cell activation 

factors like BAFF would give slightly different results in the positive CRISPR screens. 

Therefore, future screens might withdraw components of the feeder system such as 

CD40Lg or IL21 and include other components such as BAFF. The huge cell 

numbers needed for the screens (due to only a small number of cells being infected 

with CAS9 and the CRISPR library) did not allow performing screens in parallel on 

different cytokine expressing feeders. Since the design of my lymphoma-focused 

CRISPR library targeting 692 genes, three large sequencing studies6,7,96 have 

narrowed down these recurrent DLBCL driver genes to approximately 150. A library 
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designed today could perhaps restrict to only these 150 driver genes (as well as non-

targeting controls). While having a bigger library like the one used in this study is not 

necessarily bad, a smaller library makes experiments more flexible in terms of 

number of cells to transduce and allows for more screens being conducted at the 

same time. Moreover, in a big library, weaker tumour suppressor genes could be 

masked by stronger ones such as TP53. Therefore, an alternative approach could be 

to have two individual libraries to separate strong and weak tumour suppressor 

genes from each other, similar to the approach used in Kim’s mutant ORF screen188. 

Another limitation is that screens on different mutational backgrounds should ideally 

be performed using the same tonsil donor where GC B cells were isolated from. It is 

often difficult to get big cell numbers from tonsils so performing more than one screen 

on cells from a donor is often not feasible.   

Whilst I have isolated GC B cells from tonsils using a MACS human B cell negative 

selection kit as well as anti-IgD and anti-CD44 and consider them GC B cells when 

they are CD38, CD20, CD19 and CD10 positive, I recognise that there are other 

approaches that research groups have used in the past. Klein and colleagues also 

used magnetic cell separation to isolate GC B cells and distinguished between 

centroblasts and centrocytes189. Purified centroblasts were CD77+ and CD38high and 

centrocytes were CD10+, CD38high, CD77-, CD39- and CD3- 189. Kwakkenbos and 

colleagues considered tonsil germinal centre cells to be CD38+CD20+ 133. They later 

reported that mature B cells can be cultured with CD40Lg and cytokines like IL-4, IL-

10 and IL-21 which activate STATs, especially STAT3 and STAT5134. STAT3 

signalling, in particular, results in plasma cell differentiation and a block in 

proliferation by increasing BLIMP1 and XBP1 expression134. Similarly, IL21 also 

induces expression of these two transcription factors. Introducing BCL6 into these 

cells cultured with IL-4, IL-10 or IL-21 inhibits terminal differentiation into plasma cells 

but many cells are dying134. Expressing the antiapoptotic factor BCL-XL rescued 

these cells from cell death and allows cells to expand rapidly134. The most robust 

proliferation of BCL6/BCL2-transduced cells was seen with the CD40Lg/IL-21 culture 

system 134 and I therefore used this culture system set up for my experiments.  

Apart from the BCL2 and BCL6 background that allows for rapid proliferation, I have 

also used a BCL2 and MYC background as described in Results 4.5.2. The study 

from Kwakkenbos suggested that initially, cells with a BCL2-MYC background would 

proliferate rapidly but then undergo terminal differentiation and cell cycle arrest126. 
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Interestingly, I did not observe this phenomenon. BCL2 and MYC-transduced cells 

proliferated for months without undergoing cell cycle arrest. Immunohistochemistry 

showed that this background in combination with P53dd still expressed the B cell 

marker CD20 (Results 4.2). CD20 is not seen in plasma cells and suggests that the 

BCL2/MYC platform does not generate a plasma cell-like phenotype. Interestingly, I 

did observe a phenotype for the two platforms used. BCL2/BCL6-transduced GC B 

cells seem to be feeder dependent; cells tightly attach to feeders and are generally 

not in suspension. On the other hand, BCL2/MYC-transduced GC B cells seem to be 

feeder independent; they are mostly in suspension. It would be interesting to see 

whether after transduction with BCL2 and MYC, they still maintain a high proliferation 

rate without the help of the feeder system. I noticed that cells isolated from mouse 

tumours (as described in Results 4.2) and put back in culture with feeders and 

without feeders did not show a difference in viability and proliferation rate.  

Comparing the positive CRISPR screens performed in human GC B cells to the 

screen in the ABC-DLBCL cell line HBL1 shows that the primary GC B cell system 

provides a more powerful tool for the functional prioritisation of driver genes. The 

CRISPR gene scores of the small number of genes that did enrich in the cell line 

screen were not comparable to what was seen in human GC B cells. The highest 

enriched gene with the BCL2-BCL6 platform (GNA13) had a log2 CRISPR gene 

score more than twice as high as for the highest enriched gene in HBL1 at a similar 

timepoint. Most genes in the cell line screen were depleted suggesting that cell lines 

might be more suitable for drop out screens instead of enrichment screens. The 

dropout of known oncogenes such as BCL2 and the enrichment of known tumour 

suppressor genes such as PTEN confirm the CRISPR-CAS9 system to be functional 

in this screen.  

Interestingly, many genes that are known to be recurrently mutated in DLBCL, such 

as CREBBP or EP300 did not enrich in my CRISPR screens described here. 

Inactivating mutations and deletions of CREBBP and less frequently EP300 are 

reported in approximately 30% of DLBCL cases and 60% of FL11,98,145. Mutations in 

CREBBP and EP300 are mainly monoallelic, mutually exclusive and impair its ability 

to acetylate histones as well as transcriptional activators such as TP53 and acetylate 

and inactivate BCL698. Interestingly, CREBBP deletion alone in pro-B cells or GC B 

cells is insufficient for the development of lymphoma; however, when combined with 

BCL2 deregulation, accelerated tumour formation190. This suggests that additional 
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oncogenic events are needed in CREBBP deleted/mutated cells to undergo clonal 

expansion190. My screens were performed on a BCL2 and either BCL6 or MYC 

background and this shows, that this cannot be the limiting factor as to why I did not 

see enrichment of CREBBP/EP300 gRNAs in my CRISPR screens. However, one 

reason that I did not see enrichment for either CREBBP or EP300, might be that 

these two tumour suppressor genes have a potentially early role in tumour clonal 

expansion and do not promote lymphomagenesis if acquired later on in B cell 

development such as in the GC B cell145,148,191. For example, CREBBP deletion upon 

initiation of the GC resulted in a less pronounced phenotype than when CREBBP 

was deleted in early B cell development190. A similar phenomenon was also observed 

with KMT2D, a methyltransferase which is recurrently mutated in DLBCL and FL11,148. 

Deletion of KMT2D in mice during early B cell development led to an increase in GC 

B cells and increased B cell proliferation99. This was not observed when KMT2D was 

deleted after initiation of the GC reaction.  Moreover, phylogenetic analysis has 

shown that CREBBP or KMT2D were found to be present in a precursor clone before 

FL progressed to DLBCL145,148,191. All my CRISPR screens were performed after 

initiation of the GC reaction and not in early B cells which is why deletion of 

CREBBP/EP300 or KMT2D might not have an effect anymore. This suggests that 

these mutations are important in the early stages of DLBCL pathogenesis, so-called 

founder mutations and others in disease progression. Furthermore, CREBBP 

deletion impairs H3K27 enhancer acetylation and silences genes that are required for 

terminal differentiation and immune response in mature B cells192. Normally, 

CREBBP regulated enhancers are counter-regulated by BCL6/SMRT/HDAC3 

complexes via H3K27 deacetylation, which bind to MHC class II loci192. However, 

when CREBBP is deleted, the complex is disturbed resulting in loss of immune 

surveillance by hiding from T-cells through silencing of MHC class II expression192. In 

my co-culture system, there is no immune surveillance as no T-cells or natural-killer 

cells are present. It is possible that in this setting, there is no need to hide from T 

cells so CREBBP deletion is not advantageous to GC B cells. This is consistent with 

the fact that none of the HLAs (A, B and C), encoding the MHC class I proteins or 

HLAs (DMA and DRB1) encoding MHC class II proteins showed an enrichment in my 

CRISPR screens.  

The challenge with next generation sequencing being widely available is to correlate 

the emerging sequencing studies and carefully interpret them in terms of therapeutic 
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implications. I have discussed here three large genomic studies6,7,96 that have gained 

remarkable insight into genetic drivers and different genetic subtypes that may 

respond differently to targeted therapy. However, these sequencing studies show 

discrepancies between each other in terms of what genes were identified to be most 

significantly mutated in DLBCL. The three large genomic studies converge on 

approximately 200 frequently mutated genes with many genes being unique to each 

study and not shared between them. These studies also propose different genetic 

subtypes with a different clinical outcome. How any of these subtypes can be 

translated into the clinic is currently unclear. Hence, pre-clinical model systems to 

capture these different genetic subtypes and test targeted treatment strategies are a 

major current research priority.  

The primary culture system described here provides a technique to escape our 

reliance of cell lines. This study highlights its potential for functional high-throughput 

screening of tumour suppressor gene mutations on a user-defined mutational 

background. This information could be used to target relevant pathways in the 

context of individual tumours. I have demonstrated this by combining the novel 

primary culture system with the powerful tool CRISPR. This approach identified 

GNA13 as a potent tumour suppressor, which therefore represents a potential role as 

a therapeutic target. It is paramount to understand the functional role of the vast 

amount of somatic mutations found in DLBCL and the implications for therapy before 

advances in treatment strategies can be made. I anticipate that the primary culture 

system, described here, provides a powerful tool that is complimentary to cell lines 

and mouse models for the analysis of DLBCL tumour biology and will contribute to 

the development of targeted therapy.   
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