
Late-Holocene ultra-distal cryptotephra discoveries in varved sediments of Lake Żabińskie, NE 

Poland

Małgorzata Kindera, Sabine Wulfb, Oona Appeltc, Mark Hardimanb, Maurycy Żarczyńskia, Wojciech 

Tylmanna

a Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-309 Gdańsk, 

Poland; malgorzata.kinder@ug.edu.pl
b School of the Environment, Geography and Geosciences, University of Portsmouth, Buckingham 

Building, Lion Terrace, Portsmouth, PO1 3HE, United Kingdom
c Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 3.6 Chemistry 

and Physics of Earth Materials, Telegrafenberg, D-14773 Potsdam, Germany

Abstract

Varved (annually laminated) lake sediments provide valuable archives for ultra-distal tephra 

preservation and at the same time allow the precise dating of volcanic eruptive events. We used a 

high-precision varve chronology from Lake Żabińskie in NE Poland and EPMA glass chemical data to 

identify cryptotephra from three large-scale, late Holocene eruptions from European and Northern 

American volcanoes: the White River Ash eastern lobe (WRAe) eruption from Mount Churchill, Alaska 

(AD 833-850); a tentative finding of the Glen Garry eruption of the Askja volcano, Iceland (1966-2210 

cal a BP); and an yet undefined eruption from Furnas volcano, Azores. The varve age of AD 863-903 

of the Alaskan WRAe cryptotephra in Lake Żabińskie is slightly younger than the proximal 

radiocarbon date and the annual layer estimate of the distal AD860B correlative in the Greenland 

NGRIP ice core but is within 14C dating uncertainties of distal tephra findings in the Irish peat record. 

The varve ages of the Glen Garry and Furnas tephras in Lake Żabińskie provide a minimum age at 

1991 cal a BP (41 BC). All three cryptotephra findings represent their easternmost occurrences from 

the volcanic source and hence considerably extend existing tephra dispersal maps.
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1. Introduction

Tephra (volcanic fall material) from explosive eruptions can be transported significant 

distances from the source volcano and therefore can provide a valuable tool for the dating and 

synchronisation of sedimentary records (Lowe, 2011). In recent palaeoclimatic investigations, for 
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example, Lateglacial tephras have been used as isochrones to obtain first information about spatio-

temporal relationships between climate variability and environmental responses in larger regional 

transects across northern and central Europe (e.g., Lane et al., 2013; Wulf et al., 2013; Rach et al., 

2014). In fact, numerous tephra studies during the last three decades have shown that continental 

northwestern, northeastern and central Europe was regularly impacted by large-scale eruptions from 

Icelandic volcanoes and the Eifel Volcanic Field in western Germany since the Late Glacial (e.g., 

Mangerud et al., 1984; van den Bogaard and Schmincke, 2002; Davies et al., 2003; Wastegård, 2005; 

Haflidason et al., 2018), demonstrating the potential for extending palaeoclimate record 

comparisons also into the Holocene period. In Poland, the furthest easterly tephra dispersal was for 

long restricted to sites located on the western border (Fig. 1) and was limited by the identification of 

only macroscopic, visible ash layers, i.e. the 12.9 ka BP Eifel Laacher See Tephra (e.g., Juvigné et al., 

1995). The methodological and analytical advances in cryptotephra identification (e.g., Turney, 1998; 

Blockley et al., 2008; Abbott and Davies, 2012; Davies, 2015) have recently allowed for the detection 

of both very small (<80 µm) and very low concentrations of tephra glass shards in Holocene sediment 

records further to the East, i.e. in sites in north-western and central Poland (e.g., Housley et al., 2013; 

Wulf et al., 2013, 2016; Watson et al., 2017a, 2017b) (Fig. 1). Specifically for the Late Holocene 

period these tephra findings include the AD1875 and the Glen Garry tephras (2088 ± 122 cal a BP; 

Barber et al., 2008; Gudmundsdóttir et al., 2016) from the Askja volcano in western Iceland, but also 

the WRAe tephra from Mount Churchill, Alaska (AD 833-850; Jensen et al., 2014), demonstrating the 

presence of tephra from even transcontinental volcanic sources in central-eastern Europe. Notably, 

the WRAe eruption has been recently associated by Jensen et al. (2014) with the distal AD860B 

tephra which has been identified in several northern European peat bogs (e.g., Pilcher et al., 1995, 

1996; van den Bogaard and Schmincke, 2002; Lawson et al., 2012) and in the Greenland NGRIP ice 

record where it is dated at AD 853-855 (Coulter et al., 2012; Toohey and Sigl, 2017).
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Figure 1. (A-B) Location of Mount Churchill, Askja and Furnas volcanoes and European tephra 

findings. Numbered sites are mentioned in the text: (1) Bagno Kusowo (Watson et al., 2017a), (2) 

Mirkowice (Housley et al., 2014), (3) Tiefer See (Dräger et al., 2017; Wulf et al., 2016), (4) An Loch 

Mór (Chambers et al., 2004); (C) surroundings and bathymetry of Lake Żabińskie. The red star 

indicates the coring site of core ZAB-12. (D) tephra findings in northern Poland: Warnowo, Niechorze 

(Juvigné et al., 1995), Lake Czechowskie, Trzechowskie Paleolake (Wulf et al., 2013, 2016), Linje 

(Watson et al., 2017a).

With the aim to extend the knowledge about the occurrence and dispersal of above 

mentioned Late Holocene tephras further east, varved sediments of Lake Żabińskie in northeastern 

Poland have been systematically inspected for their cryptotephra content. In this study, we present 

the glass chemical results of three cryptotephras found in the youngest sediments, covering the last 

ca. 2100 years.

2. Study site

Lake Żabińskie is a small (0.42 km2) and deep lake (maximum depth of 44.4 m) located in 

the Masurian Lake District in northeastern Poland (54°07’54ʺN; 21°59’01ʺE) (Fig. 1). The landscape 

was formed during the Pomeranian phase of the Weichselian glaciation (ca. 16–15 ka BP; Szumański, 

2000). The study site is well known for its excellent preservation of varved sediments, which have 

been extensively investigated for palaeoclimatic and environmental reconstructions (e.g., Amann et 

al., 2014; Bonk et al., 2016; Wacnik et al., 2016; Hernández-Almeida et al., 2017; Żarczyński et al., 

2019).

Lake Żabińskie is positioned approximately 2300 km southeast of Iceland, ca. 3900 and 

6200 km east of the Azores and Alaskan high-explosive volcanoes (Fig. 1), hence representing a site in 

an ultra-distal (>2000 km) location for receiving tephra fallout from any of those volcanic centres. A 
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previous study on the uppermost organic-rich, annually laminated sediments of Lake Żabińskie has 

proven the presence of the historical Askja AD1875 cryptotephra from Iceland (Tylmann et al., 2016).

3. Material and methods

Composite sediment core ZAB-12 was retrieved from the deepest part of Lake Żabińskie 

(Fig. 1) in 2012 using a UWITEC piston corer (ø90 mm), which was operated from the floating 

platform. An age-depth model for the uppermost 5.95 m (last 2028 +34/-53 years) of core ZAB-12 

based on varve counting and validated with radiocarbon dating was constructed by Żarczyński et al. 

(2018), which was extended in this study with 77 additional varves counted to 6.12 m depth covering 

the time period of the last ca. 2100 years. A targeted sediment sampling was carried out in order to 

search for tephras that have been previously reported in other sites in northern-central Europe and 

Poland (Fig. 1), namely the above-mentioned Alaskan WRAe/AD860B and Icelandic Glen Garry 

tephras. Because of the estimated uncertainty of the varve chronology of 4.3 % (Żarczyński et al., 

2018) and the relatively low precision of the Glen Garry eruption age (2088 ± 122 cal a BP; Barber et 

al., 2008), the following two core sediment sections were chosen for targeted tephra sampling: core 

ZAB-12/5-2, 151 cm to 181 cm depth for the WRAe/AD860B tephra and core ZAB-12/4-3, 58 cm to 

120 cm for the Glen Garry tephra. The selected sediment sections were sampled in contiguous 1 cm 

intervals with a volume of 1 cm3 and chemically pre-treated with 30% H2O2 overnight in order to 

remove organic matter. Subsequently, a 7-10% HCl solution was added for a maximum of 1 hour to 

dissolve carbonates, and a 2M Na2CO3 solution was used for 6-7 hours in a 70-80°C water bath to 

dissolve biogenic silica (diatoms) instead of more aggressive NaOH (Rose et al., 1996; Davies et al., 

2003; Clymans et al., 2015). The remaining material was wet-sieved, and the 20-100 µm grain size 

fraction was transposed to transparent plastic boxes for microscopic inspection of volcanic glass. In 

case of light organic matter remains or larger amount of minerogenic material, an additional step of 

liquid density separation (sodium polytungstate) at 1.95 and 2.55 g cm-3 was applied using the 

method after Blockley et al. (2005). Wet samples were inspected under a polarizing microscope 

(AXIO Imager A2, Zeiss) at 200× magnification. Counts of detected glass shards were expressed as 

shards per cubic cm of wet sediment. Identified glass shards were picked in a water medium with a 5 

ml gas chromatography syringe and a 110 μm diameter micromanipulator needle (see method after 

Lane et al., 2014), then embedded in epoxy resin (EpofixTM) in a single-hole aluminium stub and 

sectioned and polished prior to electron probe microanalyses (EPMA). The major-element 

composition of individual glass shards was obtained by a wavelength-dispersive spectrometry (WDS) 

JEOL-JXA8230 probe (15 kV voltage, 10 nA beam current and 1-4 μm beam diameter) at the GFZ 

Potsdam, Germany. Max Planck Institute (MPI) glass standards GOR-132, StHs6/80 and ATHO 

(Jochum et al., 2006) and the Lipari obsidian (Hunt and Hill, 1996; Kuehn et al., 2011) were measured 
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prior to samples for analytical quality control (Table 1). EPMA data were normalised on an anhydrous 

and volatile-free basis to 100% and compared with tephra glass chemistries from specific eruptions 

from the literature (e.g., Chambers et al., 2004; Borgmark and Wastegård, 2008; Gjerløw et al., 2016) 

and the “Tephrabase” home page (www.tephrabase.org). Correlation of detected tephras used 

chemical bivariate plots and stratigraphic positions provided by the high-resolution varve chronology 

(Figs. 2,3). Tephras were labeled according to their core name, section and core depth, e.g. ZAB-12/5-

2_160-162.

Table 1. EPMA major element composition of single glass shards from Lake Żabińskie assigned to 

known tephras and glass standards. The analysis in cursive (Glen Garry tephra) is probably an outlier.

Sample SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 Cl Total
Beam 
size
[µm]

WRAe/AD8
60B
ZAB-12/5-2_ 

153-154
69.83 0.24 13.17 1.50 0.06 0.42 1.79 2.83 2.94 0.05 0.27 93.09 3

72.84 0.22 14.31 1.60 0.06 0.45 1.77 3.12 2.02 0.05 0.33 96.77 3

ZAB-12/5-2_ 
160-161 

66.96 0.22 14.11 1.57 0.03 0.51 1.55 3.24 2.73 0.07 0.33 91.32 2

73.07 0.22 14.40 1.53 0.03 0.46 1.79 3.32 3.08 0.04 0.28 98.22 4

72.43 0.27 14.46 1.68 0.06 0.41 1.70 3.15 3.17 0.09 0.31 97.72 4

69.50 0.20 13.30 1.48 0.03 0.45 1.61 2.40 2.34 0.06 0.27 91.63 1

74.38 0.22 15.04 1.52 0.02 0.36 1.71 1.90 2.56 0.07 0.31 98.09 1

73.47 0.13 13.05 1.04 0.06 0.19 1.17 1.55 2.60 0.02 0.33 93.59 1

71.37 0.24 13.69 1.55 0.05 0.38 1.75 2.57 2.56 0.06 0.34 94.57 1

Glen Garry
ZAB-12/4-3_ 

92-93
62.32 1.42 13.41 7.40 0.08 2.28 5.34 3.82 1.25 0.23 0.02 97.58 3

71.92 0.61 12.43 4.20 0.09 0.48 2.18 2.57 1.46 0.14 0.02 96.09 3

65.95 0.50 14.53 6.05 0.18 0.64 2.91 2.75 1.70 0.13 0.03 95.38 3

ZAB-12/4-3_ 
93-94

74.55 0.52 12.50 3.99 0.08 0.50 2.09 2.88 1.56 0.08 0.02 98.78 3

Furnas
ZAB-12/4-3_ 

93-94
64.50 0.41 17.61 3.39 0.21 0.29 0.68 6.66 5.52 0.00 0.37 99.65 3

63.29 0.42 17.42 3.72 0.35 0.30 0.70 5.33 5.31 0.05 0.34 97.23 3

62.48 0.41 16.88 3.70 0.30 0.34 0.63 4.97 4.22 0.05 0.35 94.33 3

Glass 
Standards

Lipari 74.54 0.06 12.92 1.53 0.04 0.06 0.69 3.71 4.96 0.00 0.32 98.82 10

73.93 0.09 12.83 1.58 0.13 0.05 0.70 3.63 5.01 0.02 0.35 98.32 5

GOR-132 45.40 0.29 10.31 10.35 0.16 22.55 8.10 0.74 0.03 0.01 0.00 97.93 10

46.05 0.31 10.77 10.44 0.14 22.32 8.21 0.74 0.00 0.01 0.01 99.00 5

StHs6/80 63.85 0.67 17.82 4.34 0.10 2.08 5.21 4.24 1.26 0.17 0.01 99.74 10

63.84 0.71 17.67 4.19 0.05 2.14 5.08 4.18 1.21 0.19 0.02 99.29 5

ATHO 75.43 0.27 11.94 3.26 0.11 0.06 1.54 3.47 2.79 0.05 0.02 98.93 10

75.77 0.25 11.89 3.34 0.13 0.09 1.69 3.54 2.80 0.05 0.03 99.58 5
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Figure 2. (A) Age-depth model based on varve chronology and (B) the number of volcanic glass shards 

with shaded bars representing sampled sections, (C) images of the sediment cores (ZAB-12/5-2 and 

ZAB-12/4-3) and thin sections (ZAB-12/4-2 and ZAB-12/4-3) with positions of new tephra findings and 

microscope images showing the examples from each cryptotephra (under polarized light).

4. Results

Three cryptotephra horizons with very low glass shard concentrations (n: 2-9) were 

detected and chemically analysed in the investigated core sections ZAB-12/5-2 and ZAB-12/4-3.

4.1 Cryptotephra layers ZAB-12/5-2_160-161 and ZAB-12/5-2_153-154 (WRAe/AD860B, Mount 

Churchill)

A total of nine and four glass shards cm-3 have been detected in a continuously varved 

sediment section at 375.5 cm and 369.2 cm composite depth, namely in samples ZAB 12/5-2_160-

161 and ZAB 12/5-2_153-154 which are dated by varve counting at AD 877 +14/-26 and AD 912 +14/-

26, respectively (Fig. 2). Normalized EPMA major element data of a total of ten analysed glass shards 

(eight from ZAB 12/5-2_160-161 and two from ZAB 12/5-2_153-154) showed that both tephra layers 

share the same high-silica rhyolitic composition which is characterized by relatively large 

concentration ranges of 73.3-78.5 wt% SiO2, 19.9-15.5 wt% Al2O3, 1.1-1.7 wt% FeO, 1.2-1.9 wt% CaO, 

and alkali ratios (K2O/Na2O) of 0.6-1.7. This chemistry matches the glass composition of the Alaskan 

WRAe/AD860B tephra except for lower Na2O and slightly elevated SiO2 concentrations (Fig. 3, Table 

1). The latter reflects alkali (sodium) migration during EPMA measurements (Nielsen and Sigurdsson, 
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1981; Hayward, 2012) that was likely caused by the small/thin nature of glass shards and the use of 

respective small electron beam size diameters (1-4 µm).

Because of the undisturbed (varved) character of sediments and the higher glass shards 

concentration in the lower ZAB 12/5-2_160-161 cryptotephra, the horizon at 375.5 cm composite 

depth has been defined as the primary fallout layer of the WRAe/AD860B eruption, while the upper 

tephra 12/5-2_153-154 is interpreted as redistributed material from shallower parts of the lake basin 

due to sediment focusing.

The occurrence of WRAe/AD860B glass shards in Lake Żabińskie over 6000 km from its 

volcanic source in Alaska clearly indicates a large-magnitude event and/or tephra dispersal by strong 

westerly winds. This White River Ash eastern lobe (WRAe) eruption was in fact one of the largest 

Plinian eruptions in the Holocene (VEI=6) with an ash cloud reaching ~45 km in height (Lerbekmo, 

2008). The transatlantic distribution of the WRAe has been confirmed by the presence of the 

WRAe/AD860B tephra in eastern Canada (e.g., Jensen et al., 2014), in the Greenland NGRIP ice core 

(Coulter et al., 2012), in western Europe - mainly in the British Isles (e.g., Pilcher et al., 1995; Hall and 

Pilcher, 2002; Plunkett et al., 2004), in northern Germany (van den Bogaard and Schmincke, 2002) 

and in Bagno Kusowo bog in western Poland (Watson et al., 2017a) (Fig. 1). There are single sites of 

uncertain findings in Norway as well (Pilcher et al., 2005; Vorren et al., 2007). The new occurrence of 

the WRAe/AD860B tephra in Lake Żabińskie extends its dispersal fan another 300 km further to the 

east. The WRAe/AD860B tephra forms therewith a rare and valuable transatlantic isochron that can 

be used for comparing palaeoclimate records covering the onset of the Medieval Climatic Anomaly 

(e.g., Jensen et al., 2014).
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Figure 3. Bivariate plots of selected major elemental compositions (normalized data) of cryptotephra 

glass shards from Lake Żabińskie. (A) Total alkali-silica (TAS) diagram after Le Bas et al. (1986). (B, C) 

SiO2 versus K2O and MgO versus Al2O3 for tephras ZAB-12/5-2_153-154 and ZAB-12/5-2_160-161 in 

comparison with published data of the Alaskan WRAe/AD860B tephras. Reference data from 
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Tephrabase; Plunkett and Pilcher, 2018. (D-G) SiO2 versus K2O and CaO versus MgO in comparison 

with published data of tephras from Stömyren ca 150 BC (Wastegård, 2005), Furnas (Chambers et al., 

2004; Andresson et al., 2016; Johansson et al., 2017; Wastegård et al., 2020), Glen Garry (Housley et 

al., 2014; Tephrabase), Hekla 50 BC (Borgmark and Wastegård, 2008; Watson et al., 2016), Ischia (de 

Alteriis et al., 2010), and Jan Mayen (Gjerløw et al., 2016).

4.2 Cryptotephra layers ZAB-12/4-3_93-94 and ZAB-12/4-3_92-93 (Glen Garry?, Askja)

Three out of six colorless and vesicular shards in sample ZAB-12/4-3_92-93 (613.5 cm 

composite depth) and one shard in sample ZAB 12/4-3_93-94 (614.5 cm composite depth) show a 

similar rhyodacitic composition with large concentration ranges in SiO2 (63.9-75.5 wt%), FeO (4.0-.6 

wt%) and CaO (2.3-5.5 wt%) (Fig. 3A, D, F, Table 1). This chemistry is typical for Icelandic tephras, and 

in particular matches the composition of the distal Glen Garry tephra (2088 ± 122 cal a BP; Barber et 

al., 2008). The source volcano of the Glen Garry tephra was uncertain for a long time; Askja volcano 

has been repeatedly proposed due to some similarities to the proximal Stömyren 150 BC tephra (e.g., 

Wastegård, 2005; Plunkett and Pilcher, 2018) but never confirmed until recent findings in sites in 

central Iceland which have associated the Glen Garry tephra with the A~2000 eruption of the Askja 

volcano (Gudmundsdóttir et al., 2016).

Because of the occurrence of Glen Garry glass shards in both samples (92-94 cm core 

depth), a mean core depth of 93 cm (614 cm composite depth) has been chosen for defining the 

position of the tephra isochron in the Lake Żabińskie sequence. The lithology in this section is 

characterized by a transition from a 65-cm-thick mass-movement deposit that consists of folded 

varved sediments and an 8-cm thick turbidite at the top of the slump to varved, organic-rich 

sediments. The Glen Garry tephra occurs within the uppermost 2-3 cm of the turbidite, which is 

varve dated at 94 BC (+34/-53 years) or 2078-1991 cal a BP. The mass-movement deposit may have 

been most likely caused by a gravity underflow related to slope overloading.

Dispersal of the Glen Garry tephra was for long limited to Scotland (e.g., Dugmore et al., 

1995; Langdon and Barber, 2001, 2004; Barber et al., 2008; Lawson et al., 2012), northern England 

(Pilcher and Hall, 1996), and northern Germany (e.g., van den Bogaard and Schmincke, 2002; Wulf et 

al., 2016), and has only recently been extended to the site of Mirkowice in western Poland (Housley 

et al., 2014) (Fig. 1A, D). With the finding in Lake Żabińskie it has been identified in a new site in 

northeastern Poland enabling the extension of the Glen Garry ash tephra fall axis over 300 km 

eastwards. Further tephra detection in other northern and central European records would help to 

synchronize palaeo-proxy data focusing on the last three millennia.

4.3 Cryptotephra ZAB-12/4-3_93-94 (Furnas, Azores)
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Sample ZAB 12/4-3_93-94 in 614.5 cm composite depth contains an additional glass 

population (n=3) with a distinct trachytic composition that is characterized by relatively narrow 

concentration ranges in SiO2 (65.0-66.2 wt%), low MgO (~0.3 wt%) and CaO (~0.7 wt%) values, 

relatively high FeO concentrations (~3.4-3.7 wt%), and total alkalis (Na2O+K2O) of ~11 wt% (Fig. 3A, 

D-G). Comparisons with trachytic glass chemistries of Late Holocene tephras from potential volcanic 

sources exclude an origin from Jan Mayen and Ischia (southern Italy) due to considerably lower SiO2 

concentrations (Jan Mayen) and higher CaO and Al2O3 values (Ischia) (Fig. 3D-G). However, a very 

good match of the trachytic ZAB 12/4-3_93-94 glass component is given with proximal tephras from 

Furnas volcano, Azores (e.g., Wastegård et al., 2020) and with three Late Holocene distal tephras, 

MOR-T7, -T8 and -T9, from the An Loch Mór lake record in western Ireland (Chambers et al., 2004) 

(Fig. 3D-G). MOR-T7 to -T9 tephras, dated between AD 35 (1915 cal a BP; MOR-T9) and AD 280 (1670 

cal a BP; MOR-T7), have been originally associated with Jan Mayen (Chambers et al., 2014) but more 

recently correlated with Furnas activities (Johansson et al., 2017; Plunkett and Pilcher, 2018). Furnas 

is one out of three volcanic centers on São Miguel Island, Azores, which had at least 5 explosive 

eruptions and dispersal of tephra during the past 5600 years (e.g., Guest et al., 1999; Jones et al., 

1999; Guest et al., 2015). New proximal glass data of these tephras indicate similar trachytic major 

element compositions that complicate the correlation of distal tephra findings with specific Furnas 

volcanic events (Johansson et al., 2017; Wastegård et al., 2020). During the deposition of the Lake 

Żabińskie tephra at 2078-1991 cal a BP (94 BC +34/-53), two potential Furnas eruptions occurred: 

Furnas B at 2470-2150 cal a BP (520-200 BC; Cole et al., 1999; Wastegård et al., 2020), and Furnas C 

at 2115-1542 cal a BP (165 BC – AD 412; Guest et al., 1999), with Furnas C being proposed the larger 

(VEI=5) eruption with a strong tephra dispersal towards the North (Guest et al., 2015). Johansson et 

al. (2017) tentatively correlated Furnas C with the distal Irish tephras MOR-T7, -T8 and -T9, while the 

older Furnas B eruption has been associated on a chronostratigraphical basis with the distal tephra 

DCSH-2 in Derrycunihy, Ireland, which is radiocarbon interpolated at 465-365 BC (Reilly and Mitchell, 

2015).

The glass chemical results clearly assign Furnas as the source volcano for the trachytic ZAB 

12/4-3_93-94 tephra, but the exact eruptive event is difficult to determine due to the lack of Furnas 

B glass chemical data. At this point, only a tentative correlation can be suggested with one of the 

distal MOR-T7, -T8 or- T9 tephras (AD 35 to AD 280; or 1915 to 1670 cal a BP), which approximate 

both the age and chemistry of the trachytic ZAB 12/4-3_93-94 tephra. This is despite slightly lower 

sodium and potassium concentrations of one shard in ZAB 12/4-3_93-94 in comparison to the other 

two data points, which again likely resulted from analytical difficulties to obtain reliable data from an 

extremely small glass shard in this ultra-distal tephra.
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The occurrence of several Furnas tephra layers in peat and lake sediments in Ireland 

(Chambers et al., 2004, Reilly and Mitchell, 2015) and the new findings in Lake Żabińskie (this study) 

indicate frequent eruptions from Azorean volcanoes and prevailing favorable wind conditions 

towards the North and Northeast linked to the North Atlantic Oscillation (Hurrell et al., 2003). 

5. Dating of tephra layers

5.1 WRAe/AD860B tephra

The distal equivalent of the Alaskan WRAe tephra, the AD860B tephra, has been first 

detected in association with the Icelandic AD860A tephra in Irish peat sediments (Pilcher et al., 1995) 

and was only recently correlated with the White River Ash eastern lobe (WRAe) of Mount Churchill 

volcano (Jensen et al., 2014). Even though “AD860B” is an estimated age, it has been widely 

replicated (Swindles et al., 2013; Davies, 2015; Watson et al., 2016, 2017a). Therefore, a combined 

name WRAe/AD860B used by Jensen et al. (2014) may be considered for future studies. Several age 

estimates are currently available for the WRAe/AD860B tephra (Fig. 4). Pilcher et al. (1995) originally 

constrained an age at AD 860 ± 20 (AD 776-887, 2σ) on the basis of multi-sample radiocarbon wiggle 

matching of ombrogenous peat containing the tephra in the Irish bogs. Proximal WRAe deposits have 

been recently dated at AD 833-850 by wiggle-matching multiple radiocarbon dates on tree rings from 

a spruce killed by the eruption (Jensen et al., 2014). Patterson et al. (2017) presented an offset of the 

WRAe tephra in radiocarbon age models from the Canadian Subarctic due to the freshwater reservoir 

effect. In the NGRIP Greenland ice core, the timing of the WRAe/AD860B tephra has been pinpointed 

by the GICC05 chronology to AD 847 ± 1 (AD 846-848; Coulter et al., 2012). However, Baillie (2008) 

and Sigl et al. (2015) proposed an offset of the GICC05 by 6 years within this time interval and 

consequently a new, more precise age of AD 853-855 has been provided (Toohey and Sigl, 2017). The 

varve age of the WRAe/AD860B tephra in Lake Żabińskie at AD 877 +14/-26 (AD 863-903) is 

consistent and within a 2σ dating uncertainty with the initial date obtained by Pilcher et al. (1995), 

but it is slightly younger (≥8-13 years) than the corrected Greenland ice core date and the 

radiocarbon date from the proximal site (Jensen et al., 2014) (Fig. 4). This may have been caused by: 

1) underestimation of the varve counts in Lake Żabińskie by missing varves or sedimentary gaps; 2) 

overestimation of annual layers in the NGRIP ice core record; or 3) radiocarbon dating uncertainties 

through volcanogenic CO2 contamination of the proximal WRAe/AD860B tephra.

An underestimation of the tephra age by the Lake Żabińskie varve chronology can be likely 

excluded, because varve count uncertainties of the WRAe/AD860B tephra are already included, and 

the continuously varved sediment sequence does not show any evidence of depositional gaps. This 

can be corroborated by an additional radiocarbon date obtained from a pine bark 1 cm above the 

WRAe/AD860B cryptotephra in Lake Żabińskie, yielding an age at AD 888-990 (95.4%; 1070±30 14C a 
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BP) which is in agreement with the varve age and its uncertainty at the same depth at AD 874-910 

(Żarczyński et al., 2018).

Figure 4. Schematic representation of age estimates for the WRAe/AD860B (A), Furnas and Glen 

Garry (B) tephras from published records (Pilcher et al., 1995; Guest et al., 1999; Langdon and 

Barber, 2001; Chambers et al., 2004; Baillie, 2008; Barber et al., 2008; Baillie, 2010; Coulter et al., 

2012; Housley et al., 2014; Jensen et al., 2014; Dräger et al., 2017; Patterson et al., 2017; Toohey and 

Sigl, 2017; Plunkett and Pilcher, 2018), and new data from this study. 

5.2 Glen Garry tephra

The Glen Garry tephra was first identified in peat and lake sediments in Scotland (e.g., 

Dugmore and Newton, 1995; Langdon and Barber, 2001, 2004), followed by other findings in 

northern England (Pilcher and Hall, 1996), northern Germany (van den Bogaard and Schmincke, 

2002; Wulf et al., 2016), and in a single archeological site in Mirkowice in western Poland (Housley et 

al., 2014) (Fig. 1). Despite the relatively large number of findings, dating of the Glen Garry tephra is 

still problematic. First radiocarbon dates gave three age ranges of the Glen Garry tephra: 1827-2111, 

1940-2309 and 2006-2350 cal a BP (Dugmore et al., 1995; Dugmore and Newton, 1995; Pilcher and 

Hall, 1996). A mean age of the Glen Garry tephra has been estimated to 2088 ± 122 cal a BP (260-16 

BC; Barber et al., 2008), with a 2σ range of 2210-1966 cal a BP. Housley et al. (2014) provided an OSL 
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age of the Glen Garry tephra in Mirkowice at 2300 ± 100 years. The horizon containing the Glen 

Garry cryptotephra in Lake Tiefer See (NE Germany) was dated to 2170 ± 110 cal a BP on the basis on 

varve counting and interpolation of accumulation rates in poorly laminated sediment sections (Wulf 

et al., 2016; Dräger et al., 2017) (Fig. 4). Continuous varve counting provided a date of the Glen Garry 

tephra in Lake Żabińskie at 2078-1991 cal a BP (94 BC +34/-53). However, due to the fact that this 

cryptotephra is located at the top of a slump which had interrupted the varved structure, tephra 

shard re-deposition cannot be excluded. Hence, a minimum age of the Glen Garry tephra can be 

proposed at 1991 cal a BP (41 BC), which narrows down the upper limit of tephra radiocarbon dates 

presented in previous studies by Langdon and Barber (2001) and Barber et al. (2008). The current 

dating uncertainty still shows a strong need for refining the age of the Glen Garry tephra.

5.3 Furnas tephra

The Furnas tephra in Lake Żabińskie was likely erupted contemporary with the Glen Garry 

tephra due to its finding in the same sediment sample; however, this interpretation has to be treated 

with caution due to slumping and possible mixing of material of different age. Unfortunately, there is 

no other site with both tephras identified and undisturbed record allowing to resolve the 

stratigraphic order of the Glen Garry and Furnas tephras. The closest chemical and 

chronostratigraphical correlatives of the Furnas tephra in Lake Żabińskie are the distal MOR-T7, -T8 

or -T9 tephras which are dated between 1915 and 1670 cal a BP (AD 35 to AD 280; Chambers et al., 

2004) and associated with the Furnas C eruption (Johansson et al., 2017). The MOR-T7 to MOR-T9 

ages were constrained by geochemical indicators of smelting in the Roman Empire and palynological 

evidences of the Late Iron Age Lull (AD 1-200) and consider uncertainties of up to 50 years (Chambers 

et al., 2004). The Furnas tephra in Lake Żabińskie has a minimum age of 1991 cal a BP (41 BC) and 

therefore may tentatively relate to the oldest MOR-T9 tephra (Fig. 4B). However, due to its position 

within a mass-movement deposit in Lake Żabińskie, a more precise age of this eruption cannot be 

constrained. Hence, other records with precise chronologies are needed to verify both the 

correlation and timing of both tephras.

6. Conclusions

Systematic searches and major element glass analyses have identified three cryptotephras of 

different provenance in late Holocene, varved sediments from Lake Żabińskie in northeastern Poland: 

(1) the ultra-distal tephra from the Alaskan WRAe/AD860B (Mount Churchill) eruption, (2) tentatively 

the Icelandic Glen Garry tephra, and (3) an Azorean tephra from Furnas volcano that likely erupted 

contemporary to the Glen Garry tephra and that may relate to any of the distal MOR-T7, -T8, -T9 

tephras in the Irish lacustrine record. Varve counting of the Lake Żabińskie sediments date the 
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WRAe/AD860B tephra to AD 863-903 and suggests a minimum age for the Glen Garry and Furnas 

tephras of 1991 cal a BP (41 BC).

The new cryptotephra findings in the late Holocene sediments of Lake Żabińskie extend the 

dispersal maps of each tephra further east, hence providing information for a better understanding 

of past air mass trajectories. Furthermore, the detection of the late Holocene Furnas tephra in 

eastern Poland shows a new potential for identifying Azorean tephras also in other records from 

western and central Europe.
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