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Key Points:  

 

 Uranium isotopes were measured in iron-rich and anoxic (ferruginous) natural 

environments, an anoxic and sulfide-poor natural environment, and Paleozoic shales 

deposited under ferruginous conditions. 
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 Uranium isotope fractionations in these environments are highly variable, and on 

average indistinguishable from oxic settings, in contrast to the traditional view of the 

U isotope mass balance. 

 Uranium seawater isotope values similar to the modern are consistent with not only a 

largely oxygenated ocean, but also with dominantly ferruginous marine environments. 

 

Abstract 

Uranium isotopes (238U/235U) have been used widely over the last decade as a global proxy for 

marine redox conditions. The largest isotopic fractionations in the system occur during U 

reduction, removal and burial. Applying this basic framework, global U isotope mass balance 

models have been used to predict the extent of ocean floor anoxia during key intervals 

throughout Earth’s history. However, there are currently minimal constraints on the isotopic 

fractionation that occurs during reduction and burial in anoxic and iron-rich (ferruginous) 

aquatic systems, despite the consensus that ferruginous conditions are thought to have been 

widespread through the majority of our planet’s history. Here we provide the first exploration 

of  238U values in natural ferruginous settings. We measured 238U in sediments from two 

modern ferruginous lakes (Brownie Lake and Lake Pavin), the water column of Brownie Lake, 

and sedimentary rocks from the Silurian-Devonian boundary that were deposited under 

ferruginous conditions. Additionally, we provide new 238U data from core top sediments from 

anoxic but non-sulfidic settings in the Peru Margin oxygen minimum zone. We find that 238U 

values from sediments deposited in all of these localities are highly variable, but on average 

are indistinguishable from adjacent oxic sediments. This forces a reevaluation of the global U 

isotope mass balance and how U isotope values are used to reconstruct the evolution of the 

marine redox landscape.   
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1 Introduction 

The oxygenation of Earth’s ocean-atmosphere system marks one of the most dramatic 

transformations in our planet’s history. Quantifying both the magnitude and the timing of this 

biogeochemical change has been the focus of much work over the last few decades, and has 

major implications for our understanding of the relationship between the evolution of the 

environment and the biosphere [Cole et al., 2020; Lenton et al., 2014; Sperling et al., 2015a]. 

More recently, with the widespread implementation of high-precision analytical techniques, 

this work has heavily utilized ‘non-traditional’ isotope proxies aimed at reconstructing redox 

evolution.  

 

Over the last decade, the uranium (U) isotope system (238U/235U) has emerged as a valuable 

marine redox proxy, which when coupled to an isotope mass balance approach, has been used 

to estimate the global extent of anoxic seafloor area in past oceans [e.g., Bartlett et al., 2018; 

Brennecka et al., 2011a; Clarkson et al., 2018; Elrick et al., 2017; Kendall et al., 2015; Lau et 

al., 2017; Lau et al., 2016; Lu et al., 2017; Montoya-Pino et al., 2010; Wei et al., 2018; White 

et al., 2018; Yang et al., 2017; Zhang et al., 2018a; Zhang et al., 2018b; Zhang et al., 2018c]. 

Because U has a modern marine residence time on the order of ~ 400,000 kyr [Ku et al., 

1977]—orders of magnitude longer than ocean mixing times—the concentration and isotopic 

composition of U in the open marine system should be relatively homogenous, potentially 

providing insight about global-scale processes. However, this utility is dependent upon our 

understanding of U sources and sinks in the modern marine environment and the associated 

fractionations. The current view of the U isotope system, most simply put, is that heavy U 

(238U) will tend to be preferentially reduced and buried in anoxic settings, while the remaining 

aqueous phase U will become increasingly isotopically light, due to the nuclear volume effect 

[NVE; Abe et al., 2008a; Abe et al., 2008b; 2010; Abe et al., 2014; Basu et al., 2014; Basu et 
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al., 2015; Bigeleisen, 1996a; b; Bigeleisen and Mayer, 1947; Bopp et al., 2010; Fujii et al., 

1989; Fujii et al., 2006; Fujii et al., 1989; Murphy et al., 2014; Nomura et al., 1996; Schauble, 

2007; Stirling et al., 2015; Stylo et al., 2015; Wang et al., 2015; Weyer et al., 2008]. As a result, 

at steady-state conditions, an expansion of reducing marine environments should drive a 

decrease in the 238U value of global seawater.  

 

One of the foremost uncertainties in this framework is that there are no well-defined constraints 

on the isotopic fractionation of U when removed under iron-rich reducing (ferruginous) 

conditions [e.g., Gilleaudeau et al., 2019; Hood et al., 2016; Stockey et al., 2020]. While these 

conditions are not present in modern well-oxygenated and sulfate-rich oceans, it is generally 

accepted that ferruginous environments were widespread through much of Earth’s history [e.g., 

Canfield et al., 2008; Guilbaud et al., 2015; Planavsky et al., 2011; Poulton and Canfield, 

2011; Poulton et al., 2010]. Specifically, though the extent is debated, Precambrian seas are 

thought to have been dominated by ferruginous conditions. Indeed, ferruginous reducing 

environments are thought to have persisted well into the Phanerozoic as evidenced by Sperling 

et al. [2015b], prior to the oxygenation of deep oceans at the end of the Paleozoic [e.g., Lyons 

and Gill, 2010; Wallace et al., 2017]. Even into the Mesozoic, such environments have also 

been proposed to play a critical role during extinction intervals such as the Permo-Triassic mass 

extinction [ Clarkson et al., 2016], Cretaceous ocean anoxic event (OAE) 2 [März et al., 2008; 

Poulton et al., 2015], and Cretaceous OAE 3 [März et al., 2008]. Finally, while both euxinic 

and ferruginous environments have been widely observed, reducing but non-sulfidic and iron-

poor regions (common in modern high productivity upwelling regions), were likely also a non-

negligible portion of the marine redox landscape [e.g., Frasnian units; Sageman et al., 2003].  

While we have employed here the redox environment terminology that is broadly used, it is 

worth noting some of the nuances wrapped into these labels. First, anoxic, ferruginous, and 
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euxinic settings are frequently identified in the rock record using iron speciation (as we have 

done in this study).  However, upon classifying rock samples as being ferruginous, this analysis 

provides evidence that (1) there was an iron shuttle allowing enrichment of reactive iron below 

the chemocline and (2) there was enough reactive iron available to control and limit sulfide 

concentrations. This analysis does not necessarily demonstrate that there were high 

concentrations of Fe(II) in the water column. As a result, such an environment observed in a 

modern setting might instead be classified as anoxic but non-sulfidic, or nitrogenous (see Table 

1). Providing distinction between these environments in the rock record and adjusting 

terminology in the broader community is beyond the scope of this work, however our 

investigation of a suite of anoxic but non-sulfidic modern redox environments herein provides 

useful insight for the behavior of U in a range of likely common redox environments of the 

past.  

 

Uranium has two primary valence states in surface environments—soluble U(VI) and relatively 

insoluble U(IV). The 238U/235U (reported relative to the CRM 112a standard, minus one, and 

multiplied by 1000; denoted 238U) system is dominantly fractionated during biotically-

mediated reduction of U(VI) to U(IV). This process generally results in the preferential 

reduction of 238U due to NVE [e.g., Bigeleisen, 1996a; Nomura et al., 1996; Schauble, 2007] 

and the subsequent isotopic enrichment of reduced species. However, some experimental 

studies have observed—in the presence of iron (Fe) as a reductant—either no fractionation as 

a result of near-quantitative reduction [Du et al., 2011], or preference for the light isotope 

during abiotic reduction [e.g., Rademacher et al., 2006; Stylo et al., 2015], the latter of which 

may be consistent with mass dependent fractionation (MDF) effects.  Further, it has recently 

been shown that abiotic fractionation is primarily controlled by aqueous speciation of U and 

the rate of removal, which dictates the relative expression of NVE and MDF effects [Brown et 
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al., 2018]. Regardless of the pathway, once reduced, relatively insoluble U(IV) is removed 

from the aqueous system, and the isotopic signature can be recorded in sediments. However, 

the magnitude of the observed isotopic shift between the aqueous system and the sedimentary 

record is controlled not only by the extent of reducing environments, but also by the mechanism 

of reduction, associated U isotopic fractionation factors, and U mass accumulation rates [e.g., 

Andersen et al., 2016; Brown et al., 2018; Lau et al., 2020; Tissot and Dauphas, 2015] 

 

1.1 Global Uranium Isotope Mass Balance 

The dominant source of U to the marine system is riverine input, which directly reflects crustal 

composition. While it has been observed that there is some riverine variability [e.g., Yangtze 

river; Andersen et al., 2016], the mean value is isotopically indistinguishable from that of the 

upper crust with a 238U value of ~ -0.29 ± 0.06‰ [Andersen et al., 2017; Tissot and Dauphas, 

2015]. As a result, the isotopic composition of seawater is controlled by both the magnitude (U 

mass accumulation rate; UMAR) and associated isotopic fractionation of various removal 

pathways (Fig. 1). In the modern oceans, the dominant sinks for U are removal in reducing 

environments, incorporation into carbonate sediments, sorption onto Fe-Mn oxides, and 

hydrothermal alteration of basalts [Dunk et al., 2002]. Authigenic reduced U found in 

sediments deposited under euxinic conditions has the heaviest 238U values, with a mean of ~ 

0.03 ± 0.04‰ or an average isotope fractionation (∆238U; 238Ueuxinic - 
238Useawater) from 

seawater of ~ 0.4‰ (mean modern seawater (238Useawater) has an isotopic composition of -0.39 

± 0.02‰) [Andersen et al., 2014; Andersen et al., 2015; Andersen et al., 2016; Tissot and 

Dauphas, 2015; Weyer et al., 2008]. In reducing settings not rich in sulfide or ferrous iron 

(often referred to as suboxic environments; nitrogenous, see Table 1; D. E. Canfield and 

Thamdrup [2009]), such as modern highly productive coastal upwelling regions, fractionations 

from seawater are less pronounced with mean 238U of -0.24 ± 0.8‰ [Andersen et al., 2016; 
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Weyer et al., 2008]. In contrast, U removed via sorption onto Fe and Mn oxyhydroxides as 

observed in marine iron-manganese crusts will be preferentially light with a mean 238U of -

0.64 ± 0.02‰ [Andersen et al., 2016; Brennecka et al., 2011b]. It should, however, also be 

noted that no isotopic effects have been reported as a result of adsorption-desorption reactions 

in groundwaters [Shiel et al., 2016]. 

 

Our understanding of the U isotope mass balance in the modern ocean is relatively well 

constrained [e.g., Dunk et al., 2002; Tissot and Dauphas, 2015]. However, the redox 

environment of the marine system has changed substantially through Earth’s history, and a 

more nuanced understanding of U behavior in various reducing sinks is necessary to draw 

reasonable conclusions about the extent of these environments in the past. This is especially 

vital since reducing environments would have been considerably more widespread than today, 

thus amplifying errors on assumed values for both UMAR and U isotopic fractionation factors.  

 

Traditional U isotope mass balance models simplify all types of reducing environments as 

‘anoxic settings’, however there are likely substantial differences in both the fractionation 

factor (∆238U) and UMAR associated with reduction in euxinic, ferruginous, and anoxic but 

reductant poor settings—yet all but the first remain poorly understood. While these 

simplifications are reasonable and useful for modern-like oceans given dominantly oxygenated 

conditions and abundant sulfate, this approach becomes fundamentally flawed moving back in 

time to intervals with widespread anoxia. Foremost, reducing environments during many 

periods of the Proterozoic, Paleozoic, and Mesozoic were most likely dominated by ferruginous 

conditions [e.g., Clarkson et al., 2018; Planavsky et al., 2011; Poulton and Canfield, 2011; 

Sperling et al., 2015], and again, these settings remain virtually uncharacterized with regard to 

U cycling. Further, it is also likely that even in intervals characterized by relatively large swaths 
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of euxinic conditions (e.g., the early Silurian or the middle Devonian; [e.g., Meyer and Kump, 

2008; Stockey et al., 2020]), non-euxinic but anoxic environments were still important 

components of the redox landscape [e.g., Rimmer, 2004; Sageman et al., 2003]. 

 

In order to refine our understanding of the U isotope mass balance, we provide new constraints 

on the isotopic fractionation associated with U burial under ferruginous conditions. We 

combine data from two modern ferruginous lakes that have been used as analogues for reducing 

marine settings in Earth’s early oceans, as well as U isotope data from a range of Paleozoic 

siliciclastic sections that have been independently constrained as deposited under ferruginous 

conditions based on Fe speciation. In addition, we explore U isotope signatures through and 

below the oxygen minimum zone (OMZ) within the Peru Margin upwelling zone to 

characterize a second unique type of nitrate-reducing environment poor in both ferrous iron 

and sulfide, which may also have been very common in past oceans.   

 

2. Geologic Settings 

2.1 Modern Environments 

2.1.1 Brownie Lake 

Brownie Lake is a permanently redox-stratified, iron-rich lake located in Minneapolis, MN, 

USA [Lambrecht et al., 2018; Tracey et al., 1996]. The lake is characterized in detail by 

Lambrecht et al. [2018]. The lake has a maximum depth of ~ 14 m, with a chemocline at ~ 4 – 

5 m. Below the chemocline, dissolved Fe (II) has been observed up to ~ 1500 μM [Lambrecht 

et al., 2018]. Dissolved O2 concentrations were below detection limits below 4m depth 

[Lambrecht et al., 2018]. Dissolved inorganic carbon (DIC) averaged ~ 1.6 mM at 1m depth 

and ~ 13.2 mM at 13 m depth, while pH ranges from 8.85 at 1 m depth to 6.86 at 14 m depth. 

Carbonate ion concentrations were calculated to be 83.88 μM at 1 m depth and 20.25 μM at 13 
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m depth. Bicarbonate ion concentrations were calculated to be 1604.44 μM at 1 m depth and 

10877.20 μM at 13 m depth (see SI for data used in calculations).  Sulfate concentrations are 

low, measured at ~50 μM at 1 m depth and ~ 1 μM (just above detection limits) at 13 m depth 

[Lambrecht et al., 2018]. Significantly, these sulfate concentrations are at the lower end of 

levels commonly estimated for the Proterozoic and Paleozoic [e.g., Fakhraee et al., 2018], 

making these conditions a reasonable analogue for what are thought to be widespread 

ferruginous conditions in Paleozoic and Precambrian seas. It should, however, be noted that 

while marine iron concentrations of Earth’s early oceans are poorly constrained (estimated to 

be between 500 nM and 500 µM; [Halevy et al., 2017; Holland, 1984], relative to sulfide, Fe 

(II) would have been the primary reductant in what are described as ferruginous seas. 

 

At Brownie Lake, two cores were taken: the first at ~ 3 m depth (above the chemocline; 

oxygenated bottom waters), and the second at 14 m depth (below the chemocline; anoxic and 

Fe-rich bottom waters). Water samples were also collected through the water column every 0.5 

– 1 m to the maximum depth of 13 m. Uranium isotopes and trace metal contents were analyzed 

in bulk sediments throughout both cores and the water column (see below). 

 

2.1.2 Lake Pavin 

Similar to Brownie Lake, Lake Pavin is a permanently redox-stratified lake with anoxic, iron-

rich deep waters located in central France. The lake has a maximum depth of ~ 92 m and a 

chemocline at ~ 60 m. Dissolved Fe(II) concentrations reach up to 1200 μM below the 

chemocline, and sulfate concentrations are ~ 15 μM above the chemocline and decrease to < 1 

μM below the chemocline [Busigny et al., 2014; Busigny et al., 2016; Michard et al., 1994; 

Viollier et al., 1995]. The pH in Lake Pavin is ~ 8.06 at 1 m depth and steadily decreases to 

~6.03 at 88 m depth, while DIC is ~0.4 mM at 1 m depth and ~16 mM at 88 m depth [Michard 
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et al., 1994]. Carbonate ion concentrations were calculated to be 7.46 μM at 1 m depth and 

1.03 μM at 90 m depth. Bicarbonate ion concentrations were calculated to be 385.88 μM at 1 

m depth and 5642.71 μM at 90 m depth (see SI). Unfortunately, waters from Lake Pavin were 

not analyzed for U isotopes, as water column concentrations of U are very low [Viollier et al., 

1995].  

 

At Lake Pavin, U isotopes were analyzed in bulk sediments from the four cores studied by 

Busigny et al. [2014], including a core at 32 m (above the chemocline), cores at 60 m and 65 

m (within the chemocline), and a core at 92 m (below the chemocline; deepest point of the 

lake). Uranium isotopes and trace metal contents were analyzed for bulk sediments in the upper 

portions of these cores, which are the same samples used and described by Busigny et al. 

[2014]. 

 

2.1.3 Peru Margin  

The Peru margin hosts a highly productive perennial upwelling zone between 7°S – 20°S, 

directly off the coast of Peru in the east Pacific. The high productivity of this region results in 

an oxygen minimum zone with O2 < 5 M between water depths of ~ 50 – 650 m [Lückge and 

Reinhardt, 2000] on the shelf and slope, with the core of the OMZ (150 – 400 m depth) 

becoming fully anoxic with O2 < 10 nM, [Revsbech et al., 2009; Thamdrup et al., 2012]). High 

sulfate concentrations in the modern ocean tend to result in the predominance of sulfate 

reduction in low oxygen settings and organic rich sediments, as well as the rapid formation of 

iron sulfides upon the reduction of iron oxyhydroxides. However, the Peru Margin is 

dominantly characterized by nitrogenous (nitrate-reducing) conditions, as well as high 

concentrations of dissolved iron (~ 50-75 nmol/L), where most of the iron below the oxycline 

is present as Fe(II) [Vedamati et al., 2014]. The underlying anoxic sediments are the primary 
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source of this iron and have been shown to have the highest measured Fe(II) flux from 

sediments of any similar modern ocean margin environment with depleted O2 [Noffke et al., 

2012; Plass et al., 2019; Scholz et al., 2016]. Reduction is thought to occur largely in pore 

waters; however, there is also evidence of an Fe particulate shuttle associated with the 

accumulation of Mo in the sediment column [Scholz et al., 2017]. While this setting cannot be 

described as ferruginous, it is, in large parts, fully anoxic [Revsbech et al., 2009; Thamdrup et 

al., 2012], and represents a dynamic open-marine anoxic environment, with reduction 

pathways not previously characterized for U isotopic signatures.  

 

On the Peru Margin, U isotopes and trace metal contents were measured in bulk sediment in 

core top samples from a set of cores recovered during cruise 147 of R/V Sonne [Kudrass, 2000] 

subsequently analyzed by Böning et al. [2004]. These cores were taken from the upper edge of 

the OMZ (bottom water O2 is typically < 10 M, with some variability under El Niño 

conditions; e.g., [Gutiérrez et al., 2008]), within the OMZ (bottom water O2 < 5 M), and 

below the OMZ (bottom water O2 > 10 M) as recorded at the time of collection [Böning et 

al., 2004; Lückge and Reinhardt, 2000]. Although the oxygen concentrations may appear 

relatively high, this is likely a feature of detection limits during the collection of these samples. 

Measurements could be further complicated by the highly variable O2 concentrations of waters 

overlying the samples from the upper edge of the OMZ [e.g., Scholz et al., 2016; 2017]. 

Regardless, the rest of the OMZ samples fall largely within the fully anoxic core of the OMZ 

which has O2 < 10 nM (below the detection limit of STOX sensors), as more recently 

documented by  Revsbech et al. [2009]; Thamdrup et al. [2012]. 

 

2.2 Paleozoic Environments 

2.2.1 Road River Group – Tetlit Creek  
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The Road River Group is located in the northern Canadian Cordillera of the Yukon and records 

deep-water deposition through much of the Paleozoic. Here we focus on the upper portion of 

the Group from the type section at Tetlit Creek [Jackson and Lenz, 1962], which represents the 

upper Silurian through Lower Devonian. These samples correspond directly to meter heights 

in Table 1 of Lenz (1988), which constrains the age of the samples. Specifically, the Lenz 

(1988) biostratigraphic study places the base of the investigated section in the Ludlow and the 

upper boundary in the Pragian [Lenz, 1988]. This section is dominated by unbioturbated 

calcareous organic-rich shale (average weight percent total organic carbon of samples from the 

section was 3.0 ± 1.9 weight percent; average mass loss on acidification, i.e. weight percent 

carbonate, was 35 ± 15 weight percent). All samples analyzed were devoid of evidence for 

surface weathering.  

 

2.2.2 Additional graptolitic shale samples 

Additional graptolite samples from the collections of Dr. Alf Lenz (University of Western 

Ontario) and Dr. David Loydell (University of Portsmouth) were also analyzed. Twelve 

samples are from the Cape Phillips Formation at the Twilight Creek section, Nunavut, Canada, 

and span a similar upper Silurian-Lower Devonian (Přídolí – Pragian) interval to the Tetlit 

Creek samples [samples correspond to Fig. 4 of Lenz, 2013]. An additional 19 samples (16 

Silurian and 3 Ordovician; for more details see SI) come from a number of different localities 

globally; despite a lack of contextual 238U data within a stratigraphic section, these samples 

provide additional data solely as a record of 238U values possible in sediments constrained as 

deposited in ferruginous conditions.  

 

3. Methods 
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3.1 Water Samples 

The water samples from Brownie Lake were collected during the same sampling campaign as 

the sediment samples in May 2017 [Lambrecht et al., 2018]. Waters were collected with a 

Proactive Mini Monsoon pump with a low-flow controller and vinyl tubing and then filtered 

with a syringe filter (0.2 μm) directly attached to tubing, as described by Lambrecht et al. 

[2018]. The filtered water samples were collected into acid cleaned plastic bottles, and then 

acidified to pH < 2 using concentrated HCl to re-dissolve any species that may have 

precipitated as a result of oxidation.  

 

3.2 Sediment Samples 

All sediment analyses were conducted on bulk sediment digests. Brownie Lake samples were 

dried at 100°C for 24 hours to remove any remaining water, and then ashed at 600°C for 12 

hours to remove organic matter. Graptolitic shale samples were prepared first by removing any 

weathered surfaces using a diamond-edge rock saw and then powdered in an agate or tungsten 

carbide mill. The powders were then ashed at 600°C for 12 hours to remove organic matter 

prior to dissolution. Sample powders from Lake Pavin are from the same sample set as that 

prepared by Busigny et al. [2014], while samples from the Peru margin are from those prepared 

and analyzed by Böning et al. [2004]. 

 

Powders from all sampling localities were dissolved using a three-acid dissolution method for 

total dissolution of each sample. Nitric and hydrofluoric acids were added in excess of samples 

to dissolve for a minimum of 12 hours at 105°C. Samples were then dried down and subjected 

to a second dissolution step using aqua regia for a minimum of 12 hours at 105°C. Finally, 

samples were dried down and then redissolved in 5 ml 6 N HCl for storage and analysis. 
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3.3 Iron speciation and carbon analyses 

Sequential iron extraction methods were used to isolate Fe in carbonate, (oxyhydr)oxides, and 

mixed valence state pools using the methods of Poulton and Canfield [2005]. The iron 

extracted in each step was quantified using the ferrozine method of Stookey [1970]. Iron in the 

pyrite phase (FePy) was extracted using the chromium reducible sulfur (CRS) method defined 

in  Canfield et al. [1986]. These phases make up the highly reactive iron (FeHR) pool. Based on 

calibration in the modern ocean, samples are considered anoxic when FeHR/FeT > 0.38 

[Raiswell and Canfield, 1998]. These anoxic environments can either be characterized by 

abundant sulfide (euxinic) or abundant Fe(II) (ferruginous). These two endmembers can be 

distinguished by the ratio of FePy (Fe extracted during CRS) to FeHR. When FePy/FeHR < 0.7–

0.8, this is indicative of deposition in ferruginous environments [Anderson and Raiswell, 2004; 

März et al., 2008; Poulton and Canfield, 2011]. 

 

Mass loss on acidification (weight percent carbonate) was quantified by acidifying ~1 gram of 

sediment overnight with 3 N HCl, washing and drying the residue, and re-weighing the pellet. 

Total organic carbon (TOC) contents were measured on a NC Technologies ECS 8020 

Elemental Analyzer at Stanford University.  

 

3.4 Elemental concentrations 

Major and trace elements for total digests were analyzed in the Yale Metal Geochemistry 

Center by ICP-MS (Element XR, Thermo-Finnigan) using a standard sample introduction 

system and following the methods of Gueguen et al. [2016]. For sediment samples, an aliquot 

of the 6 N HCl stock solutions obtained after total digests was diluted in 5% HNO3, and U, Th, 

and Fe were measured in medium resolution. Measurement precision was generally better than 

5% and the USGS geostandards BHVO-2, Nod A-1, and Brush Creek Shale processed along 
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with samples during each run are within 10% of reported values. For the water samples, U 

concentrations reported use the isotope dilution method after double-spiking and separation for 

isotope analyses (see below).  

 

3.5 Uranium Isotope Analyses 

Uranium was separated from waters and sediments using the same 233U - 236U double spike 

method with UTEVA ion exchange resin [see methods of Wang et al., 2016; Weyer et al., 

2008]. Double spike was added to samples prior to column chemistry in an amount based on 

previous measurement of U concentrations to achieve a 238U/236U ratio of ~ 30. Samples were 

then evaporated to dryness and brought up in 3 N HNO3. Samples were then purified on 

UTEVA resin columns using the method of [Wang et al., 2016]. Dependent on sample 

concentration, 100 ng – 40 ng were loaded on columns. After purification, U samples were 

dissolved in 0.3 N HNO3 to achieve 50 ppb solutions for analysis. Samples were measured on 

a Thermo-Finnigan Neptune Plus Multi-Collector ICP-MS at the Yale Metal Geochemistry 

Center. Samples were introduced using an ApexIR sample introduction system and measured 

at low resolution. Isotopes 232Th, 233U, 235U, 236U and 238U were measured simultaneously on 

Faraday collectors connected to 1011 Ω amplifiers achieving a signal of ~ 25 – 45 volts on 238U, 

dependent on concentration.  

 

The CRM 112a (New Brunswick Laboratory, U.S. Department of Energy) standard was 

analyzed every three samples to monitor drift in instrumental performance, accuracy, and 

precision, and samples were normalized to the average of bracketing standards. Standard 

concentration was matched to sample concentrations to maintain similar voltage. The drift of 

the standard was less than 0.07‰. Blank levels were always less than 0.1% of sample voltage, 

and no blank correction was made as this would be smaller than the instrumental counting 
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error. External reproducibility was 0.1‰ based on analyses of both the USGS geostandard Nod 

A-1 (-0.55 ± 0.1‰ (2SD), n = 12) and sample duplicates (n = 16). Water samples were 

measured alongside the Atlantic Seawater standard (OSIL) (-0.33 ± 0.06‰ (2SD), n = 2). The 

concentration of U was calculated using the isotope dilution method, and precision was ~ 1%.  

 

Authigenic 238U values in sediments (238Uauth) were estimated for both lakes and Paleozoic 

datasets. The calculated 238Uauth values estimate the detrital contribution of U based on the 

crustal average U/Th of Rudnick and Gao [2014], with error bars calculated based on the 

confidence intervals for detrital U/Th of Cole et al. [2017]. No corrections were made for 

samples with less than 35% higher U/Th than crustal average to avoid propagation of large 

correction errors.  

 

4 Results 

4.1 Modern Environments 

4.1.1 Brownie Lake 

In the oxic and anoxic cores at Brownie Lake, we find overlapping ranges of 238U values. The 

238Uauth values in the anoxic core range from –0.35‰ to 0.64‰ with a mean of -0.07 ± 0.59‰ 

(2SD), while the oxic core ranges from –0.31‰ to –0.02‰ with a mean of –0.15 ± 0.18‰ 

(2SD) (Fig. 2). Uranium enrichments are also highly variable with U/Th ranging from 0.11 to 

1.57 (ppm/ppm) with a mean of 0.56 ± 0.38 and 0.89 ± 0.89 in the anoxic and oxic cores, 

respectively (Fig. 2). We observe an apparent relationship between the 238Uauth values in the 

upper 10 cm of the two cores, with the anoxic core consistently averaging ~ 0.1‰ lighter than 

the oxic core, however these values are nearly all within error and therefore not significant 

(Fig. 3). Below 15 cm, 238Uauth values in the anoxic core become very heavy (up to 0.64‰), 
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and then return to scattered values similar to the upper portion, while the oxic core remains less 

variable.  

 

In the water column samples, 238U above the chemocline averages –0.16 ± 0.12‰, while 

below the chemocline the mean is –0.41 ± 0.26‰ (Fig. 4). The U concentration in the water 

column is higher in the surface waters (averaging 1.17 ± 0.4 ppb) than below the chemocline 

(averaging 0.56 ± 0.6 ppb). Significantly, there are no trends in U concentration coincident 

with the chemocline, however concentrations do decrease where iron concentrations begin to 

increase. Similarly, 238U values show a shift to lighter values between six and seven meters 

depth—just below the chemocline—where iron concentrations begin to increase. Below this 

level, the trend reverses back towards heavier 238U values. We also compare the water column 

238U to the 238U from the top 10 cm of both sediment cores. We have chosen this comparison 

since sediment values appear most consistent and show related trends, given that the water 

residence time is extremely short [2 years; Minneapolis Parks & Recreation Board, 2017]. The 

mean 238Uauth from this upper portion of the oxic core is –0.15 ± 0.13‰, while the mean 

238Uauth from the upper portion of the anoxic core is –0.26 ± 0.1‰. While these means are 

both within 2SD, the water 238U above the chemocline is nearly identical to that of the oxic 

core, while the water below the chemocline is slightly lighter (although still within 2SD).  

 

4.1.2 Lake Pavin 

In Lake Pavin, the range of 238Uauth is relatively limited in the oxic core, ranging from –0.43‰ 

to –0.28‰ with a mean of -0.37 ± 0.10‰, while cores from just below the chemocline and the 

lake bottom range from –0.81‰ to 0.30‰ with a mean of –0.19 ± 0.59‰ (Fig. 2). U/Th ratios 

range from 0.20 to 0.66 with a weak positive correlation with 238U (R2 = 0.30) and a mean of 

0.23 ± 0.04 in the oxic sediments, and a mean of 0.45 ± 0.21 in the anoxic sediments (Fig. 2). 
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There are no distinct trends repeated across all four cores (Fig. 3), however both cores at the 

chemocline have increasingly light values with core depth.  

 

4.1.3 Peru Margin 

Core top samples from the Peru Margin from the upper edge of the OMZ and through the OMZ 

have 238U values ranging from –0.27‰ to –0.08‰ with a mean of –0.20 ± 0.12‰, while 

samples from sediments underlying oxygenated waters below the OMZ range from –0.39‰ to 

–0.25‰ with a mean of –0.32 ± 0.12‰ (Fig. 5). These sediments are less variable overall than 

those recovered from the ferruginous lakes, however isotopic signatures from within versus 

below the OMZ are within uncertainty. Similar to the isotopic data, U/Th concentrations do 

not show a significant shift within the OMZ (mean of 3.53 ± 2.56) relative to more oxygenated 

waters (mean 1.53 ± 2.28)—although the mean value is higher, both groups are within 2SD. In 

contrast, TOC data show a significant increase within the OMZ (mean of 19.13 ± 5.13 wt%) 

compared to more oxygenated waters (mean of 6.46 ± 3.81 wt%). We find a distinct covariation 

between U/Th and TOC (R2 = 0.54, p = 1.08 x 10-5). Finally, we observe no isotopic trends tied 

to the location of core tops within or at the upper edge of the OMZ.  

 

4.2 Paleozoic  

Paleozoic samples were specifically selected to represent deposition in ferruginous 

environments based on iron speciation data (see SI). Samples were selected based on filtering 

for ferruginous conditions based on Poulton and Canfield (2011). These samples are comprised 

of both a single continuous section of the Road River Group at Tetlit Creek, as well as 

additional graptolite collection samples from a range of localities.  Broadly, we find similar 

trends in both groups of Paleozoic samples—namely, major variability in 238U values, a weak 

correlation of 238U values with U/Th, and a positive relationship with TOC.  
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4.2.1 Road River Group  

Samples from the Tetlit Creek section of the Road River Group have 238U values ranging from 

–0.64‰ to 0.36‰ with a mean of –0.09 ± 0.49‰ (Fig. 6), while U/Th values are highly 

variable and range from 0.51 to 19.27 with a mean of 4.54 ± 9.90 (Fig. 6). These samples are 

also relatively rich in TOC, with values ranging from 0.3 – 6.4 wt% with a mean of 2.74 wt% 

(Fig. 6). There is an apparent weak positive correlation between U/Th and 238U (R2 = 0.17, p 

= 6.2 x 10-4). We find a stronger correlation between TOC and 238U (R2 = 0.30, p = 4.8 x 10-

7).  

 

4.2.2 Additional graptolite samples from ~ 460 Ma – 428 Ma 

Similar to the samples from the Road River group, 238U values range from –0.68‰ to 0.18‰ 

with a mean of –0.15 ± 0.40‰, while U/Th values are highly variable with a mean of 8.30 ± 

14.82, showing a similar range and relationship with 238U (R2 = 0.14, p = 5.9 x 10-5) as that 

observed in the samples from the Road River Group (Fig. 7). These samples have TOC values 

ranging from 0.17 – 5.33 wt% with a mean of 2.25 wt%. Even more so than the Road River, 

we find a stronger correlation between TOC and 238U in these samples (R2 = 0.45, p = 1.5 x 

10-10). Combining both the Road River and additional graptolitic samples, we find that the 

relationship between 238U and TOC is most important (R2 = 0.44, p = 1.5 x 10-16) (Fig. 7). 

 

 

5 Discussion 

5.1 Ferruginous Lakes 

We find that, in the examined ferruginous lakes, 238U values from the oxic cores are 

statistically indistinguishable from the anoxic cores (Fig. 2). However, the 238U values from 
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the oxic cores in both lakes show substantially less variability than the anoxic cores, which 

range more than 1‰, roughly equivalent to the average range of fractionations observed in 

Earth’s sedimentary rock record (Fig. 1) [Wang et al., 2018], although it should be noted that 

fractionations up to 5‰ in non-sedimentary material have been measured [Basu et al., 2015; 

Hiess et al., 2012; Murphy et al., 2014; Stirling et al., 2007]. Further, the 238U values in the 

anoxic cores are not only highly variable—they also include values both lighter and heavier 

than those of the sediments from the oxic core, as well as the water column. This indicates that 

multiple reduction pathways are present—likely combined with varied expression of 

fractionation factors—resulting in a range of isotopic effects. Both lakes have lower 

concentrations of carbonate ion than seawater (~200 μmol/kg)—especially Lake Pavin, and we 

note that pH is substantially lower in anoxic versus oxic waters, while DIC is substantially 

higher. However, we do not expect significant changes in U speciation above and below the 

chemocline. Lastly, while we do not currently have constraints on the balance between pore 

water and water column reduction, we note that this would be a promising avenue for future 

work. 

 

5.1.1 Brownie Lake 

In Brownie Lake, the anoxic core is consistently lighter than the oxic core in the upper ~10 cm 

(Fig. 3), which suggests preferential removal of the light isotope (235U) to the sediment—the 

opposite of what is traditionally expected in anoxic settings, and providing evidence in a natural 

setting for the expression of kinetic MDF effects [Brown et al., 2018]. Despite this, the water 

238U values also show an isotopic shift towards lighter values just below the chemocline. 

While there may be small amounts of heavier U being removed from the water column, there 

is no evidence of substantial and significant isotopic fractionations associated with U cycling 

in this setting.  
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Beyond our key observation that U reduction in this ferruginous environment does not conform 

with the conventional understanding of U isotope behavior, we highlight below a number of 

processes relevant to this system and their relationship with our data. 

First, in the anoxic core, below the upper 10 cm, there is a jump to heavier 238U values, 

however there is no correlated shift in U/Th ratios, suggesting that the observed fractionation 

is not tied to an increase in removal efficiency (UMAR). Potentially, this larger apparent 

isotopic fractionation could be tied to a more complete expression of intrinsic fractionation 

factors—resulting from a shift to reduction in the water column (a non-diffusion limited 

setting) [e.g., Clark and Johnson, 2008]. Unfortunately, given the extremely short residence 

time of Brownie Lake waters, such hypotheses are difficult to support. 

  

Second, the heavier 238U values observed are most similar to what would be expected in 

euxinic settings [e.g., the Black Sea; Andersen et al., 2014; Montoya-Pino et al., 2010; Rolison 

et al., 2017; Weyer et al., 2008]. Significantly, there is no evidence that sulfide should play a 

role as a U reductant in either of the lakes examined. Sulfide concentrations were below 

detection limits (1 μM) at the time of sampling, and any available sulfide would immediately 

precipitate with plentiful Fe(II) as FeS—a reaction which has very fast kinetics [Rickard, 

1995]. While some FeS is likely present, and U(VI) removal via FeS has been demonstrated in 

laboratory experiments [Hua and Deng, 2008], this two-step process involving adsorption and 

subsequent slow and partial reduction has not been shown to be an important U removal 

pathway in natural settings [Chappaz et al., 2010].  

 

Third, vivianite—a reduced iron-phosphate mineral—is saturated in the water column below 

6-7 m depth throughout the year [Lambrecht et al., 2018]. It has also been shown that U can be 
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abiotically reduced by biogenic vivianite [Veeramani et al., 2011], however, while any 

fractionations associated with this process have not, to our knowledge, been explored, 

reduction is close to quantitative on a time scale of days potentially leading to no expressed 

fractionations. Equally, incorporation of U into other phosphate minerals (e.g., carbonate 

fluorapatite) has not been found to result in a fractionation based on experimental results [Dang 

et al., 2016]. Finally, there is also potential for changes in the available reductant or primary 

reduction pathways on short time scales during the course of deposition of these sediments. In 

sum, the complexity of this natural setting makes any conclusions about the reduction 

mechanisms difficult without additional work to untangle water residence time, U sources, and 

an age model for the sediment core.  

 

5.1.2 Lake Pavin 

In Lake Pavin, there is no apparent relationship between the four cores with water depth, though 

both cores from near the chemocline trend toward lighter values with sediment depth. While 

this could be interpreted as progressive U reduction via ferrous iron in porewaters, a 

progressive increase in U/Th would also be expected, and this is not observed. In contrast, the 

core from 92 m trends towards heavier values below 10 cm depth. Although these data cannot 

be compared with sediments of comparable core depth from the other cores, the overall 

variability from both lakes is indicative of not only variable expression of fractionation factors, 

but also potential for reduction via multiple reduction pathways and subsequently, rates of 

reduction [e.g., Brown et al., 2018]. Similar to Brownie Lake, we do not expect any influence 

from sulfide reduction, as sulfide concentrations are controlled by the presence of Fe (II) and 

therefore extremely low in both the water column and sediment pore waters [Busigny et al., 

2014]. 
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As in Brownie Lake, we observe a lack of distinct isotopic signatures between sediments 

deposited above and below the chemocline, however the specific processes behind our 

observed data are difficult to parse. Here we again address some key processes relevant to this 

environment and our observations. First, while the isotopic effects of microbial reduction that 

have been characterized in previous studies result in the preferential reduction of heavy U, it 

has also been experimentally demonstrated that abiotic reduction with ferrous iron can achieve 

the opposite effect, enriching reduced species in light U [Brown et al., 2018; Stylo et al., 2015]. 

Additionally, it is possible that reduction via ferrous iron can be close to quantitative [Du et 

al., 2011], or not induce a fractionation [Rademacher et al., 2006], which would result in 

sediments with similar isotopic values to overlying waters. Second, vivianite is also present in 

Lake Pavin [Cosmidis et al., 2014], and as discussed above, this may provide an alternative 

pathway for U reduction in this and other ferruginous settings [Veeramani et al., 2011]. Finally, 

there is also the potential for sorption of U to iron oxides—a process with a preference for light 

U [e.g., Weyer et al., 2008]—and subsequent reduction of this light pool occurring in either the 

water column or the sediment pile, often referred to as an ‘iron shuttle’. There is no evidence 

for preservation of iron oxides in the sediment column below oxic waters, which is expected 

given that they are highly organic-rich [Busigny et al., 2016]. In sum, the data observed in both 

lakes would be best explained by a combination of the processes outlined above—given 

evidence of anoxic sediment core values both lighter and heavier than those of the oxic core. 

Although parsing the roles of each removal pathway is beyond the scope of this initial survey, 

this highlights that ferruginous settings are not simply sequestering heavy U as occurs in 

euxinic environments where microbial U reduction dominates [Andersen et al., 2014; Hinojosa 

et al., 2016; Noordmann et al., 2015; Rolison et al., 2017; Weyer et al., 2008].  

 

5.2 Peru Margin 



 

 
©2020 American Geophysical Union. All rights reserved. 

The Peru Margin OMZ is characterized by relatively muted 238U fractionations relative to 

both the seawater and the core top sediments underlying the more oxygenated bottom waters 

below the OMZ ([O2] > 50 M) [Scholz et al., 2017; Scholz et al., 2016]. Within and at the 

edges of the OMZ, a range of suboxic to anoxic waters persist, resulting in strongly enriched 

TOC burial and trace metal accumulation within the OMZ [Böning et al., 2004] (Fig. 5). It is 

reasonable to consider that such environments would likely be important components of the 

marine redox landscape earlier in Earth’s history, coincident with increased anoxic area, or as 

environments that may be classified as ferruginous based on iron speciation yet lack high 

concentrations of Fe(II). The modest 238U values observed in these sediments, as well as the 

lack of distinction between those within and below the OMZ, are in stark contrast to the 

canonical view of distinctive 238U signatures from anoxic and oxic environments. Further, the 

Peru Margin OMZ sustains the highest U enrichments relative to other similar settings such as 

the Gulf of California, the Namibian Margin, and the Oman Margin [Böning et al., 2004] (Fig. 

5). This indicates that a non-trivial fraction of U reduction and removal from the marine system 

occurs in these environments, and is associated with a muted isotopic fractionation from 

seawater. While we observe a relationship between U/Th and TOC (R2 = 0.55, p = 1.1 x 10-5), 

as has been previously noted [McManus et al., 2005], this is not reflected in the isotopic record. 

Lastly, it should be noted that even in modern euxinic environments, U reduction occurs 

primarily in the sediment pile [e.g., Klinkhammer and Palmer, 1991]—therefore it is unlikely 

that the U isotopic values from the Peru Margin merely reflect a shift to (deeper) sediment pile 

reduction [e.g., Clark and Johnson, 2008]. That is, the muted apparent U isotope fractionation 

is likely not the result of sediment pile reduction being unique to this setting. Given that 

speciation effects should be similar in all modern seawater, these data may suggest dominance 

of a different reduction pathway, such as rapid and nearly quantitative reduction via ferrous 

iron in the uppermost (core-top) portion of the sediment pile [Du et al., 2011].  
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5.3 Silurian-Devonian Shales 

5.3.1 Road River Group and graptolitic shale samples 

Using iron speciation, we have identified a continuous section of samples deposited under 

ferruginous conditions (see SI).  Within this 400 m section (covering <20 Ma across the 

Silurian-Devonian boundary), we observe highly variable 238U values ranging ~ 0.8‰, but 

also recording shifts of up to ~ 0.6‰ within a 20 – 70 m interval (Fig. 6). Some 238U values 

exhibit stratigraphic jumps of 0.2 – 0.5‰ between samples only separated by 10-20 meters of 

stratigraphy. A similar pattern is seen in the Cape Phillips Formation samples, where variance 

of 0.5‰ is recorded between samples from a single graptolite biozone. In the traditional U 

isotope mass balance framework, these would be interpreted as rapid shifts in global redox 

landscape. However, the problems with such an interpretation are twofold. First, the variability 

is unlikely to be primarily driven by shifts in global marine 238U resulting from changes in the 

extent of reducing seafloor area, given the magnitude and frequency of shifts. Based on the 

range of 238U observed in surface systems, and our understanding of the U isotope mass 

balance, it would be impossible to shift marine 238U to extreme isotopic values without 

observing a sharp drop in marine U concentrations [e.g., Lau et al., 2016], and there is no 

evidence for this from U/Th data. Second, given that these sediments have been constrained as 

ferruginous and, so far, in modern analogue systems we only find evidence for high variability 

instead of consistent, large, and unidirectional U isotope fractionations, we find no basis on 

which to attribute isotopic shifts in these Paleozoic sediments solely to changes in the seawater 

isotopic composition. The exception to this may be the broad trend towards heavier 238U in 

the upper part of the Tetlit Creek section, which would lead traditional U isotope studies to 

suggest an expansion of oxic waters. Yet, equally, based on the evidence of this study, in the 

event of changing seawater isotopic values, the same trend could also be explained by a 
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decrease in global euxinic area and/or an expansion of ferruginous environments. Lastly, and 

most importantly, we observe a significant relationship between TOC content and 238U (Fig. 

7). Such a relationship between organic matter and 238U has been previously observed in 

modern settings [Andersen et al., 2014; Severmann, 2015], and our findings show a similar 

dependence through the Tetlit Creek stratigraphy (Fig. 6). This consistent stratigraphic trend 

would suggest that 238U is most primarily tied to organic matter loading—a local effect—and 

as such, not the signature of a global shift.  

 

Overall, we suggest that the most parsimonious interpretation of these data—and especially the 

rapid shifts on short stratigraphic scales—is variable expression of U isotope fractionations and 

reduction pathways in this ferruginous environment, just as we have observed in the modern 

analogue ferruginous and anoxic systems. The extent of fractionation from a given seawater 

value during reduction will be tied to both the reduction pathway (biotic, abiotic, or sorption-

mediated removal and subsequent reduction) and open (water column) or closed (pore water) 

system behavior [e.g., Andersen et al., 2017; Andersen et al., 2014; Clark and Johnson, 2008]. 

In addition, increased organic matter loading in the Tetlit Creek section tends to result in larger, 

positive U isotope fractionations. As in the lakes, there is also the likelihood that a given 

reduction pathway could produce a range of sedimentary 238U values due to muted or fully 

expressed fractionations. For example, during reduction in the water column, the full isotopic 

fractionation associated with a given reduction pathway would be expected as U would not be 

diffusion limited. However, it should be noted that in modern environments water column 

reduction only becomes important in very high productivity environments [Andersen et al., 

2017]. In contrast, reduction could occur in the pore waters of the sediment column, resulting 

in muted fractionations due to diffusion-limited U supply [Clark and Johnson, 2008], while 
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partial reduction in the water column will further dampen subsequent U isotope fractionations 

in the sediment column.  

 

The additional Ordovician-Devonian graptolitic shale samples, also identified as ferruginous 

based on iron speciation, echo the variability observed in the Tetlit Creek and Twilight Creek 

sections. Although these samples cannot be tied to trends in a given sedimentary section, these 

data similarly demonstrate the range of potential fractionations in a ferruginous environment. 

These samples also show a similar relationship between TOC and 238U, again suggesting that 

increased organic matter loading may strongly contribute to expression of larger fractionations. 

 

The majority of graptolitic shale values fall below 0‰; if we expect an isotopic fractionation 

from seawater in all anoxic settings of ~ +0.6‰ [e.g., Andersen et al., 2014], this would require 

seawater to be –0.6‰ or lighter during much of this timespan. Further, if we also account for 

the variability and the heaviest values observed (0.4‰), this would require that seawater cannot 

be more than ~ 0.2‰ lighter than modern. While such shifts between these two endmember 

scenarios may be possible on the timespan that these samples represent, we do not currently 

have a direct record of seawater 238U against which to test an interpretation of major (order of 

magnitude) swings in reducing area. Instead, we suggest that the most parsimonious 

interpretation of this data is the same as all other sample sets in this study—variable expression 

of fractionation factors associated with reduction in ferruginous settings, organic matter 

loading, and UMAR. 

 

Combining all Paleozoic data, we observe correlations between both 238U and U/Th and 238U 

and TOC (Fig. 6). This suggests that the efficiency of reduction or higher rates of U 

accumulation are tied to larger effective fractionations. Interestingly, this is seemingly in 
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contrast to what has been predicted experimentally [Brown et al., 2018]. These heavier values 

resemble expected U isotope fractionations during microbially dominated U reduction in 

euxinic environments. Equally, these values may also simply reflect ancient ferruginous 

settings in which non-microbial U reduction was the predominant means of U sequestration 

[e.g., Hood et al., 2016]. In addition to variation in 238U values, there is nearly an order of 

magnitude variation in U/Th values in sediments deposited under similar redox conditions (as 

constrained by iron speciation; SI). While this may result from some heterogeneity in seawater 

U concentrations or restricted settings, this also reflects substantial variability in the 

accumulation or removal rates of U. This variability may be tied to organic matter loading, 

changes in sedimentation rate, the efficiency of reduction, or, most likely, a combination of 

these factors.  This magnitude of variability in UMAR alone has the potential to substantially 

impact the outcome of isotope mass balance modeling results (Fig. 9).  

 

5.4 Revisiting the isotope mass balance  

Here we use a global U isotope mass balance model to explore the potential influence of 

variation of both fractionation factor (238U) and UMAR in ferruginous settings on the 

reconstruction of global marine paleoredox conditions. In contrast to traditional approaches, 

we have included a separate ferruginous sink (table of parameters; SI). Because ferruginous 

settings would be the dominant reducing environment across the majority of Earth’s history 

[e.g., Poulton and Canfield, 2011], inclusion of this sink is a critical component of any model 

when attempting to quantify the expanse of low oxygen conditions. 

 

The model is initially set to sustain modern steady state using the mass balance and isotope 

mass balance of Dunk et al. [2002] and Tissot and Dauphas [2015]. Because the modern system 

does not include any substantial ferruginous environments, the initial area of this sink is set to 
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zero. We then perturb the system by increasing the ferruginous area and exploring the effects 

of varying the isotopic fractionation factor associated with this sink, as well as the efficiency 

of U burial in these environments. While it is likely that the extent of other reducing sinks will 

vary with expansion of ferruginous environments (e.g., expansion of suboxic regions), we 

solely consider variation related to ferruginous environments to more simply explore the 

influence of this added removal pathway.  

 

5.4.1 ∆238U in ferruginous settings 

The primary aim of this study was to provide constraints on ∆238Uferr (effective fractionation in 

ferruginous environments), however our data suggest that a large range of fractionations occur 

in natural ferruginous settings, and any single average would result in an oversimplification of 

the system. Building on this observation, we explore the effects on seawater 238U values using 

an approximation of the range of ∆238Uferr from our data (–0.3‰ to +0.3‰). We find that values 

close to modern seawater 238U are sustained at almost any extent of ferruginous seafloor area 

if we use an average ∆238Uferr of ~ 0.1 (Fig. 8a). Although [U] concentrations will drop 

substantially as this sink expands, as would be expected (Fig. 8b), assessing this change in 

siliciclastic sediments would require both large temporal and global datasets as well as a high-

resolution understanding of sediment accumulation rates. While we demonstrate this large 

solution space for given seawater 238U, it is likely that the size of other sinks would also 

change in concert with a substantial increase in ferruginous seafloor area. We do not account 

for this likelihood, as this model is more representative of a thought experiment, although 

constraints from other proxies on the expanse of other environments that are substantial sinks 

for U may provide useful information to eliminate certain redox scenarios. 
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This expansion of the potential redox landscapes consistent with modern-like 238U seawater 

values may also provide a resolution for conflicting datasets— particularly in the Paleozoic 

and Proterozoic. For example, Yang et al. [2017] suggest that reconstructed 238U seawater 

values fx`rom 1.36 Ga sediments were within 0.1 – 0.3‰ of modern values and that such values 

indicate an ocean where < 25% of the seafloor was anoxic—in other words that the oceans had 

become largely ventilated relative to the majority of the Precambrian. However, given the 

framework presented here, this dataset would not only be consistent with large areas of oxic or 

weakly oxygenated seafloor area as the authors have discussed, but also with large areas of 

ferruginous seafloor. This interpretation would be precisely in line with the global marine 

landscape expected during this interval [Poulton and Canfield, 2011].   

 

5.4.2 Uranium removal efficiency 

We also explore the effects of changes to UMAR. Uranium accumulation rates used in marine 

sinks in the isotope mass balance are calibrated using modern analogues—however in reducing 

settings in the modern these rates are strongly tied to organic matter loading and sedimentation 

rates [e.g., Dunk et al., 2002]. Importantly, these settings are represented by small restricted 

basins (e.g., Cariaco Basin) and near-shore, high productivity regions (coastal upwelling 

regions). These types of reducing environments are characterized by high sediment and organic 

matter fluxes. In contrast, the distribution of reducing waters in a world with low atmospheric 

oxygen and poorly oxygenated deep oceans would be fundamentally different, with extensive 

distal reducing environments [e.g., through much of the Paleozoic and Precambrian; Wallace 

et al., 2017].  In these deep sea settings, mean UMAR may have been much lower—tied closely 

to productivity and organic matter flux—as a result of much lower sedimentation rates 

[Crockford et al., 2018; Derry, 2015; Laakso and Schrag, 2014; Ozaki et al., 2019; Reinhard 

et al., 2017].   
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We have assessed the impact of lower UMAR by exploring an order of magnitude range of 

flux efficiencies, using modern values from reducing environments that sustain steady state as 

an upper limit. We consider this a reasonable upper limit, as the reducing settings of the modern 

ocean have high sulfate reduction rates, which scale linearly with rate of U reduction [Barnes 

and Cochran, 1993], and these rates would have been much lower prior to the eventual ocean 

ventilation in the Paleozoic. At rates about half as efficient as U removal in modern euxinic 

sinks, seawater [U] can remain within 20% of modern values with up to 5% of the ocean floor 

ferruginous (Fig. 9a). Uranium MAR has a smaller impact on the isotopic mass balance, but 

changes in seawater 238U can still be driven by UMAR alone with a fixed ∆238Uferr (Fig. 9b). 

Understanding the potential variation in the efficiency of ferruginous sinks is equally critical 

to identifying the associated isotopic fractionations in order to provide reasonable 

interpretations of U isotope data in the sedimentary record.  

 

This model is not meant to reconstruct the redox environment in any given interval in Earth’s 

history. Instead, we aim to highlight the size of the potential solution space for a given seawater 

238U value. While the extent of reducing seafloor area cannot be constrained as a result of 

isotopic variability observed in this study, it is possible that 238U data could provide 

information on the extent of euxinic environments. Although there is some overlap in the 

isotopic fractionations that can be expressed in ferruginous and euxinic settings—particularly 

in conjunction with high TOC—consistently positive fractionations have been found in the 

modern euxinic settings examined thus far. Therefore, light seawater values may provide 

compelling evidence for extensive euxinic conditions, whereas heavy (near modern) seawater  

238U values can indicate either a well oxygenated or largely ferruginous ocean state, or any 

combination of these environments.  
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In sum, this framework suggests that near modern seawater 238U values are consistent with 

limited euxinic seafloor area, but do not necessarily suggest a well oxygenated marine 

environment. Indeed, near modern values through the Proterozoic—an interval expected to be 

dominated by ferruginous environments [e.g., Planavsky et al., 2011; Poulton and Canfield, 

2011]—may confirm that euxinia was very rare [Reinhard et al., 2013].  Further, distinct 

negative excursions in the 238U seawater record [e.g., Lau et al., 2016; Wei et al., 2018; Zhang 

et al., 2018a; Zhang et al., 2018c] may provide more compelling evidence for an expansion of 

euxinic environments, rather than just low oxygen environments.  

 

6 Concluding Remarks 

 

Evidence from both modern analogues and Paleozoic ferruginous sediments alike show that 

the 238U signature for reduction in ferruginous environments is highly variable.  In our 

examined modern ferruginous settings, 238U values are indistinguishable from adjacent oxic 

settings. This is consistent with the influence of both reduction rate and competing isotope 

effects (negative kinetic fractionations versus positive nuclear volume effect fractionations) in 

defining the values preserved in the sedimentary record. As a result, it is difficult to suggest 

that a given seawater 238U value can be interpreted uniquely in terms of the amount of oxic 

versus anoxic seafloor area. Our study forces acknowledgment of a much larger solution space 

in global U isotope mass balance models than typically considered for a given 238U dataset, 

however, this may help to resolve conflicting interpretations of the redox environment in the 

Proterozoic and Paleozoic. While this conclusion does not undermine the idea that extremely 

light seawater 238U is indicative of substantial portions of anoxic (likely euxinic) depositional 

area [e.g., Lau et al., 2016; Wei et al., 2018; Zhang et al., 2018b], we demonstrate that it is 
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possible to maintain 238U seawater values similar to the modern even in a largely ferruginous 

ocean.  
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Figure 1. A schematic of the uranium isotope mass balance in Earth’s surface reservoirs. 

Fractionations from seawater are based on modern observations. Reducing environments in 

blue, including a separate ferruginous sink, which is currently unconstrained and critical for 

understanding past oceans (Adapted from Andersen et al., 2017; Tissot et al., 2015).  
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Figure 2. 238U data from modern ferruginous Brownie Lake and Lake Pavin. Data from anoxic 

cores in blue, oxic in green. A) Spread of 238Uauth data from both lakes. B, C) 238U plotted 

against U/Th for Lake Brownie and Lake Pavin, respectively. Circles represent original data 

while stars show 238Uauth with error bars calculated based on confidence intervals for crustal 

input from Cole et al. (2017). Crustal confidence intervals for U/Th shown by grey bars. 

Uranium isotopic composition of crust shown by dashed lines.  
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Figure 3. Core depth profiles for A) Brownie and B) Pavin. Cores sampled above the 

chemocline are shown in green (3 m depth at Brownie, 32 m depth at Pavin). Blue shows cores 

from at or below the chemocline (14 m depth at Brownie, 60 m, 65 m, and 92 m at Pavin with 

darker colors indicating deeper cores). Dashed lines represent crustal 238U composition. 
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Dissolved oxygen and iron as a function of depth; May 2017. Chemocline represented by the 

grey bar.  
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Figure 5. 238Uauth, TOC, and U/Th data from core tops through the Peru Margin OMZ. The 

grey bar represents the OMZ, while waters above and below this region are oxygenated. TOC 

data from Böning et al. (2004). Data points for TOC and U/Th are larger than the error on these 

measurements.  
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Figure 6. Uranium isotope, TOC, and U/Th data from ferruginous shale samples in the Road 

River Group at Tetlit Creek. All samples shown have iron speciation signatures consistent with 

deposition under a ferruginous water column (FeHR/FeT > 0.38; FePY/FeHR < 0.7). 238U and 

238Uauth data shown by circles and stars respectively. Circles represent original data while stars 

show 238Uauth with error bars calculated based on confidence intervals for crustal input from 

Cole et al. (2017), while the 2 sigma error is the error on isotope measurements. The error on 

the TOC and U/Th measurements are smaller than the data points. 
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Figure 7. Uranium isotope data from all Paleozoic samples (Tetlit Creek; blue, and graptolite 

samples; grey) relative to TOC and U/Th. The 2σ is the error on the 238U measurements. The 

regression line is calculated using the measured values of 238U, TOC wt%, and U/Th. All 

samples shown have iron speciation signatures consistent with deposition under a ferruginous 

water column (FeHR/FeT > 0.38; FePY/FeHR < 0.7).  
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Figure 8. Isotope mass balance model outputs as result of varying ∆238Uferr and area of 

ferruginous ocean floor. A) Colorbar indicates 238U value of seawater at steady state. B) 

Colorbar indicates [U] in seawater expressed as a percentage of modern.  
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Figure 9. Isotope mass balance model outputs as a result of varying U MAR and area of 

ferruginous ocean floor. A) Colorbar indicates [U] in seawater at steady state as a percentage 

of modern. B) Colorbar indicates 238U value of seawater at steady state.  
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Table 1. Marine redox environments 

 

Environment Primary Reductant Modern Examples 

Euxinic H2S present at high 

enough levels to build up 

at or above the sediment-

water interface.   

Black Sea, Cariaco Basin 

Ferruginous Fe(II) is present, 

specifically requiring 

H2S-poor conditions 

Lake Pavin, Brownie 

Lake, Lake Matano 

Nitrogenous Neither H2S or Fe(II) rich, 

oxygen-poor and NO3
- 

buffered. 

Productive 

regions/upwelling zones 

such as Peru Margin  

 



Figure 4. Brownie Lake water column data. (a) δ 238U and [U] data as a function of depth. (b) 

Dissolved oxygen and iron as a function of depth; May 2017. Chemocline represented by the gray 

bar.  
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