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ABSTRACT A performance analysis of the effective capacity in two recently proposed generalized
composite fading channels, namely κ-µ / inverse gamma and η-µ / inverse gamma composite fading
channels, is conducted. To this end, accurate analytic expressions for the effective capacity are derived
along with simple tight bound representations. Additionally, simple approximate expressions at the high
average signal-to-noise ratio regime are also provided. The effective capacity is then analyzed for different
delay constraint, multipath fading and shadowing conditions. The numerical results show that the achievable
spectral efficiency lessens as the multipath fading and shadowing parameters decrease (i.e., severe multipath
fading and heavy shadowing become prevalent) or the delay constraint increases. The accuracy and tightness
of the proposed bounds is demonstrated and approximate representations are also provided to verify
their usefulness. Furthermore, our numerical results are validated through a careful comparison with the
simulated results.

INDEX TERMS Channel capacity, composite fading, effective capacity, η-µ / inverse gamma model, κ-µ
/ inverse gamma model.

I. INTRODUCTION

CHANNEL capacity is a core performance metric in
communication systems. Shannon’s ergodic capacity

has widely been used, but this is not able to measure the sys-
tem performance under quality of service (QoS) constraints
such as system delay and data rate. Effective capacity has
been proposed as an alternative performance metric owing
to its ability to take into account the system’s delay con-
straint [1]. This is especially pertinent for emerging real-time,
delay sensitive applications where the lowest possible la-
tency is essential. Additionally, computation of the effective
capacity offers an efficient and convenient way to evaluate
the statistical QoS performance of wireless systems from
the networking perspective. This includes the analysis of
resource allocation management [2], spectral efficiency [3],
user scheduling schemes [4] and cognitive radio networks
[5]. Due to the aforementioned attractions, the effective ca-
pacity has recently attracted significant research interest.

Similar to other capacity measures, the effective capacity

is also greatly impacted by the fading conditions experienced
within the operating environment. In this context, the effec-
tive capacity has been determined over a number of different
multipath fading [6]–[13] and composite fading channels
[14]–[20]. For example, the authors of [6] evaluated the
effective capacity of Nakagami-m fading channels. This was
then extended in [7] to account for the case of multiple-input
single-output (MISO) fading channels. In this study, a com-
prehensive analysis of the effective rate over independent and
identically distributed (i.i.d.) Nakagami-m fading channels
was conducted. Meanwhile, in [15], the authors presented an
exact closed-form expression for the effective capacity of F
composite fading channels as well as demonstrating the effect
of different shadowing and multipath fading conditions on
the effective capacity.

More recently, two generalized composite fading models
have been introduced in [21], namely the κ-µ / inverse
gamma and η-µ / inverse gamma composite fading models.
The former characterizes the composite fading observed in
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line-of-sight channel conditions whereas the latter accounts
for the composite fading experienced in non-line-of-sight
channel conditions. In [21], the authors demonstrated their
utility for channel characterization in wearable, cellular and
vehicular communications. To the best of the author’s knowl-
edge, a detailed mathematical treatment of the effective ca-
pacity over these two generalized composite fading chan-
nels has not been presented in open technical literature. To
this end, using a similar approach to that utilized in [22],
we firstly reformulate the corresponding probability density
functions (PDFs) to ensure stability across the complete
parameter space when conducting calculations which involve
computation of the moments. We then derive accurate ana-
lytic expressions and tight bounds for the effective capacity.
Additionally, simple approximate expressions at the high
average signal-to-noise ratio (SNR) regime are also derived.
Using the newly obtained expressions, we provide important
insights into the impact of delay constraint, multipath fading
and shadowing on the effective capacity under generalized
composite fading conditions.

II. THE κ-µ / INVERSE GAMMA COMPOSITE FADING
MODEL
A. A NEW FORMULATION
Similar to the κ-µ fading model [23], the κ-µ / inverse
gamma composite fading model describes a fading scenario
in which the radio channel exhibits multipath clustering with
presence of dominant components. Unlike the κ-µ fading
channel, however, in the κ-µ / inverse gamma composite
fading channel, the mean signal power of a κ-µ signal is
assumed to be randomly fluctuated by an inverse gamma
random variable (RV). Following this definition, the compos-
ite signal envelope, R, in a κ-µ / inverse gamma composite
fading channel can be defined as

R2 =
n∑
i=1

Z(Xi + pi)
2

+ Z(Yi + qi)
2 (1)

where n represents the number of multipath clusters, Xi and
Yi are mutually independent Gaussian RVs with E [Xi] =
E [Yi] = 0 and E

[
X2
i

]
=E

[
Y 2
i

]
=σ2 where E[·] denotes the

statistical expectation. Additionally, pi and qi are the mean
values of the in-phase and quadrature components of the mul-

tipath cluster i, respectively, which yields δ2 =
n∑
i=1

p2i + q2i

with δ2 denoting the total power of the dominant signal
components. In (1), Z denotes an inverse gamma RV with
E[Z] = 1, where ms is the shape parameter and thus the
corresponding PDF of Z is given by

fZ(ζ) =
(ms − 1)

ms

Γ (ms) ζms+1
exp

(
−ms − 1

ζ

)
(2)

where Γ (·) denotes the gamma function.

Theorem 1. For κ, µ, r,Ω,ms ∈ R+, the PDF of the com-
posite signal envelope in a κ-µ / inverse gamma composite

fading channel can be expressed in closed-form as

fR(r) =
2µµ(1+κ)

µ
(ms−1)

msΩmsr2µ−1

exp (µκ)B (ms, µ) c0ms+µ

× 1F1

(
ms+µ;µ;

µ2κ (1 + κ) r2

c0

)
, ms > 1

(3)

where c0 = µ (1+κ) r2 + (ms−1)Ω. In (3), B (·, ·) denotes
the Beta function [24] while 1F1 (·; ·; ·) represents the Kum-
mer hypergeometric function [24].

Proof. The PDF of the signal envelope in a κ-µ / inverse
gamma composite channel can be obtained by averaging the
infinite integral of the conditional probability density of the
κ-µ fading process with respect to the random variation of
the mean signal power, such that

fR(r) =

∫ ∞
0

fR|Z(r|ζ)fZ(ζ) dζ (4)

where

fR|Z(r|ζ)=
2µ(1 + κ)

µ+1
2 rµ

κ
µ−1
2 exp(µκ)(ζΩ)

µ+1
2

exp

(
−µ(1 + κ)

r2

ζΩ

)
×Iµ−1

(
2µ
√
κ (1 + κ)

r√
ζΩ

)
(5)

where Iv (·) denotes the modified Bessel function of the first
kind and order v [25, Eq. (9.6.20)]. Substituting (5) and (2)
in (4), performing a simple transformation of variables and
applying [26, Eq. (2.15.5.4)] along with some algebraic ma-
nipulations, the PDF of the κ-µ / inverse gamma composite
fading model can be expressed in closed-form as given in (3).

The doubly non-central F distribution arises as a result of the
ratio of two independent distributed non-central chi-squared
variables [27], i.e., χ2

v1(λ1) and χ2
v2(λ2). This simplifies to

the F distribution when λ1 = λ2 = 0 and the singly non-
central F distribution when λ1 6= 0, λ2 = 0. Interestingly,
the form of the PDF in (3) corresponds to the singly non-
central F distribution. More specifically, when letting r2 = t
and then performing the requisite transformation along with
the following substitutions µ = v1/2,ms = v2/2, κ = λ/v1
and Ω = v2(v1 + λ)/v1(v2 − 2), the singly non-central F
distribution, ft(t), can obtained with parameters v1, v2 and
λ.

Remark 1. Physically, µ is related to the number of mul-
tipath clusters while κ = δ2

2µσ2 parameter represents the
ratio between the total power of the dominant signal and
scattered signal components (2µσ2) 1. In this model, ms

controls the amount of shadowing of the mean signal power(
Ω = E

[
R2
]

= δ2 + 2µσ2
)

undergoes.

The corresponding PDF of the instantaneous signal-to-noise
ratio (SNR) can be obtained from (3) by letting γ = γr2/Ω,

1Each cluster is assumed to have the scattered wave with identical power,
i.e., 2σ2
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such that

fγ(γ) =
µµ(1 + κ)

µ
(ms − 1)

msγmsγµ−1

exp (µκ)B (ms, µ) c1ms+µ

× 1F1

(
ms + µ;µ;

µ2κ (1 + κ) γ

c1

) (6)

where c1 = µ(1+κ)γ+(ms−1)γ and γ = E[γ] is the
average SNR.

B. EFFECTIVE CAPACITY
Theorem 2. For κ, µ, γ, θ, B, T ∈ R+ and ms > 1, the
following analytic expression holds for the effective capacity
over κ-µ / inverse gamma composite fading channels

CE = − 1

A
log2

{
(ms)A c2

ms

exp(µκ)

∞∑
i=0

(µκ)
i

i! (ms + µ+ i)A

× 2F1

(
ms+A,ms+µ+i;ms+µ+i+A; 1− c2

)}
(7)

where c2 =
(ms − 1)γ

µ (1 + κ)
and A = θBT/ ln(2) with θ

denoting the asymptotic decay rate of the buffer occupancy.
It is worth remarking that when θ → 0 (i.e., no delay con-
straints), the effective capacity coincides with the well-known
Shannon’s ergodic capacity whereas the effective capacity
deteriorates to zero when θ →∞ (i.e., severely delay-limited
case). Additionally, B refers to the system bandwidth while
T represents the block/frame length. In (7), (x)n denotes the
Pochhammer symbol [24] while 2F1(·, · ; · ; ·) represents the
Gauss hypergeometric function [24].

Proof. Based on the definition of effective capacity given in
[14], the effective capacity can be defined as

CE = − 1

A
log2

(
E
[
(1 + γ)

−A
])
. (8)

Considering a κ-µ / inverse gamma composite fading chan-
nel, we can calculate the effective capacity from (8) by
averaging the SNR, γ, with the PDF given in (6), such that

CE = − 1

A
log2

(
µµ(1+κ)

µ
(ms−1)

msγms

exp (µκ)B (ms, µ)
I1
)

(9)

where

I1 =

∫ ∞
0

(1+γ)
−A
γµ−1

c1ms+µ
1F1

(
ms+µ;µ;

µ2κ (1+κ) γ

c1

)
.

(10)
The Kummer hypergeometric function in (10) can be ex-
pressed in terms of an infinite series expansion [28, Eq.
(07.20.02.0001.01)]. With the aid of [24, Eq. (3.197.9)], we
can then obtain the following expression

CE = − 1

A
log2

{∞∑
i=0

(ms+µ)i c2
msB(ms+A,µ+i)

i! (µ)i(µκ)
−i

exp(µκ)B(m,ms)

× 2F1

(
ms+A,ms+µ+i;ms+µ+i+A; 1− c2

)}
.

(11)

The effective capacity expression given in (11) can be ex-
pressed in a more compact form by rewriting the Pochham-
mer symbol and beta function in terms of the gamma function
along with some algebraic manipulations. This completes the
proof.

Proposition 1. For κ, µ, γ, θ, B, T ∈ R+ and ms > 1, the
following upper bound is valid for the truncation error of
(7),

T ≤− 1

A
log2

{
(ms)A c2

ms

(c3)A
2F1

(
ms+A, c3; c3+A; 1−c2

)}
(12)

where c3 = ms + µ+ p with p denoting the number of terms
that truncate the series.

Proof. Truncating the infinite series in (7) after p − 1 terms
results in the following error

T =− 1

A
log2

{
(ms)A c2

ms

exp(µκ)

∞∑
i=p

(µκ)
i

i! (ms + µ+ i)A

× 2F1

(
ms+A,ms+µ+i;ms+µ+i+A; 1− c2

)}
.

(13)

Since the gamma and Gauss hypergeometric functions in (13)
are monotonically decreasing with respect to i, T can be
bounded as

T ≤− 1

A
log2

{
2F1

(
ms+A, c3; c3 +A; 1− c2

)
(ms)A

c2−ms exp(µκ) (c3)A

×
∞∑
i=p

(µκ)
i

i!

}
.

(14)

The limits of the summation in (14) can be rewritten as∑∞
i=p

(µκ)i

i! ≤
∑∞
i=0

(µκ)i

i! as the positive terms are only

added up. Notably, by using
∑∞
i=0

(µκ)i

i! = exp(µκ), we can
obtain (12), which completes the proof.

Proposition 2. For κ, µ, γ, θ, B, T ∈ R+, ms > 1 and ms+
µ >> A, the effective capacity under κ-µ / inverse gamma
composite fading conditions can be bounded by the following
inequalities

CUBE < − 1

A
log2

[
(ms)A

c2A (ms + µ+ p)A

]
(15)

and

CLBE > − 1

A
log2

[
(ms)A
c2A

]
(16)

which represent tight upper and lower bounds, respectively.
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Proof. It is evident that ms + µ+A ≈ ms + µ when ms +
µ >> A and thus (7) can be tightly upper bounded

CUBE < − 1

A
log2

{
(ms)A c2

ms

exp(µκ)

∞∑
i=0

(µκ)
i

i! (ms + µ+ i)A

× 2F1

(
ms+A,ms+µ+i;ms+µ+i; 1− c2

)}
.

(17)

Given that 2F1(ms+A,ms + µ+ i;ms + µ+ i; 1− c2) =

1F0(ms +A; ; 1− c2) with 1F0(·; ; ·) denoting the Gener-
alized hypergeometric function [24, Eq. (9.14.1)] and by
recalling that 1F0(n; ; 1 + x) , (−1)

n
/xn, n ∈ R, (17)

can be reduced as follows

CUBE <− 1

A
log2

[
(ms)A

exp(µκ) c2A

∞∑
i=0

(µκ)
i

i! (ms+µ+i)A

]
.

(18)
After some algebraic manipulations, the closed-form upper
bound is deduced as given in (15).

Based on (15) and recalling that ms + µ + A ≈ ms + µ
when ms + µ >> A, (ms + µ+ p)A in (15) can be elimi-
nated. This yields the closed-form lower bound as given in
(16), which completes the proof.

Although (7) provides an accurate expression for calculat-
ing the effective capacity in κ-µ / inverse gamma composite
fading channels across all SNR values, in what follows, we
present a useful and simplified asymptotic expression for
high SNR regimes.

Proposition 3. For κ, µ, γ, θ, B, T ∈ R+, ms > 1 and
γ >> 0, the effective capacity under κ-µ / inverse gamma
composite fading conditions can be asymptotically expressed
as follows

Casym.E '− 1

A
log2

[
2F1(A,µ+p; c3+A; 1− γ)

]
. (19)

Proof. In the high average SNR regime (γ >> 0), it follows
that γ >> κ, γ >> µ, γ >> ms and γ >> A, namely

(ms)A
(ms + µ+ i)A

(
(ms − 1)γ

µ(1 + κ)

)ms
' γms . (20)

Based on this and after some algebraic manipulations, (19) is
deduced, which completes the proof.

III. THE η-µ / INVERSE GAMMA COMPOSITE FADING
MODEL
A. A NEW FORMULATION
Similar to the η-µ fading model [23], the η-µ / inverse
gamma composite fading model describes the variation of the
fading signal with power imbalance or correlation between its
quadrature components and multipath clusters. Unlike the η-
µ fading channel, however, in the η-µ / inverse gamma fading
channel, the mean signal power of an η-µ signal is assumed
to be randomly fluctuated by an inverse gamma RV. The

corresponding composite signal envelope in an η-µ / inverse
gamma composite fading channel can be written as

R2 =
n∑
i=1

ZX2
i + ZY 2

i (21)

where n denotes the number of multipath clusters and Z
represents an inverse gamma RV with E[Z]=1 whose PDF is
given in (2). In Format 1,Xi and Yi are mutually independent
Gaussian RVs with E [Xi] = E [Yi] = 0, E

[
X2
i

]
= σ2

X and
E
[
Y 2
i

]
= σ2

Y , while in Format 2, Xi and Yi are mutually
correlated Gaussian RVs with E [Xi] = E [Yi] = 0, and
E
[
X2
i

]
= E

[
Y 2
i

]
= σ2.

Theorem 3. For η, µ, r,Ω,ms ∈ R+ and ms > 1, the PDF
of the composite signal envelope in an η-µ / inverse gamma
composite fading channel can be written as

fR(r) =
22µ+1µ2µ hµ(ms−1)

msΩmsr4µ−1

B(ms, 2µ)[2µhr2 + (ms − 1)Ω]
ms+2µ

×2F1

(
ms+2µ

2
,
ms+2µ+1

2
;µ+

1

2
;

(
2µHr2

)2
[2µhr2+(ms−1)Ω]

2

)
(22)

where h = (2 + η−1 + η)/4, H = (η−1 − η)/4 in Format 1
and h = 1/(1− η2), H = η/(1− η2) in Format 2.

Proof. Based on the signal model given in (21), the con-
ditional probability density of the η-µ fading process with
respect to the random variation of the mean signal power can
be expressed as follows

fR|Z(r|ζ) =
4
√
π µµ+

1
2 hµr2µ

Γ (µ)Hµ− 1
2 (ζΩ)

µ+ 1
2

× exp

(
−2µhr2

ζΩ

)
Iµ− 1

2

(
2µHr2

ζΩ

)
.

(23)

By substituting (23) and (2) into (4), performing a simple
transformation of variables and applying [26, Eq. (2.15.3.2)]
along with some algebraic manipulations, the corresponding
PDF of the composite fading signal in an η-µ / inverse gamma
composite fading channel can be expressed in closed-form as
given in (22).

Remark 2. Physically, µ is related to the number of mul-
tipath clusters and η is defined as the ratio between the
scattered wave power of the in-phase and quadrature com-
ponents of each multipath cluster (η = σ2

I/σ
2
Q) in For-

mat 1. On the contrary, in Format 2, η is defined as the
correlation coefficient between the scattered waves in the in-
phase and quadrature components of each multipath cluster
(η = E[IiQi]/σ

2). In this model, the ms parameter controls
the amount of shadowing of the mean signal power, i.e.,
E
[
R2
]

= Ω =µ(1+η)σ2
Q =µ

(
1+η−1

)
σ2
I in Format 1 and

E
[
R2
]
=Ω=2µσ2 in Format 2.
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The corresponding PDF of the instantaneous SNR can be
obtained from (22) by letting γ = γr2/Ω, such that

fγ(γ)=
22µµ2µ hµ(ms−1)

msγmsγ2µ−1

B(ms, 2µ) c4ms+2µ

×2F1

(
ms+2µ

2
,
ms+2µ+1

2
;µ+

1

2
;

(2µHγ)
2

c42

) (24)

where c4 = 2µhγ + (ms − 1)γ.

B. EFFECTIVE CAPACITY
Theorem 4. For µ, γ, θ, B, T ∈ R+, ms > 1, η ∈ R+ in
Format 1 and−1 < η < 1 in Format 2, the following analytic
expression holds for the effective capacity in η-µ / inverse
gamma composite fading channels

CE= − 1

A
log2

{ ∞∑
i=0

(µ)i (ms)A c5
ms

i!hµ (ms + 2µ+ 2i)A

(
H

h

)2i
× 2F1

(
ms+A,ms+2µ+2i;ms+2µ+2i+A; 1− c5

)}
(25)

where c5 =
(ms − 1) γ

2µh
.

Proof. Considering an η-µ / inverse gamma composite fad-
ing channel, the effective capacity in (8) can be calculated by
averaging the SNR, γ, with the PDF given in (24), as follows

CE = − 1

A
log2

(
22µµ2µ hµ(ms−1)

msγms

B(ms, 2µ)
I2
)

(26)

where

I2 =

∫ ∞
0

(1 + γ)
−A

γ2µ−1

c4ms+2µ

× 2F1

(
ms+2µ

2
,
ms+2µ+1

2
;µ+

1

2
;

(2µHγ)
2

c42

)
.

(27)

The Gauss hypergeometric function in (27) can be ex-
pressed in terms of an infinite series expansion [28, Eq.
(07.23.02.0001.01)]. With the aid of [24, Eq. (3.197.9)], the
following for the effective capacity can be obtained

CE = − 1

A
log2

{ ∞∑
i=0

c5
ms
(
ms+2µ

2

)
i

(
ms+2µ+1

2

)
i

i!hµ
(
µ+ 1

2

)
i
B(ms, 2µ)

(
H

h

)2i
×B (ms+A, 2µ+2i)

× 2F1

(
ms+A,ms+2µ+2i;ms+2µ+2i+A; 1− c5

)}
.

(28)

By expressing the Pochhammer symbol and beta function
in terms of the gamma function along with some algebraic
manipulations, (28) can be reduced to (25), which completes
the proof.

Proposition 4. For µ, γ, θ, B, T ∈ R+, ms > 1, η ∈ R+

in Format 1 and −1 < η < 1 in Format 2, the following

closed-form upper bound is valid for the truncation error of
(25),

T ≤ − 1

A
log2

{
(ms)A c5

ms

hµ (c6)A
1F0

(
µ ; ;

(
H

h

)2)

× 2F1

(
ms +A, c6; c6 +A; 1− c5

)} (29)

where c6 = ms + 2µ+ 2p.

Proof. The truncation error for the infinite series in (25), if it
is truncated after p− 1 terms, is given as

T = − 1

A
log2

{ ∞∑
i=p

(µ)i (ms)A c5
ms

i!hµ (ms + 2µ+ 2i)A

(
H

h

)2i

× 2F1

(
ms+A,ms+2µ+2i;ms+2µ+2i+A; 1− c5

)}
.

(30)

Since the gamma and Gauss hypergeometric functions in (30)
are monotonically decreasing with respect to i, T can be
bounded as

T ≤ − 1

A
log2

{
2F1

(
ms+A, c6; c6+A; 1−c5

)
× (ms)A c5

ms

hµ (c6)A

∞∑
i=p

(µ)i
i!

(
H

h

)2i}
.

(31)

The limits of the summation in (31) can be rewritten as∑∞
i=p

(µ)i
i!

(
H
h

)2i≤∑∞i=0
(µ)i
i!

(
H
h

)2i
as the positive terms are

only added up. Notably, (29) can be obtained by apply-
ing

∑∞
i=0

(µ)i
i!

(
H
h

)2i
= 1F0

(
µ ; ;

(
H
h

)2)
. This completes the

proof.

Proposition 5. For µ, γ, θ, B, T ∈ R+, ms > 1, η ∈ R+ in
Format 1 and −1 < η < 1 in Format 2, and ms + 2µ >> A,
the effective capacity under η-µ / inverse gamma composite
fading conditions can be bounded by the following inequali-
ties

CUBE < − 1

A
log2

 (ms)A 1F0

(
µ; ;
(
H
h

)2)
hµc5A(ms+2µ+2p)A

 (32)

and

CLBE > − 1

A
log2

 (ms)A 1F0

(
µ ; ;

(
H
h

)2)
hµc5A

 . (33)

Proof. It is evident that ms + 2µ + A ≈ ms + 2µ when
ms + 2µ >> A and thus (25) can be tightly upper bounded

CUBE < − 1

A
log2

{ ∞∑
i=0

(µ)i (ms)A c5
ms

i!hµ (ms + 2µ+ 2i)A

(
H

h

)2i
× 2F1

(
ms+A,ms+2µ+2i;ms+2µ+2i; 1− c5

)}
.

(34)
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FIGURE 1. CE/B versus A under (a) κ-µ / inverse gamma and (b) η-µ / inverse gamma composite fading channels with five different combinations of the fading
parameters when γ = 10 dB.

Given that 2F1(ms +A,ms + 2µ+ i;ms + 2µ+ i; 1− c5)
= 1F0(ms +A; ; 1− c5) and by recalling that 1F0(n; ; 1 +
x) , (−1)

n
/xn, n ∈ R, (34) can be reduced as follows

CUBE <− 1

A
log2

[
(ms)A
hµc5A

∞∑
i=0

(µ)i
i! (ms+2µ+2i)A

(
H

h

)2i]
.

(35)
Using the series representation of 1F0(·; ; ·) along with some
algebraic manipulations, (35) can be rewritten in closed-
form as given in (32). Based on (32) and recalling that
ms + 2µ + A ≈ ms + 2µ when ms + 2µ >> A, the
(ms + 2µ+ 2p)A term in (32) can be removed, which yields
(33). This completes the proof.

Proposition 6. For µ, γ, θ, B, T ∈ R+, ms > 1, η ∈ R+

in Format 1 and −1 < η < 1 in Format 2 and γ >> 0,
the effective capacity under η-µ / inverse gamma composite
fading conditions can be asymptotically expressed as follows

Casym.E ' − 1

A
log2

{
1

hµ
1F0

(
µ; ;

(
H

h

)2)

× 2F1

(
A, 2µ+2p;ms+2µ+2p+A; 1− γ

)}
.

(36)

Proof. In the high average SNR regime (γ >> 0), it follows
that γ >> 2µ, γ >> ms and γ >> A, namely

(ms)A
(ms + 2µ+ 2i)A

(
(ms − 1)γ

2µh

)ms
' γms . (37)

With the aid of (37), we can obtain a simple asymptotic
expression as given in (36). This completes the proof.

IV. NUMERICAL RESULTS
The analytic results presented in the previous section are
employed to evaluate the corresponding effective capacity in

the two generalized composite fading channels while consid-
ering different shadowing and multipath fading conditions.

It should noted that we consider only Format 1 in the
cases of η-µ / inverse gamma composite fading model. Nev-
ertheless, due to the genericness of the derived expressions,
numerical results for the corresponding Format 2 can be
easily deduced. We have also provided the results of some
simulations to validate the derived analytic results. In the
case of the κ-µ / inverse gamma composite fading model, the
simulated sequences were obtained through the straightfor-
ward calculation of the ratio of a non-central chi-square RV
and a central chi-square RV. In the case of the η-µ / inverse
gamma composite fading model, we firstly generated η-µ
RVs from κ-µ shadowed RVs using the process presented in
[29]. To complete the process, we then multiplied this with an
inverse gamma RV. It is worth highlighting that the simulated
sequences consisted of 100,000 realizations for both the κ-µ
/ inverse gamma and η-µ / inverse gamma composite fading
models.

Fig. 1 illustrates how the performance of CE varies as a
function of the A parameter over κ-µ / inverse gamma and
η-µ / inverse gamma composite fading channels with five
different combinations of the respective fading parameters.
More specifically, for the κ-µ / inverse gamma composite
fading channels, the fading parameters considered are: (i)
intense composite fading (κ = 0.1, µ = 0.1,ms = 1.1); (ii)
moderate composite fading (κ = 2.5, µ = 1.5,ms = 3.0);
(iii) light composite fading (κ = 5.0, µ = 3.0,ms = 30.0);
(iv) severe multipath fading (κ = 0.1, µ = 0.1,ms = 30.0);
and (v) heavy shadowing (κ = 5.0, µ = 3.0,ms = 1.1).
Likewise, for the η-µ / inverse gamma composite fading
channels, these are: (i) intense composite fading (η =
0.1, µ = 0.1,ms = 1.1); (ii) moderate composite fading
(η = 0.5, µ = 1.5,ms = 3.0); (iii) light composite fading
(η = 1.0, µ = 3.0,ms = 30.0); (iv) severe multipath fading
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FIGURE 2. CE/B in a (a) κ-µ / inverse gamma and an (b) η-µ / inverse gamma composite fading channels as a function of their key parameters when
A = 1, γ = 10 dB.

(η = 0.1, µ = 0.1,ms = 30.0); and (v) heavy shadowing
(η = 1.0, µ = 3.0,ms = 1.1). It is worth highlighting that
the CE/B over Rayleigh fading channels is also presented in
Fig. 1 for comparison.

It is obvious that the lowest spectral efficiency occurs in
the intense composite fading conditions whereas the highest
spectral efficiency appears in the light composite fading
scenarios. For example, when the channel conditions change
from the light composite fading to the intense composite
fading at A = 2, the achievable spectral efficiency decreases
from 3.2 bits/sec/Hz to 0.2 bits/sec/Hz for the κ-µ / inverse
gamma composite fading channels whereas this decreases
from 3.1 bits/sec/Hz to 0.3 bits/sec/Hz for the η-µ / inverse
gamma composite fading channels. Additionally, it is clear
that the spectral efficiency is considerably affected by the
value of A across all of the considered fading conditions.
When comparing the degree of A’s effect on the effective
capacity for the five different fading conditions, it is ob-
served that the spectral efficiency in the moderate and light
composite fading conditions (which are better than those
found in a Rayleigh fading environment) is more significantly
affected by changes in A compared to those for the rest
of the fading conditions (which are worse than those found
in a Rayleigh fading environment). For example, when A
changes from 0.5 to 10 in κ-µ / inverse gamma composite
fading channels, the achievable spectral efficiency decreases
from 3.3 bits/sec/Hz to 2.3 bits/sec/Hz in the moderate com-
posite fading conditions whereas in the intense composite
fading conditions this only decreases from 0.4 bits/sec/Hz
to 0.1 bits/sec/Hz. A similar trend is also observed in η-µ
/ inverse gamma composite fading channels. For all of the
five different fading conditions, the simulated results (shown
as symbols in Fig. 1) provided an excellent match to the
analytical results presented in Fig. 1.

Fig. 2 shows the performance of the CE for different
parameter values of the two generalized composite fading
channels with A = 1 and γ = 10 dB. In particular, we

varied the parameter values of both such that: 0.5 ≤ κ ≤ 10;
0.5 ≤ η ≤ 10; 0.5 ≤ µ ≤ 10; and 1 < ms ≤ 20.
For the κ-µ / inverse gamma composite fading channel, it
is clear that the spectral efficiency increases as the κ, µ and
ms parameters become larger, i.e., light composite fading
conditions. In contrast, we can observe a decrease in the
spectral efficiency when channel undergoes severe multipath
fading (κ → 0.5, µ → 0.5) and heavy shadowing (ms →
1) simultaneously. Similarly, for the η-µ / inverse gamma
model, the spectral efficiency increases when there exists
light shadowing (ms → 20) with more multipath clusters
(µ → 10) and when the scattered power of in-phase and
quadrature components is identical (i.e., η = 1). In contrast,
the spectral efficiency decreases when channel is subject to
intense composite fading (i.e., η 6= 0, µ→ 0.5, ms → 1).

Both generalized composite fading models are tremen-
dously versatile as they inherit all of the generality of the
κ-µ and η-µ fading models, respectively. Thus, they contain
as special cases many of the existing fading models proposed
in the open literature. For example, as shown in Fig. 3(a),
the κ-µ / inverse gamma model coincides with the Rice
fading model when µ = 1, ms → ∞ and κ = K where
K is Rice K factor. It is well known that the Rice fading
model becomes equivalent to the Rayleigh fading model
when K = 0. Therefore, when µ = 1, ms → ∞ and κ = 0,
the κ-µ / inverse gamma model is equivalent to the Rayleigh
fading model. Additionally, the Nakagami-m fading model
is deduced when µ = m, ms → ∞ and κ = 0. Similarly,
as shown in Fig. 3(b), the η-µ / inverse gamma composite
fading model in format 1, corresponds to the Nakagami-q
(or Hoyt) fading model (η = q2, µ = 0.5 and ms → ∞),
Nakagami-m fading model (η → 0, µ = m and ms → ∞)
and Rayleigh fading model (η → 0, µ = 1 and ms → ∞).
As expected, it is shown that the spectral efficiency increases
as the average SNR increases (higher γ). Additionally, as
shown in Fig. 3, the asymptotic spectral efficiency provides
an excellent match to the exact spectral efficiency at high
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FIGURE 3. CE/B versus γ for some special cases of the (a) κ-µ / inverse gamma and (b) η-µ / inverse gamma composite fading channels when A = 1.

TABLE 1. Exact, Bounded and Approximated Effective Capacity

A
γ κ-µ / inverse gamma η-µ / inverse gamma

(dB) (5) (13) (14) (17) (22) (29) (30) (33)

0.5 10 2.80 2.86 0.46 2.09 2.78 3.93 0.98 2.59

0.5 30 9.04 9.50 7.11 8.40 9.05 10.58 7.62 9.10

1.0 10 2.61 2.80 0.34 1.94 2.60 3.86 0.86 2.49

1.0 30 8.65 9.45 6.99 8.10 8.73 10.50 7.50 8.97

average SNR levels.
Table I shows the corresponding numerical results of the

upper and lower bound, asymptotic and exact representa-
tions for moderate composite fading conditions when A =
{0.5, 1.0} and γ = {10, 30} dB. For the κ-µ / inverse gamma
channels, it is shown that the upper bound, i.e., (13), exhibits
the most accurate behavior for all of the considered cases
with the exception of A = 1.0 and γ = 30 dB. On the
other hand, for the η-µ / inverse gamma channels, it is found
that the approximation, i.e., (33), provides the most accu-
rate behavior for all of the considered cases. Nonetheless,
the accuracy of the proposed bounds and approximation is
acceptable for all of the considered cases.

V. CONCLUSION
In this paper, accurate analytic expressions for the effective
capacity over two generalized composite fading channels
have been derived along with simple tight bound representa-
tions and approximate expressions. Additionally, the general-
ity of the analytic expressions has been highlighted through
reduction to some special cases. Our numerical results have
provided important insights into the effect of composite
fading conditions and/or delay constraint on the effective
capacity of the channels. To validate these numerical results,
the results of some simulations have been presented and

compared with the numerical results. The proposed bounds
and approximate expressions have shown an acceptable level
of accuracy and tightness against the exact results, which
verifies their usefulness.
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