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Abstract 

This study examined a series of machine learning models, evaluating their 

effectiveness in assessing children’s energy expenditure, in terms of the metabolic 

equivalents (MET) of physical activity (PA), from triaxial accelerometery. The study 

also determined the impact of the sensor placement (waist, ankle or wrist) on the 

machine learning model’s predictive performance. Twenty eight healthy Caucasian 

children aged 8-11years (13 girls, 15 boys) undertook a series of activities reflective 

of different levels of PA (lying supine, seated and playing with Lego, slow walking, 

medium walking, and a medium paced run, instep passing a football, overarm throwing 

and catching and stationary cycling). Energy expenditure and physical activity were 

assessed during all activities using accelerometers (GENEActiv monitor) worn on four 

locations (i.e. non-dominant wrist, dominant wrist, dominant waist, dominant ankle) 

and breath-by-breath calorimetry data. MET values ranged from 1.2 ± 0.2 for seated 

playing with Lego to 4.1 ± 0.8 for running at 6.5kmph-1. Machine learning models were 

used to determine the MET values from the accelerometer data and to determine 

which placement location performed more effectively in predicting the PA data. The 

study identified that novel machine learning models can be used to accurately predict 

METs, with 90% accuracy. The models showed a preference towards the dominant 

wrist or ankle as the movement in those positions were more consistent during PA. It 

was evident that machine learning models using these locations can be effectively 

used to accurately predict METs for PA in children. 
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Introduction 

Accelerometers are the most widely used tool to assess physical activity (PA) 

in public health research as they provide an objective assessment of energy 

expenditure and time spent in different intensities of PA (Crouter et al., 2018). Over 

the past decade there has also been increasing use of accelerometery to estimate PA 

in children (Crouter et al., 2018; Rowlands et al., 2013) coupled with considerable 

efforts to calibrate accelerometer derived PA data which is needed to more accurately 

estimate PA in paediatric populations (Roscoe et al., 2017; Duncan et al., 2016; 

Phillips et al., 2013; Ryan & Gormley, 2013). Despite this, the accuracy of 

accelerometer derived PA compared to actual energy expenditure is specific to age 

group (e.g., children), model of accelerometer, wear location and activities included in 

calibration protocol. In the case of the latter, this is a key but under examined issue as 

children’s PA tends to be sporadic and omnidirectional in nature (Rowlands & Eston, 

2007) and thus, accelerometer cut points derived predominantly using locomotor 

activities may not accurately reflect the actual PA levels of children. Recent research 

has suggested it is important to specifically understand how the repeated performance 

of various types of object control skills, such as throwing and catching, contributes to 

activity intensity as there are no studies that have examined accelerometer 

performance compared to energy expenditure (MET values) associated with object 

control skills in children (Sacko et al., 2018). 

Recent technological improvements such as the use of high-frequency raw data 

sampling and advances in analytical techniques, such as those from machine learning 

have expanded the potential for accelerometry in PA assessment. Although some 

studies have examined the utility of machine learning approaches to predict 
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accelerometer derived PA in adults (Montoye, Moore, et al., 2018; Montoye, Westgate, 

et al., 2018), none, to date, have examined children or included activities 

representative of children’s fundament movement skills. Furthermore, although the 

choice of placement site can impact wear compliance and precision of the prediction 

equation for PA (Crouter et al., 2018), the majority of studies using machine learning 

techniques have, to date, only examined wrist and/or waist located accelerometers. 

Montoye et al. (2015) also used an additional sensor placed on the right thigh to predict 

energy expenditure. One recent study which did not employ machine learning (Duncan 

et al., 2019) has identified that ankle worn accelerometery may be better than waist or 

wrist worn accelerometers in assessing moderate intensity PA in children. While an 

ankle placement might seem attractive in classifying PA, placement at this location 

might also pose risks in particular types of activities such as those involving kicking. It 

is also possible that one single wear location will not adequately capture all PA 

accurately. Additional work is needed to support the assertions of Duncan et al (2019) 

using a machine learning approach and to date, no study has examined the utility of 

machine learning approaches in classifying PA in children which includes fundamental 

movement skills and comprises accelerometers worn at multiple locations on the body. 

Traditionally, PA based monitors using the accelerometer readings converted 

the raw data into activity counts which was matched to frequency and magnitude of 

acceleration (Montoye et al., 2016). Thresholds were developed and called ‘cut-points’ 

which were used to evaluate physical activity intensities from the accelerometer data 

(Montoye et al., 2016). However, this method proved to be inadequate in accurately 

determining physical activity intensities and also failed to differentiate between 

standing, sitting and or lying down positions (Montoye et al., 2016). Researchers have 

since looked at machine learning approaches, using adult based data, to help improve 
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the accuracy of the METs of physical activity measurements (Montoye et al., 2016). 

The studies have shown that machine learning models have drastically improved the 

MET measurement accuracies of physical activity using data generated on 

accelerometer based wearable devices (Montoye et al., 2016; Montoye et al., 2015; 

Preece et al., 2009). 

However, MET values derived from energy expenditure in children and 

adolescents are significantly lower than in adults adult (Lyden et al., 2013). There is 

scant evidence of studies being conducted with children and adolescents that 

accurately measures METs during PA using modern machine learning models and 

data from wearables. The purpose of this study was to firstly, evaluate appropriate 

machine learning models to accurately approximate the energy cost, or MET, using 

sensor readings from the GENEActiv wearable device in children with a particular 

focus on activities that represent locomotor and object control movements commonly 

undertaken by children and secondly, to determine the impact of the sensor 

localisation (waist, ankle or wrist) has on the model’s predictive indicators and provide 

appropriate recommendations based on the most effective position for the specific 

type of activity being assessed. 

Methods 

Participants 

A sample of 28 healthy, Caucasian, children (13 girls, 15 boys) aged between 

8 and 11 years of age (Mean ± SD = 9.4 ±1.4 years) from central England took part in 

this study following institutional ethics approval, parental written informed consent and 
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child assent. Mean ± SD of height, mass and body mass index (BMI), was 1.4 ± 0.4m, 

34.6 ± 8.6 kg and 17.6 ± 2.5 kg/m2 respectively. 

Procedures 

Participants wore a GENEActiv monitor (Activinsights, Cambridgeshire, UK) on 

their non-dominant wrist, dominant wrist and dominant waist, similar to other work 

(Routen et al., 2012) as well as an additional monitor placed on the dominant ankle. 

Monitors were worn through the testing period. The GENEActiv has been described in 

detail previously (Wilcox & Hirshkowitz, 2015). The GENEActiv was set to record at 

80Hz and 1s epochs. Throughout the testing procedure VO2 and VCO2 were assessed 

using a MetaMax 3B (Cortex Biophysik GmbH, Leipzig, Germany) breath by breath 

gas analyser. Participants wore a junior face mask (Hans Rudolph) and the MetaMax 

was calibrated with gases of known concentration each day prior to commencing 

testing. All testing took place in the morning (9am-12pm). Prior to beginning the 

protocol, each participant was fully familiarised with the treadmill being used in the 

study (Woodway Inc, Wisconsin, USA). 

After briefing and being fitted with the GENEActiv monitors and face mask, each 

participant performed a series of activities reflective of different levels of PA. These 

were lying supine, seated and playing with Lego, slow walking, medium walking, and 

a medium paced run. These were performed in order as per prior work by Phillips et 

al (Phillips et al., 2013). Participants then performed bouts of overarm throwing and 

catching a standard size tennis ball, instep passing a football (Size 3) and cycling at 

35Watts (Lode Corival Paediatric, Lode BV, Groningen, Netherlands). All activities 

were performed for five minutes with a five minute rest in between. Using previous 

protocols (Puyau et al., 2002; Ryan & Gormley, 2013) as guidelines, walking and 
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running speeds were set at 3kmph-1, 4.5kmph-1, and 6.5kmph-1 to represent slow, 

medium pace walking and running respectively. Cadence for overarm throwing and 

catching and passing a football was set to ensure one complete action (eg a throw or 

football pass) was completed every 3 seconds. 

Data processing 

Upon completion of the protocol, each participant’s accelerometer and 

calorimetry data was downloaded and stored on a computer. The first and last minute 

of each 5 minute bout were discarded leaving a 3-minute period for analysis. This 

ensured that MET values for each bout were at the required intensity and is consistent 

with prior work (Roscoe et al., 2017; Phillips et al., 2014) and ensured the activity 

intensities were at steady state (Rowland, 1995; Mackintosh, Ridley, Stratton & 

Ridgers, 2016). Using the GENEActiv post processing software (Version 2.9), the raw 

80Hz triaxial GENEActiv data were saved in raw format as binary files and then data 

for each wear location were summed into a signal magnitude vector (gravity 

subtracted) expressed in 1s epochs, as is conventional (Esliger et al., 2011; Phillips 

et al., 2013). 

The VO2 values were analysed in 10-second epochs for analysis as suggested 

for the nature of the activities being performed (Mackintosh, et al., 2016). 

Subsequently, VO2 were then converted into METs using the resting data where the 

children were lay supine. Estimated daily resting metabolic rate (RMR) was 

determined for each participant using the age, sex, and mass specific Scholfield 

prediction equation (Schofield, 1985) and METs were calculated by dividing energy 

expenditure by predicted (RMR). METs were then coded into one of four age-specific 

intensity categories (sedentary < 1.5 METs), light (1.5-2.99 METs), moderate (3-5.99 
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9 

METs) and Vigorous (>6 METs) as per Harrell et al. (2005). However, on inspection 

none of the activities undertaken by the participants resulted in MET values in excess 

of 6. Data were then subsequently recoded into 3 intensity categories reflecting 

sedentary, light and moderate PA (MPA). Table 1 represents the actual data from the 

accelerometer location readings and the associated MET values based on the given 

activity performed within the experiment. 

***Table 1 Here*** 

9 



 

 

 

 

 

 

       

          

      

          

        

      

            

         

      

          

        

     

        

        

       

       

 

 

 

 

 

10 

Statistical Analyses 

The dataset and its feature transformations do not significantly deviate from the 

assumptions as shown by the Gaussian distribution test using the target variable and 

calculating the Skewness and Kurtosis values. This helped indicate that a parametric 

modelling approach was appropriate. To help determine the best performing predictor 

variables a recursive feature elimination method was used to eliminate the worst 

performing features using linear regression and ridge regression. The analysis also 

helped identify the significance of the wear location and its impact on the predictive 

model used. To get a better perspective of the patterns from within the dataset four 

models (linear, ridge, lasso and a non-optimised neural network (MLP)) were used in 

a heuristic approach to analyse the predicted values against a given sample to better 

understand their potential capabilities from a baseline score. All analysis was 

performed in Python (Python Software Foundation. Delaware, USA). The approach 

used provides a reference point from which to compare various machine learning 

algorithms and a means to measure performance changes. The approach has been 

particularly effective, as demonstrated by Gjoreski et al., (2013), at producing a 

suitable baseline for comparison using similar regression models to predict the MET 

outputs. 

Results 
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Target Variable Analyses 

Several calculations were performed on the raw accelerometer data to derive 

statistical features leaving several Boolean features and one categorical feature, the 

Activity. The physical activity feature was one hot encoded to create a binary feature 

vector that is more expressive to help distinguish activities and their variances more 

easily. 

Following this analysis of the target variable (METs) was undertaken to 

understand its meaning in order to proceed with modelling the dataset to predict the 

METs. Figure 1 shows the MET frequency distribution and the probability quantile-

quantile (Q-Q Plot). 

***Figure 1 Here*** 

The MET values were skewed to the right, positive skewness 𝜇 = 2.69 𝑎𝑛𝑑 𝜎 = 

1.11, where the location parameters 𝜇 is the mean peak and 𝜎 is the standard 

deviation. To reduce the skewness to the right, the MET values were log transformed 

by applying 𝑙𝑜𝑔(1 + 𝑥) to all values. This transformation reduced the skewness to 𝜇 = 

1.26 𝑎𝑛𝑑 𝜎 = 0.31. The theoretical quantiles and the linearity shown in Figure 1 

supports the fact the data is still normally distributed. 

Predictor Variables Analyses 

Given that the target variable had a Gaussian distribution, to further improve 

the experimental models’ performance a wrapper greedy optimisation algorithm was 

used to perform recursive feature elimination (RFE) to evaluate combinations of 

features and rank them based on the variables usefulness in improving the model’s 
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accuracy and the order of elimination. The weakest features were eliminated first, 

removing dependencies and collinearity that may exist, until an optimum subset was 

achieved that performed the best in cross-validation. The subset of features that score 

the best were then used in further modelling. 

Using a linear regression model, it was possible to identify the 20 optimal 

features that produced the highest potential accuracy of 83% from the 24. The Ridge 

regression model indicated there are at least 15 important features which can also 

achieve a potential accuracy of 85%. 

Evaluation 

There are many predictive modelling techniques to choose form and choosing 

the best one is challenging. The simple approach is to evaluate their performance and 

or measure the impact of the wrong predictions. The performance of a model is often 

evaluated by calculating the correlation coefficient or the regression of the model’s 

predictions against the true values (Sheiner & Beal, 1981). To determine how much of 

the total variations in 𝑌, the target variable MET, is expressed by the variations in 𝑋, 

the predictor subset variables and is defined as: 

,Σ (𝑌𝑎𝑐𝑡𝑢𝑎 𝑌𝑝𝑟𝑒𝑑ℏ𝑐𝑡𝑒𝑑)
2 

𝑅2 = 1 , (1) 
,Σ (𝑌𝑎𝑐𝑡𝑢𝑎 𝑌𝑒𝑎)2 

To set a baseline score for simple regression based predictive models were 

used to model the dataset using the selected features. Which includes, Linear 

Regression, Ridge Regression, Lasso Regression and a non-optimised neural 

network (MLP). The results of the computed 𝑅2 measures the prediction errors are 
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shown in the plots in figure 2 for each of the four models used in the experiment. 

***Figure 2 Here*** 

The models predicted all the activities together and separating the activities did 

not show any significant improvements in prediction. The data was separated into 

training and test sets as 70:30 respectively of the total data sample. The predicted 

error was the difference between the prediction and the actual observed value and is 

defined as the following: 

𝑒𝑇+ℎ = (𝑦𝑇+ℎ , 𝑦𝑇+ℎ|𝑇,) - 10%̂ (2) 

Where {𝑌1, . . . , 𝑌𝑡| is the training data and {𝑌𝑡 + 1, 𝑌𝑡 + 2, . . . | is the test data and 

10% error margin. The baseline MLP model was implemented using 4 nodes in the 

input layer, a single fully connected hidden layer with the linear rectifier activation 

function and finally for the output the ADAM optimisation and mean squared error loss 

was applied. Once a baseline was established it was possible to further explore ways 

to improve the performance by creating deeper more complex networks, which 

included, an Optimised MLP, Random Forests, Convolutional Neural Network and 

gradient boosted decision trees (XGBoost). The prediction error and the 𝑅2 measures 

of the three deep neural networks and the boosted tree model are shown presented 

in Figure 3. 

The performance of all experiments was evaluated by repeated 5-fold cross 

validation. The experiments were repeated 10 times and their mean scores are 
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presented in Table 2. Table 2 shows the mean (%) accuracy scores for each model in 

the experiment. By eliminating correlated features that degrade the performance and 

systematically selecting the optimal feature subset enables models to perform better. 

Although the machine learning models that were developed in the present study 

predicted 90% of the energy cost of the activities, the models showed a preference 

towards the dominant wrist or ankle as the most discriminant location for activity 

prediction. When data were plotted (See supplementary Figure 1) in terms of their 

importance based on the different activities the dominant wrist was the most important 

location for every activity. 

***Figure 3 Here*** 

***Table 2 Here*** 

Discussion 

This study extends understanding related to accelerometer assessment of 

children’s physical activity. This is the first study to evaluate appropriate machine 

learning models to accurately approximate the directly measured energy cost of 

physical activity in children. The present study also assessed the impact of sensor 

wear location on the machine learning derived models including activities 

representative of children’s fundamental movement skills and cycling, both often 

overlooked in prior studies of accelerometer accuracy when used in paediatric 

populations. 

A key strength of this study is the use of machine learning techniques as 

machine learning has the ability to recognise patterns in an acceleration signal rather 
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than simply using the magnitude of acceleration for prediction. Machine learning, a 

branch of artificial intelligence has become more popular as a modelling technique to 

understand energy expenditure and PA in adults (Montoye, et al., 206; Montoye, et 

al., 2015). The results of the present study support the use of deep learning techniques 

as viable approaches to analysing accelerometer derived movement data in children. 

The classical neural network the Multilayer Perceptrons (MLPs) without any 

optimisation showed promising results (above 70% accuracy) when combined with the 

appropriate predictor variables selected in the feature analysis phase. The optimised 

MLP model produced better results (above 80%) after adding a 4 node fully connected 

hidden layer with a relu activation function that was modelled over 1000 epochs. Long 

Short Term Memory (LSTM) network, a special kind of recurrent neural network 

capable of learning long-term dependencies, model was unable to produce significant 

improvements in performance over the optimised MLP model. Finally, the results of 

the random forests, convolutional neural network and gradient boosting machine 

models were able to attain the highest levels of accuracy with a mean average score 

of above 90% when predicting the energy expenditure (METs) for physical activity 

using the data produced by the dominant wrist worn GENEActiv accelerometer. 

Importantly, when considered together in terms of PA, or when analysed separately 

for each activity or intensity of activity, there was no marked improvement in prediction 

of METs. The results of the present study are congruent with prior work undertaken in 

adults by Montoye et al (2018) which reported that machine learning models predicted 

physical activities with accuracy of 71-92% from wrist worn GENEActiv 

accelerometers. Despite this, the use of machine learning techniques to model 

accelerometer data is more complex than traditional linear regression models that 

have previously been employed to ‘predict’ PA (Montoye, et al., 2018) and 
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subsequently can make translation of results using this approach more difficult for PA 

practitioners and researchers. 

Results of the current study provide evidence that accelerometer readings from 

the child’s dominant wrist was considered an important predictor in all physical 

activities conducted. This suggests that the child’s dominant is wrist is active in most 

activities. For example, the dominant wrist is also in motion when the child engages in 

activities such as kicking a ball, cycling, running and even while walking. The subtle 

movements in the small range of motion on the dominant wrists appear to be 

registering a consistent pattern in the signal even while cycling as the child maintains 

balance as they pedal or potentially asymmetric positioning due to reliance on the 

dominant side more than the non dominant wrist during cycling. These suggestions 

are speculative as machine learning approaches have not been examined in the 

context of children’s movement skills, particularly cycling and additional research is 

needed to verify the suggestion above. The analysis in the current study did not reveal 

any significant improvements over the placement of the sensor however, if the 

readings from the dominant wrist or ankle is available it was given more importance 

during feature selection. 

Children’s movement patterns are omnidirectional and rarely comprise solely 

of walking/running type physical activity (Duncan, et al., 2019). In the current study we 

included cycling, given its role as a lifelong health enhancing physical activity, and 

three object control skills, throwing and catching and instep kicking. These object 

control skills were included given their importance in participation in physical activity 

(Morgan et al., 2013). For this reason, accelerometer use in paediatric samples should 

be sensitive to detecting these forms of movement. Without considering these types 

of activities there is likely to be a drastic underestimation of energy expenditure in 
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activities that include object control skills such as football, basketball, and racquet 

sports (Rowlands & Stiles, 2012). 

Level of technical skill may also contribute to total energy expenditure (Sacko 

et al., 2018) and it is possible that children who are not fully competent in their 

fundamental motor skills will expend more energy for the same movements compared 

to those who are more competent. This would contribute to noise in the accelerometer 

raw data making it more difficult for machine learning to classify the activities. The 

results of the present study provide a robust foundation for further work refining the 

utility of machine learning approaches to better classify physical activity in children. 

There are however some limitations of the current study. We acknowledge that the 

data presented here are based on activities undertaken in a laboratory setting and that 

a proportion of the activities included were not weight bearing and none included any 

element of external loading/resistance. This may mean the amount of acceleration 

recorded is underestimated when compared to undertaking the same activities in an 

outside of the lab setting. Of note, none of the activities employed in the present study 

represented vigorous PA. Although there is debate in regard to the importance of 

moderate compared to vigorous intensity PA for health in children, with some evidence 

that MPA is more strongly associated with cardiovascular disease risk (Oliveira, 

Barker, & Williams, 2018) compared to vigorous PA, it would still be useful for future 

research to include vigorous intensity PA in their research designs. The activities 

selected were representative of those undertaken by children for physical activity and 

included locomotor activity, cycling and object control skills. In regard to the cycling 

activity specifically, the intensity of the activity was low based on the MET value 

obtained and, as a consequence, the ability of machine learning to accurately 

discriminate METs in cycling at greater intensities remains unknown. It is important to 
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consider that the machine learning models and their prediction will only be 

representative of activities included in the current data set. For example, it would be 

inappropriate to infer that prediction of MET values would be similar at running speeds 

above 6.5kph. Likewise, where running economy or physical fitness differs, the 

machine learning models may also predict to a different magnitude. The data 

presented in the current study should therefore be seen as a first step in applying 

machine learning to predict PA in children. However, additional research is needed 

which replicates the current work using a wider range of activities and intensities, in a 

wider range of children in terms of physical ability, as well as examining utility of 

machine learning approaches to classify physical activity undertaken in free living 

environments. Such work will be useful in further training the machine learning models 

and increase the accuracy of prediction on energy cost and METs. The research 

presented in the current study also has practical application. With the increasing 

prevalence of self-monitoring of physical activity behaviours using wearable 

technology accurate estimation of energy expenditure is key to use of accelerometry 

or wearable technology for large scale PA monitoring or use as behaviour change 

tools. It would therefore be interesting to explore whether the accurate prediction of 

the energy cost of physical activities may encourage more PA and healthy lifestyle in 

children in the longer term. The results of the current study have application for data 

scientists working with machine learning in terms of PA intensity. Further research 

refining the prediction of activity intensity in children is needed before researchers 

should be encouraged to use the models presented in the current study with their own 

acceleration output. However, researchers working on accelerometer assessed PA 

should be encouraged to use dominant wrist placement in their own work, based on 

the findings presented here. 
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Conclusion 

The evidence from the present study suggests that novel machine learning 

models can be used to accurately predict energy cost (METs) with 90% accuracy. 

Given the importance of physical activity for health benefit and emphasis on 

assessment of physical activity for population monitoring and accurate targeting of 

public health related interventions, the refinement of physical activity measurement is 

key. This is particularly the case for children where typical activity patterns are more 

sporadic and omnidirectional. The machine learning models that were developed in 

the present study showed a preference towards the dominant wrist as the placement 

most accurate for predicting movement. The convolutional neural network performed 

slightly better than the random forest and gradient boosted machine however, all three 

performed consistently high. 
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Figure 1. Frequency distribution and the probability quantile-quantile (Q-Q) plots for 

raw and log transformed data. 
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Figure 2. The baseline prediction errors and 𝑅2 measures 
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Figure 3. The optimised model prediction errors and 𝑅2 measures 
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Accelerometer Output (g/sec) 

VO2(ml kg-1 min-1) METs NonDominant Dominant Wrist Waist Dominant Ankle 
Wrist 

M SD M SD M SD M SD M SD M SD 

Supine 4.4 0.7 0.7 0.2 1.2 1.0 1.2 0.7 1.0 0.5 3.8 2.8 

Seated Playing with Lego 7.2 0.8 1.2 0.3 3.7 1.8 2.4 2.1 1.5 0.9 4.7 4.2 

Slow Paced Walking 12.6 1.4 2.0 0.4 11.7 6.62 11.5 5.4 13.6 4.6 41.5 10.9 

Medium Paced Walking 13.9 2.3 2.3 0.5 20.2 29.3 20.1 10.7 24.6 7.8 61.7 13.7 

Running 19.1 1.3 3.1 0.8 44.9 25.2 46.4 24.5 47.4 16.4 90.1 20.3 

Throwing and Catching 10.5 1.0 1.7 0.4 16.9 10.3 17.0 10.6 4.5 1.7 5.5 8.1 

Instep Football  Passing 26.6 1.5 4.5 0.6 12.9 9.6 11.8 8.7 11.9 6.4 41.2 19.5 

Cycling 19.4 1.4 3.2 0.9 9.9 12.7 14.9 19.1 11.5 14.4 57.5 18.5 

Table 1. Mean ± SD of VO2, METs and accelerometer output for each activity 

Model Prediction 

Accuracy 

Linear Regression 61.7% 

Ridge Regression 61.7% 

Lasso Regression 24.1% 

Baseline MLP 74.2% 

Optimised MLP 83.5% 

Random Forest 90.2% 

CNN 92.6% 

Boosted Trees 90.1% 

Table 2. MET Predictive mean (%) accuracy scores 
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