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Declines in survival and performance with advancing age (senescence) have been widely documented in natural populations, but

whether patterns of senescence across traits reflect a common underlying process of biological ageing remains unclear. Senescence

is typically characterized via assessments of the rate of change in mortality with age (actuarial senescence) or the rate of change

in phenotypic performance with age (phenotypic senescence). Although both phenomena are considered indicative of underlying

declines in somatic integrity, whether actuarial and phenotypic senescence rates are actually correlated has yet to be established.

Here we present evidence of both actuarial and phenotypic senescence from a decade-long longitudinal field study of wild insects.

By tagging every individual and using continuous video monitoring with a network of up to 140 video cameras, we were able to

record survival and behavioral data on an entire adult population of field crickets. This reveals that both actuarial and phenotypic

senescence vary substantially across 10 annual generations. This variation allows us to identify a strong correlation between

actuarial and phenotypic measures of senescence. Our study demonstrates age-related phenotypic declines reflected in population

level mortality rates and reveals that observations of senescence in a single year may not be representative of a general pattern.
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There is a broad consensus that senescence, “the age-related

decline in fitness traits that arises due to internal physiological

deterioration” (Rose 1991), is widespread in natural populations.

This conclusion has largely been reached on the basis of

measurements of demographic variables, usually longevity and

fecundity, although there are a growing number of studies in

which phenotypic traits are measured across individual lifespans

(Nussey et al. 2013). New methods have been developed to fit

parametric mortality functions (Colchero et al. 2012), which

have proved to be valuable for deriving demographic measures

of senescence without the necessity of collecting longitudinal

samples of individuals to track senescence at the individual phe-

notypic level (e.g., Zajitschek et al. 2009a; Warner et al. 2016).

However, longitudinal studies of wild vertebrates have identified

substantial heterogeneity in the pattern of phenotypic senescence

among traits (Nussey et al. 2009; Hayward et al. 2015), raising

the question of the extent to which single phenotypic traits can be

expected to be related to demographic patterns such as actuarial

senescence. Variation in the intensity of senescence has been

understood in the context of an adaptive life-history in which

resources that could be used to maintain body condition in later

life are instead used to increase reproductive output earlier in

life (Williams 1957; Kirkwood and Holliday 1979; Partridge and

Barton 1993). This adaptive life-history theory of ageing predicts

that patterns of senescence should be affected by environmental

factors that impinge on trade-offs between allocation to repro-

duction early and late in life. Hence, we assume that the ultimate

explanation for the observed differences in patterns of senescence
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lies in differential resource allocation among traits and their

respective fitness returns on investment (Lemaı̂tre et al. 2015).

Traits that are relatively unimportant for fitness might tend to

senesce at a faster rate because declines in these traits would

incur a smaller fitness penalty. However, the pattern of optimal

resource allocation among traits related to survival and reproduc-

tion remains difficult to predict due to the paucity of knowledge

about the underlying physiological mechanisms. Consequently,

we lack a predictive framework linking trajectories of phenotypic

and actuarial senescence, highlighting the importance of direct

comparisons.

Beyond the functional explanations for asynchrony of

senescence, there are also statistical factors that may lead to

a mismatch between actuarial and phenotypic measures of

senescence, even when they would be similarly influenced by

physiological deterioration. A common approach to measuring

actuarial senescence is to fit demographic data to parametric mor-

tality functions, very often the Gompertz equation. This allows

the estimation of an age-independent mortality parameter rep-

resenting baseline mortality (a combination of environmentally

determined background mortality and initial individual vulner-

ability) and an age-dependent parameter (usually interpreted to

reflect physiological deterioration: Gaillard et al. 2017). Accurate

interpretation of Gompertz parameters is difficult because both

parameters include physiological and environmental components

that inevitably interact and hence cannot be easily distinguished

from each other (Abrams 1993; Ricklefs 1998; Caswell 2007;

Burger 2017). Also, the measurement of senescence from the

decline in phenotypic traits is susceptible to the effect of selective

disappearance processes caused by heterogeneity in individual

phenotypic quality. These processes mean that individuals that

attain an old age are a nonrandom sample of the population and

may include overrepresentation of “high quality,” physiologically

more robust individuals that are able to successfully avoid natural

hazards (Vaupel et al. 1979; van de Pol and Verhulst 2006;

Hayward et al. 2013; Hämäläinen et al. 2014). Actuarial senes-

cence is expected to be correlated with phenotypic senescence

based on the assumption that physiological declines associated

with ageing increase individual frailty (how likely negative envi-

ronmental factors are to cause mortality in the individual). How-

ever, this relationship could be altered by the influence of selective

disappearance and by environmental factors which affect physio-

logical trait expression and survival differently. Empirical tests of

the relationship between actuarial and phenotypic ageing trajecto-

ries will elucidate the extent to which cross-sectional demographic

and longitudinal phenotypic measures of senescence provide

information on a common underlying process of biological

ageing.

Existing studies usually rely on the analysis of capture–

mark–recapture data to estimate actuarial (among-individual)

senescence (McDonald et al. 2014) and on analyses of age-related

changes in physical performance as a measure of phenotypic

(within-individual) senescence (e.g., Bouwhuis et al. 2009;

Hammers et al. 2015). However, a comparative analysis of actu-

arial and phenotypic senescence is more powerful when a sample

of multiple independent estimates of both is available. This is

difficult to achieve with the long-lived vertebrates that have been

abundantly studied in the wild (Nussey et al. 2013; Bouwhuis

and Vedder 2017). The statistical power of such an analysis is

reduced when demographic senescence estimates are based on

cohorts within overlapping generations because partially shared

environmental histories mean that actuarial senescence estimates

are nonindependent. This has been addressed using individual

measures of mortality in the following year (Froy et al. 2018), but

comparisons of actuarial and phenotypic senescence estimates

from entire adult lifespans have not been attempted before (to

our knowledge). We are aware of only two studies that compared

the relationship between ageing trajectories of different traits and

their relationship to lifespan in the field (Hayward et al. 2015)

and in the lab (Briga 2016), reporting heterogeneous associations

among ageing trajectories and lifespan, suggesting asynchrony of

senescence across different traits. We build on long-term verte-

brate studies by estimating senescence in a wild insect population.

As well as being much shorter lived than most species studied in

the wild, the annual life-history of most temperate insects means

that each generation provides an independent sample (in the

sense that individuals from discrete generations do not experience

shared environmental conditions). This allows us to estimate

demographic and phenotypic senescence across generations to

examine the extent to which these measures are correlated.

Over 10 years (10 generations), we have been monitoring

the survival and behavior of a natural population of the field

cricket Gryllus campestris, living in a meadow in north Spain

(Rodrı́guez-Muñoz et al. 2010; Rodrı́guez-Muñoz et al. 2011;

Fisher et al. 2016; Fisher et al. 2018). Adult G. campestris are

closely associated with burrows, which facilitates the recording

of survival and behavioral data over individuals’ entire adult lives.

By tagging every individual in the population and monitoring

them 24 h a day using a network of digital video cameras (see

“Methods” section), we have collected very precise demographic

data as well as near-continuous measurements of phenotypic trait

expression over the course of each individual’s life. This allows us

to test the prediction that senescence will be apparent in both ac-

tuarial and phenotypic parameters over the adult lifespan of a few

weeks. We then test the prediction that actuarial and phenotypic

senescence will be positively correlated across generations.

Methods
We monitored a wild field cricket (G. campestris) population

in a meadow in northern Spain for 10 consecutive years. The
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WildCrickets meadow is managed in a similar way every year, with

the grass being mowed in mid-March and again in July–August.

Between August and March, the grass is kept short with additional

mowing. Weekly searches for burrows are made from February

until the end of the breeding season sometime in July, when the last

adult cricket dies. Each burrow is flagged with a unique number

that will identify it for the whole breeding season. By mid-to-late

April, usually before the adults start to emerge, we install between

64 and 133 infrared day/night cameras (the number of cameras

increased from the initial 64 we had in 2006) that record the activ-

ity around each burrow entrance continuously. The cameras are

connected to several computers provided with motion activated

digital video recording software (Diginet, dvr-usa.com, replaced

in 2011 with i-Catcher, i-codesystems.co.uk) so that video is

only recorded when movement is detected around the burrow.

A few days after emerging as an adult, we trap each

individual using a device specifically designed for these crickets

(see crickettrapping.wordpress.com). Each one is weighed

(± 0.01 g), photographed and marked with a PVC tag glued onto

the pronotum (ID), before being released back into the same

burrow. The tag has a unique one to two character codes, which

allows each individual to be identified on the video. For every

individual, we also collect a sample of cuticular hydrocarbons (by

gently rubbing the pronotum with filter paper around 100 times),

an approximately 10 µL drop of hemolymph (sampled by

piercing the membrane at the hind leg joint) and a small piece

of the tip of one of the hind legs. These samples are later used to

provide individual pheromone and DNA profiles.

Because the number of occupied burrows is often greater

than the number of cameras, and adult crickets regularly move

around the meadow occupying different burrows, we carry out

direct observations to cover nonvideoed burrows. We do this by

directly observing the occupants of every burrow that lacks a

camera every one to two days. We record the ID of any adult

present or whether a nymph is in residence. This allows us to

accurately record adult emergence dates even in burrows that are

not directly monitored at that particular time, as nymphs and

recently emerged adults rarely move among burrows, and so the

presence of an adult where there was a nymph the day before

indicates an emergence. After the end of the season, we watch

the videos and record all significant events (adult emergence,

encounters between individuals, singing activity, matings, fights

and their outcome, oviposition, predator attacks, movement of

individuals around the meadow). The video data, together with

the direct observations of burrows, are recorded in a database

which currently includes >100,000 records. A weather station

installed in the center of the meadow logs weather variables at

10 min intervals including measurements from seven additional

temperature sensors located on the surface of the meadow (three

sensors) and in simulated burrows (four sensors inside open-end

15 cm long PVC pipes totally buried in the ground) at locations

scattered around the meadow.

ASSESSING VARIATION IN SENESCENCE IN WILD

CRICKETS

Senescence can be detected (1) indirectly from the observation of

an increase in the probability of mortality with age, presumed to

result from physiological decline (known as actuarial senescence),

or (2) directly through the effects of that decline on individual

performance (phenotypic senescence). We used our observations

of survival and individual traits to examine both processes across

10 generations.

Actuarial senescence
We quantified the rate of actuarial senescence using the R

(ver. 3.4.0) package “BaSTA” which uses capture–mark–

recapture data to fit and compare different age-specific parametric

survival models following a Bayesian approach (Colchero et al.

2012). A convenient aspect of studying senescence in insects

is that adulthood can be precisely defined as the point at which

an individual undergoes its final molt. The maximum adult

cricket lifespan in our study population known to date is 84 days

(average lifespan = 28.9 ± 17.9, mean ± SD, N = 1,135). We

have unusually comprehensive capture–recapture data through

our continuous monitoring program, allowing us to populate the

capture–recapture matrix for BaSTA using the video and direct

observations that provide daily individual recaptures (probability

of recapture (phi) averaged across years = 0.51 ± 0.07, mean ±
SD). Fitting each year separately (2006–2016, excluding 2014

in which video data extraction is incomplete), we found the

two-parameter Gompertz mortality distribution provided a fit

with an R2 of >0.92 in every year (mean R2 across the 10 years

was 0.95), and it was also the most widely supported model when

comparing among exponential, Gompertz, Weibull, and logistic

models (Table S1). The Gompertz model has two parameters: b0,

the baseline mortality (the mortality rate independent of age), and

b1, the age-dependent mortality rate); b0 is the intercept and b1 is

the slope of the natural logarithm of the mortality rate with age

and is used as a measure of actuarial senescence (Gompertz 1825;

Olshansky and Carnes 1997; Boonekamp et al. 2014). Because the

purpose of our analyses is to compare the rates of actuarial senes-

cence with phenotypic senescence, we selected the two-parameter

Gompertz distribution as the preferred model over more complex

mortality distributions, whose parameters are more difficult to

interpret in terms of actuarial senescence. Equally important,

our comparison requires us to fit the same mortality distribution

across years and the Gompertz distribution was the most widely

supported model; in some years more complex mortality distri-

butions were supported (Table S1), however their fit was only

marginally better. There is some degree of error in our estimates
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of actuarial senescence, but this error is unbiased with respect to

the estimation of actuarial senescence and is conservative in that

its tendency is to decrease the statistical power to detect a pattern.

We ran four BaSTA simulations on the annual datasets, with

500,000 iterations, a burn-in parameter of 50,000 and a thinning

rate of 2000, which kept serial autocorrelation under 0.1.

Phenotypic senescence
As an indicator of phenotypic senescence, we used the effort

males devote to produce energy intensive calling song (Hoback

and Wagner 1997) to attract females for mating. To quantify call-

ing effort, we recorded whether each monitored male sang or not

with point samples taken over the 10 first minutes of every hour.

For those 10 minutes, we watched at 1 minute intervals whether

the male was singing or not. If at least one of those 10 samples

per hour was positive, then the cricket was recorded as singing

that hour. If singing was not observed for any of the 10 sam-

ples, he was recorded as not singing. For each studied male, this

measure provided up to 24 binary samples per day throughout its

life.

We carried out mixed effects logistic regression analyses us-

ing the lme4 package (Bates et al. 2015) in R, to analyze the

relationship between male calling effort (whether the male was

calling) and age. To investigate the pattern of age-specific calling

effort we first fitted several spline functions of age with increas-

ing complexity, and found that a quadratic relationship best fitted

our data. Next, we used threshold model fitting (Douhard et al.

2017) to estimate the age of peak (threshold) calling and its AICc

(Akaike information criterion with correction for small sample

size) and confidence intervals. Unlike the peak of trait expression

across age identified in a simple quadratic model (which mini-

mizes variance across the entire distribution), the threshold model

approach is designed to specifically identify the peak in which trait

expression, which increases in early adulthood, begins to decline

with the onset of senescence. The threshold model decomposes the

age variable into pre- and postpeak age components, over a range

of different peak ages. Support for a specific peak is then tested by

evaluating the AICc values of the models over the range of peaks

tested (ages 0–70 days). Following Burnham et al. (2011), we

considered models to be equally supported when their AICc dif-

ference was <7. We ran individual optimizations for the discrete

annual generations, facilitating subsequent analysis of the covari-

ation between the estimates of postpeak age on calling effort (i.e.,

senescence when negative) and actuarial senescence, across gen-

erations. All models included individual ID as a random intercept

effect. Pre- and postpeak age components, ambient temperature,

and life span were included as fixed effects; this meant we had

to exclude data from 2006 as temperature data were not recorded

in that year. In this specific model structure, lifespan captures

the among-individual heterogeneity in maximum age, enabling

interpretation of pre- and postpeak age variables as reflecting the

longitudinal change in calling effort within individuals (note that

the sum of the pre- and postpeak age is equal to age and hence

that our model is similar to the commonly used longitudinal model

approach based on age and lifespan). Random slopes of age for in-

dividual ID were not included because the computational demands

of such a model structure with the large number of records in our

dataset (n = 89,129) make this impractical. All age variables, in-

cluding lifespan, were standard normal transformed (subtracting

the mean across all observations from each value and dividing by

the SD). This was required to reach correct model convergence.

Results
ACTUARIAL SENESCENCE

The 95% credible intervals of our estimates of actuarial senes-

cence (b1) did not include zero for any of the years, with the

exception of 2006 (Fig. 1, Table 1). Our analyses therefore

support the hypothesis that actuarial senescence is present in a

short-lived wild insect. There was substantial heterogeneity in

mortality trajectories among years (Table 1). Indeed, the 95%

credible intervals of the posterior distributions of baseline mor-

tality (b0) and actuarial senescence (b1) completely fail to overlap

in some of the possible pairwise comparisons among years, with

the general pattern providing convincing evidence for differences

among years in both baseline and age-dependent mortality.

PHENOTYPIC SENESCENCE

Threshold models provided clearly defined ages of peak expres-

sion, occurring around 15 days post adult-emergence across years

(Table S2, Fig. S1). Among years, the peak of calling varied from

ages 12 to 19 days. We estimated the confidence intervals of the

year-specific peaks by taking the within-year age range of thresh-

olds that yielded a model fit with an AICc value <7 above the

best fitting peak of that year (Burnham et al. 2011). This con-

servative approach nevertheless reveals an unexpected dichotomy

between five years in which the peak is very close to 13 days and

four years in which it is very close to 19 days. Apart from 2008,

when the population was very small, these peaks have very tight

confidence intervals (Table S2; Fig. S1). We examined potential

relationships between the timing of the peak and trait expression

trajectories before and afterward by comparing the estimates of

pre- and postpeak age on calling activity between “early” and

“late” years using a linear model with “early” versus “late” in-

cluded as a factor. This test reveals that although there was a clear

difference in the prepeak age trajectories between “early” and

“late” years, with “late” years showing a reduced rate of increase

(slope “early” − “late” = −0.339, t = −4.30, P = 0.004), we

could not detect significant differences in the postpeak age tra-

jectories in calling effort between the two categories of peak ages

(slope “early” − “late” = −0.017, t = −1.43, P = 0.20).
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Figure 1. Posterior density distributions of baseline mortality (b0, left column) and actuarial senescence (b1, right column) in Gryllus

campestris males, for a Gompertz model with simple shape fitted using the BaSTA R package (Colchero et al. 2012). Each row corresponds

to a single year. Posterior means and 95 confidence intervals are available in Table 1.

Table 1. Estimates and 95% credible intervals of baseline mortality (b0, the mortality independent of age) and age-dependent mortality

rate (b1, the coefficient for the effect of age on mortality), in a wild population of Gryllus campestris for 10 discrete generations.

Year b0—Baseline Mortality b1—Age-Dependent Mortality Rate pi R2

2006 −2.817 (−3.126, −2.494) −0.003 (−0.017, 0.010) 0.49 0.96
2007 −3.930 (−4.341, −3.582) 0.028 (0.016, 0.040) 0.48 0.92
2008 −4.210 (−5.033, −3.407) 0.034 (0.007, 0.059) 0.43 0.98
2009 −5.500 (−6.084, −4.940) 0.050 (0.037, 0.063) 0.58 0.92
2010 −4.317 (−4.760, −3.881) 0.030 (0.018, 0.041) 0.43 0.95
2011 −3.883 (−4.269, −3.534) 0.028 (0.017, 0.040) 0.47 0.95
2012 −4.046 (−4.668, −3.479) 0.028 (0.011, 0.045) 0.58 0.97
2013 −4.077 (−4.410, −3.742) 0.042 (0.030, 0.053) 0.54 0.93
2015 −4.532 (−5.113, −3.968) 0.057 (0.037, 0.076) 0.49 0.97
2016 −4.254 (−4.786, −3.748) 0.039 (0.023, 0.055) 0.65 0.96

Estimates of b0 and b1were calculated using BaSTA (Colchero et al. 2012) fitting a Gompertz model with simple shape, taking into account the recapture

probability (pi). We also include a non-Bayesian (i.e. least squares) goodness-of-fit estimate of the Gompertz model (R2).

Calling effort significantly increased with prepeak age in

all years (Table 2, Fig. 2). Furthermore, we observed that there

was a significant postpeak decline in calling effort with age in

five of nine years, and a significant increase in calling effort

with postpeak age in the year 2012 (Table 2, Fig. 2). Hence,

we observed high heterogeneity in ageing trajectories of calling

effort in which both peak age and subsequent postpeak ageing

pattern substantially varied among the nine generations of our

study.

COVARIATION BETWEEN ACTUARIAL AND

PHENOTYPIC SENESCENCE

As described above, we found evidence for senescence in

two commonly used ageing metrics—actuarial senescence and
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Table 2. Relationship between age and the probability of calling in wild Gryllus campestris males calculated from a threshold model.

Fixed Factors Random Factors

Year Samp Int Temp Lifespan
Age
Prepeak

Age
Postpeak ID

2007 9,971 Est −14.09 0.30 0.001 0.69 −0.006 Var 0.54
SD 0.63 0.009 0.008 0.051 0.003 SD 0.74
P <0.001 <0.001 0.865 <0.001 0.054 N 49

2008 3,098 Est −13.93 0.41 −0.004 0.47 −0.002 Var 1.22
SD 1.06 0.020 0.022 0.044 0.005 SD 1.10
P <0.001 <0.001 0.845 <0.001 0.643 N 13

2009 18,956 Est −13.20 0.29 0.002 0.66 −0.012 Var 0.29
SD 0.47 0.006 0.005 0.036 0.002 SD 0.54
P <0.001 <0.001 0.669 <0.001 <0.001 N 60

2010 7,036 Est −11.27 0.25 0.000 0.37 −0.007 Var 0.53
SD 0.51 0.009 0.008 0.024 0.004 SD 0.73
P <0.001 <0.001 0.965 <0.001 0.085 N 48

2011 5,570 Est −19.04 0.44 0.019 0.87 −0.011 Var 0.75
SD 1.09 0.018 0.012 0.084 0.005 SD 0.87
P <0.001 <0.001 0.133 <0.001 0.028 N 38

2012 7,414 Est −12.07 0.25 0.014 0.50 0.007 Var 0.59
SD 0.57 0.009 0.011 0.030 0.003 SD 0.77
P <0.001 <0.001 0.213 <0.001 0.034 N 26

2013 16,535 Est −11.22 0.27 0.000 0.31 −0.012 Var 0.77
SD 0.43 0.012 0.009 0.018 0.005 SD 0.88
P <0.001 <0.001 0.994 <0.001 0.028 N 77

2015 12,473 Est −10.12 0.30 0.007 0.25 −0.055 Var 0.23
SD 0.35 0.009 0.010 0.010 0.006 SD 0.48
P <0.001 <0.001 0.459 <0.001 <0.001 N 41

2016 8,076 Est −8.93 0.21 0.006 0.32 −0.040 Var 0.40
SD 0.36 0.009 0.009 0.013 0.004 SD 0.63
P <0.001 <0.001 0.496 <0.001 <0.001 N 31

We included ambient temperature (Temp) when each calling sample was recorded, Lifespan, Age Prepeak, and Age Postpeak as fixed factors, and individual

identity (ID) as a random factor. The table shows the results per generation (Year). Samp, number of samples; Int, intercept; Est, coefficient estimates; SD,

standard deviations; Var, variance; N, number of individuals. Coefficients with significant P values are highlighted in bold italics.

longitudinal ageing trajectories in our wild cricket population.

We also observed substantial heterogeneity in both senescence

metrics among the nine generations of our study. The relationship

between actuarial senescence (b1) and postpeak ageing trajecto-

ries in calling effort can be seen in Figure 3. Years with higher

actuarial senescence were also the years showing accelerated

postpeak declines in calling effort (rS = –0.78, P = 0.013,

Fig. 3). We also investigated covariation between actuarial

senescence (b1) and the onset of senescence in calling behavior

(i.e., the peak age), but the relationship between these two ageing

metrics was not statistically significant (rS = 0.52, P = 0.15).

Note that these results were robust with respect to the influence

of baseline mortality b0, in the sense that when b0was included

as covariate in a linear model (slope b0 = −0.02, P = 0.149),

the partial correlation between b1and postpeak age remained

statistically significant (slope b1 = −2.01, P = 0.014).

Discussion
Our results support the handful of studies of lifespan in insects

in natural or seminatural conditions that have found evidence for

senescence over one (Bonduriansky and Brassil 2005; Kawasaki

et al. 2008; Zajitschek et al. 2009a, 2009b; Carroll and Sherratt

2017) or two (Sherratt et al. 2010) breeding seasons. Senescence is

a pervasive feature of our wild cricket population across multiple

generations regardless of whether we measure it as demographic

actuarial senescence or as a longitudinal decline in phenotypic per-

formance within individuals. We observed actuarial senescence to

be detectable in 9 of 10 years. However, there was also substantial

heterogeneity in actuarial senescence among generations, similar

to the differences between two seasons observed in damselflies

(Sherratt et al. 2010). This heterogeneity among generations

reveals that actuarial senescence estimates of single generations
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Figure 2. Age trajectories of male calling activity across the nine years of our study for which we had these data. Data points and error

bars reflect the mean calling activity of age bins and their respective standard errors (note that the statistical analyses were done with

the raw data, i.e., without binning of age). Dashed lines reflect the logistic regression lines of the pre- and postpeak age components as

estimated by the best fitting threshold models.

may provide limited information about senescence trajectories

across generations, highlighting the importance of multigener-

ational studies. More importantly, the observed heterogeneity in

actuarial senescence among generations is highly transient rela-

tive to the timescale of responses to natural selection. This reveals

the strong impact of nonheritable factors, presumably dominated

by environmental effects, on patterns of actuarial senescence.

The substantial heterogeneity observed in actuarial senes-

cence trajectories across generations was also observed in our

longitudinal analysis of phenotypic senescence, based on the

effect of within-individual age on the calling activity of males.

Males showed strong age effects in terms of the rate at which they

increased singing activity after becoming adult, and detectable

age-related declines in singing after they reached the peak in call-

ing activity in five of the nine years that we could include in this

analysis. As well as this variation in the rate of age-related decline

there was also variation in the onset of that decline. Examining

the location of this peak age has the potential to provide insights

into the process of senescence (Peron et al. 2010). It is intriguing

that our nine years of phenotypic observations appear to fall

into two groups with the peak age of calling activity occurring

at either around 13 or 19 days (Table S2). We do not have a

functional explanation for this dichotomy, and investigation of

environmental effects on ageing trajectories, including the peak

age, is a substantial endeavor in its own right. However, we

were able to use our identification of peak ages to establish that

the observed variation in the postpeak age trajectories are not

predominantly side effects of the differences in the timing of the
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Figure 3. Relationship between the rate of actuarial senescence

estimated from BaSTA and the slope of the effect of postpeak

age on calling activity in Gryllus campestris males. Error bars de-

note the 95% confidence limits and rS denotes the Spearman rank

correlation between the two metrics of senescence.

onset of senescence because no relationship between peak age

and the rate of postpeak age trajectories was apparent.

The mechanisms underpinning environmental variation in

demographic patterns of actuarial senescence remain elusive,

despite being an important topic of ageing research. Individual

differences in lifespan may be caused by a multitude of factors

including among-individual heterogeneity in phenotypic quality

and within-individual variation in the rate of biological ageing

(Speakman 2005). It will be crucial to determine the extent to

which actuarial senescence reflects either of these two lifespan

components to interpret patterns of actuarial senescence in the

context of ageing. We are aware of only a few studies that

addressed this topic (de Magalhães 2006; Briga 2016) and to our

best knowledge no such study exists in the wild where the impact

of environmental conditions on phenotypic quality selection may

even be more pronounced.

By directly comparing patterns of phenotypic and actuarial

senescence among years we identify a positive correlation

between these measures (Fig. 3). This indicates that, although

actuarial senescence is the outcome of combined within- and

among-individual processes, the signal from within-individual

declines occurring with age remains dominant in patterns

of variation among generations. Our finding suggests that

the widespread practice of interpreting measures of actuarial

senescence as indicative of phenotypic senescence is justified.

However, recent studies suggest that there may be variation in

ageing trajectories among different performance traits (Hayward

et al. 2015; Briga 2016), implying that correlations between

actuarial and phenotypic senescence patterns may depend on the

traits selected for such comparison. It is also worth noting that an

earlier analysis (not shown) in which we identified the location

of the peak in calling effort by simply using the peak identified

in a quadratic model, completely failed to identify a relationship

between actuarial and phenotypic senescence. This indicates that

methods for correctly identifying the region of the lifespan over

which senescence occurs is an important aspect of quantifying

age-related declines in performance (Douhard et al. 2017).

The substantial heterogeneity we observed in rates and

timing of both actuarial and phenotypic senescence among years

highlights the importance of incorporating environmental factors

into theories of senescence (Furness and Reznick 2017). The

precise climatic and biotic factors that impinge upon ageing will

inevitably be taxon-specific. For temperate insects they are likely

to include climatic variables (such as the ambient temperature

during the preadult overwintering period, rainfall during the

breeding season, levels of insolation, etc.), biotic variables (the

impact of particular predators in our meadow varies considerably

among years, the composition of plant species varies, etc.) and

demographic parameters (population size, mean emergence date,

etc.). Our study establishes the potential for individual-level

observations of both phenotypic and actuarial senescence across

nonoverlapping generations in wild invertebrates. Systems such

as this hold the potential for further insights into the relationships

between actuarial senescence, phenotypic senescence, and

environmental factors that impinge upon them.
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