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 A gain-scheduling fractional-order PID pitch controller is proposed 

 The controller is designed to mitigate the mechanical loads 

 A database controller parameters are evaluated via chaotic differential evolution 

 The proposed controller method has shown to have superior performance 

 The results are validated via FAST simulator 
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Load Mitigation of a Class of 5-MW Wind Turbine with RBF Neural 1 

Network based Fractional-Order PID Controller 2 

Abstract- In variable-pitch wind turbines, pitch angle control is implemented to regulate 3 

the rotor speed and power production. However, mechanical loads of the wind turbines 4 

are affected by the pitch angle adjustment. To improve the performance and at the same 5 

time alleviate the mechanical loads, a gain-scheduling fractional-order PID (FOPID), 6 

where a trained RBF neural network chooses its parameters is proposed. The database, 7 

which the RBF neural network is trained based on, is created via optimization of a 8 

FOPID in several wind speeds with chaotic differential evolution (CDE) algorithm. The 9 

simulation results are compared to an RBF based PID controller that is designed via the 10 

same method, a conventional gain-scheduling baseline PI controller developed by 11 

NREL, an optimal RBF based PI controller, and a FOPI controller. The simulations 12 

indicate that the RBF based FOPID improves the control performance of the benchmark 13 

wind turbine in comparison to the other controllers, while the applied loads to the 14 

structure are mitigated. To validate the performance and robustness, all controllers are 15 

implemented on FAST wind turbine simulator. The superiority of the proposed FOPID 16 

controller is depicted in comparison to the other controllers. 17 

Keywords: Gain-scheduling fractional-order PID, Wind turbine pitch control, Chaotic 18 

differential evolution, RBF neural network, FAST 19 

1 Introduction 20 

In past decades, more attention has been paid to developing and economizing renewable 21 

sources of energy. Among them, wind energy has received noticeable attention. 22 

Installed wind energy conversion systems (WECSs) have increased by 40% in the 2000s 23 

[1]. Until now, many countries have installed WECSs, and the capacity of installed 24 

WECSs is going to pass 790 GWs by 2020 [2]. It should be noted that developing 25 

control algorithms has played an essential role in this rise [3]. 26 

It is conventional to use more than one strategy to operate a wind turbine in different 27 

wind speeds, which is based on rated-speed. While in speeds below rated-speed the goal 28 

is to keep the captured power as high as possible via torque control, in above rated-29 

speed the point is to regulate the rotor speed via pitch angle and torque control, 30 

simultaneously [4].  31 

Research is abundant in the performance of controllers of each kind in wind turbine 32 

pitch angle and torque adjustment. For instance, in [5], by combining a radial basis 33 

function (RBF) neural network and PI controller, a gain-scheduling PI controller is 34 

developed. Therefore, by measuring the wind speed, the RBF neural network selects 35 

suitable gains for the PI controller. The proposed method has shown better performance 36 

in regulating rotor speed and power in a stochastic wind condition over a constant-gain 37 

PI controller. In [6], two controllers are designed for pitch actuator based on MLP and 38 

RBF neural networks. In the article, RBF had slightly better performance in rotor speed 39 

regulation. The performance of a nonlinear PI (N-PI) controller is studied in [7], in 40 

which by designing an extended-order state and perturbation observer to estimate the 41 
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nonlinearities, an external signal is added to the output of a PI controller. The results 42 

showed the effectiveness of N-PI in decreasing the RMS (Root Mean Square) of error 43 

and mechanical loads in comparison to a gain-scheduled PI. Meanwhile, the results are 44 

also validated via the FAST simulator. In [8], to overcome the effect of the unknown 45 

delays caused by hydraulic pressure driven units a PI controller is optimized for an ideal 46 

system, while a delay estimator is designed to estimate the perturbation caused by the 47 

delay. Using this estimation as a compensation signal the effect of the delay in the 48 

output is removed. The technique was tested on wind turbines with different rated 49 

powers, and it is observed that the performance of a 4.8-MW wind turbine has been 50 

improved. 51 

The quality of adjusting the controlling parameters of a wind turbine has significant 52 

effects on the mechanical loads of the drivetrain, tower, and blades [7]. Pitch regulation, 53 

changes the direction of the airfoil, so as the vector of applied forces on the blades. 54 

These changes and wind speed fluctuations, cause cyclic motion and vibration in the 55 

blades and tower. Hence, the control methods play an essential role in limiting the loads 56 

and fatigue damages and as a result lowering the maintenance cost and increasing the 57 

efficiency of wind turbines. These are the motivations to search for suitable approaches 58 

in operation. Although one of the manners is to redesign the blades with respect to 59 

fatigue reduction [9], or implementing new sensors and mechanical equipment [10], a 60 

fast and viable way in order to response these demands are changing the control 61 

algorithms and software, in which, the requirement for new sensors and design would 62 

be relaxed. 63 

Therefore, more research is done recently to decrease the mechanical loads. For 64 

instance, in [11], several control algorithms are presented to alleviate loads of a wind 65 

turbine. These methods consist of installing new sensors to measure the loads, using 66 

individual pitching control (IPC), providing a joint control between power production 67 

and the loads, and using the torque control to alleviate the torsional resonance. IPC is a 68 

technique that every blade rotates along its longitude axis separately. An experimental 69 

study on IPC is conducted in [12] to reduce the loads. The controller is designed based 70 

on the linear state-space model, and the gains are calculated via linear quadratic 71 

regulator (LQR) method. The controller demonstrates better performance in lowering 72 

the loads while maintaining the error and pitch actuator usage. However, in these kinds 73 

of model-based methods, a complete model of the system is needed. A combination of 74 

IPC and fuzzy controllers is studied to reduce mechanical loads [13]. To do this, a fuzzy 75 

controller is designed to control the rotor speed by adjusting the pitch angle and 76 

generator reference torque, while the other two fuzzy controllers are responsible for 77 

controlling the mechanical loads (blade moments) by adding an extra signal to the 78 

output of the first controller. The control performance shows a reduction in fatigue 79 

loads. A robust H∞ method is examined in [10] for tower and drivetrain load mitigation 80 

in a 5-MW wind turbine, where two H∞ controllers are designed at above the rated 81 

speed; one controller is for adjusting the pitch angle, and another is designed to tune the 82 

generator torque. The inputs of the controllers were generator speed, tower, and blade 83 

tip accelerations. The method has superiority in load reduction in comparison to a 84 



baseline controller. In [14], it is shown that how optimization of a pitch and torque 85 

controller can affect the loads. In the method, a hybrid cost function is defined, which 86 

includes the fatigue and ultimate loads of blades, tower and drivetrain and the rate of 87 

pitch angle. Then the variation of cost in different proportional and integral gains is 88 

studied. A reduction of 2% was achieved in load effect in particular wind speed. In [15], 89 

a comparison is made between SISO and MIMO active flow control in a wind turbine. It 90 

is shown that in a wind turbine equipped with active flow control, a MIMO controller 91 

can be decomposed into simpler SISO controllers, which is highly efficient in load 92 

reduction.  93 

In the past years, the fractional order controllers have received many interests. 94 

Fractional order controllers have more parameters to set so that the controller designer 95 

can apply more consideration to account. A motivation to study this kind of controller is 96 

its particular structure: If their extra parameters, which are their orders, are set to 1, they 97 

act as a simple PID controller. On the other hand, albeit their nonlinear figure (     ), 98 

they are usually approximated via linear transfer functions that are similar to high order 99 

linear controllers. In several cases, fractional-order controllers have shown a better 100 

control performance than their integer order counterparts: In [16], the performance of an 101 

automatic voltage regulator is investigated under control of an optimized FOPID. In 102 

[17], a multi-objective optimization is accomplished to control a hydraulic turbine. 103 

Besides, in [18], a multi-objective design process is suggested to design a FOPID and 104 

PID for plants with parametric uncertainty. In [19], a fractional order PI controller is 105 

investigated for a 4.8 MW wind turbine, while its gains are constant during the 106 

operation. In [20], a gain-scheduling PID and a gain/order-scheduling FOPID are 107 

designed via optimization. The simulation results show significant superiority of 108 

schedule-gain/order FOPID in decreasing control signal fluctuations. 109 

In this paper, to mitigate the mechanical loads in a wind turbine and maintain its 110 

performance, simultaneously, a new method, which is a combination of FOPID and 111 

RBF neural network, is proposed. In the process, the wind turbine equipped with a 112 

simple FOPID controller undergoes several wind profiles with fixed average speed. 113 

Then, employing chaotic differential evolution (CDE), the optimal gains and orders are 114 

found. The primary goal of this design is to alleviate the tower and blade moments, 115 

which are critical in the wind turbine lifespan. With the optimal dataset, an RBF neural 116 

network is trained to choose the best parameters and put them into the controller. To 117 

study the effectiveness of FOPID, an RBF neural network based PID is also designed 118 

within the same framework. Then several fluctuated wind speeds are applied to the wind 119 

turbine model, and the results are compared with a conventional gain-scheduling PI 120 

controller (NREL baseline PI controller) [21], the RBF PI controller [5], and the FOPI 121 

controller [19]. It is known that the validation of a proposed controller is of utmost 122 

importance. To this end, to validate the simulation results, all controllers are applied to 123 

the FAST (Fatigue, Aero-elastic, Structure, Turbulence) as a detailed wind turbine 124 

simulator. 125 

The motivation of this paper is twofold: 1) Proposing controllers to investigate the load 126 

mitigation of a wind turbine and comparing it via a conventional controller in the 127 



industry. 2) Since the load mitigation and performance in wind turbines conflict with 128 

each other, another motivation is that the controllers should present satisfactory 129 

performance. It should be noted that, although a controller with more coefficient may 130 

demonstrate a better achievement in some control objectives, its effects on different 131 

aspects should be studied. The contributions of this paper, to accomplish those 132 

motivations, are as follows: 133 

1) Proposing a cost function to decrease the mechanical loads. 134 

2) Considering the performance of a conventional gain-scheduling PI controller 135 

(NREL baseline PI controller) as a constraint. 136 

3) Proposing an RBF neural network that can predict the gains of the PID/FOPID 137 

controllers without any demand to measure the wind speed. 138 

4) Validation the control performance of the proposed controllers via a standard 139 

wind turbine simulator (FAST). 140 

5) In the proposed methods, unlike IPC related papers, there is no demand for new 141 

mechanisms [11-13].  142 

6) The need for sensors to measure the wind speed or the tower/blades acceleration 143 

is relaxed [5, 6, 10].  144 

This paper is organized as follows: Section 2 is a brief description of the wind turbine 145 

model. In Section 3, the baseline controller and the proposed methods are presented. 146 

Section 4 demonstrates the process of deriving the parameters, test scenarios, and 147 

validation. Finally, Section 5 concludes the paper by discussing the main advantages of 148 

the proposed method.  149 

2 Wind Turbine Dynamic Model 150 

A wind turbine (WT) dynamics can be divided into several parts: Aerodynamics, 151 

drivetrain, generator, pitching system, and flexible tower. The wind turbine that is 152 

presented in this study as the benchmark is a land-based 5 MW class horizontal wind 153 

turbine, which is proposed by NREL [21]. 154 

2.1 Aerodynamics 155 

The captured energy crucially depends on blade shape. However, it is also affected by 156 

wind speed and pitch angle. The captured power is calculated as: 157 

   
 

 
               (1) 

where    is the captured aerodynamics power,   is the air density, and   is the radius of 158 

blades plus hub radius.    is power coefficient and   is the wind speed.   is the pitch 159 

angle and   
   

   is called the tip speed ratio (TSR).  160 

The captured torque from wind is calculated as follows: 161 

        (2) 

where    is the aerodynamic torque.  162 



   is an experimental coefficient, which is nonlinear and dependent on blade shapes, 163 

TSR, and pitch angle. Here the coefficient is adopted from a look-up table of NREL 5-164 

MW wind turbine [21].  165 

2.2 Drivetrain 166 

The drivetrain is a complex component that transmits the captured power to the 167 

generator. In a large-scale wind turbine, the drivetrain can have severe effects on the 168 

performance, because of its flexibility. It is more common to simplify the model to 169 

separated masses. In [22], several separated mass models in the transient period, such as 170 

2-mass, 3-mass, and 6-mass are compared. It is studied that 2-mass model is accurate 171 

and yet simple enough to be chosen for simulation and controller design. A two-mass 172 

simplified model for drivetrain is shown in Figure 1. 173 

 174 

Figure 1 Two-mass simplified drivetrain model 175 

The drivetrain equations are derived as follows 176 

                  (3) 

where    is the inertia of blades, hub and low-speed shaft.     is the low-speed shaft 177 

torque and    is the rotor damping coefficient.     can be calculated as follows 178 

                            (4) 

where     is low-speed shaft stiffness and     is low-speed shaft damping.     is the 179 

speed of low-speed shaft while    and     are the rotor and low-speed shaft angular 180 

deviation, respectively. 181 

The gearbox transmission ratio is defined as: 182 

  
   

   
 (5) 

where   is gearbox ratio and     is the high-speed shaft torque. 183 

In the generator side, the following equations exist: 184 

                  (6) 

  

  

  
  

  

  

      

  

  

 



In (6),    is the generator inertia,    is the generator torque and    is the generator 185 

damping. 186 

According to (3)-(6), the drivetrain differential equations are derived as follows 187 
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2.3 Generator 189 

The generator is supposed to convert the kinetic energy of the wind to electrical power. 190 

In this paper, a simple first order generator is chosen, and its differential equation is as 191 

follows 192 

    
 

  
          (8) 

          (9) 

where    is the generator time constant,    is the generated power and    is generator 193 

efficiency. It should be noted that there is also a limitation in both torque and torque rate 194 

in generators dynamics.    is limited between 0 to 47,402.91 N.m whereas its rate is 195 

limited between -15 to 15 KN.m/s [21]. 196 

Since the main contribution of this paper is to study the mechanical loads and pitch 197 

control, the turbine is considered to be an off-grid; thus, a first order generator is 198 

reasonable [21]. However, a more advanced model for the generator is needed when the 199 

turbine is connected to the grid. Usually, the doubly-fed induction generator, along with 200 

a back-to-back converter, is utilized [23]. To control the connection of WT to the grid, 201 

one of the effective methods is to use a back-to-back converter to control the frequency. 202 

Besides, since doubly-fed induction generators consume reactive power, the back-to-203 

back converter can also be used as a capacitor bank to compensate power factor [24]. 204 

2.4 Pitch actuator 205 

Pitch actuator rotates the blades around their longitude axis. In this research, a simple 206 

first order actuator is implemented. The differential equation is as follows 207 

   
 

  
         (10) 

In (10),      is the reference pitch angle, generated by the controller and    is the time 208 

constant of the actuator. In a pitch actuator, the limitations are playing a crucial role. 209 



  is usually limited between 0º and 90º while the rate limitation is considered to be 210 

between -8 to +8 º/s. 211 

2.5 Tower 212 

Rising wind through wind turbine caused vibration in the tower. In tall wind turbines, 213 

tower vibration caused an additional fluctuation in wind speed. In this paper, the tower 214 

is approximated via a mass-spring-damper system. The differential equation of the 215 

tower can be derived as follows: 216 

   
 

    
                    (11) 

where   is the displacement of the tower top.      and      are the tower stiffness and 217 

damping coefficient, respectively.      is the applied force to the tower and has a 218 

nonlinear relation with wind speed and pitch angle [21].  219 

Although the effect of the flexible tower is usually neglected in many papers, in this 220 

paper, it is considered by its impact on wind speed fluctuations. In other words, the 221 

tower tip speed is added to the wind speed. It is noticeable that the blade motion, like 222 

tower motion, could also affect the WT performance by changing the power curve. 223 

However, the effect of blade motion on power production and the interaction between 224 

the drivetrain, tower, and blade is neglected in the two-mass model. 225 

Table 1 exhibits some of the leading wind turbine parameters. 226 

Table 1 Wind turbine parameters [21] 227 

Parameter Value 

Power capacity 5 MW 

Cut-in, Cut-out and rated speed 3 m/s, 25 m/s and 11.4 m/s 

Rotor radius  63 m 

Tower height 87.6 m 

Rated generator angular speed  122.9 rad/s 

Rated generator torque  43093.55 N.m 

Gearbox ratio  97:1 

Maximum power coefficient 0.482 

3 Control Designs 228 

3.1 Baseline controller 229 

In this part, the baseline PI controller, which is proposed by [25] and designed for a 5-230 

MW wind turbine by NREL [21] is described. Baseline PI controller is a gain-231 

scheduling PI controller and developed based on the simple single degree of freedom 232 

wind turbine model. Based on the free body of a simple drivetrain, the rotor equation of 233 

motion can be written as follows 234 

             
     

 

  
                (12) 

where    is the drivetrain inertia.  235 

Since the Generator torque changes are ignorable in the region above rated-speed, it can 236 



be calculated by 237 

         
  

    
 (13) 

where    is the rated mechanical power. On the other hand, by assuming that the change 238 

in the captured aerodynamic force is ignorable: 239 

      
             

        
 (14) 

where   is the mechanical power and          is the nominal rotor speed.  240 

By using first-order Taylor expansion of (13) and (14) around    and  , respectively, 241 

two equations can be written as: 242 
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where    is a small deviation of blade pitch angle about its operational point. A PID 243 

controller scheme, which its input is deviation of rotor speed and its output is defined as 244 

the deviation of blade pitch angle can be written as: 245 

                              

 

 

 (17) 

where   ,    and    are proportional, integral, and derivative gains, respectively.  246 

Now by assuming      , and combining (12) and (15)-(17), the equation of motion 247 

for rotor-speed will be calculated as follows 248 

    
 

        
  

  

  
          

 

        
  

  

  
      

  

        
    

  
 

        
  

  

  
          

(18) 

Eq. (18) bears a striking resemblance to an ordinary second-order system with following 249 

the differential equation  250 

                   (19) 

 In (19), natural frequency and damping ratio can be defined as 251 
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 (21) 

In [25] it is suggested to neglect the    and assume the natural frequency to be 0.6 rad/s 252 

and the damping ratio to be 0.6 - 0.7. Therefore, the gains can be calculated with the 253 

following equations 254 

   
                   

    
  
  

 
 

(22) 
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In the above equations,  
  

  
 is the blade pitch sensitivity and is dependent on the wind 255 

speed, pitch angle, and rotor speed. In [21], the blade pitch sensitivity curve is driven 256 

for wind speed. With blade pitch sensitivity, both proportional and integral gains can be 257 

calculated. Figure 2 shows the gains for operation in the region above rated-speed. 258 

 259 

Figure 2 KP and KI in the baseline PI controller that is designed for a 5-MW wind turbine [21] 260 

In this method, the gains are chosen based on the pitch angle. Thus, the speed 261 

measurement is needed. However, it is a cost-effective suggestion since wind speed 262 

measurement is not an easy or accurate task [26]. The anemometer that is usually 263 

installed on the wind turbine can only measure the wind speed in the installed point, 264 

which does not give proper information about the other parts of the wind turbine. 265 

Remark 1: As it is shown in Figure 2,    and    are negative parameters. As it is 266 

indicated in [21], the relationship between control signal (which is pitch angle) and 267 

controller input (which is the error of generator speed) is inverse. On the other hand, the 268 

existence of the torque controller adds negative damping to the system. Therefore, for 269 

the stability of the system, it is needed to use negative gains. 270 



3.2 Proposed controller 271 

The proposed controller is a gain-scheduling fractional-order PID, which uses the 272 

subtraction of generator and nominal speeds as the input and a reference pitch angle as 273 

the output. Although FOPID is used in this paper, by this method, any controller with 274 

adjustable gains or parameters can be designed. Eq. (24) shows a fractional-order PID in 275 

the time domain. 276 

                      
 

 

    
      

   
 (24) 

where   and   are two fractional numbers.  277 

Remark 2: Fractional-order controllers are usually approximated via specific 278 

expansions, among them, Oustaloup approximation, which recently received many 279 

attentions, is slightly simpler to be implemented by hardware [27, 28]. In this paper, due 280 

to its effectiveness, the Oustaloup approximation is used. To perform a fractional 281 

controller, many tools can be utilized. Although electrochemical systems [29] and 282 

electronic circuits [16] can be used, microprocessors and PLCs are the most viable and 283 

practical methods. 284 

To choose the optimal parameters, they are first derived by solving a suitable 285 

optimization problem. This procedure gives a set of optimal parameters for different 286 

wind speeds. This optimal set is used to train an RBF neural network. Thus, the trained 287 

neural network can select the proper parameters in each wind speed. However, due to 288 

reasons mentioned in Subsection 3.1, the wind speed should not be measured directly. 289 

Thus, in our method, the wind speed is estimated by using measurable quantities of the 290 

wind turbine. In the following subsections, the technique is explained. 291 

3.2.1 Gains Calculation 292 

To calculate the gains of (24), different wind speeds are considered. Then using an 293 

optimization algorithm, a suitable cost function will be minimized, and thus a set of 294 

optimal parameters for (24) is derived for each wind speed. With this method, an 295 

optimal dataset for gains and orders will be found. 296 

To optimize the controller, the following cost function is considered.  297 

                
    

 

 (25) 

where      is the maximum simulation time and      is the control signal (i.e., the 298 

pitch angle reference) at the time  .  299 

Minimizing (25), leads to minimization of the surface below      over time. There are 300 

many reasons for choosing (25) as the primary cost function.    is highly related to the 301 

rate of pitch angle, which means the rate of force vector changes on the blades. Thus, it 302 

is highly correlated with the blades and the tower mechanical loads. One other 303 

suggestion instead of (25) is the integral absolute error (IAE) of the rotor speed [5]. 304 

However, making the error as small as possible may not generally be a good choice 305 



concerning load reduction. Besides, reducing cost function (25) will lower the risk of 306 

wind-up and saturation in pitch angle actuators, which because of the minor time 307 

constant is probable. It is noticeable that although utilizing (25) can mitigate the loads; 308 

it may jeopardize the performance, i.e., generator speed error. Thus, a constraint is 309 

needed to determine suitable performance. In this paper, the constraint is defined as the 310 

maximum generator speed error of a wind turbine with a PI controller, which its gains 311 

are equal to the baseline in each wind speed. Eq. (26) introduces the constraint 312 
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where    
     and    

    , are the error at wind speed   for the proposed controller and 313 

PI controller with the baseline gains, respectively. It should be noted that the constraint 314 

makes a suitable background in comparing the controllers in the sequel. Considering the 315 

above discussions, the following optimization problem can be defined 316 

   
                     

           
    

 

 

         
 

    

 

             
 

    

 

        

(27) 

Selecting the RMS or variance of the signals may be another choice for the cost 317 

function. However, it is observed that it does not necessarily minimize the signal 318 

frequency; although the RMS or variance is decreased, there might be more cycles. 319 

Thus, the derivative of the pitch actuator is not necessarily decreased, and in an 320 

uncertain situation, it leads to more loads on the structure. 321 

Now, a gain-scheduling mechanism should be implemented, so that in every wind 322 

speed, suitable gains will be assigned to the controller. This mechanism is discussed in 323 

the following.  324 

It is essential to consider the difference between gain-scheduling and order-scheduling 325 

problems. In (24), the control signal is linear concerning the parameters   ,   , and   . 326 

However, changing the fractional orders in (24) needs recalculating of Oustaloup 327 

approximation, which for each time step, new operators should be calculated. Although 328 

Oustaloup approximation can approximate fractional operators, it is not accurate for the 329 

first time steps. Thus, changing the order of the fractional operator will cause the 330 

controller to give inaccurate results. Figure 3 shows this effect. The figure demonstrates 331 

a Sine wave, its full derivative, and its half derivative. As it is shown, the half-derivative 332 

behavior in the first few moments is different: In the first half cycle, the amplitude is 333 

less than the steady state. However, after a few time steps, the half derivative of Sine is 334 

reached to its steady state. 335 



 336 
Figure 3 Sin(x), its full derivative, and its half derivative 337 

To solve the problem above, we will assume that the orders of FOPID do not change 338 

during operation, and they are equal to the average of optimized orders of the 339 

optimization results. Now by considering the orders of (24) to be constant values, 340 

another optimization is done to recalculate the three gains of FOPID.  341 

3.2.2 Wind speed estimation 342 

The Newton-Raphson method [7] and artificial neural network [30] have been used in 343 

wind speed prediction. Although the estimation tools may be different, the principle of 344 

all is the same and based on extracted aerodynamics power. In fact by measuring the    345 

in any time and considering (1), the wind speed   can be estimated.  346 

   can be calculated via (1) for different values of  ,   , and  , to provide a database 347 

for the relation between the variables and actual wind speed. It should be noted that it is 348 

impossible to measure the captured power (  ). Instead, the generator power is 349 

measured and divided into generator and drivetrain efficiency. The generator efficiency 350 

is 94.4%, and the drivetrain is considered to be frictionless [21]. In addition, since the 351 

drivetrain model is deemed to be unknown, the    is calculated by dividing the    to 352 

the gearbox ratio. 353 

 354 

Figure 4 Proposed controller structure 355 
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Then, a prediction method can be evaluated that its input vector is  ,    and    and its 356 

output vector is the wind speed ( ). However, since the goal is to set the gains in each 357 

situation, instead of  , we consider estimating the gains vector in each wind speed, 358 

directly. Regarding the discussions in Subsections 3.2.1 and 3.2.2, the structure of the 359 

proposed method can be depicted in Figure 4.  360 

4 Simulation 361 

In this section, the proposed controller in section 3 will be designed for the model in 362 

section 2, and then test scenarios will be studied. In the sequel, the performance of the 363 

proposed controller is compared with the gain-scheduling PID controller designed using 364 

the proposed method, NREL baseline PI controller described in Subsection 3.1, RBF PI 365 

controller proposed in [5], and a FOPI controller [19], which is tuned based on [31, 32]. 366 

For the subsequent discussions, these controllers are respectively denoted as proposed 367 

FOPID, proposed PID, baseline PI, RBF PI, and FOPI. It should be noted that all 368 

controllers are designed based on the two-mass model and are validated via the FAST 369 

simulator. 370 

4.1 Tools 371 

4.1.1 Chaotic differential evolution 372 

Differential evolution (DE) is one of the oldest; however, the strongest optimization 373 

algorithms. In this paper, a rand/2/best mutation is considered as [33]. 374 
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where    
  is the  th

 dimension of  th
 population among generation  .   and   are two 375 

random members from   s.    
  is the  th

 dimension of the  th
 mutated vector in 376 

generation  ,       
  is the  th

 dimension of the best solution in generation  . 377 

Meanwhile,    is a value called the scaling factor. In this paper the    is generated via a 378 

Gaussian chaotic map as 379 

              
     (29) 

where   is the representative of the chaotic random number [34]. The map features a 380 

chaotic behavior for many values of   and  . In this study   and   are considered to be 381 

6.2 and -0.5, respectively. Since, the value of   is in the interval of [-0.2878, 0.5000], it 382 

is mapped to the interval of [0.5, 1] [35]. 383 

In the crossover, the same dimension of some members is exchanged with another one. 384 

The crossover that is used in this study is precisely the same as the ordinary DE in [33]. 385 

Table 2 indicates the parameters as well as the chaotic map used to calculate the mutant 386 

factor. 387 

 388 

 389 

 390 



Table 2 CDE parameters 391 

Parameter Value 

Maximum iteration 50 

Population 10 times of variables 

  rand(0.5, 1)* 

   0.6 

Chaotic map               
     

            
*Random number is created via Gaussian chaotic map 392 

Remark 3: In this study, any kind of optimization algorithm is applicable. However, 393 

chaotic DE is selected since it is simple and at the same time powerful. Besides, its 394 

dominance over ordinary DE and PSO is shown in [35]. 395 

4.1.2 RBF neural network 396 

The basis of artificial neural networks is the human brain mechanism of learning and 397 

producing knowledge. RBF neural networks, which its structure is presented in Figure 5 398 

uses a single array of radial basis functions in the hidden layer, and the output layer is 399 

usually considered as a linear function [36]. Thus, it has less parameter in comparison to 400 

MLP and GMDH, which makes RBF more straightforward tool for function 401 

approximation. RBF can be trained in a shorter time, and it works best if there are many 402 

training vectors available [37].  403 

The activation function in RBF neural network hidden layer is a Gaussian function as 404 

follows: 405 

           
      

 

  
              (30) 

where   , which in the form of                    is the center of Gaussian radial 406 

function      , and                , is called spread and determines the width of 407 

each Gaussian radial function. To train the neural network, the procedure proposed in 408 

[37] is considered. 409 

 410 

Figure 5 RBF neural network structure 411 
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Remark 4: To predict the gains, the goal is to make a relation between the three inputs 412 

and the three outputs. It should be noted that any modeler, such as different kinds of 413 

artificial neural networks and regression models are applicable. However, artificial 414 

neural networks have shown better performance in wind energy related applications 415 

such as power curve estimation and fault detection [38, 39]. On the other hand, slightly 416 

better performance has been reported for RBF against MLP as a direct pitch controller 417 

[6]. 418 

4.2 Optimization and training 419 

The optimization is done for 26 wind speeds between 12 m/s up to 24.5 m/s with the 420 

step of 0.5 m/s. To challenge the robustness, all the wind speeds have minimal 421 

fluctuation with a maximum frequency of 10 Hz (Figure 6) [40]. All the wind profiles 422 

are created via Kaimal wind model based on IEC 61400-3 [41]. The optimization 423 

problem is considered in (27). To calculate the IAE of the baseline PI controller, firstly 424 

the gains of the baseline PI are obtained from Figure 2. Then, by the constant gains, the 425 

IAE of the baseline PI controller is calculated for each wind speed profiles of Figure 6. 426 

Thus, during the optimization, the IAE of FOPID will be compared to IAE of the 427 

baseline PI controller, and if the constraint does not meet, a penalty function is applied. 428 

Table 3 shows the equivalent pitch angle, gains, IAE, and the cost function (25) for the 429 

baseline PI controller in some wind speeds.  430 

It should be noted that the same method can be easily applied to an ordinary PID. Table 431 

4 shows some of the optimal parameters of FOPID and PID. 432 

 433 
Figure 6 Wind speed profiles used for the optimization process 434 

 435 

 436 

 437 



Table 3 Parameters of baseline PI controller 438 

Wind speed 
Equivalent pitch 

angle (deg) 
      IAE Cost in (25) 

14 8.7 -0.6298 -0.2699 144.4497 68.8277 

15.5 9.6 -0.4912 -0.2105 171.0149 62.6868 

17 10.4 -0.4119 -0.1765 185.3420 56.0194 

18.5 11.3 -0.3593 -0.1540 207.5071 55.8160 

20.5 12.0 -0.3108 -0.1332 251.5365 55.7465 

22 12.8 -0.2838 -0.1216 267.6865 56.2760 

24 13.5 -0.2559 -0.1097 313.1463 59.3156 

Remark 5: Unlike many related kinds of literature [5, 7], in this paper, a fluctuated 439 

wind speed is used for optimization. The amplitude of these fluctuations is minimal. 440 

Therefore the values can be used instead of nominal constant wind speed. However, the 441 

variations can affect the performance significantly, since the behavior of the wind 442 

turbine varies in different wind frequencies. Therefore, to put the optimization in a more 443 

realistic condition, it is more appropriate to accomplish the optimization process in wind 444 

speed with real fluctuation frequencies.  445 

Remark 6: The Oustaloup fractional-order approximation, which is used in this paper, 446 

is assumed to be a 5
th

 order. The band frequency also is considered to be in the interval 447 

of [0.01,100] Hz, which is suitable for most of the industrial purposes [17]. 448 

Table 4 The optimized parameters of PID and FOPID 449 

Controller Wind speed              IAE Cost in (25) 

PID 

14 -0.7103 -0.1695 -0.063244 1 1 144.4440 56.5092 

15.5 -0.5244 -0.1684 -0.062084 1 1 171.0113 54.3429 

17 -0.4567 -0.1520 -0.040277 1 1 185.3392 50.6492 

18.5 -0.3650 -0.1459 -0.043744 1 1 207.5067 50.9266 

20.5 -0.3009 -0.1325 -0.035805 1 1 251.5078 51.6529 

22 -0.2651 -0.1222 -0.033855 1 1 267.6456 51.1509 

24 -0.2290 -0.1112 -0.032115 1 1 312.6179 53.6180 

FOPID 

14 -0.4179 -0.2090 -0.3967 0.9368 0.4982 144.3742 53.2665 

15.5 -0.4157 -0.1746 -0.2450 0.9850 0.5917 170.9041 51.0409 

17 -0.1685 -0.1930 -0.3316 0.9284 0.3962 185.2877 47.0226 

18.5 -0.3009 -0.1544 -0.1612 0.9724 0.6240 207.4520 48.3941 

20.5 -0.2807 -0.1346 -0.1086 0.9926 0.7014 251.5317 48.9513 

22 -0.2422 -0.1263 -0.1072 0.9843 0.7423 267.3900 47.4482 

24 -0.1978 -0.1200 -0.1020 0.9787 0.7150 312.4545 49.5714 

It should be noted that it is observed that if the system is optimized for a fractional PI, 450 

the   will converge toward 1, and the result is the same as integer-order PI.  451 

As it is expressed in Subsection 3.2.1, another optimization is done in which; the 452 

fractional orders remain constant, equal to the average of the first optimization. The fact 453 

that   and   are nearly the same in all wind speeds validates this simplification. In this 454 

study, the average value for   is 0.9607, and the average for   is 0.6062. Table 5 shows 455 

these parameters for the new optimization for some wind speeds. 456 



Table 5 The optimized parameters of FOPID 457 

Wind speed              IAE Cost in (25) 

14 -0.5128 -0.1962 -0.3067 0.9607 0.6062 144.3939 53.2921 

15.5 -0.4025 -0.1825 -0.2612 0.9607 0.6062 170.9921 51.1794 

17 -0.3135 -0.1724 -0.2053 0.9607 0.6062 185.2608 47.2882 

18.5 -0.2861 -0.1594 -0.1731 0.9607 0.6062 207.4518 48.4363 

20.5 -0.2416 -0.1469 -0.1475 0.9607 0.6062 251.4453 49.0613 

22 -0.2081 -0.1363 -0.1329 0.9607 0.6062 267.6402 47.7781 

24 -0.1635 -0.1306 -0.1355 0.9607 0.6062 312.922 49.9602 

To train the RBF neural network, the database is created for the wind speeds between 12 458 

to 24.5 m/s with the step of 0.5 m/s, for the    (which will be converted to   ) between 459 

1 to 1.5 rad/s with the step of 0.0025 rad/s and for the pitch angle from 0° to 25° with 460 

the step of 1°. However, the entries that lead the power to become less than 4MWs and 461 

higher than 6MWs are eliminated, since the wind turbine does not see these conditions 462 

in the region above rated-speed. In this way, 10295 entries are created. Then the neural 463 

network is trained via the method that is discussed in subsection 4.1. For the RBF neural 464 

network, 10 neurons and 3 outputs are considered, so there are 30 weights and 3 biases 465 

that should be calculated via the training method. However, instead of   as the output 466 

vector, the equivalent optimal gains are set. Thus, as it is shown in Figure 4, the 467 

outcome is an RBF neural network for each proposed controller, which it’s input vector 468 

is  ,    and   , and its output vector is   ,   , and   . 469 

Remark 7: Since the inputs are not in the same order, all of them are normalized and 470 

mapped to the interval of [0, 1]. 471 

To determine the best spread value for the RBF neural network, the mean squared error 472 

(MSE) of several situations is considered. The training was conducted for ten times with 473 

different spreads (between 0.5 to 3 with the step of 0.1) for 70% of the database as train 474 

data, and then the best spread is chosen based on the MSE of remaining 30%. Table 6 475 

demonstrates the average MSE for different spreads in test data.  476 

Table 6 The average MSE of 10 RBF training for validation data with different spreads 477 

Spread ( ) 0.5 0.7 1.0 1.5 2.4 2.9 

For PID database 0.001900 0.001043 0.0008051 0.0006553 0.0007088 0.0009962 

For FOPID database 0.001326 0.0007988 0.0006554 0.0005505 0.0005822 0.0006997 

Based on Table 6, the spread for training the RBF neural network for both PID and 478 

FOPID is considered to be 1.5. 479 

One of the most critical stages in design is to guarantee the performance 480 

mathematically. However, providing analytical proof in the wind turbine (even in the 481 

two-mass model) is not a straightforward task, because the aerodynamical equations and 482 

the structure of the controllers are highly nonlinear. On the other hand, in a more real 483 

condition, when the wind fluctuations are high and stochastic, the linear models for 484 

stability analysis do not provide a suitable background in the design. Thus, two test 485 

scenarios are brought in following. In the first one, the two-mass model is implemented, 486 

and the performance in different wind fluctuations is studied. In the next, the same 487 

controller that is designed for the two-mass model is implemented on a more detailed 488 



simulator; therefore the performance and robustness of the proposed controller is 489 

studied under different wind fluctuations in a more realistic situation.  490 

4.3 Test on the two-mass model 491 

In this Subsection, the proposed FOPID, proposed PID, baseline PI, RBF PI (Ref. [5]), 492 

and FOPI (Ref. [19]) are compared on the two-mass model. Eighteen wind speed 493 

profiles are generated based on the Kaimal wind model, adopted from the IEC 61400-3 494 

[41], which includes different wind speeds average and different standard deviations.  495 

The presented controller in [5], is an RBF based PI controller, which is trained based on 496 

an optimized dataset of PI controllers in different steady wind speeds. The IAE of 497 

generator speed is considered as an optimization cost function, and a sensor for wind 498 

speed measurement is assumed. Thus, this paper is a good example to study the effect of 499 

our proposed method.  500 

The performance criteria, which are chosen to compare the controllers at the first step, 501 

will be RMS of generator speed error and RMS of control force rate. However, this is 502 

not satisfactory enough since different loads on the structure of the wind turbine should 503 

also be considered. The most critical loads on a wind turbine are the tower fore-aft 504 

moment and the blade root out-of-plane motions. The first one is the torque caused by 505 

movements of the tower to its front and back, and the second one is the motion of blades 506 

out of rotation plane. To compare the loads, their RMS around their mean value is 507 

calculated [42]. It is noticeable that the blade out-of-plane deflection refers to the 508 

deflection of the blade that is caused by wind and push the blade outside the rotation 509 

plane. Meanwhile, the blade in-plane deflection refers to a deflection inside the rotation 510 

plane. The moments caused by these deflections are called out-of-plane and in-plane 511 

moments, respectively. Figure 7 depicts these two blade deflections in a cross section of 512 

the rotation plane. 513 

 514 
Figure 7 Cross section of a blade rotation plane 515 
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 516 

Figure 8 (a) RMS of generator speed error in 2-mass model. (b) RMS of pitch actuator rate in 2-mass 517 
model. (c) RMS of pitch actuator rate in 2-mass model. (d) RMS of the out-of-plane moment of blade 518 

root in 2-mass model 519 

Figure 8 shows the performances of five controllers. To have a better comparison, the 520 

simulation time is considered 900 seconds. It should be noted that the absolute 521 

percentages are calculated via 522 

                  
   

 
 (31) 

Figure 8 (a) shows the RMS of generator speed error. The FOPI has performed almost 523 

the best among all controllers by 38.0% better performance comparing the proposed 524 

FOPID. On the other hand, the performance of RBF PI is 27.7% better than the 525 

proposed FOPID. The performance of the proposed FOPID is slightly better than the 526 

proposed PID in this figure, and the average error in the proposed FOPID is 3.1% better 527 

than the proposed PID. However, the baseline PI controller shows the weakest 528 

performance. The figure depicts that the proposed FOPID is minimizing the RMS by 529 

11.2% in comparison to the baseline PI. Less value in RMS of the generator speed error 530 

means the rotor is under less torque variation.  531 

Figure 8 (b) demonstrates the RMS of the pitch actuator rate. It can be seen that 532 

controllers are performing differently at different wind speeds. The proposed PID and 533 

proposed FOPID have less variation in pitch angle rate. Although, the proposed PID and 534 

the proposed FOPID has had better performance than the baseline PI by 13.8% and 535 

15.0% in average, respectively, in some cases the baseline PI controller has been acted 536 

better than the other two controllers. However, the proposed FOPID is working better in 537 

minimizing pitch angle rate; it has reduced pitch actuator rate by 1.7% on average, in 538 

comparison to the proposed PID. The RBF PI has the weakest performance in lower 539 

wind speeds in pitch angle rate, while The FOPI had the most inferior performance in 540 

higher wind speeds. The FOPI performed 32.3% worse than the baseline PI, by average. 541 

On the other hand, RBF PI has achieved 31.0% worse than the baseline PI, mainly 542 

because there was no trace of   in the cost function. 543 
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Figure 8 (c), depicts that the proposed FOPID has reduced the RMS of the tower fore-544 

aft moment by 6.0% and 16.3% in comparison to the proposed PID and the baseline PI, 545 

respectively. The proposed PID, on the other hand, has acted 11.0% better than the 546 

baseline PI in this survey. However, again in this part, the response of the baseline PI 547 

and the RBF PI controllers get better in higher wind speeds. Besides, the performance of 548 

the RBF PI and FOPI are respectively 9.9% and 17.3% weaker than the baseline PI 549 

controller. Thus, the proposed FOPID controller is more capable of reducing the cyclic 550 

loads to the wind turbine tower in comparison to the other controllers. 551 

Figure 8 (d) demonstrates the RMS of the out-of-plane moment of the blade root, which 552 

directly affects the fatigue damages to the blades. Blades have the most risk of damages, 553 

among other components. Therefore, reducing the variations of this parameter is 554 

essential. It can be seen from Figure 8 (d) that the proposed FOPID acts the best among 555 

all controllers. Although in all cases, the proposed FOPID is working better than the 556 

proposed PID with the average of 5.9%, the behavior of the baseline PI is changing in 557 

different wind speeds in comparison to the proposed PID. The baseline PI controller is 558 

acting 17.1% worse than the proposed FOPID, while the proposed PID is performing 559 

12.0% better than the baseline PI, on average. In this case, the performance of FOPI is 560 

the best among lower wind speeds, but it gets slightly worse than the proposed FOPID 561 

at higher wind speeds.  562 

Remark 8: It is noteworthy that comparing the above values to Tables 4 and 5 reveals 563 

that the performance of the controllers varies in the presence of higher wind 564 

perturbation. Although the difference in cost function between the proposed PID and 565 

FOPID is small in the table, they differ higher in the test section. In addition, although 566 

the difference between RMS of generator error and control signal in test scenarios are 567 

small, the difference between the RMS of loads is much higher. It means that by a slight 568 

reduction in the (25) and even keeping the (26) near the same as the baseline PI, the 569 

proposed controllers are more capable of mitigating the loads. Besides, although the aim 570 

of this paper was not to decrease the IAE from the beginning, and IAE was only the 571 

optimization constraint, the proposed controllers showed a better performance in 572 

reducing the generator speed error. 573 

Remark 9: While it seems trivial that by proposing a more sophisticated controller, 574 

better performance is achievable in some control desirables, in reality, the other aspects 575 

of designs might remain neglected. For instance, surely fuzzy controllers have much 576 

more parameters to set (membership functions and rule base), but in spite of better 577 

performance in regulating the rotor speed, the control signal becomes higher in 578 

comparison to a simple PI/FOPI controller. Thus, although more advanced controllers 579 

might reduce IAE, they do not necessarily resolve all the demands [43]. 580 

Figure 9 shows the above comparison of five mentioned controllers for an average wind 581 

speed of 17 m/s and gust of 1.5 m/s. Figure 9 (a) depicts 100 seconds of the wind speed 582 

that the simulation is done. Figure 9 (b) demonstrates the performance of five 583 

controllers in generator speed adjustment. As can be seen in time between 60 seconds to 584 

80 seconds, the proposed FOPID and proposed PID were more capable of keeping the 585 



performance near the desired value (122.9 rad/s) in comparison to the baseline PI, but 586 

the FOPI has the best performance overall in this section. Figure 9 (c) shows the rate of 587 

pitch actuator. Interestingly, unlike the baseline PI controller, none of the other 588 

controllers have led the actuator to become saturated between 60 seconds to 80 seconds. 589 

Besides, the peak of the rate of pitch angle on the proposed FOPID is less in comparison 590 

to the other controllers. The figure depicts that the RBF PI and FOPI controllers have 591 

more fluctuation in their performance. Figure 9 (d) shows the generated power. Based 592 

on this figure, the proposed FOPID has superiority against the proposed PID, the 593 

baseline PI, RBF PI, and FOPI controllers in adjusting the generated power on its 594 

nominal (5 MWs). Figures 10 (a) and 10 (b) show the tower fore-aft moment and out-595 

of-plane blade root moment of five controllers, respectively. It can be seen that the 596 

proposed FOPID reaches the smallest moments and thus, mitigates the mechanical loads 597 

the most. 598 

4.4 Validation via the FAST 599 

In this paper, FAST code is utilized to predict a more realistic performance of the wind 600 

turbine. This code is a powerful tool, which is capable of simulating the loads and 601 

control performance of wind turbine if the structural properties, such as blade and tower 602 

configurations, are entirely defined [7, 44]. This code cooperates with the aerodynamic 603 

subroutine AeroDyn, which provides a detailed analysis of aerodynamics by blade 604 

element momentum theory (BEM) and dynamic stall [45]. Since the baseline NREL 5-605 

MW wind turbine is fully defined in FAST V8.0; it is implemented to validate the 606 

control performance in this paper. 607 



 608 

Figure 9 The performance of five controllers in a wind speed of 17 m/s with a standard deviation of 1.5 609 
m/s. (a) The wind speed profile. (b) The generator speed. (c) rate of pitch angle. (d) The generated power 610 



 611 

Figure 10 The applied loads in five controllers in a wind speed of 17 m/s with a standard deviation of 1.5 612 
a) The fore-aft tower moment b) the out-of-plane blade moment 613 

  614 

Figure 11 Scheme of implementation of FAST code 615 

Nature always is more complicated than our constructed models and simulations. Thus, 616 

to make a better comparison and challenge the robustness, a more detailed model is 617 

implemented. The model that is used to derive the parameters (which was discussed in 618 

Section 2) had many neglected dynamics, such as the side-side movements and the 619 

blades both in-plane, out-plane deflections and the interaction between blades and 620 

tower. These deflections can affect performance and cause unexpected behavior or even 621 

instability. However, with the FAST code, the designer will be able to anticipate many 622 

of this ignorance. Although FAST is only a simulator and not a real setup, it makes our 623 

proposed controller one more step nearer to a real situation. FAST is also capable of 624 

predicting extreme loads and fatigue damages in different wind speeds [44]. In this 625 

study, the first blades edgewise mode, the first and second blade flapwise modes, the 626 

first and second tower side-to-side and fore-aft mode, the drivetrain flexibility and the 627 

generator DOFs are simulated. Remarkably, FAST is not equipped with a pitch actuator 628 
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model; thus, the same differential equation in (10) is considered for following 629 

simulations. 630 

Figure 11 depicts a schematic block diagram of FAST code in our proposed method. It 631 

should be noted that many studies have used the FAST to validate their results [7, 35, 632 

42]. To show the effectiveness of the proposed method, the controllers (Proposed 633 

PID/FOPID, baseline PI, RBF PI, and FOPI) that were designed for the simplified two-634 

mass system and tested in the previous section are applied to the FAST simulator.  635 

 636 
Figure 12 (a) RMS of generator speed error in FAST. (b) RMS of pitch actuator rate in FAST. (c) RMS 637 

of tower fore-aft moment in FAST. (d) RMS of the out-of-plane moment of blade root in FAST 638 
 639 

Thus, in this section, the controllers will be faced with some unmodeled dynamics as 640 

well as the wind fluctuations. The wind models are precisely the same as wind profiles 641 

in Subsection 4.3 and are created via Kaimal wind model [41]. The same criteria of 642 

Subsection 4.3 are used in part as well: The RMS of generator speed error, RMS of 643 

pitch angle rate and RMS of tower root and out of plane blade root moments.  644 

Figure 12 compares the performance of five controllers in different aspects. Figure 12 645 

(a), shows the RMS of the generator speed error of five controllers. It is observed that in 646 

all of the cases, the FOPI has the best control performance. The proposed FOPID has 647 

19.3% and 6.6% better performance in comparison to the baseline PI and the proposed 648 

PID, respectively. However, the proposed PID has acted 13.6% better than the baseline 649 

PI. The RBF PI controller has performed 18.7% better than the baseline PI, but its 650 

performance was slightly weaker than the proposed FOPID on average. Besides, FOPI 651 

has shown 10.6% better than the proposed FOPID. As it is seen in this part, the 652 

difference between the IAE of five controllers is increased in comparison to the 653 

previous subsection. 654 

Figure 12 (b), compares the actuator rate among five controllers. Like what it is 655 

observed in the two-mass model, the performance of baseline PI and the RBF PI 656 
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improve as the wind speed rises. However, the difference between rates of pitch 657 

actuator is more sensible in the FAST model. In many cases, the proposed FOPID 658 

showed less actuator rate in comparison to the proposed PID, which is 7.2%, on 659 

average. However, the proposed FOPID shows 22.4% less actuator rate in contrast to 660 

the baseline PI controller. On the other hand, the proposed PID has a 16.7% less 661 

actuator rate than the baseline PI controller. Like the previous section, the pitch angle 662 

rate in FOPI is the worst in higher wind speeds, and it is worked 25.4% worse than the 663 

baseline PI controller. Besides, RBF PI has performed 19.8% worse than the baseline 664 

PI. Figures 12 (a) and 12 (b) demonstrate that the proposed FOPID achieved to the least 665 

RMS of the generator speed error and actuator rate.  666 

Figure 12 (c) shows the RMS of the tower root moments. This figure depicts that, as the 667 

wind rises, the performance of the baseline PI and the RBF PI controller get better. By 668 

average, the proposed FOPID reduces the moment by 3.9% in comparison to the 669 

proposed PID. On the other hand, the proposed FOPID has acted 13.3% better than the 670 

baseline PI controller. Besides, the proposed PID has worked 9.8% better than the 671 

baseline PI. The performance of FOPI is 17.2% worse than the baseline PI. On the other 672 

hand, the RBF PI controller has performed almost 7% worse than the baseline PI 673 

controller. 674 

Figure 12 (d) demonstrates the difference of controllers for the out-of-plane moment of 675 

the blade root. It is shown that the proposed FOPID has superiority in all cases over the 676 

other controllers. RMS of the out-of-plane moment of blade root for the proposed 677 

FOPID is 7.4% better than the proposed PID, whereas it has 19.7% better performance 678 

in comparison to baseline PI. The proposed PID has also acted 13.6% better than the 679 

baseline PI controller. The RBF PI and FOPI controllers have performed just 2.6% and 680 

4.8% better than the baseline PI, respectively. 681 

Figure 13, depicts loads and performances for one of the wind profile cases. Figure 13 682 

(a) shows 100 seconds of 17 m/s wind speed with a standard deviation of 1.5 m/s. 683 

Figure 13 (b), demonstrates the errors of the baseline PI, the proposed PID, the 684 

proposed FOPID, RBF PI, and FOPI controllers. As it is seen in the figure, the FOPI 685 

has slightly better performance in speed regulation. The difference is more vivid in the 686 

times between 60 seconds to 80 seconds. Figure 13 (c) depicts the rate of pitch angle in 687 

five controllers. In this survey, a small superiority in the proposed FOPID against the 688 

proposed PID is observed. Although four out of five controllers have led the actuator to 689 

its limits, it is shown that the proposed PID and proposed FOPID have reached the 690 

nominal values sooner. Although the plant with FOPI is not saturated, the fluctuation in 691 

its operation is much more. Figure 13 (d) shows the generated power. Based on this 692 

figure, the proposed FOPID has got superiority against the proposed PID and the 693 

baseline PI controllers in adjusting the generated power. Figures 14 (a) and 14 (b) show 694 

that the amplitudes of tower fore-aft and the blade out of the plane moment in the 695 

proposed FOPID, the proposed PID, the baseline PI, the RBF PI, and the FOPI. From 696 

Figures 14 (a) and 14 (b), it can be seen that the proposed FOPID is able to mitigate the 697 

mechanical load most effectively since it can decrease the tower and blade moments, the 698 

most. 699 



Using the FAST simulator, it can be seen that not only the proposed method is robust 700 

enough to tolerate more real conditions, but also the performance that is achieved in the 701 

previous subsection remains, relatively. 702 

Remark 10: For more clarification, Figure 15 depicts the overall design process of the 703 

proposed method as a flowchart. It should be noted that the optimization (using chaotic 704 

DE) and training of neural network are offline procedures. Then, the trained neural 705 

network is used (without any online optimization) to tune the parameters of the 706 

fractional-order PID controller making a gain-scheduling fractional-order PID 707 

controller. 708 

 709 

Figure 13 The performance of five controllers in a wind speed of 17 m/s with a standard deviation of 1.5 710 
in the FAST simulator (a) The wind speed profile. (b) The generator speed (c) The rate of pitch angle (d) 711 

The generated power 712 



 713 

Figure 14 The applied loads in five controllers in a wind speed of 17 m/s with a standard deviation of 1.5 714 
in the FAST simulator (a) The fore-aft tower moment. (b) the out-of-plane blade moment 715 



 716 

Figure 15 The proposed controller design process 717 

5 Conclusion 718 

In this study, an RBF based fractional-order PID (FOPID) has been applied to control 719 

the pitch angle concerning mitigation of mechanical loads. To train the RBF neural 720 

network, a dataset of optimal gains and orders is provided for several wind speeds by 721 

solving a suitable optimization problem using chaotic differential evolution (CDE) 722 

algorithm. Since, by changing the direction of the force vector on blades, the pitch angle 723 

rate has a significant effect on the loads. Thus, the cost function for this optimization 724 

problem has been considered the rate of the control signal. Meanwhile, to maintain the 725 

performance, a constraint on error has been defined. To compare the performance a 726 

simplified two-mass model has been used with different wind speeds and fluctuations. 727 

The simulation has shown that a better performance is achievable in the proposed 728 

FOPID, comparing to the other controllers. In the second scenario, the controllers, 729 

which have been designed for the simplified model, have been tested on a more realistic 730 

standard simulator called FAST. It has been shown that in many cases the proposed 731 

FOPID has reached better performance and robustness with less actuator rate, in 732 

comparison to the other controllers. Besides, it was observed that the proposed FOPID 733 

RBF neural network training process

Start
Generating 

initial 
population

Cost 
function 

calculation

Last 
Iteration?

End
Crossover 

and 
mutation

 = 12: 24 

Update 
population

Ref. rotor 

speed FOPID
2-mass 

model
+

      -

Optimization 

Process

Check the 

constraint

Are the µ and λ in whole the database the same?

Yes

Averaging 

the λ and µ 

and taking 

them 

constant

No

Test Stage:

2-mass model

Validation Stage:

FAST Simulator

  -     λ  
5-MW

Wind

Turbine

  

  

RBF Neural 
Network

+

-

Torque 
Controller

    

    

 

KDKIKP

  -     λ  

FAST

5-MW

Wind

Turbine

  

  

RBF Neural 
Network

+

-

    

 

KDKIKP



controller is more capable of alleviating mechanical loads in comparison to the same 734 

structure PID, the baseline PI controllers, the RBF PI, and the FOPI. 735 

For future research, since many possible faults can easily affect the wind turbine 736 

operation, such as blade damages, actuator failures or natural accident such as bird 737 

strike a study on the fault tolerance characteristics of the proposed controllers is 738 

suggested. One other suggestion is to do the same framework, with a multi-objective 739 

optimization instead of the single-objective. Meanwhile, more parameters can be taken 740 

into accounts, such as direct consideration of blades and tower mechanical loads. 741 
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