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ABSTRACT

We study the propagation and stability of kink waves in a twisted magnetic tube with the

flow. The flow velocity is assumed to be parallel to the magnetic field, and the magnetic

field lines are straight outside the tube. The density is constant inside and outside of the

tube, and it monotonically decreases from its value inside the tube to that outside in the

transitional or boundary layer. The flow speed and magnetic twist monotonically decrease in

the transitional layer from their values inside the tube to zero outside. Using the thin tube and

thin boundary layer (TTTB) approximation, we derived the dispersion equation determining

the dependence of the wave frequency and decrement/increment on the wavenumber. When

the kink wave frequency coincides with the local Alfvén frequency at a resonant surface

inside the transitional layer, the kink wave is subjected to either resonant damping or resonant

instability. We study the properties of kink waves in a particular unperturbed state where

there is no flow and magnetic twist in the transitional layer. It is shown that in a tube with

flow, the kink waves can propagate without damping for particular values of the flow speed.

Kink waves propagating in the flow direction either damp or propagate without damping.

Waves propagating in the opposite direction can either propagate without damping, or damp,

or become unstable. The theoretical results are applied to the problem of excitation of kink

waves in spicules and filaments in the solar atmosphere.

Key words: MHD – plasmas – waves – Sun: corona – Sun: oscillations .

1 IN T RO D U C T I O N

Kink oscillations of magnetic flux tubes were first observed in the

solar atmosphere by the Transition Region and Coronal Explorer

(TRACE) mission in 1998 and reported by Aschwanden et al. (1999)

and Nakariakov et al. (1999). They were transverse oscillations of

coronal magnetic loops. Later, similar oscillations were observed in

prominence fibrils (e.g. Hillier et al. 2013; Arregui 2018). All these

oscillations were standing kink waves.

Propagating kink waves in solar magnetic flux tubes were also

observed. They were observed in coronal magnetic loops (Tomczyk

et al. 2007; Tomczyk & McIntosh 2009; Pascoe, Wright & De

Moortel 2010), in spicules (De Pontieu et al. 2007; He et al.

2009a,b), in the fine structure of prominences (Okamoto et al. 2007),

in soft X-ray coronal jets (Cirtain et al. 2007; Vasheghani Farahani

⋆ E-mail: karam.bahari@gmail.com (KB); npetruhin@hse.ru (NSP);

M.S.Ruderman@sheffield.ac.uk (MSR)

et al. 2009), in filament threads (Lin et al. 2007, 2009), and in

chromospheric mottles (Kuridze et al. 2012). Morton et al. (2012)

reported the observations of simultaneous propagation of kink and

sausage waves in a range of chromospheric magnetic wave guides.

The first theoretical study of kink waves in magnetic flux tubes

were carried out by Ryutov & Ryutova (1976). In particular, these

authors obtained the expression for the phase speed of kink waves in

the thin tube approximation. Ryutov & Ryutova (1976) considered a

magnetic tube with straight magnetic field lines. Later, kink waves in

more sophisticated models of magnetic tubes were studied (see e.g.

the review by Ruderman & Erdélyi 2009). One particular property

of magnetic flux tubes that can affect the kink waves is magnetic

twist. The effect of magnetic twist both on propagating (Bennet,

Roberts & Narain 1999; Carter & Erdélyi 2007, 2008; Ruderman

2015; Bahari & Khalvandi 2017) as well as on standing (Ruderman

2007; Erdélyi & Fedun 2010; Karami & Bahari 2012; Terradas &

Goossens 2012; Ruderman & Terradas 2015) kink oscillations in

solar magnetic flux tubes was studied.

C© 2020 The Author(s)
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Another important property of magnetic flux tubes in the solar

atmosphere is the almost ubiquitous presence of plasma flows.

They were observed in active regions (Brekke, Kjeldseth-Moe &

Harrison 1997; Winebarger, DeLuca & Golub 2001; Winebarger

et al. 2002; Teriaca et al. 2004; Doyle et al. 2006; Ofman & Wang

2008; Tian et al. 2008, 2009), in prominence threads (Chae et al.

2008; Terradas et al. 2008), and solar atmospheric jets (Shibata et al.

2007; Nishizuka et al. 2011; see also the review by Raouafi et al.

2016). The effect of flow on kink waves in magnetic flux tubes was

studied by many authors (e.g. Terra-Homem, Erdély & Ballai 2003;

Ruderman 2010; Soler & Goossens 2011; Terradas et al. 2011;

Bahari 2017).

Already, the first observation of standing kink oscillations re-

vealed that they are strongly damped with the damping time of

the order of a few oscillation periods (Nakariakov et al. 1999). At

present, it is almost generally accepted in the solar physics that

this damping is caused by resonance absorption. To our knowledge,

Ionson (1978) was the first who pointed out the importance of

resonance absorption for wave processes in the solar atmosphere.

Since then resonant absorption remained a popular mechanism for

explaining various solar phenomena, especially wave damping.

Hollweg & Yang (1988) studied resonant damping of surface

waves in a thin transitional layer sandwiched with two semi-infinite

regions with cold homogeneous plasmas and constant magnetic

field in the whole space. Considering the limiting case of surface

waves propagating almost perpendicular to the magnetic field, they

managed to obtain the expression for the damping rate of kink waves

propagating in a thin magnetic flux tube. Goossens, Hollweg &

Sakurai (1992) derived the general expression for the decrement of

kink waves propagating in a twisted magnetic tube.

Studies of resonant damping of kink waves in solar magnetic

wave guides received a new impetus after the first observation

of damped kink oscillations of coronal magnetic loops. Ruder-

man & Roberts (2002) and Goossens, Andries & Aschwanden

(2002) showed how the observed damping of these oscillations

can be used in coronal seismology (see also the reviews by

Andries et al. 2009; Ruderman & Erdélyi 2009). To-date reso-

nant damping of kink waves in magnetic flux tubes have been

studied in a variety of equilibria, including twisted and expanded

tubes, and in the presence of flow (see the review by Goossens,

Erdélyi & Ruderman 2011, and recent articles by Shukhobod-

skiy & Ruderman 2018; Ebrahimi & Bahari 2019; Ruderman &

Petrukhin 2019).

Resonant absorption was considered as a course of wave damp-

ing. However, the presence of background balk flow can result in

a new phenomenon called resonant instability. It is intrinsically

related to the presence of negative energy waves. The theory of

negative energy waves can be found in the reviews by Nezlin (1976),

Ostrovskii, Rybak & Tsimring (1986), and Stepanyants & Fabrikant

(1989), and in the book by Fabrikant & Stepanyants (1998). To our

knowledge the application of the theory of negative energy waves to

waves in magnetic flux tubes was first discussed by Ryutova (1988).

Resonant instability is a particular case of negative energy wave in-

stability when the decrease in the wave energy is caused by resonant

absorption. Its main property is that this instability occurs for the

values of flow speed below that needed to cause the KH instability.

The resonant instability was studied in the framework of magneto-

hydrodynamics (MHD) by many authors (e.g. Ruderman & Wright

1998; Tirry et al. 1998; Erdélyi & Taroyan 2003; Ruderman & Belov

2010; Taroyan & Ruderman 2011). This concept was also applied

to solar physics. Andries & Goossens (2001) studied resonant flow

instabilities in coronal plumes. However, in general, the concept

of resonant instability did not receive much attention in solar

physics.

In this paper, we now consider a problem similar to one studied by

Bahari (2018). However, Bahari (2018) used the approximation of

incompressible plasma, while here we use the approximation of cold

plasma that is more relevant for applications to studying kink waves

in the solar atmosphere. Also, Bahari (2018) only studied the wave

damping, while here we also investigate the resonant instability.

This paper is organized as follows. In the next section, we formu-

late the problem and describe the unperturbed state. In Section 3,

we derive the dispersion equation determining the dependence of

the wave frequency and decrement/increment on the wavenumber.

In Section 4, we obtain the approximate solution to the dispersion

equation using the regular perturbation method with the ratio of

the thickness of the transitional layer to the tube radius as a

small parameter. In Section 5, we obtain the expression for the

decrement/increment of propagating kink waves for a particular

unperturbed state. In Section 6, we apply the theoretical results to

the problem of kink wave excitation in spicules and filaments in the

solar atmosphere. Section 7 contains the summary of the obtained

results and our conclusions.

2 PRO BLEM FORMULATI ON A ND

UNPERTURBED STATE

We consider a twisted magnetic tube with a background equilibrium

flow and use the cold plasma approximation. In cylindrical coor-

dinates r, φ, z, the unperturbed magnetic field and flow velocity

are given by B = (0, Bφ(r), Bz(r)), and U = (0, Uφ(r), Uz(r)),

respectively. The equilibrium density is given by

ρ =

⎧
⎪⎨
⎪⎩

ρi, r ≤ R(1 − l/2),

ρt(r), R(1 − l/2) ≤ r ≤ R(1 + l/2),

ρe, r ≥ R(1 + l/2),

(1)

where ρ i and ρe are constants, ρe < ρ i, ρ t(r) is a monotonically

decreasing function, and ρ is continuous at r = R(1 ± l/2). The

domain defined by r ≤ R(1 − l/2) is the core part of the magnetic

tube, while R(1 − l/2) ≤ r ≤ R(1 + l/2) is the transitional region.

It is assumed that there is no plasma flow outside of the tube, that

is U = 0 for r ≥ R(1 + l/2). The azimuthal components of the

magnetic field and velocity are given by

Bφ =

⎧
⎪⎨
⎪⎩

Ar, r ≤ R(1 − l/2),

Bφt(r), R(1 − l/2) ≤ r ≤ R(1 + l/2),

0, r ≥ R(1 + l/2),

(2)

Uφ =

⎧
⎪⎨
⎪⎩

V r, r ≤ R(1 − l/2),

Uφt(r), R(1 − l/2) ≤ r ≤ R(1 + l/2),

0, r ≥ R(1 + l/2).

(3)

It is assumed that both Bφt and Uφt are continuous and monoton-

ically decreasing functions. When there is no flow and transitional

layer (i.e. U = 0 and l = 0), the equilibrium magnetic field coincides

with that used by Ruderman (2007).

The magnetic field and velocity are related by the momentum

equation

d

dr

(
B2

φ + B2
z

)
=

2

r

(
μ0ρU 2

φ − B2
φ

)
. (4)

In particular, it follows from this equation that the z-component

of the magnetic filed is constant outside of the tube, Bz = B0 =
constant for r ≥ R(1 + l/2).

MNRAS 496, 67–79 (2020)
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Resonant damping and instability of kink waves 69

A popular unperturbed state is the one with twisted magnetic

tube but with a purely axial velocity inside the tube. Such an

unperturbed state was, for example, used when studying the KH

instability (e.g. Zhelyazkov & Zaqarashvili 2012; Zaqarashvili,

Vörös & Zhelyazkov 2014; Zhelyazkov 2015). In this unperturbed

state, plasma flows across the magnetic field lines. As a result,

there is the electrical field equal to −U × B, which, for typical

parameters of various jets in the solar atmosphere, should be quite

strong. This electrical field drives the electrical current, and the

related Joule dissipation can result in quick damping of the velocity

component orthogonal to the magnetic field. Hence, it looks like a

viable assumption that the plasma flows along the magnetic field

lines. In accordance with this, we now make the same assumption

as in Cheremnykh et al. (2018) and Bahari (2018), namely that the

velocity is parallel to the magnetic field, U‖B. This assumption

implies that

Uφ

Uz

=
Bφ

Bz

. (5)

We even can speculate that this relation can explain the observed

rotation of various kinds of jets in the solar atmosphere (e.g. Liu et al.

2009, 2011; Kamio et al. 2010; Zhang & Ji 2014). The jet rotation

is established on the basis of observation of the azimuthal velocity

component. When the plasma moves along twisted magnetic field

lines, this velocity component is naturally present.

It follows from equations (4) and (5) that the z-components of

magnetic field and velocity, in the core region (r ≤ R(1 − l/2)), are

defined by

B2
z = B2

1 + r2
(
μ0ρiV

2 − 2A2
)
,

U 2
z =

V 2

A2

[
B2

1 + r2
(
μ0ρiV

2 − 2A2
)]

, (6)

where B1 is a positive constant. We also obtain from equation (4)

and the continuity of the magnetic field at the external boundary of

the transition region that

B2
zt(r) = B2

0 − B2
φt(r)

+2

∫ R(1+l/2)

r

[
μ0ρ(r̃)U 2

φt(r̃) − B2
φt(r̃)

]dr̃

r̃
. (7)

The condition that Bz is continuous at the internal boundary of the

transitional layer yields

B2
1 + R2(1 − l/2)2

(
μ0ρiV

2 − 2A2
)

+ B2
φt(R(1 − l/2))

= B2
0 + 2

∫ R(1+l/2)

R(1−l/2)

[
μ0ρ(r)U 2

φt(r) − B2
φt(r)

]dr

r
. (8)

Finally, it follows from equation (5) that the φ-component of the

velocity in the transitional layer is defined by

Uφt(r) = Bφt(r)
Uzt(r)

Bzt(r)
. (9)

We can always choose the direction of the z-axis in such a way that

Uz(r) > 0. Since the MHD equations are invariant with respect to

the change of sign of the magnetic field, we can assume that Bz(r)

> 0. Then, it follows from equation (9) and the continuity of the

equilibrium velocity and magnetic field that Uφ(r) and Bφ(r) have

the same signs.

At present, the only condition imposed on Bφt(r) and Uφt(r) is

that these are monotonic functions. We note that the unperturbed

state considered in this paper is the same as the one used by Bahari

(2018).

To describe the plasma motion, we use the linear MHD equations

in the cold plasma approximation. We introduce the characteristic

wavelength λ and assume that R/λ = ǫ ≪ 1, meaning that we use

the long wavelength or thin tube approximation. We also assume

that the thickness of the transitional or boundary layer is lR with

l ≪ 1 meaning that we use the thin boundary approximation.

Summarizing, we use the thin tube and thin boundary layer (TTTB)

approximation. In addition, we assume that magnetic field lines

make no more than a few turns on one wavelength. This implies

that Bφ /Bz is of the order of ǫ. Then, it follows from equation (5)

that Uφ /Uz is also of the order of ǫ. In accordance with this, we

write

A = ǫÃ, Bφt = ǫB̃φt, V = ǫṼ , Uφt = ǫŨφt, (10)

where Ã is of the order of B0R−1, B̃φt is of the order of B0, Ṽ is of

the order of UzR
−1, and Ũφt is of the order of Uz. Hence, in equation

(10), the quantities without tildes are of the order of ǫ, while the

quantities with tildes are of the order of unity. Now, it follows from

equations (6)–(8) that

B1 = B0 + O
(
ǫ2
)
, Bz = B0 + O

(
ǫ2
)

(11)

everywhere, and

Uz =
V

A
B0 ≡ U0 + O

(
ǫ2
)

(12)

in the core region. Hence, we consider the equilibrium with almost

constant axial magnetic field and weak azimuthal field. The same

is true for the flow in the core region.

3 D ERI VATI ON O F THE DI SPERSI ON

EQUATI ON

We consider propagating kink waves. To describe these waves, we

use the linearized MHD equations in the cold plasma approximation.

We use the ideal MHD equations everywhere but in the dissipative

layer embracing an ideal resonant surface. Since the unperturbed

state is independent of φ and z, we can Fourier-analyse perturbations

of all variables with respect to these two coordinates. In addition,

we only consider the solutions in the form of normal modes. We

take the perturbations of all variables proportional to exp [i(− ωt +
mφ + kz)], where m = ±1, k is real, and ω is complex. Goossens et

al. (1992) (hereafter Paper I) showed that after that the ideal MHD

equations can be reduced to the system of two equations for the

perturbation of the magnetic pressure P and the radial component

of the plasma displacement ξ r. In Paper I, a finite-beta plasma was

considered. Since we use the cold plasma approximation, we take

the plasma pressure perturbation and the sound speed equal to zero

in the equations derived in Paper I. As a result, we obtain

D
d(rξr )

dr
= C1rξr − C2rP , (13)

D
dP

dr
= C3ξr − C1P . (14)

In these equations, the following notations are used:

V 2
A =

B2

μ0ρ
, k =

(
0,

m

r
, k

)
, (15)

fB = k · B =
m

r
Bφ + kBz, ω2

A =
f 2

B

μ0ρ
, (16)

ωf = k · U =
m

r
Uφ + kUz, 	 = ω − ωf , (17)

T =
fBBφ

μ0

+ ρ	Uφ, (18)

MNRAS 496, 67–79 (2020)
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70 K. Bahari, N. S. Petrukhin and M. S. Ruderman

Q =
2	2B2

φ

μ0r
+

2	fBBφUφ

μ0r
−

ρU 2
φ

r

(
	2 − ω2

A

)
, (19)

D = ρV 2
A	2

(
	2 − ω2

A

)
, C1 = 	2

(
Q −

2m

r2
V 2

AT

)
, (20)

C2 = 	2

[
	2 − V 2

A

(
k2 +

1

r2

)]
, (21)

C3 = D

{
r

d

dr

[
1

μ0

(
Bφ

r

)2

− ρ

(
Uφ

r

)2 ]

+ ρ
(
	2 − ω2

A

)}
+ Q2 −

4

r2
V 2

A	2T 2. (22)

We emphasize that the system of equations (13) and (14) can only be

used far from dissipative layers, where we can neglect dissipation.

We note that, although |Bφ | ≪ Bz, the contributions of the axial and

azimuthal field in the Alfvén frequency ωA are of the same order.

In the core region, the ratio of these contributions is of the order of

λ|A|/B0 = O(1). Since the axial magnetic field is almost constant

everywhere while the azimuthal field monotonically decreases in

the transitional layer, this ratio also decreases monotonically in this

layer and becomes zero at its external boundary. The same is true

for the ratio of contributions of Uφ and Uz in ωf.

While the Alfvén frequency ωA and the frequency ωf defining the

Doppler shift are constant in the core region and outside the tube,

they vary in the transitional layer. This variation is very important

because it defines the Alfvén continuum responsible for resonant

damping or resonant instability. Let us now consider an example.

We assume that the density is a linear function of r inside the

transitional layer given by

ρt(r) =
ρi + ρe

2
+

(ρi − ρe)(R − r)

lR
. (23)

We also assume that Bφ and Uz are given in the transitional layer by

Bφt(r) =

⎧
⎨
⎩

Ar

lθ

(
2 −

2r

R
− l + lθ

)
, R(1 − l/2) ≤ r ≤ ra,

0, r > ra,

(24)

Uzt(r) =

⎧
⎨
⎩

U0

lθ

(
2 −

2r

R
− l + lθ

)
, R(1 − l/2) ≤ r ≤ ra,

0, r > ra,

(25)

where θ ≤ 2 and ra = R[1 − l(1 − θ )/2]. The azimuthal

velocity Uφ t(r) is defined by equation (5). Using this equation,

and equations (24) and (25), we obtain

Uφt(r) =

⎧
⎪⎨
⎪⎩

AU0r

B0l2θ2

(
2 −

2r

R
− l + lθ

)2

, R(1 − l/2) ≤ r ≤ ra,

0, r > ra .

(26)

This equilibrium is similar to the one considered by Ruderman &

Petrukhin (2019).

For this equilibrium, we calculated the Alfvén frequency ωA and

the frequencies

ωD± = ωf ± ωA (27)

that define the Doppler-shifted Alfvén continuum. In Figs 1 and 2,

the dependences of ωA and ωD± on the dimensionless distance

x =
r − R(1 − l/2)

lR
(28)

are shown for θ = 2, MA = 1, ζ = 10, and A = kB0, where the

Alfvén Mach number MA, Alfvén speed in the core region VAi, and

Figure 1. Dependence of frequencies on x for m = 1 and ζ = 10. The

solid, dashed, and dash–dotted curves correspond to ωA, ωD−, and ωD+,

respectively.

Figure 2. Dependence of frequencies on x for m = −1 and ζ = 10. The

solid, dashed, and dash–dotted curves correspond to ωA, ωD−, and ωD+,

respectively.

the ratio of densities ζ are defined by

MA =
U0

VAi

, VAi =
B0√
μ0ρi

, ζ =
ρi

ρe

. (29)

The relation A = kB0 indicates that each magnetic field line in the

core region makes one full turn about the z-axis for a wavelength.

We take the maximum possible value of θ = 2 because, for θ < 2,

the graphs of ωA and ωD+ would overlap in the interval [θ /2, 1].

The Alfvén continuum consists of two intervals,

[−ωAe, −ωAi] ∪ [ωAi, ωAe]. (30)

The Doppler-shifted Alfvén continuum is also the union of two

intervals

[min ωD−, max ωD−] ∪ [min ωD+, max ωD+]. (31)

For particular values of parameters, we choose to calculate ωA and

ωD±, we obtain that max ωD− > min ωD+ when m = 1. Therefore,

the Doppler-shifted Alfvén continuum is [min ωD−, max ωD+]. For

m = −1, we have

ωAi = min ωD− = min ωD+ = 0,

MNRAS 496, 67–79 (2020)
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Resonant damping and instability of kink waves 71

Figure 3. Schematic picture of the Alfvén and Doppler-shifted Alfvén

continua for m = 1.

Figure 4. Schematic picture of the Alfvén and Doppler-shifted Alfvén

continua for m = −1.

max ωD− = max ωD+ = ωAe.

In this latter case, the Doppler-shifted Alfvén continuum coincides

with the Alfvén continuum, which consists of the interval [ −ωAe,

ωAe]. The Alfvén continuum and the Doppler-shifted Alfvén con-

tinuum are schematically shown in Fig. 3 for m = 1 and in Fig. 4

for m = −1.

We introduce the parallel and perpendicular components of the

plasma displacement

ξ‖ =
B · ξ

B
, ξ⊥ =

1

B

(
ξφBz − ξzBφ

)
. (32)

The expressions for ξ‖ and ξ⊥ in terms of ξ r and P were derived in

Paper I. In the cold plasma approximation, they reduce to

	2ξ‖ = −
iξrUφ

rB
(2	Bφ + fBUφ), (33)

(
	2 − ω2

A

)
ξ⊥ =

i

ρrB
(rgBP − 2BzT ξr ), (34)

where

gB =
m

r
Bz − kBφ . (35)

The only fixed spatial scale in the problem is the tube radius R.

We take the Alfvén speed in the tube core, VAi, as the characteristic

velocity of the problem. Then, the fixed frequency is VAi/R.

We consider long waves with the characteristic wavelength λ =
ǫ−1R, as we have already stated this earlier. This implies that

the characteristic axial wavenumber of the waves is ǫ/R, and the

characteristic frequency is ǫVAi/R. In accordance with this, we now

introduce the scaled frequency and wavenumber

ω = ǫ̟, k = ǫκ. (36)

Using equations (10), (13), (20), and (21), we obtain the estimate

P/ρV 2
A ∼ ǫ2ξr/R. Hence, we obtained a well-known result that P

is proportional to ǫ2 = (R/λ)2 (see e.g. Goossens et al. 2009). In

accordance with this, we introduce the scaled magnetic pressure

perturbation P = ǫ2P̃ . Then, in the leading-order approximation

with respect to ǫ equations (13) and (14) reduce to

ρ
(
	̃2 − ̟ 2

A

)d(rξr )

dr
=

1

r
P̃ −

2m

r
T̃ ξr , (37)

ρ
(
	̃2 − ̟ 2

A

)dP̃

dr
= Wξr +

2m

r2
T̃ P̃ , (38)

where

f̃B =
m

r
B̃φ + κB0, ̟ 2

A =
f̃ 2

B

μ0ρ
, 	̃ = ̟ − ̟f , (39)

̟f =
m

r
Ũφ + κUz, T̃ =

f̃B B̃φ

μ0

+ ρ	̃Ũφ, (40)

W = ρ
(
	̃2 − ̟ 2

A

)[
r

d�

dr
+ ρ

(
	̃2 − ̟ 2

A

)]
−

4

r2
T̃ 2, (41)

� =
1

μ0

(
B̃φ

r

)2

− ρ

(
Ũφ

r

)2

. (42)

Now, we look for the solution separately in the core region, in the

surrounding plasma, and in the transitional layer.

3.1 Solution in the core region

Using equations (2), (3), and (11), we obtain

f̃B = mÃ + κB0, ̟f = mṼ + κU0, (43)

while equations (13) and (14) reduce to

ρi

(
	̃2 − ̟ 2

Ai

)d(rξr )

dr
=

1

r
P̃ − 2mT ξr , (44)

ρi

(
	̃2 − ̟ 2

Ai

)dP̃

dr
= W iξr +

2m

r
T P̃ , (45)

where

T =
T̃

r
=

f̃BÃ

μ0

+ ρi	̃Ṽ , (46)

W i = ρ2
i

(
	̃2 − ̟ 2

Ai

)2 − 4T
2
. (47)

Eliminating P̃ from equations (44) and (45) yields

d

dr
r

d(rξr )

dr
− ξr = 0. (48)

It follows from this equation and the condition that ξ r must be

regular at r = 0 that ξ r = constant, that is the radial plasma

displacement is independent of r in the core region. Previously,

this result was explicitly stated by Goossens et al. (2009) for

an untwisted tube. Later, it was obtained for a twisted tube by

Ruderman (2015). Hence, neither the magnetic twist nor the flow

affect the result that ξ r is constant inside the tube in the thin tube

approximation. It is convenient to introduce the special notation for

ξ r in the core region. Below, we denote it as η. Now, we obtain from

equation (44)

P̃ = rη
[
ρi

(
	̃2 − ̟ 2

Ai

)
+ 2mT

]
. (49)

3.2 Solution outside the tube

Recall that U = 0 and Bφ = 0 for r ≥ R(1 + l/2). Then, we obtain

outside the tube

f̃B = κB0, ̟f = 0, T̃ = 0, (50)

W = ρ2
e

(
̟ 2 − ̟ 2

Ae

)2
. (51)

Equations (37) and (38) reduce to

ρe

(
̟ 2 − ̟ 2

Ae

)d(rξr )

dr
=

1

r
P̃ , (52)

dP̃

dr
= ρe

(
̟ 2 − ̟ 2

Ae

)
ξr . (53)
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72 K. Bahari, N. S. Petrukhin and M. S. Ruderman

Eliminating P̃ from these equations, we obtain

d

dr
r3 dξr

dr
= 0. (54)

Taking into account that ξ r → 0 as r → ∞, we obtain from this

equation

ξr =
ψ

r2
, (55)

where ψ is a constant. Substituting this expression in equation (52)

yields

P̃ = −ρe

(
̟ 2 − ̟ 2

Ae

)ψ

r
. (56)

The dependences of ξ r, P̃ , and also ξφ on r, in the case when there

is no transitional layer (l = 0), are shown in Fig. 1 in Goossens et al.

(2009).

3.3 Solution in the transitional layer

In this section, we obtain the solution in the transitional layer. We

will see below that for some wave modes there is a resonant surface

inside the transitional layer, where 	̃2 = ̟ 2
A. The position of this

surface is defined by r = rA, R(1 − 1/2) < rA < R(1 + 1/2). When ̟

is real, the solution has a singularity at this surface. Small imaginary

part of ̟ removes this singularity, however, still there are large

gradients in the vicinity of resonant surface. This implies that, in

this vicinity the dissipation is important. This observation suggests

the method for solving the problem. We solve the dissipative MHD

equations in the vicinity of the resonant surface and the ideal

MHD equations far from the resonant surface. Then, we match the

solutions in the two overlap regions at the two sides of the resonant

surface, where both ideal and dissipative solutions are valid (e.g.

Goossens & Ruderman 1995; Goossens et al. 2011).

3.3.1 Ideal solution far from the resonant surface

The expression for W given by equations (41) contains the derivative

with respect to r. Because of this term, the variation of P̃ across the

transitional layer is of the order of P̃ , which makes it difficult to

solve the system of equations (37) and (38) in the transitional layer.

To resolve this problem, we introduce the new variable

P̂ = P̃ − rξr�. (57)

Using this variable substitution, we transform equations (37) and

(38) into

ρ
(
	̃2 − ̟ 2

A

)d(rξr )

dr
=

1

r
P̂ +

(
� −

2m

r
T̃

)
ξr , (58)

ρ
(
	̃2 − ̟ 2

A

)dP̂

dr
=

[
ρ2

(
	̃2 − ̟ 2

A

)2

−
(

� −
2m

r
T̃

)2]
ξr +

(
2m

r2
T̃ −

�

r

)
P̂ . (59)

We need to calculate ξ r and P̂ with accuracy up to the terms of the

order of l. The characteristic scale of variation of these quantities

in the transitional layer is lR. This implies that in equations (58)

and (59), we can calculate the right-hand sides in the leading-order

approximation with respect to l, that is, we can neglect terms of the

order of l and of the higher order. In particular, we can substitute

̟ r for ̟ and R for R(1 ± l/2). In addition, the variations of ξ r and

P̂ are of the order of l in the transitional layer. This implies that we

can substitute the values of these quantities at r = R(1 − l/2) when

calculating the variations of ξ r and P̂ across the transitional layer.

Now, using equations (2), (3), (12), (43), (46), and (57), we obtain

that the solution to equations (58) and (59) is given by

ξr = η +
η

R

∫ r

R(1−l/2)

X dr ′

ρt(	̃2
r − ̟ 2

A)
, (60)

P̂ = ηρiR(1 − l/2)
[
(̟ − κU0)2 − κ2V 2

Ai

]

+ η

∫ r

R(1−l/2)

(
ρt

(
	̃2 − ̟ 2

Ai

)
+

Y

ρt(	̃2
r − ̟ 2

Ai)

)
dr ′, (61)

for R(1 − l/2) ≤ r < rA, and by

ξr =
ψ

R2(1 + l)
−

η

R

∫ R(1+l/2)

r

X dr ′

ρt(	̃2
r − ̟ 2

A)
, (62)

P̂ = −
ψρe(̟ 2 − ̟ 2

Ae)

R(1 + l/2)

− η

∫ R(1+l/2)

r

(
ρt

(
	̃2 − ̟ 2

A

)
+

Y

ρt(	̃2
r − ̟ 2

A)

)
dr ′, (63)

for rA < r ≤ R(1 + l/2), where 	̃r is the real part of 	̃,

X = ρi

[
(̟ − κU0)2 − κ2V 2

Ai

]
+ � − 2mT̃ /R, (64)

Y = ρi

(
2m

R
T̃ − �

)[
(̟ − κU0)2 − κ2V 2

Ai −
2m

R
T̃ + �

]
. (65)

Using equations (57) and (60)–(63), we obtain that the pressure

perturbation is given by

P̃ = ηρiR(1 − l/2)
[
(̟ − κU0)2 − κ2V 2

Ai

]
+ ηr�(r)

+ η

∫ r

R(1−l/2)

(
ρt

(
	̃2 − ̟ 2

A

)
+

Y (r ′) + �(r)X(r ′)

ρt(	̃2
r − ̟ 2

A)

)
dr ′,

(66)

for R(1 − l/2) ≤ r < rA, and by

P̃ = −
ψρe(̟ 2 − ̟ 2

Ae)

R(1 + l/2)
+ ηr�(r)

− η

∫ R(1+l/2)

r

(
ρt

(
	̃2 − ̟ 2

A

)
+

Y (r ′) + �(r)X(r ′)

ρt(	̃2
r − ̟ 2

A)

)
dr ′,

(67)

for rA < r ≤ R(1 + l/2). We emphasize that the expressions for ξ r

and P̃ are only valid not too close to the resonant surface. Therefore,

the inequalities r < rA and r > rA only indicate that a corresponding

expression is valid either at the left or right of the resonant surface,

but they do not mean that this expression is valid for r arbitrarily

close to rA. The condition ‘not too close to the resonant surface’

will be specified in the next subsection.

3.3.2 Dissipative solution near the resonant surface

In principle, we can avoid finding the solution in the dissipative

layer and use the connection formulae derived in Paper I instead.

However, it is expedient to obtain the solution here. The ideal

resonant surface, as we have already stated, is defined by the

equation r = rA, where rA is, in turn, defined by

	̃2
r (rA) = ̟ 2

A(rA). (68)

Following Paper I, we make the variable substitution s = r −
rA. Equations describing the motion in the dissipative layer were

derived in Paper I. When deriving these equations, the authors
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Resonant damping and instability of kink waves 73

approximated all coefficient functions in the equations by the

first non-zero terms of their Taylor expansions with respect to

s. In particular, they obtained 	̃2(rA) − ̟ 2
A(rA) ∝ s. However,

Ruderman, Tirry & Goossens (1995) showed that, in the case of

a very weak dissipation, one needs to also take the imaginary part

of 	̃ into account. Hence, we use the approximate expression

	̃2 − ̟ 2
A = s� + 2i̟i	̃r (rA), (69)

where ̟ i is the imaginary part of ̟ and

� =
d

dr

(
	̃2 − ̟ 2

A

)∣∣∣
r=rA

. (70)

Now, using the equations derived in Paper I, we obtain that the

equations describing the plasma motion in the dissipative layer in

the cold plasma approximation read
[
s� + 2i̟i	̃rA − iν̃	̃rA

d2

ds2

]
dξr

ds
=

P̃ − 2mT̃Aξr

ρAr2
A

, (71)

[
s� + 2i̟i	̃rA − iν̃	̃rA

d2

ds2

]
dP̃

ds
=

2T̃A

ρAr2
A

(
P̃ − 2mT̃Aξr

)
, (72)

where ν̃ = ǫ−1ν is the scaled coefficient of viscosity, and the

subscript A indicates that a quantity is calculated at r = rA.

Following Sakurai, Goossens & Hollweg (1991), we introduce

the characteristic spatial scale δA in the dissipative layer and the

dimensionless variable τ ,

τ =
s

δA

, δA =
∣∣∣∣
ν̃	̃rA

�

∣∣∣∣
1/3

. (73)

Using the dimensionless variable, after some algebra, we reduce

equations (71) and (72) to

(
d2

dτ 2
+ � + iχτ

)
dξr

dτ
=

iχ
(
P̃ − 2T̃Aξr

)

ρAr2
A�

, (74)

(
d2

dτ 2
+ � + iχτ

)
d

dτ

(
P̃ − 2T̃Aξr

)
= 0, (75)

where

� = −
2̟i|	̃rA|

δA|�|
, χ = sgn

(
�	̃rA

)
. (76)

The solution to the system of equations (74) and (75) was obtained

by Tirry & Goossens (1996). This solution is expressed in terms of

functions F�(τ ) and G�(τ ) introduced by Goossens et al. (2011):

P̃ − 2mT̃Aξr = CA = constant, (77)

dξr

dτ
= −

iχCA

ρAr2
A�

F�(τ ), ξr = −
CA

ρAr2
A�

G�(τ ) + Cξ , (78)

where Cξ is a constant and

F�(τ ) =
∫ ∞

0

exp
(
iχuτ − u3/3 + �u

)
du, (79)

G�(τ ) =
∫ ∞

0

exp(iχuτ ) − 1

u
e−u3/3+�udu. (80)

We note that the expression for G�(τ ) is slightly different from that

given by Goossens et al. (2011). However, the two expressions are

different by a constant. Since ξ r is defined with the accuracy up to

an additive constant, this difference does not affect it.

When a propagating wave damps (̟ i < 0), we have � > 0.

If, in addition, � is large then functions F�(τ ) and G�(τ ) are

strongly oscillatory. It is shown in Goossens et al. (2011) that the

thickness of the dissipative layer is of the order of lR|ωi|/ωA, and

the maximum value of F�(τ ) in the dissipative layer is of the order

of exp (2�2/3). In addition to the thickness of the dissipative layer,

there is the second, much smaller, characteristic scale. This is the

characteristic wavelength of oscillations in the dissipative layer

equal to δA|�|−1/2.

When a propagating wave grows (̟ i > 0), we have � < 0. It is

shown in Appendix A that, in this case, we easily obtain that

F�(τ ) = −
1

� + iχτ
+ O

(
1/�2

)
, (81)

G�(τ ) = − ln
(

1 +
iχτ

�

)
+ O

(
1/|�|3

)
. (82)

It follows from this result that, in the leading-order approximation

with respect to 1/|�|, the real and imaginary parts of G�(τ ) are

given by

ℜ(G�) = −
1

2
ln

(
1 +

τ 2

�2

)
, ℑ(G�) = −χ arctan

τ

�
. (83)

We see that the thickness of the dissipative layer is of the order of

δA� ∼ lR|ωi|/ωA, that is the same as in the case of damped waves.

However, there are no oscillations in the dissipative layer and, thus,

there is no second characteristic scale. Now, we can specify the

condition that r is not too close to rA as imposed in the previous

subsection. This condition means that |r − rA| > lR|ωi|/ωA, i.e. r

must be outside of the dissipative layer.

Returning to the general case, we define the jump of a quantity

across the dissipative layer as

[f (τ )] = lim
τ→∞

[f (τ ) − f (−τ )]. (84)

To calculate [G�(τ )] in the case where � > 0, we use the variable

substitution u
′ = uτ and then drop the prime. As a result, we obtain

[G�(τ )] = 2iχ lim
τ→∞

∫ ∞

0

sin(uτ )

u
e−u3/3+�udu

= 2iχ lim
τ→∞

∫ ∞

0

sin u

u
e−u3/3τ3+�u/τ du = iχπ. (85)

Using this result and equations (77) and (78), we have that

[ξr ] = −
iχπCA

ρAr2
A�

, [P̃ ] = −
2imχπT̃ACA

ρAr2
A�

. (86)

These expressions are called the connection formulae. They were

first introduced by Sakurai et al. (1991) in the case where � =
0 (see also Goossens, Ruderman & Hollweg 1995; Erdélyi 1997).

Later, the connection formulae were derived by Ruderman et al.

(1995) in the case where � > 0. They showed that the connection

formulae are independent of �. This result was later confirmed

by Tirry & Goossens (1996) and Goossens et al. (2011). Here, we

extended this result to the case where � < 0. Using equation (83),

it is straightforward to show that equation (86) remains valid also

in the case where � < 0.

3.3.3 Calculation of [ξ r] and [P̃ ] using the ideal solution

In the theory of asymptotic methods, the solution to the ideal

MHD equations far from the resonant surface is called the external

solution, while the solution to the dissipative MHD equations near

the resonant surface is called the internal solution (e.g. Bender &

Orszag 1999). Equation (84) defines the jump of function f(τ )

MNRAS 496, 67–79 (2020)
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74 K. Bahari, N. S. Petrukhin and M. S. Ruderman

from the point of view of the internal solution. Using equation

(73), we can also consider f as a function of s and define

the jump of this function from the point of view of external

solution as

[f (s)] = lim
s→+0

[f (s) − f (−s)]. (87)

The two expressions for the jump of f, one given by this equa-

tion and the other given by equation (84), must coincide. Using

equations (60), (62), (66), and (67) to calculate [ξ r] and [P̃ ]

yields

[ξr ] =
ψ

R2(1 + l)
− η −

η

R
P

∫ R(1+l/2)

R(1−l/2)

X dr ′

ρt(	̃2
r − ̟ 2

A)
, (88)

[P̃ ] = −ηρiR(1 − l/2)
[
(̟ − κU0)2 − κ2V 2

Ai

]

−
ψρe(̟ 2 − ̟ 2

Ae)

R(1 + l/2)
− ηP

∫ R(1+l/2)

R(1−l/2)

(
ρt

(
	̃2 − ̟ 2

A

)

+
Y (r) + �(rA)X(r)

ρt(	̃2
r − ̟ 2

A)

)
dr, (89)

where P indicates the principal Cauchy part of integral.

3.4 Matching solutions

We now can match the expressions for [ξ r] and [P̃ ] calculated

using the dissipative and ideal solutions. To do this, we compare the

expressions for the jumps of ξ r and P̃ across the dissipative layer

given by equation (86), and by equations (88) and (89). As a result,

we obtain

ψ(1 − l)

R2
= η −

iχπCA

ρAr2
A�

+
η

R
P

∫ R(1+l/2)

R(1−l/2)

X dr ′

ρt(	̃2
r − ̟ 2

A)
, (90)

ψρe(̟ 2 − ̟ 2
Ae)

R(1 + l/2)
= −ηρiR(1 − l/2)

[
(̟ − κU0)2 − κ2V 2

Ai

]

+
2imχπT̃ACA

ρAr2
A�

− ηP

∫ R(1+l/2)

R(1−l/2)

(
ρt

(
	̃2 − ̟ 2

A

)

+
Y (r) + �(rA)X(r)

ρt(	̃2
r − ̟ 2

A)

)
dr. (91)

We now need to find the expression for CA. Both ξ r and P̃

have a logarithmic singularity at r = rA. However, it is shown

in Paper I that P̃ − 2mT̃ ξr is regular at r = rA, which im-

plies that we can use equations (60) and (66) (or equations 62

and 67) to calculate CA. It follows from equation (70) that

� is of the order of l−1. This implies that in equations (90)

and (91), CA is multiplied by terms of the order of l. Hence,

we can calculate CA in the leading-order approximation with

respect to l. Consequently, we can neglect the integral terms

in equations (60) and (66) which are of the order of l, and

substitute η for ξ r. We obtain, as a result, that CA = ηCη,

where

Cη = ρiR
[
(̟ − κU0)2 − κ2V 2

Ai

]
+ R�A − 2mT̃A. (92)

We recall that the subscript A indicates that a quantity is calculated

at r = rA. Substituting the expression for CA in equations (90) and

(91), we obtain the system of two linear homogeneous algebraic

equations for the variables η and ψ . This system has non-trivial

solutions only when its determinant is zero. This condition gives

the dispersion equation determining the dependence of ̟ on

κ:

ρi

[
(̟ − κU0)2 − κ2V 2

Ai

]
+ ρe(1 + l)

(
̟ 2 − ̟ 2

Ae

)

=
iχπCη[ρeR(̟ 2 − ̟ 2

Ae) + 2mT̃A]

ρAR3�

−P

∫ R(1+l/2)

R(1−l/2)

(
ρt

R
(	̃2

r − ̟ 2
A)

+
Y (r) + X(r)[�A + ρe(̟ 2 − ̟ 2

Ae)]

ρtR(	̃2
r − ̟ 2

A)

)
dr. (93)

When deriving this equation, we only kept terms of the order

of unity and l, while we neglected terms of higher order with

respect to l. In particular, we used the approximate relation rA

≈ R.

4 EVA LUATI ON O F THE DI SPERSI ON

EQUATI ON

We look for the solution to the dispersion equation (93) in the form

of expansion with respect to the small parameter l,

̟ = ̟1 + l̟2 + . . . (94)

We take into account that � is proportional to l−1 and the integrals

in equation (93) are proportional to l.

4.1 First-order approximation

Collecting terms of the order of unity in equation (93) and using

equation (92), we obtain

ρe

(
̟ 2

1 − ̟ 2
Ae

)
+ ρi

[
(̟1 − κU0)2 −

κ2B2
0

μ0ρi

]
= 0. (95)

We see that only the effect of axial flow is present in this equation,

while the effect of the azimuthal magnetic field and flow is not.

Previously, a similar result was obtained by Ruderman (2007) in

the case of a twisted tube without a background flow. It is important

to emphasize that this result is obtained under the assumption that

the azimuthal component of the magnetic field is proportional to r,

and the flow velocity is parallel to the magnetic field. Terradas &

Goossens (2012) considered kink oscillations of a twisted magnetic

tube with the azimuthal component of the magnetic field not

proportional to r. They showed that, in this case, the wave frequency

is affected by the azimuthal component of the magnetic field.

We note that equation (95) is invariant with respect to the change

of sign of A. Hence, below, we assume that A > 0. We introduce the

dimensionless quantities

K =
kB0

A
, σ =

ω1
√

μ0ρi

A
, (96)

where ω1 = ǫ̟ 1, and ζ is defined by equation (29). Below,

we assume that ζ ≥ 2. Using equations (10), (36), and (96), we

transform equation (95) to

ζ
[
(σ − KMA)2 − 2K2] + σ 2 = 0, (97)

where MA is defined by equation (29). Equation (97) has real roots

when

MA <
√

2(ζ + 1), (98)

and complex otherwise. The presence of complex roots corresponds

to the onset of the KH instability. Below, we assume that the
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Resonant damping and instability of kink waves 75

inequality equation (98) is satisfied. In that case, the roots of

equation (97) are

σ = σ± ≡ K
ζMA ±

√
ζ (2ζ + 2 − M2

A)

ζ + 1
. (99)

When MA <
√

2, the roots have different sings. However, they are

both positive when MA >
√

2. Usually, in this case, the wave with

the frequency σ− is a negative energy wave (e.g. Nezlin 1976;

Ostrovskii et al. 1986; Stepanyants & Fabrikant 1989; Fabrikant &

Stepanyants 1998). Below, we call the wave propagating with the

dimensionless frequency σ+, the forward wave, and the wave

propagating with the dimensionless frequency σ−, the backward

wave.

4.2 Second-order approximation

In the second-order approximation, we collect terms of the order

of l in equation (93) to obtain the expression for ̟ 2. We write it

as ̟ 2 = ̟ 2r − iγ ; ̟ 2r only gives small correction to the wave

frequency, while γ determines the rate of wave damping (when γ >

0) or amplification (when γ < 0). Hence, below we only calculate

γ . Using equation (95), we obtain

γ =
χπ[ρeR(̟ 2

1 − ̟ 2
Ae) + 2mT̃A]

2lρAR3�[̟1(ρi + ρe) − ρiκU0]

×
[
ρeR(̟ 2

1 − ̟ 2
Ae) + 2mT̃A − R�A

]
. (100)

This expression is used later to evaluate γ for a particular equilib-

rium.

5 C A L C U L AT I O N O F D E C R E M E N T F O R

PA RTICULA R EQUILIBRIUM

We now calculate γ for a particular equilibrium. We consider the

equilibrium described in Section 3 and take θ → 0. In Section 2,

we assumed that the velocity and magnetic field are continuous

at the transitional layer boundaries. When θ → 0, its internal

boundary becomes a tangential discontinuity. However, analysis

of the derivation of the dispersion equation shows that, in fact the

condition that the velocity and magnetic field are continuous at

the transitional layer boundaries was not used. The only condition

that we used is that ξ r and P̂ are continuous at these boundaries.

The continuity of this quantities at the internal boundary follows

from the kinematic and dynamic boundary conditions at a tangential

discontinuity.

Taking θ → 0, we obtain the equilibrium where the velocity and

magnetic twist are confined in the tube core region. Since there is no

background balk flow in the transitional layer, there is no Doppler

shift of the Alfvén continuum V, which is defined by

V = V− ∪ V+, V− = [−̟Ae, −̟Ai], V+ = [̟Ai, ̟Ae]. (101)

The position of the resonant surface is defined by the equation

̟ 2
A(rA) = ̟ 2, where we took into account that 	̃ = ̟ in the tran-

sitional layer. This equation can be rewritten in the dimensionless

variables as

ζK2 = σ 2[1 + (ζ − 1)y], (102)

where

y =
(2 + l)R − 2rA

2lR
. (103)

Using equation (99), we obtain

y = y± ≡
ζ 2 − 1 − (ζ − 1)M2

A ∓ 2MAS

(ζ − 1)[2(ζ + 1) + (ζ − 1)M2
A ± 2MAS]

. (104)

where

S =
√

ζ (2ζ + 2 − M2
A), (105)

and the upper and lower signs correspond to σ = σ+ and σ = σ−,

respectively. The condition that rA is inside the transitional layer

reduces to 0 < y < 1. It is straightforward to show that 0 < y+ < 1

when

MA <
√

ζ − 1, (106)

and 0 < y− < 1 when

MA <
√

2 − 1/ζ − 1 or
√

2 − 1/ζ + 1 < MA <
√

ζ + 1. (107)

When equation (106) is satisfied, the frequency of the forward wave

is in V+. However, when the background flow is so strong that

equation (106) is not satisfied, this frequency is larger then ̟ Ae, it

is out of the Alfvén continuum, and the wave propagates without

damping. This is in a drastic contrast with the wave behaviour

in the absence of flow when the waves always damp due to

resonant absorption. However, in fact, the statement that the wave

propagates without damping when equation (106) is not satisfied

is not completely correct. There is no wave damping caused by

resonant absorption. But, since the wave frequency is larger then

̟ Ae, the wave is leaky. Hence, it damps due to the energy leakage.

In this case, the decrement is of the order of ǫ and, hence, it is very

small in the thin tube approximation.

Now, we proceed to studying the backward wave. When the

left inequality in equation (107) is satisfied, the frequency of the

backward wave is in V− and it damps due to resonance absorption.

For stronger flow with the Mach number satisfying

√
2 − 1/ζ − 1 < MA <

√
2 − 1/ζ + 1,

the backward wave frequency is in the interval (− ̟ Ai, ̟ Ai),

meaning that it is out of the Alfvén continuum. As a result, the

backward wave propagates without damping or amplification. When

the background flow speed increases further and MA satisfies the

right inequality in equation (107), the backward wave frequency

is in V+, and the wave is affected by the resonant absorption.

However, since now the wave propagates in the flow direction in

the reference frame where the external plasma is at rest, it follows

from the general theory that it is a negative energy wave. Hence,

we can expect that the decrease in its energy caused by resonant

absorption should result in the wave amplification. This result will

be confirmed later by the direct calculation of γ . Finally, when the

flow is so strong that MA >
√

ζ + 1, the backward wave frequency

is larger than ̟ Ae, that is not in the Alfvén continuum. Hence, the

wave propagates without either damping or amplification caused

by resonant absorption. Again, since the wave frequency is larger

than ̟ Ae, it is leaky. Since it is a negative energy wave, the energy

leakage can cause the wave amplification. But the increment is of

the order of ǫ and, consequently, it is very small in the thin tube

approximation.

Let us now calculate γ . With the aid of equations (96) and (103),

we obtain from equation (70)

� = −
ζ (ζ − 1)A2K2

μ0ρilR[1 + y(ζ − 1)]2
. (108)
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Figure 5. Dependence of Ŵ+ on M1. The solid, dashed, dotted, and dash–

dotted curves correspond to ζ = 3, 10, 25, and 100, respectively.

Since � < 0, it follows that χ = −sgn(σ ). Using this result and

equations (96), (103), and (108), we transform equation (100) to

Ŵ =
γ
√

μ0ρi

AK
≡

π sgn(σ )(a2 − ζ )2[1 + x(ζ − 1)]

2ζ (ζ − 1)[(ζ + 1)a − ζMA]
, (109)

where a = σ /K. This expression is valid for σ = σ+ when equation

(106) is satisfied, and for σ = σ− when equation (107) is satisfied.

Since σ+ > 0 and (ζ + 1)a+ − ζMA > 0, it follows that Ŵ+ >

0 and the forward wave damps due to resonant absorption when

MA satisfies equation (106). When MA satisfies the left inequality

in equation (107), σ− < 0 and (ζ + 1)a− − ζMA < 0, so Ŵ− > 0

and the backward wave also damps. Finally, when MA satisfies the

right inequality in equation (107), the backward wave propagates in

the positive z-direction, σ− > 0, (ζ + 1)a− − ζMA < 0, and Ŵ− <

0 meaning that the wave is subjected to resonant instability and its

amplitude increases.

We calculated the decrement/increment of propagating kink

waves numerically using equation (109). Fig. 5 shows the de-

pendence of the decrement of forward kink waves, Ŵ+, on M1 =
MA/(

√
ζ − 1) for various values of ζ . We see that the presence

of flow reduces the efficiency of resonant damping, and the waves

propagate without resonant damping for M1 > 1.

Fig. 6 displays the dependence of the decrement of backward

kink waves, Ŵ−, on M2 = MA/(
√

2 − 1/ζ − 1) for various values

of ζ . We see that the larger ζ is the stronger the damping. The

presence of flow reduces the efficiency of resonant damping for

ζ = 3, but increases it for larger values of ζ . The waves propagate

without resonant damping for M2 > 1.

Fig. 7 shows the dependence of Ŵ− on M3 = MA/(
√

ζ + 1) for

various values of ζ . We see that in this figure Ŵ− < 0, which

indicates that in this case there is the resonant instability with the

increment equal to |Ŵ−|. In accordance with the right inequality

in equation (107), the dependence of Ŵ− on M3 is shown for M3 ∈
[
√

2 − 1/ζ + 1, 1]. An interesting feature of the resonant instability

is that its increment is a decreasing function of the flow magnitude.

When M3 > 1, the wave propagates without growth.

We need to make a comment about the dependence of Ŵ on MA.

When M2 > 1, then Ŵ− = 0 implying that Ŵ− → 0 as M2 → 1 + 0,

that is M2 tends to 1 from the right. On the other hand, we see in

Fig. 6 that Ŵ− tends to a non-zero value as M2 → 1 − 0, that is M2
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Figure 6. Dependence of Ŵ− on M2. The solid, dashed, dotted, and dash–

dotted curves correspond to ζ = 3, 10, 25, and 100, respectively.
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Figure 7. Dependence of Ŵ− on M3. The solid, dashed, dotted, and dash–

dotted curves correspond to ζ = 3, 10, 25, and 100, respectively.

tends to 1 from the left. Hence, Ŵ− = 0 is discontinuous at M2 = 1.

This feature is the direct consequence of the equilibrium model with

the discontinuity at the internal boundary of the transitional layer.

If we consider a model not with θ → 0 but with finite θ ≪ 1, then

Ŵ− would drop from a finite value to zero in a small interval with

the length of the order of θ l near M2 = 1. The same analysis refers

to Fig. 7. Ŵ− is discontinuous at M3 =
√

2 − 1/ζ + 1, being equal

to zero at the left of this point and non-zero at the right. Again, if

we consider a model with finite θ ≪ 1 then Ŵ− would drop from a

finite value to zero in a small interval with the length of the order

of θ l near M3 =
√

2 − 1/ζ + 1.

6 A PPLI CATI ON TO SPI CULES AND

FI LAMENTS IN THE SOLAR ATMOSPHE RE

In this section, we apply the theoretical results to observation of

waves in spicules in the solar atmosphere. Propagating kink waves,

MNRAS 496, 67–79 (2020)
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Resonant damping and instability of kink waves 77

as we have already stated, were observed in spicules (e.g. De

Pontieu et al. 2007; He et al. 2009a,b). One possible mechanism

of generation of these waves is instability. The presence of flow

can cause the KH instability. This type of instability in spicules

was studied by a few authors. Zhelyazkov & Zaqarashvili (2012)

modelled a type II spicule as a magnetic tube with the straight

magnetic field inside and outside and the flow inside the tube using

typical values of spicule parameters. In particular, they took ζ = 100.

They only considered the tube stability with respect to the sausage

and kink modes. The main conclusions made by these authors are

as follows. The sausage waves are stable for any flow magnitude,

while the kink waves become unstable for sufficiently large velocity

magnitude. However, this instability only occurs when MA � 10,

which corresponds to the flow magnitude greatly exceeding the

observed values. Using equations (98) and (107), we obtain that the

ratio of the critical velocity for the onset of the KH instability to

that for the onset of the resonant instability is

� =
√

2(ζ + 1)
√

2 − 1/ζ + 1
. (110)

For ζ = 100, we obtain � ≈ 6. Hence, for the same values of

parameters that were taken by Zhelyazkov & Zaqarashvili (2012),

kink waves can be subject to the resonant instability for MA � 2.

This is a rather realistic value not contradicting to the observations.

Zhelyazkov, Zaqarashvili & Chandra (2015) and Zhelyazkov &

Chandra (2019) studied the KH instability in spicules modelling

them as tubes with twisted magnetic field. They showed that the

tube can be KH unstable for realistic values of spicule parameters,

however, only with respect to fluting wave modes, while the kink

waves remain stable. Hence, to excite the kink waves, we need to

involve resonant instability.

Zhelyazkov (2015) considered the KH instability of a filament

observed during an eruption on 2011 February 24 (Möstl, Temmer &

Veronig 2013). To model this instability, Zhelyazkov took ζ � 10,

the Alfvén speed inside the tube equal to 226 km s−1, and the flow

speed inside the tube equal to 310 km s−1. He showed that the

tube is unstable with respect to the fluting mode with the azimuthal

number m = −3. However, the kink mode becomes unstable only

for the flow speed equal to 1140 km s−1, which strongly exceeds

the observed value. For ζ = 10, we obtain � ≈ 2, so the kink

wave is subject to resonant instability for the flow velocity equal to

570 km s−1, which is much closer to the observed value, but still too

high. However, the value of ζ is not well known. If we take ζ = 40,

then � ≈ 3.75 and the kink mode becomes resonantly unstable for

the flow speed approximately equal to 300 km s−1, which is smaller

than the observed value.

7 SU M M A RY A N D C O N C L U S I O N S

In this article, we studied propagating kink waves in a twisted tube

in the presence of flow. The tube consists of a core region and a

transitional or boundary layer. There is no flow and magnetic twist

outside the tube. We assumed that the flow velocity is parallel to

the magnetic field lines. The plasma density is constant inside and

outside the tube, and it decreases monotonically in the transitional

layer from its value inside the tube to that outside the tube. The

background flow speed and magnetic twist monotonically decrease

from their values in the core region of the tube to zero in the

transitional layer. Using the TTTB approximation, we derived

the dispersion equation determining the dependence of the wave

frequency and decrement/increment on the wavenumber.

Two important parameters determining the properties of kink

waves are the ratio of densities inside and onside the tube ζ and

the Alfvén Mach number MA equal to the ratio of the flow speed

to the Alfvén speed in the tube core region. When MA exceeds the

KH threshold equal to
√

2(ζ + 1), the kink wave is subjected to KH

instability. We assumed that MA <
√

2(ζ + 1), so the kink waves

are KH stable.

The density and magnetic field variation in the transitional layer

results in the existence of Alfvén continuum. When the kink wave

frequency is in the Doppler-shifted Alfvén continuum, this wave

is subjected either to resonant damping or to resonant instability.

We studied the properties of kink waves in a particular unperturbed

state, where there is no background flow and magnetic twist in

the transitional layer. Kink waves propagating in a static magnetic

tube are always damp due to resonant absorption. However, the

background flow can swipe the kink wave frequency out of the

Alfvén continuum. For a kink wave propagating in the flow

direction this occurs when MA >
√

ζ − 1. In this case, the wave

propagates without resonant damping in spite of the existence of

the Alfvén continuum. The frequency of a kink wave propagating

in the direction opposite to that of the flow is out of the Alfvén

continuum when
√

2 − 1/ζ − 1 < MA <
√

2 − 1/ζ + 1, so this

wave propagates without resonant damping.

When MA >
√

2, the kink wave propagating in the direction

opposite to that of the background flow in the reference frame

moving together with the flowing plasma starts to propagate in the

flow direction in the reference frame where the plasma outside the

tube is at rest. In accordance with the general theory, it becomes a

negative energy wave and can be unstable if there is any mechanism

decreasing its energy. Since we assume that the plasma is very

weakly dissipative, the only mechanism that can decrease the wave

energy is resonant absorption. However, it is only possible when

the wave frequency is in the Alfvén continuum. If this is the case,

then the wave is resonantly unstable. To satisfy the condition that

the wave frequency is in the Alfvén continuum one needs MA

slightly larger then
√

2, namely, MA >
√

2 − 1/ζ + 1. The quantity√
2 − 1/ζ + 1 is the resonant instability threshold. An important

property is that this threshold is lower than the KH instability

threshold for any ζ > 1. Moreover, for large ζ , the ratio of the KH

threshold to the resonant instability threshold is large. For example,

it is larger than 6 when ζ = 100, which is the typical value for

spicules.

The theoretical results were applied to the problem of excitation

of propagating kink waves in spicules and filaments frequently

observed in the solar atmosphere. We found that, for typical

parameters of spicules, kink waves can be subject to resonant

instability when the flow speed in a spicule exceeds 300 km s−1.

This instability can also excite kink waves in filaments if ζ � 40.
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APPENDIX A : EVA LUATION O F A SYMPTOTIC

EXPRESSIONS

We obtain asymptotic expressions for F�(τ ) and G�(τ ) in the case

where � < 0 and |�| ≫ 1. First, we consider F�(τ ). We rewrite

the expression for F�(τ ) as

F�(τ ) =
∫ ∞

0

exp(iχuτ + �u) du + I (τ ), (A1)

where

I (τ ) =
∫ ∞

0

exp(iχuτ + �u)
(
e−u3/3 − 1

)
du. (A2)

Then, we rewrite the expression for I as I = I1 + I2, where

I1(τ ) =
∫ |�|−1/2

0

exp(iχuτ + �u)
(
e−u3/3 − 1

)
du, (A3)

I2(τ ) =
∫ ∞

|�|−1/2

exp(iχuτ + �u)
(
e−u3/3 − 1

)
du. (A4)

Using the inequality

1 − e−u3/3 < u3/3 (A5)

valid for u > 0, we obtain

|I1(τ )| <
1

3

∫ |�|−1/2

0

u3 du =
1

12�2
. (A6)
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Next, we obtain

|I2(τ )| <

∫ ∞

|�|−1/2

e�udu =
1

|�|
e−|�|1/2

. (A7)

Using equations (A6) and (A7) and calculating the integral in

equation (A1), we arrive at equation (81).

Now, we proceed to the evaluation of G�(τ ). We write G�(τ ) =
J1 − J2, where

J1(τ ) =
∫ ∞

0

exp(iχuτ ) − 1

u
e�udu, (A8)

J2(τ ) =
∫ ∞

0

exp(iχuτ ) − 1

u

(
1 − e−u3/3

)
e�udu. (A9)

Using equation (A5), we obtain

J2(τ ) <
2

3

∫ ∞

0

u2e�udu =
4

3|�|3
. (A10)

Differentiating equation (A8) yields

dJ1

dτ
= iχ

∫ ∞

0

exp(iχuτ + �u)du = −
iχ

iχτ + �
. (A11)

Integrating this equation and taking into account that J1(0) = 0, we

obtain

J1(τ ) = − ln
(

1 +
iχτ

�

)
. (A12)

Using equations (A10) and (A12), we arrive at equation (82).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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