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Abstract—This paper proposes a new phase current 

reconstruction scheme without using null switching states 
for IPMSM sensorless control. The phase currents are 
independently reconstructed and no additional test voltage 
pulses are required. Firstly, the principle of the basic phase 
current reconstruction for IPMSM drive system is analyzed 
in detail. Then, an independent phase current 
reconstruction scheme without using null switching states 
is proposed. The current reconstruction dead zone is 
divided into six sectors, and each sector is split into three 
parts with corresponding vector synthesis methods. 
Meanwhile, the null switching states, V000 and V111, are 
removed from the proposed scheme. In this case, the zero 
vector is synthesized by the other available vectors. Finally, 
the reconstructed three-phase currents are utilized for high 
frequency (HF) sine-wave voltage injection based position 
estimation. The effectiveness of the proposed scheme is 
verified by experimental results on a 5kW IPMSM motor 
prototype, which shows that the reconstructed phase 
currents track the actual currents accurately in different 
working conditions. 
 

Index Terms—Fault tolerance, high frequency voltage 
injection, interior permanent magnet synchronous motor 
(IPMSM), phase current reconstruction, sensorless control. 
 

I. INTRODUCTION 
HANKS to its outstanding features of high efficiency, high 
power density, and good dynamic properties, interior 
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permanent magnet synchronous motors (IPMSMs) are now 
widely used in industry and daily life [1]-[3]. To achieve 
excellent performance for the whole system, many advanced 
control schemes have been proposed which commonly have a 
stringent demand for the accuracy of the rotor position and 
three-phase current values. Considering reliability and cost 
efficiency, indirect detection methods of the rotor position and 
three-phase currents, i.e., sensorless control [1]-[13] and phase 
current reconstruction technology [14]-[26], have been found to 
be alternatives for corresponding hardware components. 

Over the decades, different phase current reconstruction 
schemes have been proposed. In [20], [21], [23], and [27] phase 
current reconstruction methods using space vector modulation 
are stated for three-phase PWM converter systems. Papers [23] 
and [28] describe the phase current reconstruction methods for 
DC-link currents in three-level converters. Paper [19] sets 
forward the control methods under the overmodulation mode 
with single DC-link current sensor. In [22] and [29], phase 
current reconstruction used in multi-phase systems is studied. 
The minimum injected voltages and sequence control to avoid 
abrupt changes in the amplitudes of the injected signals are 
raised for mid- and high-speed operation in [30]. Paper [31] 
aims to reveal an offset jitter-like waveform error, which is 
usually presented in all three-phase current signals 
reconstructed from DC-link current samples. Papers [25] and 
[32] focus on current reconstruction range extension. In [25] a 
hybrid PWM technique is proposed to reduce current 
distortions. However, two different PWM schemes are required 
to combine in the PWM generation strategy, which is complex. 

Sensorless control technologies have been investigated over 
the decades, mainly including two typical methods which are 
the model based method and saliency-tracking based method 
[2], [4]-[7]. For the standstill and low-speed conditions, the 
saliency-tracking based methods have higher accuracy and 
better robustness, whereas the model based methods have 
higher error due to the lower signal to noise ratio (SNR) [7]. 
Considering the injected signal types, the high frequency (HF) 
injection methods can be classified into: the sine-wave voltage 
injection and square-wave voltage injection. The sine-wave 
voltage injection methods are simpler and easier for 
implementation, and thus this kind of methods are commonly 
used for sensorless control [4]-[6], [9]. This paper is to design 
the sensorless control scheme based on phase current 
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Fig. 1.  Current flows of three phase inverter fed IPMSM drive system
with switching state of V100. 
  

TABLE I 
RELATIONSHIPS BETWEEN IDC AND THREE PHASE CURRENTS UNDER 

DIFFERENT SWITCHING STATES. 
Vector V000 V100 V110 V010 V011 V001 V101 V111 

iDC 0 iA -iC iB -iA iC -iB 0 

 
reconstruction technique for IPMSM in low speed operations, 
and thus the HF sine-wave voltage injection strategy is 
employed in this paper. 

The HF current response contains the information of the 
rotor position. Hence, accurate three-phase current values 
should be detected in order to obtain a precise rotor position. In 
common IPMSM drive systems, the motor three-phase currents 
are obtained by measuring two of the currents through current 
sensors, and calculating the third one indirectly from the two 
previously detected values. This method is adequate for the 
speed-control purpose, whereas for the aim of position 
estimation, this kind of method may face the problem of 
inaccuracy. The HF current responses are usually minuscule, 
which are prone to be affected by system white noise and other 
perturbations compared to the fundamental currents during 
current sampling process [4]. Besides, in the phase current 
reconstruction scheme (with one single current sensor) the two 
phase currents used to calculate the third one are not sampled at 
the same time, which brings additional errors to the third one. 
Therefore, independent detection of the three-phase currents is 
necessary for an accurate IPMSM sensorless control system 
using one single current sensor. 

In this paper, an IPMSM sensorless control strategy with 
independent phase current reconstruction is proposed and 
studied, where the null switching state vectors, i.e., V000 and 
V111, are not utilized. Under this circumstance, an equivalent 
zero vector is synthesized by the rest six available vectors. To 
make independent three-phase current detection possible, in the 
proposed scheme, the current reconstruction dead zone is 
divided into six sectors, and each sector is split into three parts 
using different vector synthesis methods. Because the current 
reconstruction sampling points are within the period of the 
action vectors, no additional voltage pulse is needed for current 
reconstruction. The reconstructed three-phase currents are 
afterward applied for position estimation. By utilizing the 
independent phase current reconstruction strategy, the 
reconstructed three-phase currents track the actual currents 
precisely, which is essential for position estimation in an 
IPMSM sensorless control system. 

This paper is organized as follows. In Section II, the basic 
principle of phase current reconstruction method is illustrated. 
In Section III, an independent phase current reconstruction 
scheme is proposed accordingly. In Section IV, HF voltage 

injection sensorless control scheme using one single current 
sensor is described. In Section V, experimental results are 
presented. The conclusion is given finally. 

II. PRINCIPLE OF BASIC PHASE CURRENT RECONSTRUCTION 
A DC-link current sensor can theoretically be used for both 

DC-bus current detection (overcurrent protection) and phase 
current reconstruction. As shown in Fig.1, the DC current value 
iDC is the same as the value of phase-A current iA under the 
switching state of V100. It is worth noting that the currents in 
Fig.1 are in the defined positive direction. 

 Obviously, in Fig.1 the inverter has six active switching 
state vectors, namely, V100 (V1), V110 (V2), V010 (V3), V011 (V4), 
V001 (V5), V101 (V6), and two null switching state vectors V000 
and V111. Table I shows the relationships among iDC and 
three-phase currents in eight switching states respectively. 
From Table I, it states apparently that iA can be detected from 
iDC with switching states V100 and V011 (defined as group 1), iB 
with V010 or V101 (defined as group 2), and iC with V001 or V110 
(defined as group 3). Among the eight vectors the two zero 
vectors V000 and V111 cannot be applied for phase current 
reconstruction because iDC is zero in null switching states. To 
obtain the values of three-phase currents, vectors from at least 
two groups are required. Taking the independent phase current 
reconstruction scheme into account, vectors from all the three 
groups are needed. 

However, due to the switching device dead time, diode 
recovery time, and AD sampling time, the minimum duration 
Tmin for each active vector within one PWM cycle time Ts is 
needed to realize precise sampling for current reconstruction 
[24]. In some regions, the duration of active voltage vectors 
may be shorter than Tmin, which is not possible to reconstruct 
the current. These regions lead to current reconstruction dead 
zones, as shown in Fig.2 (a).  The output voltage area consists 
of the normal areas and the current reconstruction dead zones, 
and these dead zones are composed of the sector boundary 
areas and low modulation areas. 

III. INDEPENDENT PHASE CURRENT RECONSTRUCTION 
SCHEME USING ONE SINGLE DC CURRENT SENSOR 

A. Division of Reconstruction Dead Zones and Voltage 
Synthesis Scheme 

In Fig.2 (b) the current reconstruction dead zone is divided 
into six sectors. In this paper, sector I is applied for illustration, 
and the situations in the rest five sectors are similar. Concerning 
circular output voltage applications, the parts of dead zone 
within the circular output voltage are discussed in this paper. To 
implement the independent phase current reconstruction 
scheme, in Fig.3 sector I is split into three parts and in each part 
the vectors applied are from all the three groups. To be specific, 
in part 1, V4 (group 1), V6 (group 2), and V2 (group 3) are 
utilized for vector synthesis and current reconstruction. In part 
2, V1, V4 (group 1), V6 (group 2), and V2 (group 3) are applied. 
While in part 3, V1 (group 1), V6 (group 2), and V2 (group 3) are 
used. It is worth noting that in each part, the action time of each 
basic vector is longer than Tmin. The basic vectors used in the 
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Fig. 3.  Sector I of reconstruction dead zones and defined three parts. 
  

TABLE II 
BASIC VECTORS USED IN THE THREE DEFINED PARTS FOR EACH SECTOR. 

Sector Part Group 1 Group 2 Group 3 

I 
1 V4 V6 V2 
2 V1, V4 V6 V2 
3 V1 V6 V2 

II 
1 V1 V3 V5 
2 V1 V3 V2, V5 
3 V1 V3 V2 

III 
1 V4 V6 V2 
2 V4 V3, V6 V2 
3 V4 V3 V2 

IV 
1 V1 V3 V5 
2 V1, V4 V3 V5 
3 V4 V3 V5 

V 
1 V4 V6 V2 
2 V4 V6 V2, V5 
3 V4 V6 V5 

VI 
1 V1 V6 V5 
2 V1 V3, V6 V5 
3 V1 V6 V5 

 

  
(a)                                                    (b) 

  
(c)                                                    (d) 

Fig. 4.  Maximum output voltage area: (a) V2, V4, and V6, (b) V1, V2, V4, 
and V6, (c) V1, V2, and V6, (d) United area of the output voltage. 
  

 
(a)                                           (b) 

Fig. 2.  Current reconstruction dead zones and defined six dead zone 
sectors. 
  

three defined parts for each sector is displayed in Table II. 
Additionally, the largest area of the output voltage in sector I 
using the basic vectors in Table II is shown in Fig.4. In Fig.4, 
TV1, TV2, TV4, and TV6 represent action time of vectors V1, V2, V4, 
and V6 within one PWM cycle period, respectively. TV1, ▽TV2, 
▽TV4, and ▽TV6 are the gradient directions of TV1, TV2, TV4, 
and TV6 respectively, which denote the increasing direction of 
TV1, TV2, TV4, and TV6. 

In Fig.4 (a), the area within the green triangle represents the 
output voltage vector range synthesized by the three basic 
vectors V2, V4, and V6. The three boundary lines marked with ①, 
②, and ③ represent the conditions when TV4, TV6, and TV2 
reach the lower limit of Tmin, respectively. The three vertices of 
the triangle represent the conditions that TV2, TV4, and TV6 reach 
the upper limit of Ts-2Tmin, which means that the other two 
corresponding action time periods reach the lower limit of Tmin. 
The value of |Oa| in Fig.4 (a) is 

 s min2 3 2 Oa T T . 

In Fig.4 (b), the area within the pink quadrilateral represents 
the output voltage vector range synthesized by the four basic 
vectors of V1, V2, V4, and V6. The four boundary lines marked 
with ④, ⑤, ⑥, and ⑦ represent the conditions when two of 
TV1, TV2, TV4, and TV6 reached the lower limit of Tmin, which is 
illustrated in Fig.4 (b) in detail. The four vertices of the 
quadrilateral represent the situations that TV1, TV2, TV4, and TV6 
reach the upper limit of Ts-3Tmin, which means that the other 
three corresponding action periods reach the lower limit of Tmin. 
The values of |Ob|, |Oc|, |Od| in Fig.4 (b) are 


s min

s min

s min

5

3
2

  


 
  

Ob T T

Oc T T

Od T T

. 

In Fig.4 (c), the area within the blue triangle represents the 
output voltage vector range synthesized by the three basic 
vectors of V1, V2, and V6. The three boundary lines marked with 
⑧, ⑨, and ⑩ represent the conditions when TV6, TV1, and TV2 
reach the lower limit of Tmin. The three vertices of the triangle 
represent the cases that TV1, TV2, and TV6 reach the upper limit 
of Ts-2Tmin, which means that the other two corresponding 
action time periods reach the lower limit of Tmin. The values of 
|Oe| and |Og| in Fig.4 (c) are 


s min

s min

2+ 2 


 

Oe T T

Og T T
. 

Fig.4 (d) shows the united output voltage vector scope by 
applying the proposed synthesis method. When the output 
vector falls in part 1 of sector I, the basic vectors V2, V4 and V6 
are used for vector synthesis, whereas V1, V2, V4, and V6 are 
used in part 2, and V1, V2, and V6 are used in part 3. 

B. Independent Phase Current Reconstruction Scheme 
From Fig.4 (d) it is apparent that the united output voltage 
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(a)                                              (b) 

Fig. 5.  Independent phase current reconstruction scheme: (a) 
Expanded defined three parts in sector I; (b) Expanded six current 
reconstruction sectors. 
  
area of the proposed synthesis method is much larger than the 
current reconstruction dead zone in sector I. In addition, the 
area of the output voltage covers most of the normal area 
between the lower border of sector II and the upper border of VI. 
Therefore, in order to apply the independent phase current 
reconstruction scheme, in the normal areas where the united 
area of the output voltage area is covered, the proposed vector 
synthesis methods should be utilized. Hence, the defined three 
parts in Fig.3 can be expanded as shown in Fig.5 (a), and the 
corresponding expanded six independent current reconstruction 
sectors are illustrated in Fig.5 (b). 

In Fig.5 (b), the defined six current reconstruction sectors 
cover most of the circular area of the voltage output, where only 
six small normal areas are not included. |Or1| and |Or2| represent 
the circular voltage output area of the normal and proposed 
voltage synthesis strategy respectively 


 

1 s

2 s min

3 2

3 2 3 2

  


    

Or T

Or Og T T
. 

Compared to the normal circular area, the voltage output 
range is reduced by 

  1 2 1 min s Or Or Or T T . 

Because Tmin is very small compared to Ts, compared to the 
normal circular area, the voltage range reduction of the 
proposed strategy is negligible. The output voltage range is 
almost the same as that of the normal one. The aim of this paper 
is to study the independent phase current reconstruction 
strategy used in sensorless control. Therefore, the actual area of 
the output voltage vector in this paper is limited in the green 
dashed circle, as shown in Fig.5 (b). 

C. Action Time of Basic Vectors 
In this paper, sector I is taken as an example to calculate the 

action time of the basic vectors. In Fig.4 and Fig.5 (a) the same 
scale is used. In this section, the distance between each pair of 
points used is illustrated in Fig.4. In the previous part, each 
current reconstruction dead zone is divided into three parts with 
different vector synthesis methods, i.e., parts 1, 2, and 3 as 
shown in Fig.5 (a). The action time of the three parts is studied 
in turns. Assuming a terminal point P(x, y) (per-unit value, in 

the two-phase static coordinate system) of the output voltage 
vector falls in sector I as shown in Fig.4 (d), the distance of 
|OP'| is x and the distance of |PP'| is y. 
1) Part 1 

In part 1, V2, V4, and V6 are utilized. In Fig.4 (d), if |OP'| is 
shorter than |Oa|/Ts, as shown in (6), the vector falls in part 1 

 s min s=1 2 3 2 x Oa T T T . 

The action time of V2, V4, and V6 can be calculated as 

 s s
2 min s

2 1 3+ =
3 33
    

  V
Oa x T y T x yT T T  

    4 min s s2 3= 1 2 3    VT T Oa x T x T  

 s s
6 min s

2 1 3=
3 33

     
   V

Oa x T y T x yT T T  

in this paper TV1, TV2, TV3, TV4, TV5, and TV6 represent the action 
time of vectors V1, V2, V3, V4, V5, and V6 within one PWM cycle 
period, respectively. 
2) Part 2 

In part 2, V1, V2, V4, and V6 are utilized. If |OP'| is longer than 
|Oa|/Ts and shorter than |Od|/Ts, the vector falls in part 2 

 s min s

s min s

=1 2 3 2
=1 2+ 2

  
 

x Oa T T T
x Oe T T T

. 

The action time of the four vectors V1, V2, V4, and V6 is: 
In case of x ≤ |Od|/Ts 

 1 minVT T  


   

 
2 min s s

min s s

3+ 3

= 1 2 3 3

    

  

VT T Ob x T y T

T T x y T
 

    4 min s min s s2 3= 1+ 2 3      VT T Od x T T T x T 


 

 
6 min s s

min s s

3 3

= 1 2 3 3

     

  

VT T Ob x T y T

T T x y T
 

In case of x > |Od|/Ts 

    1 min s min s s2 = 1 3 2        VT T x T Od T T x T 


 

 
2 min s s

min s s

+ 3

= 1 2 3

    

   

VT T Oc x T y T

T T x y T
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(a)                                                (b)                                                (c)                                                (d) 

Fig. 6.  PWM synthesis strategy and current sampling points in defined sector I: (a) Part 1, (b) Part 2 (x ≤ |Od|/Ts), (c) Part 2 (x > |Od|/Ts), (d) Part 3. 
 

 
Fig. 7.  Diagram of the seven-segment PWM waveform in the 
conventional SVPWM algorithm. 
 

TABLE III 
VARIABLES TO REPLACE x AND y IN EQUATIONS (6)-(22) 

Sector Variable to replace x Variable to replace y 
I x y 
II x/2+ 3 y/2 − 3 x/2+ y/2 
III −x/2+ 3 y/2 − 3 x/2− y/2 
IV −x − y 
V −x/2− 3 y/2 3 x/2− y/2 
VI x/2− 3 y/2 3 x/2+ y/2 

 
TABLE IV 

VARIABLES TO REPLACE TV1, TV1, TV1, AND TV6 IN EQUATIONS (6)-(22) 
Sector V1, TV1 V2, TV2 V4, TV4 V6, TV6 

I V1, TV1 V2, TV2 V4, TV4 V6, TV6 
II V2, TV2 V3, TV3 V5, TV5 V1, TV1 
III V3, TV3 V4, TV4 V6, TV6 V2, TV2 
IV V4, TV4 V5, TV5 V1, TV1 V3, TV3 
V V5, TV5 V6, TV6 V2, TV2 V4, TV4 
VI V6, TV6 V1, TV1 V3, TV3 V5, TV5 

 
 4 minVT T  


 

 
6 min s s

min s s

3

= 1 2 3

     

   

VT T Oc x T y T

T T x y T
. 

3) Part 3 
In part 3, V1, V2, and V6 are utilized. If |OP'| is longer than 

|Oe|/Ts, the vector falls in part 3 

 s min s=1 2+ 2x Oe T T T . 

Action time of the three vectors V1, V2, and V6 are 

    1 min s s2 = 1 2      VT T x T Oe x T  

   2 min s s s+ 3 = 1 3VT T Og x T y T x y T         

   6 min s s s3 = 1 3VT T Og x T y T x y T         . 

It should be noted that in different sectors the methods are 
similar, whereas variables x and y in (6)-(22) should be replaced 
by |OP'| and |PP'| as shown in Table III. In this table P' is the 
projection point on the corresponding vector. Besides, TV1, TV2, 
TV4, TV6 should be replaced by the variables in Table IV. 

D. PWM Synthesis Method and Current Sampling Points 
To implement the proposed current reconstruction strategy, 

the PWM synthesis method and current sampling points for the 
DC current is presented in Fig.6, where the PWM synthesis 
method in the defined three parts of current reconstruction in 
sector I is illustrated. 

Fig.7 shows the seven-segment PWM waveform by using the 
conventional SVPWM algorithm [24]. This type of PWM 
waveform is widely used in the IPMSM control systems, and 
there are six commutation points for the switching devices 
during each PWM cycle. In Fig.6 (a), (b), and (c), there are also 
six commutation points in each PWM cycle, whereas four in 
Fig.6 (d). Compared to the seven-segment PWM waveform, the 
switching times are not increased by employing the proposed 
strategy. Compared to the current reconstruction strategy 
utilizing additional testing voltage pulses [17], the switching 
times of the proposed method are reduced as well. Therefore, 
the switching losses of the proposed strategy are the same as 
those in the conventional seven-segment PWM strategies. 

IV. SENSORLESS CONTROL SCHEME 
The sine-wave HF voltage injection strategy is applied in this 

paper to estimate the rotor position. The HF voltage signals are 
generated by the proposed vector synthesis method, and the HF 
current responses are reconstructed from the DC-bus current by 
the proposed independent phase current reconstruction scheme. 
The injected signal is given below 

 h
h αh βh h= +  i tu u iu U e  

in which uh is the injected HF voltage; uαh and uβh are the HF 
voltages in the Clark reference frame; Uh and ωh represent the 
HF voltage amplitude and angular velocity respectively. 

The mathematical model of the IPMSM is given by [5] 

α α α0 2 2

β β β2 0 2

α
2

β

cos 2 sin 2 d=
sin 2 cos 2 d

sin 2 cos 2d sin2
cos 2 sin 2d cos

f

u i iL L L
R

u i iL L L t

i
L

it
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TABLE V 
MAIN PARAMETERS OF IPMSM FOR EXPERIMENT. 

Parameter Value Parameter Value 
Rated power 5 kW Pole pairs 3 
Inverter DC voltage 540 V d-axis Inductance 4.2 mH 
Rated voltage 380 V q-axis Inductance 10.1 mH 
Rated current 8.5 A Phase resistance 0.18 Ω 
Efficiency 0.9 Maximum speed 3000 r/min 
Rated torque 15 N·m   

 

 
Fig. 8.  Experimental setup. 
  


 
 

0 d q

2 d q

= 2 0

= 2 0

  


 

L L L

L L L
 

where uα, uβ and iα, iβ are the motor voltages and currents in the 
Clark reference frame, respectively; R is the motor resistance; 
Ld and Lq are the d- and q-axis stator inductances; θ is the actual 
rotor position; ψf is flux linkage of the permanent magnet. 

By neglecting the first and third items in (24), the 
mathematical model of the IPMSM is given by 


   

   
αh αh0 2 2

βh βh2 0 2

cos 2 sin 2 d=
sin 2 cos 2 d

 
 

      
          

u iL L L
u iL L L t



where iαh and iβh are the HF currents in Clark reference frame. 
The HF current response can be calculated from (23)-(26) 

 
 
 

 
 
 

Ah h h

Bh 0 h 2 h

Ch h h

sin sin 2
sin 2 3 sin 2 + 2 3
sin + 2 3 sin 2 2 3

  
    
    

     
                
             

i t t
i k L t L t
i t t



  h h d q 0 k U L L  

 where iAh, iBh, and iCh represent the three-phase HF currents. 
Thus, the positive and negative sequences of HF current in 

phase A can be deduced from (27) and (28) 


 
 

Ah_P 0 h

Ah_N 2 h

sin
sin 2


 




  

i kL t

i kL t
 

where iAh_P and iAh_N are the positive and negative sequences of 
HF current in phase A. 

In (29) the phase angle of each component of phase A can be 
utilized for position estimation which is given by 


Ah_P h

Ah_N h 2

t

t

 

  


  

 

  Ah_P Ah_N= 2    

where ϕAh_P, ϕAh_N are respectively the phase of iAh_P and iAh_N. 
In this paper, the least squares fitting algorithm is utilized to 

extract the phase angle of HF current responses. A HF current 
response signal can be expressed as 



   
 

 

h s

h s

h s

AMP cos 2

AMP cos cos 2

AMP sin sin 2

   

   

   

   

    

  

y n n

n

n

 

where y[n] (n=1, 2, ...) is the sampling values of the HF current; 

AMP represents the amplitude of the signal; ωs denotes the 
signal sampling angular velocity; φ is the angle to be extracted. 

For each value of n, cos[2π·(ωh/ωs)·n] and sin[2π·(ωh/ωs)·n] 
are constant values in (32), which are defined as Q1[n] and Q2[n] 
respectively. By defining α1=AMP·cos(φ) and α2= AMP·sin(φ) 
for variable replacement, (32) can be further expressed as 

      1 1 2 2y n Q n Q n      

The coefficients α1 and α2 can be obtained by applying least 
squares fitting algorithm in (33), and the angle φ of the signal 
can be finally extracted. 

V. EXPERIMENTAL RESULTS 
In order to validate the correctness of the proposed 

independent phase current reconstruction scheme, an 
experiment platform is set up which is shown in Fig.8. The 
main parameters of IPMSM motor prototype are given in Table 
V. The controller is supplied by a three-phase AC voltage of 
380 V, with a rectifier and a multi-level DC output power 
converter installed. The MAGTROL 30 kW dynamometer with 
torque sensors installed is utilized to test the load performances 
of the system. An intelligent power module (IPM), Mitsubishi 
PM75RLA120, is used as the PWM-VSI with the frequency of 
8 kHz. The DC-bus current, which is used to reconstruct the 
three-phase currents, is sampled by an isolated hall-effect 
current sensor (HS01-100, maximum sample rate 100 kHz). 
The four white current clamps are used to sample the DC-bus 
and three-phase currents for comparison. On the platform, a 
DSP, TMS320F2812, is utilized to implement the proposed 
strategy, sample DC currents, and generate PWM signals, etc. 
In the experiment setup, the minimum switching time Tmin is 10 
μs. In this paper, all the reconstructed phase currents are 
calculated in DSP using the DC-bus current. Then the 
reconstructed phase currents are transmitted in real time 
through RS-485 to the host computer. For the comparison, the 
actual currents are obtained by additional phase current sensors 
and transmitted synchronously to the host computer. 

The experimental results of the proposed independent phase 
current reconstruction strategy (here, Sector III, Part I) are 
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(a)  (b)  

(c)  (d)  

Fig. 10.  Experimental results of actual and reconstructed currents and 
THD of: (a) Phase A, (b) Phase B, (c) Phase C, (d) Non-independent 
detection of phase C. 
  

(a)  

(b)  

Fig. 9.  Experimental results of proposed independent phase current 
reconstruction strategy (here, Sector III, Part 1): (a) DC-bus current and 
actual three phase currents, (b) Reconstructed three phase currents. 
  
presented in Fig.9. In the figure, iDC is the detected DC-bus 
current; iA, iB, and iC represent actual three-phase currents 
respectively; iA', iB', and iC' denote the reconstructed 
three-phase currents respectively; (k-1), (k), and (k+1) represent 
the PWM cycle sequence. The reconstructed phase currents are 
calculated discretely with the PWM signals. In the experiments, 
the switching frequency is set to 8 kHz; therefore, the update 
frequency of the reconstructed current is also 8 kHz, which is 
updated every 125μs, as shown in Fig.9 (b). Each PWM cycle is 
125 μs, where the three sampling points are in the middle of the 
corresponding vector periods, which are marked with different 
symbols. From Fig.9, it can be seen that the three-phase 
currents are independently reconstructed from the DC-bus 
current. The first sampling point with circular symbol in each 
PWM cycle derives the current iA'; the second sampling point 
with inverted triangle symbol obtains the current iB'; the third 
sampling point with square symbol extracts the current iC'. 

Fig.10 shows the experimental results of the actual and 
reconstructed three-phase currents together with the total 
harmonic distortion (THD) using the proposed current 
reconstruction strategy. It can be seen that the reconstructed 
three-phase currents track the actual ones accurately within an 
acceptable error. Compared with the errors in [15] and [24], 
there are no low-frequency components in the reconstruction 
errors. This is because the three-phase currents are 
independently reconstructed and no zero voltage vector 
sampling method (ZVVSM) is utilized. The high-frequency 
components in the reconstruction errors are mainly caused by 
current chopping effects and the differences between different 
current sensors for comparison and the corresponding signal 
conditioning circuits. Electromagnetic interference and white 
noise of the system are also the causes of the errors. Besides, by 
applying the independent phase current reconstruction strategy, 
the errors in the reconstructed three-phase currents are 
controlled within an acceptable range. The actual and 

reconstructed phase current THD are also given in Fig.10. 
Compared to the conventional seven-segment SVPWM 
algorithm, the THD of the proposed PWM generating method 
is slightly larger. Whereas compared with other PWM synthesis 
strategies for current reconstruction in [15], [32], the THD of 
the proposed scheme are reduced. 

In Fig.10 (d), the experimental results of non-independent 
reconstruction of phase current iC'' are illustrated. The 
non-independent reconstructed phase current iC'' is calculated 
according to the reconstructed phase currents iA' and iB'. From 
Fig.10 (c) and (d), it can be seen that, compared with the 
independent reconstructed phase current iC', the 
non-independent reconstructed phase current iC'' has lager 
estimation error, which is approximately twice as the error of iC'. 
This is caused by different sampling points of iA' and iB'. In 
Fig.6, iA' and iB' are reconstructed from sampling points 1 and 2 
respectively in each PWM cycle. Therefore, taking the current 
chopping effect into account, in sampling point 2, the actual 
value of phase current in ideal conditions is 

 A_Sampling2 A A
   i i i  

where ∆iA' denotes the current increment of iA' from sampling 
point 1 to 2 caused by current chopping effect. 

As a result, under ideal conditions, at sampling point 2, the 
non-independent reconstructed phase current iC'' has an 
indefinite error ∆iA' compared to the actual current iC_Sampling2 


 

 
C_Sampling2 A_Sampling2 B

C A B

   


     


i i i

i i i
 

 C C C_Sampling2 A=     i i i i  

where iC_Sampling2 is the actual value of phase current iC at 
sampling point 2; ∆iC' denotes the additional error of the 
non-independent reconstructed phase current iC''. 

It should be noted that the error of the non-independent 
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(a)  

(b)  

(c)  

Fig. 12.  Experimental results of actual and reconstructed three phase 
currents and position estimation in starting process: (a) Current 
reconstruction results, (b) Position estimation results, (c) Rotor speed. 
  

 
Fig. 11.  Experimental results of the torque ripple in motor shaft end 
(500 rpm, 15 N·m). 
  

(a)  

(b)  

(c)  

Fig. 13.  Experimental results of actual and reconstructed three-phase 
currents and position estimation in reversing process: (a) Current 
reconstruction results, (b) Position estimation results, (c) Rotor speed. 
  

reconstructed phase current iC'' also have other factors as those 
introduced by the independent reconstructed phase currents. 

Fig.11 shows the experimental results of the torque ripple in 
the motor shaft end at 500 rpm with a rated load of 15 N·m. The 
torque curve is measured by the torque sensors inside the 
MAGTROL dynamometer. From the figure, it can be seen that 
the torque ripple by applying the proposed PWM synthesis 
method is about 0.6 N·m. 

Fig.12 (a) shows the experimental results of the actual and 
reconstructed three-phase currents during starting. The 
reconstructed three-phase currents track the actual ones 
accurately even in the dynamic process with rapid current 
fluctuations. The actual and estimated rotor positions using 
reconstructed phase currents are presented in Fig. 12(b). In the 
figure θ and θ'Re are the actual and estimated rotor positions 
using the reconstructed phase currents respectively; ∆θ'Re 
denotes the estimation error of θ'Re. From the figure, it can be 
observed that, the estimated rotor position tracks the actual one 
with a small error, which is controlled within ±0.2 rad (all 
angles are electrical angles). The rotor speed performance is 
shown in Fig. 12(c). The speed is obtained by simple low-pass 
filtering of differential operation of the estimated rotor position, 
which is shown in (37). In the figure, n and n'Re are the actual 
and estimated rotor positions using the reconstructed phase 
currents respectively; ∆n'Re denotes the errors of n'Re. The 
estimated rotor speed follows the actual one accurately, and the 
error can be controlled within 10 rpm. 

          1 1 30          n k K n k K p t  

where n(k) is the discrete output speed value; ∆θ is the discrete 
rotor position increment; K denotes the coefficient of the filter; 
∆t represents discrete time interval; p is the rotor pole pairs. 

The system performance in the speed reversing process are 
illustrated in Fig.13. Experimental results of current 
reconstruction, position estimation, and rotor speed estimation 
are similar with the situations in the starting mode, and good 
performances are achieved in both of the operational modes. 

In Fig.14, the system performance at 750 rpm with the torque 
of 15 N·m is provided. With the proposed sensorless control by 
employing the new current phase reconstruction method, the 
system still shows acceptable performances. 

In Fig.15, the system performances in load fluctuation 
condition is presented. The system performance is not 
significantly affected by the load fluctuations. Although the 
position estimation error shows some fluctuations, the error are 
still controlled within ±0.3 rad. 

In order to demonstrate the robustness of over current fault 
detection in the proposed method. The simulation results of a 
short-time over current fault is presented in Fig.16. The motor 
operates at a fast speed reverse condition. Over current is 
defined as 1.15 times of the rated current, where the 
instantaneous current reaches 14 A. In the figure, the red dotted 
lines represent over current values, and a short-time over 
current fault occurs in phase-A current. It can be seen that, 
although the over current fault appears very shortly, the 
reconstructed phase-A current is still able to detect this fault, 
compared to the actual one. 

VI. CONCLUSION 
An independent phase current reconstruction strategy 

without using null switching states is proposed for IPMSM 
sensorless control in this paper. The conventional zero vectors, 
V000 and V111, are replaced by the other six basic vectors. To 
achieve this scheme, the current reconstruction dead zone is 
divided into six sectors, and each sector is split into three parts 
with different vector synthesis and corresponding phase current 
reconstruction methods. Afterwards, the reconstructed 
three-phase currents are utilized for position estimation. The 
effectiveness of the proposed IPMSM sensorless control 
scheme using one single current sensor is verified by the 
experimental results on a 5 kW IPMSM motor prototype. 

From the results, it can be seen that the reconstructed phase 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

(a)  

(b)  

(c)  

Fig. 14.  Experimental results of system performance at 750 rpm and 15 
N·m: (a) Current reconstruction results, (b) Position estimation results, 
(c) Rotor speed. 
  

(a)  

(b)  

Fig. 16.  Simulation results of short-time over current fault with HF 
signal injection: (a) Actual currents, (b) Reconstructed currents. 
  

(a)  

(b)  

(c)  

Fig. 15.  Experimental results of system performance in load fluctuation 
conditions: (a) Load and speed, (b) Three phase currents, (c) Position 
estimation results. 
  

currents track the actual currents exactly in different working 
conditions. Therefore, the estimated rotor position using the 
actual and reconstructed phase currents are similar with low 
estimation errors, which are both controlled within about ±0.2 
rad. The motor speed follows the command accurately even if 
the speed or load changes. 
1) The phase currents are independently reconstructed in the 

proposed strategy. Therefore, the reconstructed 
three-phase currents have higher accuracy compared to 
those derived by calculating the third phase current 
according to the values of the other two phase currents. 

2) Because the three DC-bus current sampling points are 
within the period of action vectors, no additional voltage 

pulses are needed for current reconstruction. 
3) The two conventional zero vectors V000 and V111 are 

removed from the switching states, hence the zero vectors 
are synthesized by the rest six available vectors. 

4) The proposed vector synthesis method can be utilized both 
in the current reconstruction dead zones and most of the 
normal areas. In those normal areas that the proposed 
method cannot be applied, the circular output range is 
decreased by Tmin/Ts. 

The proposed scheme can reduce the cost and increase the 
reliability of IPMSM drive system. 
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