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Online Replanning with Human-in-The-Loop for

Non-Prehensile Manipulation in Clutter — A

Trajectory Optimization based Approach
Rafael Papallas, Anthony G. Cohn, and Mehmet R. Dogar

Abstract—We are interested in the problem where a number of
robots, in parallel, are trying to solve reaching through clutter
problems in a simulated warehouse setting. In such a setting,
we investigate the performance increase that can be achieved by
using a human-in-the-loop providing guidance to robot planners.
These manipulation problems are challenging for autonomous
planners as they have to search for a solution in a high-
dimensional space. In addition, physics simulators suffer from
the uncertainty problem where a valid trajectory in simulation
can be invalid when executing the trajectory in the real-world. To
tackle these problems, we propose an online-replanning method
with a human-in-the-loop. This system enables a robot to plan
and execute a trajectory autonomously, but also to seek high-
level suggestions from a human operator if required at any point
during execution. This method aims to minimize the human
effort required, thereby increasing the number of robots that
can be guided in parallel by a single human operator. We
performed experiments in simulation and on a real robot, using
an experienced and a novice operator. Our results show a
significant increase in performance when using our approach
in a simulated warehouse scenario and six robots.

Index Terms—Human Factors and Human-in-the-Loop, Ma-
nipulation Planning, Optimization and Optimal Control

I. INTRODUCTION

C
ONSIDER the scenario where a large number of robots

are working in a warehouse, reaching for items on

cluttered shelves. We investigate whether a human-in-the-loop

can improve the performance of such a system, and we propose

a planning and control method to enable that.

Take the example in Fig. 1, where different robots are

illustrated in each row. The horizontal axis illustrates time.

Each robot has the task of reaching onto a shelf to grasp an

object (in green), by moving obstacle objects out of the way.

There is one human who can provide help by suggesting to

move certain objects. Initially, in frame 1 of each row, all
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robots try to generate a plan, using trajectory optimization.

Some of the robots, e.g. robots r1 and rn, quickly generate

a feasible trajectory and start autonomous execution without

requiring any human help. Since there is uncertainty in how

objects move, the robots perform online replanning (similar to

model predictive control), where they re-optimize and execute

the trajectory at each time step. Robot r2, however, decides

to ask for human help in frame 1, and prompts the user. In

frame 2, the human engages with robot r2, quickly inspects the

scene, uses an interface to provide high-level input (white arrow

in the figure), and disengages. In frame 4, robot r2 tries to

generate a trajectory again, this time making use of the human

provided input, and then proceeds with autonomous execution

using online replanning. In the meantime, after a duration of

autonomous execution, the objects in rn’s environment move

very differently from the planner’s expectations, resulting in

rn requiring human help. The human is prompted for input,

and execution proceeds.

Such a system has certain advantages. One advantage is the

availability of human help in planning non-prehensile reaching

through clutter motions. A variety of autonomous planners have

recently been proposed to solve this problem [1]–[11], though

difficult instances of the problem still result in low success

rates or long planning times in the order of tens of seconds

or minutes. This is partly the reason why current industrial

applications are limited to scenes where the robot can directly

reach for the object to be picked, without interacting with any

other objects. In this work, we investigate the performance

increase that can be achieved by using a human-in-the-loop

providing guidance, particularly by minimizing the human

effort required, thereby increasing the number of robots that

can be guided in parallel by a single human. Such high-level

guidance is usually easy and natural for a human to provide

and can dramatically accelerate the performance of planners

in difficult scenes.

Another advantage of the system described above is the

use of online replanning. When a robot executes a non-

prehensile plan, objects in the real world move differently

to the model’s predictions, which makes it necessary to update

the plan. Trajectory optimization based planning approaches

are particularly effective in such settings, because a new

optimization cycle can be warm-started with the previous

solution, and convergence can be achieved in few optimization

iterations. In this respect, a key novelty of our method is the

integration of human-interaction into this online-replanning

architecture, enabling the system to use human help at any

https://ieeexplore.ieee.org
https://ieeexplore.ieee.org
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Figure 1: Proposed System. Each row shows a different robot working in parallel. Human input is requested only when needed

(blue color). Human high-level input is shown with a white arrow. Planning is shown with green and execution with red color.

point in time during execution, not only as an initial input

to the planning problem. Our previous work uses human

guidance to solve reaching through clutter problems [12], but

this approach requires human input to be provided before

planning. It also uses a sampling-based planning approach

(as opposed to the trajectory optimization approach we use

in this paper). However, trajectory-optimization lends itself

more easily to online-replanning, through warm-starting the

optimization with the trajectory from the previous iteration.

Therefore, a key novel feature of our proposed system is

the use of trajectory optimization and performing trajectory

optimization with human input. To achieve this, we propose

to make the human input a part of the objective/cost function,

minimized by the optimizer. This enables the human input to

be easily integrated into the optimization performed at each

step of the online-replanning process.

A final novel feature of our proposed system is the efficient

use of human time. Our previous work [12] requires human

help irrespective of whether an autonomous planner can solve

the problem efficiently or not. We propose that the human

should be recruited for help only if and when an autonomous

planner is expected to fail or when human help is expected to

speed up planning significantly. Such a system should be at

least as good as the state-of-the-art fully autonomous system

with the addition that, when needed, a human is in the loop to

help. We propose two different approaches to realize this. The

first approach will ask for human help if the planning fails

to generate a plan within a fixed amount of time. The second

Figure 2: Robot tries to reach for the goal object (green). Arrow

indicates human input.

approach, better integrated with trajectory optimization, will

ask for human help if the optimization gets stuck at a local

minimum.

To evaluate the proposed system we ran a number of different

experiments. First, in Sec. V-B we evaluated two approaches

of asking for human help and how they compare with two

autonomous approaches. We conducted experiments with both

an experienced and a novice user. In Sec. V-C we conducted

experiments in simulation with artificial uncertainty, and on

a real-robot (Fig. 2) to check the robustness of our online

replanning execution mechanism. Finally, in Sec. V-D we test

the entire system, in simulation, with a fleet of six robots trying

to solve a number of planning problems simultaneously with a

single human-operator and we compare this with parallel fully

autonomous planners.

The novel contributions of this work are thus as follows:

(1) the integration of human-input to an optimization problem

for non-prehensile manipulation, (2) our framework allows a

human operator to manage a fleet of robots at the same time for

non-prehensile manipulation (3) we use an adaptive approach

to decide when to ask for human input based on the problem

difficulty and (4) we present a robust execution method to

address real-world physics uncertainty.

II. RELATED WORK

The Amazon Picking Challenge [13] was a competition

that encouraged fully-autonomous solutions to reaching for

objects in cluttered environments. This competition gained

particular attention for this potential near-term impact of robotic

manipulation to warehouse robotics. The competition showed

that these problems, even with relaxed assumptions, are difficult

for a fully-autonomous system, particularly when the target

object is behind clutter.

The autonomous solutions to the reaching through clutter

problem can be categorized into three groups: There are

sampling-based planning approaches [5], [6], [9], trajectory

optimization based approaches [3], [14], and learning-based

approaches [4], [7], [15], [16]. While these approaches show

varying degrees of success, the difficult instances of this
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problem are still challenging for autonomous systems, due

to the problem being high-dimensional and under-actuated,

and also due to real-world physics uncertainty. We take

the trajectory optimization approach, inspired by STOMP

and CHOMP [17], [18], but we apply it to non-prehensile

physics-based manipulation in clutter and we extend it by

investigating how human input can be integrated with trajectory

optimization in an online-replanning manner, and how a

trajectory optimization process can decide to ask for help.

Williams et al. [19] describe a Model Predictive Path Integral

(MPPI) approach to follow an already optimized trajectory.

They run one iteration of optimization after each step execution

in the real-world. We take a similar approach, but in a

non-prehensile manipulation setting. Moreover, each of our

optimization steps have the constraint to reach a goal state

(e.g., having the goal object in the robot’s hand), instead of

simply optimizing a soft cost.

The use of high-level inputs is related to recent work in

robotic hierarchical planning [2], [20]–[23] and task-and-motion

planning (TAMP) [24]–[26]. This line of work shows that

with a good high-level plan for a task, the search of the low-

level motion planner can be guided to a relevant but restricted

part of the search space, making the planner faster and more

successful. Motivated by existing work in human-in-the-loop

systems [27]–[40], in this letter we investigate the potential

of using a human operator to suggest such high-level plans.

However, most of the above existing work in human-in-the-

loop planning focuses on providing clues to a planner to guide

it through the collision-free space. Instead, we focus on non-

prehensile manipulation. Our previous work [12], proposes a

planner for non-prehensile manipulation using human-guidance,

but the current work has significant differences in terms of

the planning method (trajectory optimization versus sampling-

based planning), the execution (closed-loop online re-planning

versus open-loop execution), and most importantly how human

input is requested (human input requested only when needed

versus human input requested for all problems).

III. PROBLEM FORMULATION

Our environment comprises a robot r, O movable obstacles

that the robot can interact with and other static obstacles that

the robot should not interact with. We also have the goal object

to reach, og ∈ O.

The state of the robot is denoted by xr = (qr, q̇r) ∈ X r.

qr ⊂ SE(2) is the robot’s configuration and q̇r is the robot’s

velocities. Similarly, we denote the state of a movable

obstacle i ∈ {1, . . . , |O|} with xi = (qi, q̇i, q̈i) ∈ X i where

qi ⊂ SE(2) is the object’s configuration and q̇i and q̈i the

object’s velocities and accelerations respectively. The state

space of the entire system, XE , is given by the Cartesian

product: XE = X r ×X 1 ×X 2 × · · · × X |O|.

The robot’s control space is denoted by U and is comprised

of the linear and angular robot velocities denoted by ut ∈ U

applied at time t for a fixed duration ∆t. We also have a

trajectory τ = 〈u0, u1, . . . , un−1〉 of n steps. We use τ[0,n−1]

to denote a subsequence of controls where [0, n− 1] is a closed

interval indicating the start and end of the subsequence. For

example, for the trajectory τ = 〈u0, u1, u2, u3〉, τ[0] refers to

the first element of the trajectory (u0), while τ[1,3] refers to

the subsequence 〈u1, u2, u3〉.
The state of the environment at time t is given by

xt = {x
r, x1, . . . , x|O|} ∈ XE . The discrete time dynamics of

the system are given by xt+1 = f(xt, ut) + ζ where ζ is the

system stochasticity. We do not explicitly represent the system

stochasticity ζ . Instead, we take an online-replanning approach,

which replans a new trajectory at every step during execution

using the deterministic model f .

We say that we rollout a trajectory τ using f from an initial

state x0 ∈ X
E using a rollout function R(x0, τ) to obtain

a sequence of states S = 〈x0, . . . , xn〉. We also have a cost

function C(S) to compute the cost of the state sequence.

Given an initial state x0 ∈ X
E and a goal object og , the goal

is for the robot to execute a sequence of controls to move the

robot from x0 to a state where is grasping og while handling

real-world physics uncertainty.

IV. ONLINE REPLANNING WITH HUMAN-IN-THE-LOOP

We use an optimization-based approach that integrates human

input to solve the problem of reaching through clutter. Our

system starts tackling the problems fully autonomously and

decides to ask for human help only when needed. In this

way our system is capable of solving trivial problems fully

autonomously without any human intervention, where possible.

Our system integrates optimization and execution in a unified

online-replanning framework that constantly optimizes and

executes solution in the real-world robustly.

In Sec. IV-A we describe the proposed framework, OR-HITL.

In Sec. IV-B we describe a stochastic optimizer that supports

the optimization part of the OR-HITL framework. In Sec. IV-C

we define the user-input and how we capture this input. In

Secs IV-D and IV-E we define the cost function and how we

compute the initial trajectories used in the optimization. Finally,

in Secs IV-F and IV-G we describe two approaches to decide

when to ask for human help.

A. Framework Overview

Alg. 1 describes OR-HITL that unifies optimization and

execution in one framework and alternates between the two to

increase real-world execution robustness.

The algorithm starts with an initial trajectory τ for reaching

the goal object (see Fig. 3a) and a cost function C with the

optimization objectives (Sec. IV-D). In line 2 we observe the

real-world state and if this state is a goal state, we stop and

declare success (line 3). If not, then we proceed with the

optimization part of the framework.

Optimization: In line 5 using the SOLVE function (Sec. IV-B)

we pass to the solver the initial state xworld, the current

trajectory τ and the current cost function, C. The solver will

optimize for some duration and then return a result. The result

can either be “human input required” or “success”. If the solver

returns “success”, it also updates τ with the new trajectory. If

the solver decides that human input is required (we describe

how this decision is taken in Secs IV-F and IV-G), then in line 7

we obtain a high-level input from a human operator (Sec. IV-C).
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Algorithm 1 OR-HITL Framework

1: function OR-HITL(τ , C)

2: xworld ← observe current real-world state

3: if xworld reached the goal then stop

4: do

5: result ← SOLVE(xworld, τ , C)

6: if result is “human input required” then

7: input ← obtain input from human

8: update cost function C based on input

9: update τ based on input

10: while result is not “success”

11: execute τ[0] in real-world

12: τ ← τ[1,n−1] and expanded with utogoal

13: return OR-HITL (τ , C)

Algorithm 2 Trajectory Optimization-based Solver

1: function SOLVE(x0, τ, C)

2: S ← rollout τ from x0 using R(x0, τ)
3: obtain the cost of rollout using C(S)
4: while not successful do

5: if humanHelpRequired() then

6: return “human input required”

7: sample k noisy trajectories from τ

8: rollout each of the k trajectories from x0 using R

9: obtain cost for each rollout using C
10: τ ← trajectory with the lowest cost

11: return “success”

This high-level input includes information to update the cost

function (line 8) and to instantiate a new initial trajectory

τ (line 9). We repeat these steps until result is “success”

(line 10). Once the optimization is successful, we proceed

with the execution part of the framework.

Execution: To cope with physics uncertainty when executing a

trajectory in the real-world, we propose an Online-Replanning

approach. In line 11 we execute the first control of the trajectory

in the real-world. We then update our trajectory τ in line 12

to be the remaining τ trajectory, expanded with a control

towards the goal (utogoal). This padded control at the end of

the trajectory provides freedom to the trajectory to be further

optimized in the future. Once we update the trajectory, we

recurse in line 13 and we get the real-world state in line 2

that might be different to the one predicted by the simulator

(physics uncertainty). The optimization in line 5 warm-starts

with the trajectory from the previous iteration, and therefore

is likely to be successful in the current iteration, requiring

little or no additional work from the solver. This closed-loop

execution and alternation from optimization to execution allows

our system to cope with execution uncertainty and correct the

trajectory early on.

B. Stochastic Optimization

In Alg. 1, in line 5, we make a call to a solver. Alg. 2

describes this solver. The solver accepts an initial state, x0,

an initial trajectory to optimize, τ , and a cost function C for

computing the cost of the trajectories.

We begin by rolling out the trajectory τ from the initial

state x0 (line 2) and then using the provided cost function, C,

we compute the cost of the trajectory (line 3). If the solver

is successful (line 4), then we return “success” straightaway

(line 11). To decide if the solver is successful we check if the

robot has reached the goal and that the cost is minimized below

some threshold. If the solver is not successful we continue

with the optimization.

First we check if human help is required in line 5. We

describe ways to make this decision in Secs IV-F and IV-G. If

human help is required, we return a signal that human help is

required (line 6).

If human help is not required, we sample k noisy trajectories

from τ (line 7). To create these k trajectories, we add Gaussian

noise to the controls of τ using N (0, v) where N is the

Gaussian distribution and v is the variance for a degree-of-

freedom of the robot. We then rollout each of the k trajectories

from x0 using the rollout function R (line 8) and then obtain a

cost for each of the trajectories (line 9). In line 10, we update

τ to be the trajectory with the lowest cost. It is possible that

all k trajectories have higher cost than the current τ , in this

case τ does not change. We repeat these steps until the solver

is successful (line 4).

C. User Input

A user’s high-level action suggests a particular object oi to

be pushed to particular point on the plane. We formalize this

high-level action with the triple (oi, xi, yi), where oi ∈ O is

an object, and (xi, yi) is a point of on the plane that oi needs

to be pushed to.

To capture the user’s high-level action we developed a simple

user interface. The operator is presented with a window showing

the environment and the robot. The operator, using a mouse

pointer, provides the input by first clicking on the desired

object and then a point on the plane (Alg. 1 line 7).

Using the human input we can now define the cost function

and the initial trajectory that makes use of the human input in

the next subsections.

D. Cost Function

The cost function, C, is used in Alg. 2 (lines 3 and 9) but

is also updated in Alg. 1 (line 8) to integrate the human input.

No human-input provided: If no human-input is provided,

then the cost function for a state sequence S is defined as

C(S) = C1 + C2. Where C1 is the cost for reaching the goal

object:

C1 = wg · d(q
ee,qg) (1)

C1 is the weighted Euclidean distance from the robot’s end-

effector to the goal object, og . C2 defines three cost terms with

their corresponding weights:

C2 =

n∑

i=1

ce(xi) + cf (xi) + cs(xi) (2)
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(a) Reaching goal object (b) Pushing an object

Figure 3: Initial trajectories. The arrow illustrates the trajectory.

In (b) the object to be pushed is the box the arrow penetrates.

• cf (xi) =
∑|O|

j=1 wf · F (xj
i ): For a state xi we penalize

any movable object that applies high forces to any other

movable or static obstacle. F is a function that given a

state of an object x
j
i returns the contact forces of that

object.

• ce(xi) =
∑|O|

j=1 we ·1e(q
j
i ): For a state xi we penalize any

movable object oj ∈ O that is geometrically outside the

configuration space. 1e is an indicator function that returns

0 if the objects is geometrically inside the configuration

space, 1 otherwise.

• cs(xi) = ws ·1s(x
r): For a state xi we penalize the robot

for colliding with a static obstacle. 1s is an indicator

function that returns 1 if the robot, r, collides with any

of the static obstacles or 0 otherwise.

Human-input provided: If human-input is provided (Alg. 1,

line 7) the cost function is updated (Alg. 1, line 8). This update

is two-fold, we first push that object to the human indicated

position using C(S) = C3 + C2, and then we reach for the goal

object using C(S) = C1 + C2.

C3 = wp · d(q
i
n,q

i
desired) (3)

For a high-level input (oi, xi, yi), C3 is the weighted Euclidean

distance of oi position at the final state, qin, with the user’s

provided position, qidesired, of that object. This cost term in

the optimization will encourage the solver to explore solutions

where the object indicated by the human is pushed towards

the desired position.

E. Initial trajectories

When we start the optimization, we need to provide the

solver with an initial trajectory. We use straight-line trajectories

because they are cheap to compute (no physics simulation).

We depict two such initial trajectories in Fig. 3. The first

trajectory, Fig. 3a, is the initial trajectory for reaching the goal

object and is a straight line trajectory from the robot’s current

position, qr, to the position of the goal object, qg . The second

trajectory, Fig. 3b, is the initial trajectory for pushing an object

to its desired position. This trajectory is following a straight

line passing from the object’s current position and ending at

the object’s desired position.

Next, in Secs IV-F and IV-G we describe two ways to decide

when to ask for human input. This decision is taken in Alg. 2

line 5 and we describe two different approaches to take this

decision.

F. Asking for human help with a fixed timeout

A straightforward way to decide if human input is required,

is based on a fixed timeout limit. The solver tries to find a

solution for some fixed time limit and if a solution is not found

it will time-out and request human input.

We denote this time-limit with Fixed z where z ∈ Z
+.

Therefore, in Alg. 2 in line 5 when using Fixed OR-HITL,

humanHelpRequired will return true if z seconds are

reached. For example, for Fixed 20, humanHelpRequired

will return true every 20 seconds if the solver cannot find a

solution.

Although this is a simple and straightforward approach, it

can be problematic, in some cases. For example, if the solver

is able to solve a problem in 25 seconds but the Fixed Time

limit is set to 20 seconds, then the solver will ask for human

help although it could have found a solution if there were 5

more seconds available. Similarly, for a hard problem, giving

more time to time-out could make the system waste time

unnecessarily before asking for human help.

This shortcoming of the Fixed Timeout inspired us to

introduce an adaptive approach that decides when to ask for

human help depending on the problem at hand.

G. Adaptively asking for human-help

One property of trajectory optimization is that the conver-

gence rate of the cost of a problem from iteration to iteration

can indicate whether the solver can explore new solutions

(i.e., more time is needed) or if the solver is stuck at a local

minimum (i.e., immediate human input could be beneficial).

We leverage this property to adaptively decide when to ask for

human help based on the problem at hand. If at some point

during the optimization we find that the solver hits a local

minimum, then we send a signal that human input is required.

To decide if the solver is stuck at a local minimum, we look

at the absolute difference between the previous iteration’s cost,

cprevious, and at the current iteration’s cost, ccurrent. If this

difference is lower than a threshold for a number of consecutive

iterations, then we say that we are stuck at a local minimum.

Since this is a stochastic optimization, we need to check this

for some consecutive iterations to conclude that we are stuck

at a local minimum because it is likely that in an iteration the

cost does not improve, but this is not an indication that we are

stuck at a local minimum.

Therefore, in Alg. 2 in line 5 when using Adaptive OR-

HITL, humanHelpRequired will return true if we hit

a local minimum for some consecutive iterations. In our

implementation we stop if local minimum is found for 2

consecutive iterations.

V. EXPERIMENTS & RESULTS

We focus on three main questions for our evaluation. First,

in Sec. V-B we evaluate the proposed framework performance

with human-in-the-loop and compare with several baselines.

Second, in Sec. V-C we evaluate the replanning aspect of

our framework in presence of physics uncertainty. Third, in

Sec. V-D we evaluate our system in a simulated warehouse
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Figure 4: Heuristic: Yellow area is the robot’s swept volume

and white arrow is the suggested high-level plan.

scenario with a single human operator. Some of these experi-

ments are shown in the accompanying video1. We employed

two operators in these experiments. An experienced user, who

is also an author of the paper, who conducted all the human

experiments throughout this section except the experiments

marked with “Novice” where a novice operator was employed

instead. The novice had no prior experience with robotic

systems or robotics research.

A. Experimental Setup

For all the experiments we used MuJoCo2 [41] to implement

the system dynamics. We used a randomizer to generate random

simulation scenes. The randomizer placed the goal object first at

the back of the shelf and then the remaining objects in collision-

free positions within a radius of 30cm around the goal object.

The total time limit for every experiment was 180 seconds,

after which the robot was stopped and the run was marked a

failure. This time-limit includes combined optimization times

as well as human interaction time.

Optimization Parameters: The optimization parameters were:

k = 15 noisy trajectories at each iteration, variance of 0.04

m/s for the robot’s linear velocities and 0.04rad/s for the

robot’s angular velocity. We had 3-seconds long trajectories

with 8 steps each. To rollout a 3-second trajectory with an

integration step size of 0.0015 it took on average 1 second on

our computer. To execute a 3-second trajectory in simulation

took around 3 seconds. The cost function’s parameters are:

wg = 2000, wf = 50, we = 300 and ws = 300. Finally, the

success threshold is 70.0 (Alg. 2, line 4).

Robot: We use a 2-finger Robotiq gripper on a UR5 robot

mounted on a Clearpath Ridgeback. We controlled the hand in

simulation (3 DOF: 2 linear and 1 angular). The gripper has 1

DOF but we do not consider it in the optimization, instead we

close the gripper at the beginning of the optimization and we

open it before the last action of the trajectory. When executing

the solutions in the real-world we mapped the gripper velocities

to Ridgeback velocities.

B. Framework Evaluation

We compare Fixed 5, Fixed 20 and Adaptive with an

experienced and a novice user with two autonomous planners.

1Also available at https://youtu.be/t3yrx-J8IRw.
2On a computer with Intel Core i7-4790 CPU @ 3.60GHz, 16GB RAM.

Table I: Framework evaluation. Error indicates the 95% CI.

Success
(%)

Planning
Time (s)

Human
Time (s)

Total
Time (s)

Experienced User

Fixed 5 90.0 38.1± 15.6 9.6± 4.1 68.8

Fixed 20 93.3 44.2± 13.8 7.0± 1.8 63.2

Adaptive 96.6 31.0± 12.8 2.5± 0.9 42.5

Novice User

Fixed 5 86.6 27.8± 11.7 19.8± 8.8 62.6

Adaptive 90.0 33.6± 16.5 5.5± 1.0 45.1

No Human

Autonomous 74.6 79.8± 11.2 – 82.8

Adaptive Heuristic 82.5 86.4± 13.5 – 98.4

The novice user had no prior knowledge of the system or the

problem. We trained the novice user for around 45 minutes.

We generated 30 scenes for each planner. We generated a

different set of problems for each planner where a human was

involved to avoid the chance where a pattern of the problem is

memorized by the users. For the Autonomous and the Heuristic

planners, since there is no learning, we evaluate them over all

the scenes.

We compare two autonomous planners here. First, “Au-

tonomous” is a planner that uses the solver highlighted in Alg. 2

but aims to reach for the goal object without considering any

high-level plan. We also implemented a straight-line heuristic

to replace the human from the OR-HITL framework. The robot

moves on a straight line to the goal object to find the first

blocking obstacle and to capture the robot’s swept volume. It

then finds a collision-free position outside the swept volume for

this obstacle. The object and the new position is then returned

to the framework (i.e., substituting the human input entirely) to

plan and push the object to the new position. We illustrate this

straight-line heuristic in Fig. 4. We call this planner “Adaptive

Heuristic”.

Table I presents the simulation results. Planning time is the

average planning time per problem. Human time is the average

time spent by a user providing guidance. Total time includes

the planning time, human time (if applicable) and execution

time, providing an overall average time to solve a problem. The

results show that the planners with a human-in-the-loop were

more successful than the autonomous planners and they had

dramatically improved the planning times. Adaptive requested

less human intervention with an average of 2.5 seconds of

human time per problem. Fixed 5 requested human intervention

more frequently and shows that human engagement with this

approach is considerably high. The novice user confirmed

that the interaction with the Fixed 5 was more tedious as

he was prompted too often and he found it challenging to

provide high-level input using the Fixed 5 because the 5 seconds

timeout forced him to provide high-level actions that are easy

optimization problems. The novice participant found Adaptive

more intriguing and comfortable to use and he enjoyed the fact

that the robot managed to solve more problems on its own.

C. Handling uncertainty

Our framework is designed to handle physics uncertainty

during execution. To evaluate this property we performed

https://youtu.be/t3yrx-J8IRw
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Table II: Simulated uncertainty. Errors indicate 95% CI.

Adaptive Autonomous OL Autonomous

Success 58 / 60 35 / 60 23 / 60

Optimization Failures 1 / 60 16 / 60 23 / 60

Execution Failures 1 / 60 9 / 60 14 / 60

Optimization Time (s) 62.2± 10.5 118.2± 17.2 121.0± 18.1

Replanning Iterations 2.8± 1.2 4.2± 3.0 11.9± 3.1

Human Time (s) 5.4± 0.8 - -

Total Time (s) 79.6 124.2 124.0

Figure 5: Real-world scenes

two different experiments. First, we evaluated the system

in simulation with artificial uncertainty added to the objects’

motion, during execution. Second, we also evaluated the system

with a real robot manipulating objects on a real shelf.

Simulation: We configured the simulation environment in the

following way. At each simulation step (during execution,

not during optimization) we observe the velocities of all the

movable objects and if they are beyond some threshold3 we add

a small Gaussian noise to their velocities (changes direction and

magnitude). We compare Adaptive, Autonomous and we also

implemented an Open-Loop Autonomous (OL Autonomous)

planner as a baseline. OL Autonomous replans only at the end

of the trajectory execution instead of the end of each action.

Table II presents the results. Execution Failures indicate the

number of times the planner found an initial solution but failed

to execute and replan. Replanning Iterations indicate the number

of optimization iterations required to successfully replan a

trajectory that failed during execution. Total time is the average

time to complete the task (planning time, human time and

execution time). It is clear that Adaptive performed better than

Autonomous and OL Autonomous in success rate and planning

time. Success rate for Adaptive was 97%, 58% for Autonomous

and 38% for OL Autonomous. During replanning Adaptive and

Autonomous required on average 3 and 4 iterations respectively

to correct the trajectory while the OL Autonomous required

on average 12 iterations.

Real-world: In a real-world setting we evaluated Adaptive and

Open-Loop Adaptive (OL Adaptive). OL Adaptive replans at

the end of the trajectory instead of the end of each action.

We performed 30 real-world experiments, 15 for each planner

in 15 different scenes. The robot was asked to reach for the

green object in a small shelf among other 9 obstacles. Some

of the scenes are depicted in Fig. 5. To avoid damage of the

physical robot or of the objects in the environment, we stopped

the robot if it collided with any static obstacle or forcefully

3To avoid adding uncertainty to objects that have not moved since the
previous step.

Table III: Real-world results

Adaptive OL Adaptive

Success 13 / 15 8 / 15

Optimization Failures 1 / 15 1 / 15

Execution Failures 1 / 15 6 / 15

Table IV: Warehouse. Errors indicate 95% CI.

Adaptive Autonomous

Success 37 / 50 16 / 50

Failures 13 / 50 34 / 50

Optimization Time (s) 94.7± 15.1 149.7± 15.9

Human Time (s) 5.5± 1.0 -

Total Time (s) 112.2 152.7

pushed an object against the shelf and we declared the attempt

as an Execution Failure due to violation of these safety rules.

There are some demonstrations of these experiments in the

accompanying video.4 We present the results in Table III. The

success rate for Adaptive is 86% while for the OL Adaptive

is 53%. Adaptive failed once during planning and once during

execution (due to safety rule violation). OL Adaptive failed

once during planning and six times during execution. The main

cause of failures for the OL Adaptive planner was that physics

uncertainty caused the robot to violate some of the safety rules.

The OL Adaptive, since there was no replanning at each step,

was in general faster at executing trajectories, but when it

failed it required more replanning time. Adaptive on the other

hand, replanned for some easy instances of the problem, but

the replanning was always very short because we warm-started

the optimization.

D. Warehouse Problem

We consider a scenario where there are 50 orders to pick

objects from cluttered shelves in a simulated warehouse. The

warehouse operates six robots at the same time. Our objective

is to increase the success rate of these robots and fulfill the

50 orders as quickly as possible.

In simulation, we compare six autonomous robots (Au-

tonomous) working in parallel trying to fulfill these 50 orders,

with our system with a single human-operator (Adaptive)

guiding these six robots simultaneously. Some of these scenes

are shown in Fig. 1. Each robot attempts to solve the assigned

problem within 180 seconds. Once a robot finishes with

a problem it is assigned with the next available one. We

conducted this experiment on a more powerful computer5

as 6 simultaneous instances of the physics simulator requires

extensive CPU power and memory usage.

The results (Table IV) show that our approach was more

successful (74% success rate compared to 32% for the

Autonomous) and faster in planning solutions per problem,

almost a minute faster. The average number of actions for

Adaptive was four and hence the execution time (which is

4“Adaptive” execution is slower than “OL Adaptive” due to delays with the
perception system called after each action execution.

5Intel Xeon E5-2650 v2 CPU @ 2.60GHz, 64GB RAM.
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fixed to 3 seconds) added up further 12 seconds per problem

on average. On the other side, since Autonomous is planning

straight to the goal, there is only one trajectory and hence there

are only 3 seconds of execution time per problem.

VI. CONCLUSIONS

We have proposed OR-HITL, an online-replanning frame-

work with Human-In-The-Loop based on trajectory opti-

mization. Our approach starts solving the problem fully

autonomously and decides to ask for human input only

when the problem is estimated to be too difficult to be

solved autonomously. Our system uses an adaptive approach

(Adaptive) to take this decision based on the problem difficulty.

We demonstrated that this adaptiveness is useful in a simulated

warehouse setting where a single human operator manages

a fleet of robots at the same time. Finally, our framework

showed increased robustness in real-world execution due to the

online-replanning strategy we implemented in the framework.

REFERENCES

[1] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based grasp
planning through clutter,” in RSS, 2012.

[2] G. Havur, G. Ozbilgin, E. Erdem, and V. Patoglu, “Geometric rear-
rangement of multiple movable objects on cluttered surfaces: A hybrid
reasoning approach,” in ICRA. IEEE, 2014, pp. 445–452.

[3] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based trajectory
optimization for grasping in cluttered environments,” in ICRA. IEEE,
2015, pp. 3102–3109.

[4] W. Bejjani, M. R. Dogar, and M. Leonetti, “Learning physics-based
manipulation in clutter: Combining image-based generalization and look-
ahead planning,” in IEEE/RSJ IROS. IEEE, 2019.

[5] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” in ICRA. IEEE, 2015, pp. 3075–3082.

[6] M. ud din, M. Moll, L. Kavraki, J. Rosell et al., “Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments,” IEEE RA-L, vol. 3, no. 2, pp. 712–719, 2018.

[7] W. Bejjani, R. Papallas, M. Leonetti, and M. R. Dogar, “Planning with
a receding horizon for manipulation in clutter using a learned value
function,” in IEEE-RAS Humanoids. IEEE, 2018, pp. 1–9.

[8] C. Nam, J. Lee, Y. Cho, J. Lee, D. H. Kim, and C. Kim, “Planning for
target retrieval using a robotic manipulator in cluttered and occluded
environments,” arXiv preprint arXiv:1907.03956, 2019.

[9] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in IEEE ICRA.
IEEE, 2016, pp. 3940–3947.

[10] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object rearrange-
ment,” in IEEE ICRA. IEEE, 2019, pp. 211–218.

[11] K. Kim, J. Lee, C. Kim, and C. Nam, “Retrieving objects from
clutter using a mobile robotic manipulator,” in 2019 16th International

Conference on Ubiquitous Robots (UR). IEEE, 2019, pp. 44–48.
[12] R. Papallas and M. R. Dogar, “Non-prehensile manipulation in clutter

with human-in-the-loop,” in IEEE ICRA. IEEE, 2020.
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