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Predicting longitudinal changes in joint contact forces in a juvenile
population: scaled generic versus subject-specific musculoskeletal models

Claude Fiifi Hayforda, Erica Montefioria, Emma Prattb and Claudia Mazz�aa

aDepartment of Mechanical Engineering and Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK; bGait
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ABSTRACT

Subject-specific musculoskeletal model use in clinical settings is limited due to development-
associated time and effort burdens together with potential medical imaging unavailability. As an
alternative, this study investigated consistency in estimating longitudinal changes in joint con-
tact forces (JCF) between scaled generic and subject-specific models. For 11 children, joint kine-
matics and JCF were calculated using subject-specific and scaled generic models. JCF changes
estimated by both models were strongly correlated for the hip and knee although JCF estimates
varied between models. Findings suggest that within specified limits of accuracy, scaled generic
models are sensitive enough to detect JCF changes consistent with subject-specific models.
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Introduction

Three-dimensional gait analysis (3DGA), based on

optoelectronic and force platform data, has become a

mainstay in the study of human movement musculo-

skeletal disorders, providing useful information to

guide treatment planning and rehabilitation (Baker

et al. 2016; Wesseling et al. 2017). Most recent litera-

ture has shown that the utility of conventional 3DGA

can be further augmented with musculoskeletal mod-

els (MSK)( Kainz et al. 2019; Montefiori et al. 2019b).

These are mathematical representations of the body

as a system of rigid bodies linked in a chain by joints

and constraints and actuated by muscle forces. This

formulation lends itself to rigid multibody dynamics

and simulation that provides information such as esti-

mates of changes in muscle length, muscle force and

joint contact force that are not available using con-

ventional 3DGA or would require the use of some

instrumented prosthesis.

Most commonly used MSK models, typically

referred to as scaled generic models, are based on

data extrapolated from cadaveric specimens of healthy

adults (Delp et al. 1990; Arnold et al. 2010; Modenese

et al. 2011) which are scaled based on markers or

anthropometry to match a subject. This poses a chal-

lenge when dealing with different populations, such

as children and those with pathologic conditions

(Duda et al. 1996; Bosmans et al. 2015, 2016).

Imaging modalities such as Computed Tomography

(CT) and Magnetic Resonance Imaging (MRI) have

been used to address this challenge by allowing for

the increase in personalisation of these models

through the inclusion of subject-specific details like

bone geometry (Lenaerts et al. 2009), muscle paths

and attachment (Scheys et al. 2008; Bosmans et al.

2015), as well as estimates of musculotendon parame-

ters (Correa and Pandy 2011; Hainisch et al. 2012).

This personalisation has been proven to increase the

accuracy and reliability of these MSK models

(Blemker et al. 2007; Lenaerts et al. 2009).

Nonetheless, subject-specific models created in this

way have cost and time burdens which limit their use

in clinical settings (Valente et al. 2014). In addition,

medical imaging may not be feasible or available,

especially when conducting retrospective studies. In

such instances, if sensitive enough to detect changes

that are bigger than their expected limits of accuracy,

generic models might represent a relatively easily

implementable substitute.

A number of studies have compared the perform-

ance between generic models and image-based subject-

specific models and concur that differences exist

between the biomechanical measures estimated. When

investigating a normal and a pathologic gait condition,
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Scheys et al. (2008) found that differences existed

between the moment arms and muscle-lengths esti-

mated by the two types of models for 16 major muscles

of the lower limb for each gait condition. For most of

the muscles however, the changes in muscle length and

moment arm estimates was found to be similar for the

two approaches, for both normal and pathologic gait.

Similarly, Correa et al. (2011) found significant differ-

ences in muscle moment arms when comparing generic

and subject-specific models but also reported that both

models were consistent in their predictions of muscle

action. Muscle forces contribute to the magnitude of

joint contact forces (JCFs) and differences are therefore

expected to be observed in JCF estimates between the

two models. However, it remains unclear to what

extent these differences impact on longitudinal esti-

mates of changes in the biomechanical variables pre-

dicted by generic models and how they differ from

those predicted from subject-specific models. The aim

of this study was to examine the suitability of using

scaled generic models to predict longitudinal changes

in biomechanical measures and how these predictions

differ from those obtained from subject-specific models

in a juvenile population. We hypothesised that despite

differences in instantaneous estimates of JCFs, there

would be no difference in the change in calculated JCF

over time between models. If this hypothesis holds

true, scaled generic models could be used to infer clin-

ically meaningful information where interest is in

change over time as opposed to absolute estimates such

as in predicting or evaluating surgical outcomes, hence

suggesting the feasibility of using them as alternative to

the more accurate subject-specific models.

Materials and methods

Data collection

Data from 11 participants (age at initial observation:

mean 11.5 (SD 3.2) years) were extracted from a dataset

collected during the MD-PAEDIGREE project, which

aimed at investigating disease progression in children

with Juvenile Idiopathic Arthritis (JIA)(Montefiori

et al. 2019b). Subject anthropometry was recorded at

an initial observation (mass: 46.5 ± 18.0 kg, height:

1.4 ± 0.2m) and at twelve months follow-up (mass:

51.4 ± 20.5 kg, height: 1.5 ± 0.2m). Approval was

obtained from the research ethics committees of the

hospitals from which the data was collected. Gait data

were collected over two observations (M0 and M12,

12months apart) and across two laboratories, one using

a 6-camera setup (BTS, SmartDX, 100Hz) with two

force plates (Kistler, 1 kHz) and the other, an 8-camera

system (Vicon, MX, 200Hz) with two force plates

(AMTI, OR6, 1 kHz). The Vicon PlugIn gait protocol

(Vicon Motion Systems) augmented with the modified

Oxford Foot Model (Stebbins et al. 2006) formed the

set of forty-four markers used. Regional MRI of the

foot and ankle was acquired for each participant at the

two observations (M0 and M12) using a multi-slice

multi-echo 3D Gradient Echo (mFFE) with water only

selection (0.5mm in plane resolution and 1mm slice

thickness). MRI was also used to acquire entire lower

limb images at an intermediate timepoint (six months

from initial observation) using a 3D T1-weighted fat-

suppression sequence. In-plane resolution was 1mm

with a slice thickness of 1mm. These images were used

to clinically evaluate bone erosion and cartilage damage

(Montefiori et al. 2019a).

Modelling approaches

Subject-specific bone geometries for the two time-

points were obtained by a single expert operator seg-

menting MRI images of the full lower-limb together

with the regional foot and ankle images from each

observation point, respectively. The full lower-limb

geometries for each participant were subsequently

coupled with the regional geometries to build subject-

specific models (SubS) for each observation using

NMSBuilder (Valente et al. 2017). For each SubS

model, the hip was modelled as an ideal ball-and-

socket joint, with ideal hinges for the knee, ankle and

subtalar joints. The joint axes were defined by mor-

phological fitting of articular surfaces isolated from

the bone geometries, using a least square difference

minimization approach. A supervised atlas registra-

tion procedure with a reference model (Delp et al.

1990) was used to estimate muscle attachments and

via points, with manual adjustment against the MRI

when needed. The maximum isometric force for each

muscle in the SubS model were linearly scaled using

the ratio of participant lower-limb mass, calculated as

the product of the soft tissue volume and bone vol-

ume and their respective densities from the literature

(White et al. 1987), and the lower limb mass of a gen-

eric model (Delp et al. 1990). Further details for gen-

erating the SubS are provided in Modenese et al.

(2018) and Montefiori et al. (2019a).

The cadaver-based generic gait2392 model (Delp

et al. 1990) formed the basis of the scaled generic

models (Gen). The gait2392 model was scaled by each

subject’s mass and anthropometry based on experi-

mental markers placed on anatomical landmarks and

estimated joint centres using the Scale tool in
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OpenSim 3.3 (Delp et al. 1990; 2007). Scaling was

based on literature recommendations (Hicks et al.

2015; Kainz et al. 2017) using Harrington regression

equation estimates of the hip joint centre (Harrington

et al. 2007), midpoint of medial and lateral epicondyle

and malleolus markers for the knee and ankle joint

centres, respectively. Maximum isometric force of

each muscle was scaled by the mass of the subject

divided by the mass of the gait2392 model. Optimal

fibre length was scaled to preserve the muscle-tendon

length ratio in the gait2392 model. The Gen models

consisted of a single lower limb model with 12

degrees of freedom (DoF) for consistency with the

SubS which were unilateral.

Simulations were subsequently performed in

OpenSim 3.3 using a minimum of three collected

experimental gait trials for each participant. The

OpenSim simulation pipeline included inverse kine-

matics, inverse dynamics, static optimisation and joint

reaction analysis (Steele et al. 2012). For each model

and observation, joint angles, joint moments, muscle

forces and JCFs were obtained. In line with best prac-

tice, maximum root mean square tracking error and

peak marker tracking error between experimental

marker trajectories and virtual markers for each model

were kept below the recommended 20mm and 40mm

thresholds (Hicks et al. 2015), respectively for inverse

kinematics. Static posture joint angles were considered

as a zero reference in comparing kinematic outputs

between the two models. Joint powers were calculated

as the product of joint moment and angular velocity.

The muscle force-length-velocity relationship was

ignored for both models during the estimation of

muscle activation and force during static optimisation.

Simulated joint moments and JCFs were normalised by

participant body weight (BW). The dynamic consist-

ency of the simulations was assessed for both models as

recommended (Steele et al. 2012; Hicks et al. 2015)

with the values of residual moments applied at the pel-

vis which were less than 10% of the product of BW and

height for all subjects. Residual forces were similarly

less than 10% of BW with the exception of Fy. This was

due to the lack of general actuators in the model to pro-

vide an equilibrating effect of force and moment on the

pelvis in the absence of a torso and contralateral leg

(Modenese and Phillips 2012).

Differences between Gen and SubS models

Group mean and standard deviation for each esti-

mated variable were determined as the average of

ensemble means of subject trials for all subjects for

both models. Joint angles, joint moments, joint power,

JCF and differences in JCF (DJCF) at the hip, knee

and ankle were compared between models and obser-

vations using the nonparametric one sample paired

t-tests from the spm1d statistical parametric mapping

(SPM) package (Pataky 2012) in MATLAB (v9.5.0,

R2018b, MathWorks, USA). Significance was eval-

uated at a< 0.05.

For the JCFs, total waveform variability or good-

ness of fit was assessed using the Root Mean Square

Deviation (RMSD) (Picerno et al. 2008) between Gen

and SubS for each subject at each observation. The

percentage difference (%Diff) in JCF estimates was

calculated as the ratio of RMSD to range of JCF pre-

dicted by the SubS model for each participant.

The coefficient of determination (R2) was calcu-

lated using the Linear Fit Method to assess waveform

shape similarity (Iosa et al. 2014) of JCF estimates

over the gait cycle between Gen and SubS for each

participant. This method can be used as a robust

measure of curve similarity in the analysis of gait data

(Di Marco et al. 2018). Peak values of JCF during the

loading response (P1, indicated as occurring within

the first 20% of the gait cycle) and push off (P2, indi-

cated as occurring between 40 to 60% of the gait

cycle) for both models were extracted for each partici-

pant and analysed. Area under the JCF curves (AUC)

were also calculated as measures of overall loading of

the joint throughout the gait cycle and compared

between the two models. A graphical representation

of the different indices used is presented in the sup-

plementary materials.

Consistency in longitudinal predictions

Inter-observation differences (Dt) between the values

of JCFs, AUC and JCF P1 and P2 were calculated for

each participant’s Gen and SubS model to assess their

agreement in estimating longitudinal changes. Inter-

model differences (Dm) for these metrics at each

observation were similarly calculated for each partici-

pant. Gen and SubS were judged as in agreement in

predicting longitudinal changes in JCFs if the coeffi-

cient of determination R2 calculated between

Dt(JCFGen) and Dt(JCFSubS) was greater than or equal

to 0.6.

It has been previously reported that SubS output is

affected by repeatability errors associated to operator

input (Montefiori et al. 2019b). In order to account

for this when assessing the differences between the

two models, ad-hoc thresholds were calculated for hip

(H), knee (K) and ankle (A) joints using publicly
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available data (Montefiori et al. 2019b): Dm(AUCH) ¼

29.17, Dm(AUCK) ¼ 7.88, Dm(AUCA) ¼ 4.42,

Dm(P1H) ¼ 0.45 BW, Dm(P2H) ¼ 1.27 BW, Dm(P1K)

¼ 0.36 BW, Dm(P2K) ¼ 0.64 BW and Dm(P1A) ¼

0.94 BW. If corresponding Dm(JCF peaks) and

Dm(AUC) were lower than these thresholds at both

observations, then the longitudinal output from the

two models were considered to be in agreement for

that participant. If the differences between the two

models were bigger than these thresholds for at least

one of the observations, then the differences (Dt)

obtained for the two models were considered as being

in agreement if consistent in signs.

Finally, significance of inter-model and inter-obser-

vation differences in estimates of RMSD, JCF peak

values and area under JCF curve were assessed with

the Wilcoxon signed-rank test in MATLAB. Effect

size statistics for these estimates was also calculated

using Cohen’s d estimate with a pooled standard devi-

ation from SubS and Gen. All statistical tests were

conducted at a< 0.05.

Results

Assessment of MRI images did not highlight any clin-

ically meaningful changes in bone erosion and cartil-

age damage between the two time points.

Estimates of joint kinematics, moments and power

in the sagittal plane at all observations and for all par-

ticipants are presented as supplementary figures.

Profile shapes of these estimates over the whole gait

cycle were overall similar between the models,

although there existed significant (P< 0.05) differen-

ces at instances in the gait cycle. The JCFs estimated

by the two models showed similar waveform profile

(Figure 1).

The Gen tended to have lower estimates (average

difference of 0.8 BW) of hip JCF during the loading

response. This difference was found to be significant

at both observed timepoints (P< 0.001 at both M0

and M12). JCF estimates were generally similar at the

ankle with some significant differences reported dur-

ing the stance phase of the gait cycle. The Gen also

estimated higher JCF at the knee during push off

(P2); this was however found to be not significant.

The higher P2 prediction at the knee by the Gen was

coincident with the prediction of a higher gastrocne-

mius medialis muscle force (see supplementary mater-

ial) by the Gen in the same phase of the gait cycle.

Differences in JCF between the Gen and SubS were

then analysed for each of the three joints (Table 1).

Group median RMSD results ranged from 0.30 to

0.60. These values were similar for M0 and M12 with

no statistical difference between RMSD values

recorded at the two timepoints. The largest mean

RMSD was recorded at the knee with a value of 0.59.

The knee also had the largest variability between par-

ticipants’ RMSD as indicated by its standard devi-

ation. Similar trends were observed when looking at

%Diff, where the knee values doubled those at

the ankle.

The coefficient of determination values (Table 1)

were greater than 0.7 for all participants, with the

highest correlations observed at the ankle (higher

Figure 1. Comparison between Gen (red) and SubS (blue) model estimations of joint contact forces at observations M0 and M12.
Black bars indicate region of gait cycle with significant statistical difference between the two models at P< 0.01.
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than 0.9) indicating a very strong linear relationship

between JCF predictions between the Gen and SubS.

Again, estimates at the knee showed the widest range

of values. The comparison of selected peaks high-

lighted a large inter-subject variability in differences

between the two models, however the hip loading

response peak, P1, was consistently and significantly

lower in the Gen than in the SubS (P(M0) ¼ 0.006,

P(M12) ¼ 0.002, Figure 2). Further, Cohen’s d values

(-1.31 and -1.48 for P1 and P2, respectively) suggested

a high relevance of this difference.

Comparison of longitudinal differences in JCF,

Dt(JCF) estimates for each model revealed that the

Gen reported higher mean differences than the SubS

for the hip and ankle joint although this did not

reach significance. Peak Dt(JCF) was lower at the hip

for the Gen compared to the SubS. Both models

showed an overall increase going from M0 to M12 in

Table 1. Inter-model analysis of gait waveform profile at M0 and M12.

M0 M12

RMSD (IQR) %Diff (SD) R
2(range) RMSD (IQR) %Diff (SD) R

2(range)

Hip 0.38 (0.17) 11 (3) 0.87 - 0.97 0.40 (0.18) 10 (2) 0.77 - 0.98
Knee 0.43 (0.27) 17 (6) 0.74 - 0.98 0.63 (0.41) 17 (7) 0.71 - 0.98
Ankle 0.32 (0.15) 8 (3) 0.93 - 0.99 0.29 (0.22) 8 (5) 0.95 - 0.99

Median RMSD, interquartile range (IQR) and range of JCF curve similarity (correlation) between Gen and SubS model estimates for the hip, knee and
ankle joints of 11 participants. %Diff is the mean RMSD expressed as a percentage of the range of normalised JCF estimated by SubS.

Figure 2. Boxplot distribution of P1 and P2 JCF estimates for scaled generic and subject-specific models at two observations, M0
and M12. � indicates significant difference at P< 0.05.

Figure 3. Boxplot distribution of overall joint loading estimates calculated as area under BW-normalised JCF curve. AUC expressed
as BW�%Gait Cycle (BW.%c).

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 5



maximum values of Dt(JCF) for all joints (hip: 0.9

(0.3) BW, 1.0 (0.3) BW; knee: 0.8 (0.3) BW, 0.7 (0.3)

BW; ankle: 1.0 (0.8) BW, 0.9 (0.6) BW for Gen and

SubS, respectively).

A large within group variability (maximum SD:

28.5 BW.%c) was observed for the overall joint load-

ing (AUC, Figure 3) measures, particularly at the hip

and at the ankle, for both Gen and SubS. No group

differences were found for these values, even if a ten-

dency was observed at the knee, where SubS predic-

tions of JCF at both time points tended to be on

average, 10% lower than that of Gen, with higher esti-

mates (>40%) from SubS observed only for one sub-

ject (still true at both time points).

Inter-model differences (Dm) at the knee were

observed for the majority of participants at both time

points when considering the AUC and JCF peaks

whereas the opposite was true for all joints, looking at

the waveform correlation between model predictions of

JCF (Tables 2 and 3).

The matrix in Table 4 shows an overall good

agreement between predictions from the two models

for most of the subjects, except for the R2 that at the

ankle showed a disagreement for about half of the

participants.

Discussion

The aim of this study was to evaluate the consistency

in measures of JCF and JCF changes over time, using

subject-specific (SubS) and scaled generic (Gen) MSK

models applied to 3D gait data from a group of chil-

dren with Juvenile Idiopathic Arthritis.

Several indices have been used by different authors

to analyse the temporal curves usually obtained from

gait data, with some looking into distinct parameters

such as the mean value at a specified event, while

others look at how a parameter of interest changes

over the whole cycle (Kadaba et al. 1989; Chau 2001;

Picerno et al. 2008; Di Marco et al. 2018). These dif-

ferent approaches yield complementary information

associated to changes in peak values, amplitudes and

phases of the curves which can all be of interest,

depending on the outcome (e.g., maximum force vs

Table 2. Inter-model differences in participant estimates at M0.

jDm(AUC)j[BW.%c] jDm(Peak)j[BW] R
2[Dm(JCF)]

H K A P1H P2H P1K P2K P2A H K A

S1 9.1 14.1 11.0 0.4 0.3 0.8 0.6 0.5 0.94 0.75 0.96
S2 0.1 13.6 0.8 0.3 0.2 0.2 0.6 0.9 0.93 0.90 0.93
S3 3.2 15.7 10.5 0.9 0.1 0.5 0.7 0.6 0.89 0.85 0.99
S4 6.9 39.5 0.7 1.2 0.1 0.5 1.6 0.6 0.92 0.94 0.98
S5 7.7 42.2 16.4 0.4 0.6 0.7 1.7 0.3 0.94 0.94 0.99
S6 9.0 22.4 1.0 0.8 0.7 0.3 1.2 0.9 0.87 0.74 0.93
S7 21.5 12.1 17.9 1.2 0.5 0.4 0.7 0.4 0.96 0.88 0.96
S8 12.1 20.1 13.3 0.5 0.2 0.8 0.4 0.6 0.92 0.98 0.98
S9 6.2 14.4 30.3 0.1 0.5 0.3 0.3 0.6 0.97 0.92 0.98
S10 17.5 15.4 29.9 1.0 0.2 0.2 0.5 0.6 0.95 0.89 0.99
S11 37.3 91.5 0.3 1.5 1.0 1.1 4.9 0.0 0.91 0.86 0.99
n 10 0 4 4 11 5 5 10 11 11 11

Absolute values of inter-model differences (Dm) at M0. Values in bold indicate greater than applied thresholds. [n] is the number of participants for
which Gen and SubS were considered to be in agreement based on Dm. AUC expressed as BW�%Gait Cycle (BW.%c).

Table 3. Inter-model differences in participant estimates at M12.

jDm(AUC)j[BW.%c] jDm(Peak)j[BW] R
2 [Dm(JCF)]

H K A P1H P2H P1K P2K P2A H K A

S1 19.5 41.6 75.1 0.4 0.4 0.2 1.8 1.3 0.91 0.78 0.95
S2 9.5 29.6 27.0 0.0 0.4 0.3 1.3 0.1 0.95 0.91 0.96
S3 11.3 25.2 7.3 0.6 0.9 0.6 1.6 0.9 0.90 0.81 0.98
S4 4.8 38.7 26.0 1.4 0.5 0.1 1.7 1.9 0.90 0.95 0.98
S5 1.9 34.3 3.1 1.1 0.4 0.3 1.4 0.1 0.92 0.95 0.99
S6 1.1 26.3 9.9 1.3 0.6 0.9 1.6 0.6 0.77 0.71 0.95
S7 0.1 16.2 2.0 0.9 0.2 0.7 1.1 0.2 0.95 0.82 0.97
S8 12.4 16.9 24.5 0.3 0.5 0.2 0.4 0.7 0.98 0.98 0.99
S9 5.4 10.0 18.7 0.6 0.0 0.1 0.6 0.1 0.98 0.92 0.98
S10 9.8 10.4 5.4 0.6 0.5 0.4 0.5 0.5 0.98 0.88 0.97
S11 20.3 41.9 5.1 1.5 0.6 1.0 3.1 0.1 0.95 0.85 0.99
n 11 0 2 3 11 7 3 9 11 11 11

Absolute values of inter-model differences (Dm) at M12. Values in bold indicate greater than applied thresholds. [n] is the number of participants for
which Gen and SubS were considered to be in agreement based on Dm. AUC expressed as BW�%Gait Cycle (BW.%c).
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impulse). For this reason, in this study indices from

both groups were used to capture the salient features

of the subject gait as well as any time-dependent pat-

terns in the data.

Within sessions, the outputs of the two models

were similar in terms of range of motion and wave-

form profiles of joint angles, net joint moments and

powers, despite the significant differences observed

when looking at individual time instances between

models over the gait cycle. Kainz et al. (2018) also

found similarities when comparing joint kinematics

and kinetics between scaled generic and MRI-based

models of typically developing children. As expected

in this study, differences were likewise observed in

the JCF profiles and estimates between the two mod-

els, in line with what has generally been reported in

the literature (Lenaerts et al. 2008; Scheys et al. 2008;

Valente et al. 2014; Song et al. 2019). In particular,

the range of JCF estimates observed for both models

were comparable to values reported by other studies

for the hip (Carriero et al. 2014), knee (Valente et al.

2014) and ankle (Prinold et al. 2016). The mean JCF

peaks were also comparable to previous independent

work conducted on a subset of children from the

same cohort at a different time point observation

(Modenese et al. 2018). Differences observed between

the models likely originate from the personalisation of

muscle origin and insertion points as well as joint

centre and axis locations, both in children (Kainz

et al. 2018) and adults (Scheys et al. 2008). An assess-

ment of some selected muscle forces estimated by

both models showed a general concurrence in timing

of activity and magnitude during the gait cycle for

most muscles (see supplementary data). As per the

JCFs, the differences in calculated muscle forces

between the two models remained similar across

observations for all muscles, which was unsurprising,

since muscle forces are known to be the main con-

tributors to JCF (Correa et al. 2010) predictions.

When looking at specific points on the JCF loading

profiles (Figure 1), lower hip loading response peaks

(P1) were predicted by the Gen compared to the

SubS. This is in contrast with what was reported by

Wesseling et al. (2016), in a sample of adult subjects.

An explanation for this disagreement could be the

different methods used to calculate the maximal iso-

metric force for Gen and SubS models in this study,

this was kept the same for both models by Wesseling

et al. However, it has been previously suggested that

this should not have a significant influence on output

muscle force and JCF estimates (Valente et al. 2014;

Wesseling et al. 2016; Modenese et al. 2018). Further

study would be needed to further explore this spe-

cific aspect.

A large variability between subjects was observed

for the JCFs at all the joints, particularly at the knee

when using SubS models. This high between-subject

variability was in line with what was previously found

when looking at joint kinematics, moments and knee

JCF in a larger group from the same cohort

(Montefiori et al. 2019a, 2019b). This may be attribut-

able to participants adopting a variety of loading

strategies to attenuate pain or discomfort resulting

from swelling or inflammation of their joints

(Montefiori et al. 2019b). This variability was partially

masked by the scaled model with a reduced between

subject variability indicating its less sensitive inter-

subject nature. We similarly observed larger between

model differences in AUC at the knee (Tables 2 and

3), but these were expected since the SubS was imple-

mented to have a simplified knee joint (extension/

flexion) compared to the Gen which had an

Table 4. Agreement in longitudinal changes (M12 - M0) in selected metrics between Gen and SubS predictions of JCF for each
of 11 participants.

Dt(AUC) Dt(Peak)[BW] R
2[Dt(JCF)]

H K A P1H P2H P1K P2K P2A H K A Tots

S1 � � � � � � � � � � � 7
S2 � � � � � � � � � � � 9
S3 � � � � � � � � � � � 6
S4 � � � � � � � � � � � 10
S5 � � � � � � � � � � � 8
S6 � � � � � � � � � � � 9
S7 � � � � � � � � � � � 10
S8 � � � � � � � � � � � 9
S9 � � � � � � � � � � � 10
S10 � � � � � � � � � � � 7
S11 � � � � � � � � � � � 7
Totg 10 9 7 7 11 9 10 9 8 7 5

Change (Dt) in area under JCF curve (AUC), peak 1 (P1) and peak 2 (P2) and coefficient of determination for Gen against SubS DJCF. Subscripts represent
hip (H), knee (K) and ankle (A). (�) agreement, (�) disagreement. Totg and Tots refer to the number of participants with agreement for a particular met-
ric and number of metrics in agreement per participant, respectively.
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additional prescription of tibial translation as a func-

tion of knee joint angle. Nonetheless, the latter was

able to capture longitudinal changes at individual

level consistently with the subject specific model for

the hip and knee especially, as suggested by the

results of the agreement matrix (Table 4). Taking the

knee for example, although predictions of AUC were

different between models at each observation, a

majority of participants had Dt(AUC) in agreement in

terms of whether there was an increase or decrease.

Comparing the differences between the JCF profiles

estimated at the two time points for each of the mod-

els, it was observed that Gen and SubS provided con-

sistent information in terms of increased or decreased

JCFs between different phases of the gait cycle going

from M0 to M12, even if these changes were of differ-

ent magnitude. The difference in magnitude was par-

ticularly prominent at the ankle, which also explains

why the number of participants with between model

agreement (Totg) for R2[Dt(JCF)] (Table 4) was the

lowest for this joint. This was despite the observation

that predictions of JCFs at the ankle had the most

highly correlated waveforms between models at each

observation. At group level, no statistically significant

difference in longitudinal change in JCFs between

Gen and SubS was observed. Overall, these results

indicate that both models were able to account for

changes in the JCFs likely attributable to changes in

the patient’s pathological condition.

The sample size involved in this study is small,

although larger than other studies comparing generic

and image-based subject-specific models (Correa et al.

2011; Bosmans et al. 2015; Wesseling et al. 2016;

Kainz et al. 2018). Moreover, the investigated group is

a good representation of a very heterogeneous patient

population (Montefiori et al. 2019b), as also indicated

by the reported between subject variability in calcu-

lated JCF, which may be considered an advantage in

terms of applicability of the reported results. It must

be acknowledged, however, that even if Juvenile

Idiopathic Arthritis might cause bone deformities,

these were not evident in the investigated group of

children and no clinically meaningful longitudinal

changes emerged from the analysis of their MRIs.

This does of course limit the generalisability of the

reported results to populations with large bony

deformities. The inability of scaled generic models to

account for significant anatomical alterations, such as

increased femoral anteversion or tibial torsion, have

been reported to impact significantly on predictions

of moment arm lengths (Scheys et al. 2008).

The SubS was considered as the gold standard in

this study as it is assumed to be more representative

of the subject’s anatomy than the generic models.

This assumption of course has its limitations such as

errors in operator input but was the only one possible

due to the unavailability of longitudinal data from

instrumented prosthesis, especially for children.

Conclusion

In conclusion, this study evaluated the consistency

between scaled generic and subject-specific model

estimates of longitudinal changes in JCF for a popula-

tion of children with JIA. By using different metrics

for reporting JCF, it was shown that even if the esti-

mates of JCF can be highly different at a single time-

point, the two models showed agreement when

calculating the longitudinal difference in joint contact

forces, particularly at the hip. It is hence suggested,

albeit with caution, that scaled generic models can be

used as an initial and easily implementable modelling

approach when interest is in trends rather than

exact estimates.
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Appendix

Figure A1 Different indices for the description and analysis of the simulation results. A: Goodness of fit was assessed with the
RMSD. B: Joint loading during the loading response (P1) and push off (P2) phases were analysed using the peak values and over-
all joint loading by the area under JCF/BW curve.

Figure A2 Comparison between Gen (red) and SubS (blue) model estimations of sagittal plane joint angles, moments and powers
at all observations for 11 juvenile participants. Joint moments and powers normalised by body mass. Black bars indicate signifi-
cance at P< 0.05 according to the non-parametric one-sample paired t-test. Extension/Flexion (Ext/Flex), Plantarflexion/
Dorsiflexion (PF/DF) and Absorption/Generation (Abs/Gen).
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Figure A3. Muscle forces estimated by the Gen (red) and SubS (blue) models for 12 selected muscles at M0 and M12. Black bars
indicate statistical significance at P< 0.05 between models. Selected muscles are biceps femoris long head, biceps femoris short
head, gastrocnemius lateralis, gastrocnemius medialis, rectus femoris, semimembranosus, soleus, tibialis anterior, tibialis posterior,
vastus intermedius, vastus lateralis and vastus medialis.

Table A1. p-values for Wilcoxon sign ranked test between
M0 and M12 for Dm(RMSD).

Hip Knee Ankle

p-value 0.929 0.285 0.959
Effect size (Cohen’s d) 0.069 �0.037 �0.302

Table A2. P-values for Wilcoxon sign ranked test between
Gen and SubS for Dt(RMSD).

Hip Knee Ankle

p-value 0.965 0.779 0.859
Effect size (Cohen’s d) �0.043 �0.156 0.092

Table A3. p-values for Wilcoxon sign ranked test between
Gen and SubS estimates of AUC(JCF).

M0 M12

Hip Knee Ankle Hip Knee Ankle

p-value 0.286 0.050 0.182 0.424 0.050 0.091
Effect size (Cohen’s d) �0.320 0.454 0.541 �0.072 1.009 0.648
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