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ABSTRACT 
Intersection platooning has been shown in several studies to 
provide higher throughput and hence greater productivity for 
material transfer using fleets of mobile robots, however questions 
remain about the behavior in a full range of traffic situations as no 
algorithm has been proven complete. As a result a lower throughput 
backup system is typically used in practice. A state of-the-art 
method for decentralized platooning based on an intersection 
controller has been implemented. A number of test cases are 
described to probe the performance limits. Furthermore, an outline 
of a fleet control system which uses only platooning for 
coordination is described. This will allow edge cases to be 
investigated in simulation. 
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1. INTRODUCTION 
Coordinated conflict-free motion of a number of mobile robots in 
order to complete a material transfer task is important in the 
operation of fleets of AGV (Autonomous Guided Vehicles) used in 
flexible manufacturing and automated warehouses [18] and [7]. A 
crucial sub-problem is conflict resolution between multiple AGVs, 
without control of task assignment or scheduling. 

AGV motion coordination can be posed as a variation of the 
Multiple Vehicle Routing Problem with the addition of challenging 
spatio-temporal constraints, preventing collisions between each 
vehicle, as well as the usual timing and capacity constraints [13]. 
In [11], solutions are classified into centralized, decentralized and 

decoupled approaches. Each approach may be either optimal or 
heuristic based on whether or not they find the global minimum of 
some objective function. 

It is also possible to classify approaches based on the limitations 
they place on the state space of each AGV. Most practical methods 
incorporate both obstacle avoidance constraints and differential 
motion constraints into some sort of roadmap. This is often a graph 
with vertices at key points in the reachable state space, connected 
by edges representing feasible motion between them. The effect of 
increasing resolution on path quality (measured by reduction in the 
length of the shortest path) and computation time are studied in 
[17]. 

An optimal decoupled method operating on graphs is presented in 
[19]. Optimal conflict-free motion is posed as a large Integer Linear 
Program. Resolution complete general purpose algorithms are used 
to solve it for 150 robots in just over 10 seconds. The lattice/graph 
construction has recently been developed further to ensure 
kinematic constraints are met and improve coverage of the state 
space around obstacles [20]. In [13], the combined problem of 
DCFVRP (Dispatch and Conflict-Free Vehicle Routing Problem) 
for flexible manufacturing is formulated as an integer program and 
two different decoupled algorithms are presented to solve it: local 
search and random search. Neither of the proposed algorithms is 
complete but local search found more valid solutions in the 10 
random examples tested, all involving three vehicles. 

Decentralized control is another option to decompose large scale 
problems which take too long to solve centrally [2]. Although 
limiting the information available to each decision maker can make 
reasoning about collective behavior more difficult, various attempts 
to decentralize conflict-free routing have been made. In the field of 
conflict free routing for mobile robots, [8] presents a solution which 
generates a graph representation of the free space - effectively a 
roadmap - with the property of ‘collision avoidability.’ This means 
that every node on the critical path must be at most one move away 
from a node that does not obstruct the critical path. The critical path 
is defined as the union of all the shortest paths between pick/drop 
locations in the roadmap. During decentralized planning, AGVs 
attempt to reserve ‘private zones’ consisting of the node on the 
critical path along with all adjacent collision avoidance nodes. Each 
AGV has an identical roadmap, plans the shortest path to its own 
goal and negotiates with those nearby based on a numeric priority 
to reserve the nodes in its own path. An AGV requests those in its 
path move to their collision avoidance node, and those with a lower 
priority will do so. Proof is given of correctness, that deadlocks are 
avoided, but throughput is sub-optimal with low priority vehicles 
frequently forced to stop and wait. An alternative decentralized 
solution, based on a roadmap with two levels of detail is 
summarized in [15]. Conflict-free routing primarily takes place at 
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the most detailed level, based on prioritized roadmap reservation 
with local negotiation to guarantee correctness [5]. In [4], the speed 
of the approaching AGV is optimized at each intersection in a 
similar way to centralized intersection platooning. The result is 
higher throughput as time consuming negotiation is avoided in 
most cases. 

Intersection control, based on platooning, is a concept developed 
for the operation of anticipated CARVs (Connected and 
Autonomous Road Vehicles). A recent review of approaches for 
intersection and merging coordination is given in [14]. Centralized 
optimization approaches improve on early ideas like First-Come-
First-Served spatial reservation from [10] by minimizing fuel 
consumption, but the rapid increase in state space with larger 
numbers of vehicles will need to be addressed before large scale 
adoption. The communication channel connecting every vehicle 
with the central controller introduces a single point of failure, the 
reliability effect of which is difficult to evaluate in existing 
simulations. Moreover there are few CARVs currently available 
making a practical experiment unfeasible in most cases. Attempting 
to address these limitations are decentralized methods such as 
fuzzy-logic, virtual vehicle platooning and invariant set 
approaches. 

Recently [16] described an approach to the DCFVRP for flexible 
manufacturing based on dynamic platooning with vehicle-to-
everything messaging and consensus speed control, resulting in a 
decentralized heuristic solution with some additional rules to 
ensure correct behavior and avoid deadlocks by adding a 
reservation protocol for some parts of the roadmap. This was 
combined with feedback from the queue length at different 
workstations in a traffic management heuristic. Simulation results 
show an impressive improvement compared to the first-come-first-
served scheduling approach meant to represent industry standard 
practice. 

It is shown in [4] that approach-speed choice by a centralized 
intersection controller provides higher throughput compared to 
stopping and giving way for decentralized reservation negotiation. 
The speed choice is shown to be optimal if a solution is found, 
however it is not shown to be complete. This suggests there are 
certain roadmap and traffic combinations where there is no solution 
and therefore it will fall back on the negotiation method to prevent 
unsafe behavior. The consensus based platooning method for local 
collision avoidance used in [16] is unusual in the AGV domain. 
That work makes no claims about completeness, but does consider 
the trivial consensus where all vehicles stop in a deadlock. In [21], 
a recent system for conflict avoidance based on time headway is 
shown to significantly reduce intersection crossing time and allow 
more vehicles to operate in the same floor-space compared to a 
traditional reservation based strategy. 

It is shown, in [4], that platooning provides superior throughput to 
the earlier reservation based systems, and that if a solution exists it 
is optimal, but not that a solution exists on all roadmaps. More 
importantly a set of conditions, which must hold for a solution to 
exist, is not given. The consensus algorithm in [16] also shows 
improved throughput in concert with a scheduling approach, but 
does not prove convergence. An example of a resolution complete 
algorithm based on spatial reservation is [9]. Neither per-
intersection optimal platooning nor per-vehicle consensus have 
been proven complete. The lack of guarantees is an important 
limitation of platooning methods for collision avoidance. The 
research gap identified is the lack of investigation into the range of 
motion conflict situations that can be resolved with platooning 
methods. 

2. METHOD 
Conflict resolution based on platooning, with speed choice by an 
intersection controller was implemented with a vehicle to 
intersection messaging scheme. The full site is divided into zones, 
each one containing a single intersection. Each AGV in the fleet 
has a copy of the roadmap which is static. The fleet controller 
interfaces with the warehouse management system to get the next 
material transfer job, consisting of a pick location and a drop 
location. All jobs are assumed to be of unit size and each AGV has 
a capacity of one unit. With these assumptions, a straightforward 
policy is to assign the next job to the AGV nearest to the pick 
location - first-come-first-served scheduling. When an AGV 
receives a new job, it finds the shortest path through the roadmap 
using the Floyd-Warshall algorithm. Next it must send its planned 
path to the intersection controller for the zone it currently occupies. 
The intersection controller stores the plan and current position of 
every AGV approaching the conflict point of the intersection. 
Every time it receives a new plan it must recalculate the approach 
speed for every approaching AGV to minimize total travel time 
without collision. This will happen every time an AGV enters the 
zone from somewhere else, or an AGV within the zone is assigned 
a new job. 

 
Figure 1. Intersection layout  

The Floyd-Warshall algorithm holds some advantages in execution 
time and simplicity over commonly used Dijkstra and A* 
algorithms for finding the shortest path through a directed acyclic 
graph with positive edge weights. The roadmap can be expressed 
as such a graph with the edge weight corresponding to the distance. 
To exploit the static nature of the roadmap it is desirable to pre-
calculate as much as possible, for fast run-time performance. 
Floyd-Warshall proceeds by exhaustive search over all edges in ܱሺܰଷሻ operations using ܱሺܰଷሻ memory in ܰ the number of edges 
[6]. For each node, the next node in the shortest path to every 
destination is recorded. The result is ܰଶ shortest path trees linking 
every origin-destination pair, each of which can be traversed in ܱሺܲሻ  operations at run-time where ܲ  is the length of the path. 
Traversing a stored tree at run-time will be faster than graph search, 
even using efficient heuristic methods such as A*. The maximum 
number of nodes in the graph will be limited by the memory 



available for pre-computation, but memory is cheap and even a 
basic server should be sufficient for the largest sites with the most 
intricate networks. 

The intersection controller was implemented based on [4]. The 
surrounding lanes are first discretized into segments. The 
intersection shown in Figure 1 is divided into six segments, each of 
length 10 meters. The critical segments are the two that cross in the 
center. There are two routes defined, one starting on the left and 
traveling to the right and the other starting at the bottom and 
traveling up. One AGV takes route 1 and the other takes route 2. If 
they both travel at maximum speed they will collide in the center. 

The dynamic model for each AGV assumes they are able to exactly 
follow the path, and attempt to reach the target speed for each 
segment subject to a limited rate of acceleration of ܽ mȀsଶ. 

 

Figure 2. Messages exchanged by participants approaching 
intersection.  

The ApproachPlan message sent by the AGV contains a sequence 
of segments, which it intends to traverse, along with its current 
distance along the first one. The flow of messages is shown in 
Figure 2. The SpeedList sent by the intersection controller contains 
the optimal speed for every segment in the plan. The speeds can be 
found with the nonlinear program in Equation 1. 

 min૖ ்ܬ ൌ      ்ࣘࢊ 

subject to ࢌሺࣘሻ ൑ Ͳ ࣘ௠௜௡ ൑ ࣘ ൑ ࣘ௠௔௫ 

(1) 

Each parameter is the inverse of the velocity of that segment, for 
one AGV: 

 ߶௜ǡ௠ ൌ ͳݒ௜ǡ௠ (2) 

Over all the known plans they are assembled into a vector  

 ࣘ ൌ ሾ߶ଵǡଵ ǡ ǥ ǡ ߶ଵǡெభ ǡ ǥ ǡ ߶ேǡெಿሿ (3) 

Where ܰ is the number of AGV on approach and ܯ௜ is the number 
of segments in the plan of the ith AGV. 

The nonlinear constraint ࢌሺࣘሻ  enforces the separation between 
each pair based on the entry and exit time to the conflict segment, 
which depends on the speed at each preceding segment. Only 
elements with ݆ ൐  ݅ are included as the matrix ܣ is symmetric and 
the diagonal elements are not useful. 

 ݂ሺࣘሻ ൌ ଵǡଶǡܣൣ ǥ ǡ ௜ǡ௝ܣ ǡ ǥ ǡ ݅׊ ேିଵǡே൧ܣ א ܰǡ ݆ ൐ ݅ (4) 

 

The constraint between each pair of AGVs can be expressed as in 
Equation 5. 

௜ǡ௝ܣ  ൌ ൫Ⱦ୧ǡ୨ ൅ ௜ǡ௝൯ଶߚ െ ൫ߙ௜ǡ௝ െ ௜ǡ௝ have the units of time and are related to the arrival time ߱௜ǡ௝௠௜௡ߚ ௜ǡ௝ andߙ ௝ǡ௜൯ଶ (5)ߙ  and departure time ߱௜ǡ௝௠௔௫ at the conflicted segment by 
Equations 6 and 7 . 

௜ǡ௝ߙ  ൌ ߱௜ǡ௝௠௔௫ ൅ ߱௜ǡ௝௠௜௡ (6) 

௜ǡ௝ߚ  ൌ ߱௜ǡ௝௠௔௫ െ ߱௜ǡ௝௠௜௡ (7) 

Similarly 

௝ǡ௜ߙ  ൌ ௝߱ǡ௜௠௔௫ ൅ ௝߱ǡ௜௠௜௡  

௝ǡ௜ߚ  ൌ ௝߱ǡ௜௠௔௫ െ ௝߱ǡ௜௠௜௡  

The simplification of constant speed over each segment means that 
the arrival and departure time are related to ࣘ  and the length of each 
segment ݀௜ǡ௝ by Equations 8 and 9: 

 ߱௜ǡ௝௠௜௡ ൌ  σ ݀௜ǡ௝߶௜ǡ௝௣೔௜ୀଵ   (8) 

 ߱௜ǡ௝௠௔௫ ൌ  ߱௜ǡ௝௠௜௡ ൅ σ ݀௜ǡ௝߶௜ǡ௝௤೔௜ୀଵ   (9) 

where the total number of segments traversed by each vehicle ܯ௜ 
has been split into ݌௜ segments approaching the conflict and ݍ௜ 
conflicted segments such that ܯ௜ ൌ ௜݌ ൅  ௜ݍ
PRELIMINARY RESULTS 
Using the simple roadmap shown in Figure 1 with only two routes 
some failure cases can be examined. One set of failures is possible 
due to the start positions of the AGV. As all of the speeds must be 
recomputed every time a new AGV arrives or gets a new job, a 
valid plan may be requested for any starting location along the two 
zones. The only constraint considered in the optimization is the 
minimum and maximum speed of each segment. 

The messaging protocol and dynamic equation were implemented 
in Python and Equation 1 solved using ‘trust-constr’ method [3] 
within scipy.optimize [1]. This method can benefit from analytical 
constraints if they are available. With the roadmap containing six 
segments only, only four need to be included in ࣘ because the 
speed on segments after the intersection can be chosen freely. For 
two AGVs traversing two segments each before leaving the conflict 
zone the optimization vector is ࣘ א  Թସ. From Equation 4 there is 
only one constraint and ࢌሺࣘሻ has only one element as there is only 
one unique pair. 

To provide a basic test case, both vehicles begin at the start of their 
approach lane, 10m from the conflict. The conflicted segment in 
both paths is 10 m  in length. The maximum speed is 10 mȀs , 
corresponding to ߶௠௜௡ ൌ  ͲǤͳ . Convergence is attained in 94 
function evaluations. The total travel time objective at the 
minimum is 5 seconds. The result ࣘ ൌ  ሾͲǤʹǡ ͲǤͳǡ ͲǤͳǡ ͲǤͳሿ indicates 
one vehicle slows down to 5mȀs for the first segment to allow the 
other to pass before it continues at full speed. 

The next test has both vehicles at the start of the conflict segment. 
There is no solution that can prevent both vehicles occupying the 

AGV 

AGV 

IntersectionController 

ApproachPlan 
s 
v 

d [ 0 , …,  d m ] 

SpeedList 
v [ 0 , …,  v m ]



conflict as they both start there but the behavior of the solver is 
informative. After 829 function evaluations the termination 
condition appeared to be satisfied, but in fact the lower bound on ࣘ  
was not respected by the result. The speeds for one vehicle are 
impossibly high. This suggests that the appearance of multiple 
vehicles inside the conflict zone should be ruled out by the 
intersection controller software before attempting to solve for the 
optimal speeds. 

Another test case has one vehicle positioned immediately before 
the conflict zone. The second is already crossing. This could occur 
if the first vehicle had stopped to complete a job at this position, 
and triggered the re-plan by requesting a set of speeds for the route 
to its next job. From this position, traveling at the minimum speed, 
it would enter the conflict zone before the departure of the crossing 
vehicle: as a result there is no feasible solution to Equation 1. This 
could cause convergence to fail much like the previous case but 
could occur in normal operation. 

The final test case has each vehicle part way along the approach 
lane, stationary. As the acceleration limit is not taken into account 
in the optimization, the target speeds provided by the intersection 
controller may not be attained before arrival at the conflict zone. As 
both have the same acceleration rate they will arrive at the same 
time and collide. 

3. FURTHER WORK 
The tests conducted demonstrate that if platooning alone is used to 
coordinate the motion of a number of AGVs, workarounds are 
required for certain situations where one AGV needs to come to a 
complete stop or change route. The next step is to implement some 
of these workarounds and describe the types of roadmap where they 
need to be used often. 

The constraints described here can be expressed in quadratic form 
allowing the analytical Hessian to be provided to the solver. Doing 
this may improve convergence with the ‘trust-constr’ solver. 
Another improvement to the described intersection controller 
would be the addition of constraints between the speeds in adjacent 
segments to reflect the limited acceleration of the AGV. Going 
further in this direction, the effect on convergence of solving for 
the optimal acceleration in each segment might be investigated. 

A comparison in terms of both existence and quality of solutions 
with a consensus algorithm would reveal whether the limitations of 
platooning identified are fundamental or due to the harsh 
discretization required for optimality. 

A simulation of multiple intersections within a whole site would 
reveal whether maximum throughput at each intersection leads to 
reduced trip times across multiple intersections, or whether this rule 
should be modified to account for downstream traffic 
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