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 Abstract 

Tadhg M. Carroll 

How ecological communities respond to long-term environmental change via changes 

in species richness and composition is an urgent question in the 21st century as 

anthropogenic forces drive biodiversity declines across taxa and regions. As 

environmental conditions change over time, effects may cascade through co-occurring 

taxa, directly disturbing some species and altering the structure of ecological networks 

to disturb others However, a paucity of data has meant that studies investigating abiotic 

and biotic drivers of biodiversity change over periods of decades are rare, particularly 

those spanning multiple co-occurring taxa. The aim of this thesis is to investigate how 

effects of long-term (ca. 80 years) environmental change propagate through co-

occurring plant and insect communities, driving changes in species richness and 

composition across taxa. 

To achieve this aim I utilised a uniquely rich re-visitation study of species occurrence 

data on the Studland peninsula in the south of England. Data collection was led in the 

1930s by the naturalist Cyril Diver, and in the 2010s by the National Trust in 

collaboration with a team of citizen scientists. I asked: 1) How have vascular plant 

assemblages of Studland changed in response to a changing abiotic environment 

between the 1930s and the present day?; 2) Have plant and insect taxa undergone 

congruent biodiversity changes under shifting environmental conditions?; 3) What 

abiotic and biotic factors relating to adult and larval ecological requirements have 

influenced long-term biodiversity change in Studland’s hoverflies?; 4) How are the 

plant and insect communities of Studland likely to change in coming decades under 

proposed management interventions? 
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1) Using multilevel models of differences in Ellenberg indicator values (EIVs) 

between assemblages of vascular plant species occurring in each time-period, I found 

that the most prominent driver of plant species compositional change was changing 

hydrological conditions, followed by successional processes. 2) Using hierarchical 

modelling of species loss/gains and a range of multivariate techniques, I found that 

species richness and compositional changes in plant and insect communities displayed 

cross-taxon congruence – correlated patterns of biodiversity change – over the ca. 80 

year time-period, likely driven by a combination of abiotic and biotic change. 3) 

Hierarchical modelling of species loss/gains in the hoverfly community suggested that 

species richness in adult assemblages is limited by adult resource availability (plants) 

at highly localised scales, while compositional change is strongly affected by the 

availability of suitable larval microhabitat at the wider scale of a few kilometres. As 

with the plants, hydrological change was the main abiotic driver of change in the 

hoverfly community. 4) Bayesian Belief Network (BBN) models predicted that local 

management interventions to increase drainage and control ecological succession 

could benefit the taxa and habitats of Studland through increased species richness. 

However, BBN models also predicted that the health of the regional metacommunity 

is of utmost importance in maintaining a healthy local system. 

I have shown that congruent biodiversity change occurs across diverse plant and insect 

taxa, and is driven by changes in both abiotic and biotic conditions. These drivers do 

not act independently from one another, as demonstrated by effects of wetter winter 

conditions on hoverfly composition, coupled with effects of species richness change 

in the plant community, while the plant community was itself also responding to 

hydrological change via changing species composition. Crucially, my results suggest 

that the health of the regional metacommunity is of the utmost importance in 
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maintaining a healthy local system when faced with environmental changes as seen at 

Studland; a reservoir of species available to take advantage of new conditions is vital. 

Therefore this work suggest a joint emphasis placed on local and regional conservation 

practices to mitigate effects of the anticipated acceleration in environmental change. 
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1. Introduction 

Two limiting factors constraining community ecological research are i) the number of species 

which can simultaneously be studied (Vellend 2016), and ii) the time-scale over which 

environmental and ecological processes are investigated (Dornelas et al. 2012). The ecological 

literature is replete with studies of either wide temporal scope (e.g. Prach 1993; Keith et al. 

2011; McGovern et al. 2011; Diaz et al. 2013) or taxonomic coverage (e.g. Van Veen et al. 

2008; Peters et al. 2016). However, there are few notable exceptions with depth along both 

temporal and taxonomic axes (Biesmeijer 2006, Magurran and Dornelas 2010, Ewald et al. 

2015, Storkey et al. 2016). As environmental conditions change over time, effects can cascade 

through co-occurring taxa, directly disturbing some species and altering the structure of 

ecological networks to disturb others (e.g. Trophic cascades (Paine 1974, Pace et al. 1999)). 

For instance, changing precipitation levels in desert ecosystems directly affect the of types 

grass species which occur, in turn affecting the relative abundances of granivorous rodents 

(Ernest et al. 2008). Anthropogenically induced environmental change is forecast to accelerate 

deep into the 21st century (Masson-Delmotte et al. 2018), amplifying pressures on communities 

which are already under duress. It follows that long-term studies on processes affecting 

multiple co-occurring taxa over periods of decades are needed in order to better anticipate 

community responses. Such research should serve to inform management for conservation as 

we embark on a period of potentially unprecedented environmental change. 

In the following chapters I utilise a uniquely rich re-visitation dataset of species occurrences to 

investigate how long-term environmental change (ca. 80 years) propagates through plant and 

insect communities, culminating in species richness and compositional change across taxa. 

Throughout, I aim to determine how abiotic and biotic factors combine to drive local 
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biodiversity change, and what the implications are for ecological communities in the coming 

decades. 

 

1.1  Background – Temporal Trends in Biodiversity 

Despite the importance of temporal biodiversity trends (Chapin III et al. 2000, Dornelas et al. 

2012, Lindenmayer et al. 2012), they are much less well studied and understood than spatial 

patterns and processes (Magurran and Dornelas 2010). This is not due to a misunderstanding 

of their importance, but rather to a combination of the rarity of datasets of sufficient temporal 

scope, and difficulty in obtaining funding for long-term projects under typical funding cycles 

(Dornelas et al. 2012). As more species are included in a study, logistical limitations increase 

due to the associated increase in person/hours required. As such, long-term studies in 

community ecology tend to be limited in taxonomic breadth, covering for example plant 

species (e.g. Diaz et al. 2013), or bird species (e.g. Harrison et al. 2014), but rarely plant and 

bird species. To overcome such logistical limitations, ecologists sometimes use workaround 

methods such as space for time substitutions (Blois et al. 2013), or study compact modules or 

functional groups of interacting species embedded within wider food webs (Holt 1997). 

However, laudable efforts of recording schemes in some countries for taxa including a number 

of insect groups, birds and plants (e.g. Thomas et al. 2004),  have allowed for considerable 

advances in this area in recent decades through studies of long-term biodiversity trends across 

these groups (Thomas et al. 2004, Biesmeijer 2006, Baker et al. 2012, Sánchez-Bayo and 

Wyckhuys 2019). Some notable long-term experimental studies have also coincided with and 

added to advances achieved via recording scheme data (Silvertown et al. 2006, Pérez-

Rodríguez et al. 2015). Despite these advances, literature on effects of long-term processes 
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acting across multiple co-occurring taxa is still relatively scant (Ernest et al. 2008, Özkan et al. 

2014, Ewald et al. 2015). 

Both the spatial scale of analysis and specific biodiversity metrics used must be made explicit 

when investigating temporal biodiversity trends, though not all studies have been sufficiently 

careful in doing so (McGill et al. 2015). At global scales we are in the midst of a major 

extinction crisis (Barnosky et al. 2011), as land use change (Baker et al. 2012, Hooftman and 

Bullock 2012, Senapathi et al. 2017) and anthropogenic climate change (Parmesan 2006) push 

many communities to rely on sparsely distributed protected areas for their survival (Thomas 

and Gillingham 2015). However, despite the prevalence of global declines, the ubiquity of such 

downward trends in local communities is not at all clear where major anthropogenic 

disturbances have not occurred – a topic subject to recent controversy in the ecological 

literature (Cardinale et al. 2018). Furthermore, we should expect temporal rates of species 

turnover to decrease as communities examined move upwards in scale from local to regional – 

local communities contain only a subset of the regional species pool and thus have more scope 

to fluctuate in composition than more saturated regional areas (Adler and Lauenroth 2003). To 

further complicate the issue, species compositional changes at regional scales are accelerating 

under effects of climate change (Parmesan 2006). Such complexity highlights the need for 

clarity on scales of analyses. 

Another complexity to consider is that metrics of temporal biodiversity change come in many 

forms (Legendre and Gauthier 2014, McGill et al. 2015). This is an important point to 

remember when comparing results. However, most of these metrics focus on changes in the 

number of species present (species richness differences), or the identities or relative 

abundances of species present (compositional differences). Throughout this thesis I will be 

focusing primarily on species losses and gains over an approximately 80 year period, as well 

as how aggregated species-level traits are associated with such losses and gains. As such, my 
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analyses will concentrate mostly on changes in species richness and changes in the identities 

of species present in either time-period (compositional change) rather than on changing 

abundances. 

The phenomenon of biotic homogenisation across ecological communities highlights the 

aforementioned importance of clarity in the spatial scale of analysis and the biodiversity 

metrics used. In 2003, Sax & Gaines highlighted the seemingly paradoxical phenomenon of 

local and regional gains in species richness occurring in many areas, while richness at wider 

scales – continentally and globally – continued to decline (Sax and Gaines 2003). This 

phenomenon can be explained, at least in part, by the process of biotic homogenisation, where 

more common species – both indigenous and invasive – extend their ranges, while rarer species 

are lost, leading to reductions in β-diversity (spatial variation in composition) and greater 

similarity across communities, but leaving limited changes in the overall numbers of species 

present (Olden 2006, Smart et al. 2006). 

Variable trends in local species richness change over time, coincident with declines at wider 

scales, may be a widespread pattern of biodiversity change over the last 100 years or more, 

though the validity of this claim has been questioned (Cardinale et al. 2018). Two wide ranging 

meta-analyses found that species richness was equally likely to increase or decrease in 

terrestrial plant communities (Vellend et al. 2013), and across a range of marine and terrestrial 

communities globally (Dornelas et al. 2014). Dornelas et al. (2014) also highlighted 

compositional changes of as much as 10% turnover in species composition per decade while 

species richness remained stable on average. These studies have been criticised on the grounds 

that the time-series data used were not entirely fit for purpose, and that claims of “global” 

trends were inappropriately broad given the scope of analyses (Gonzalez et al. 2016). However, 

the authors have in turn defended their conclusions, and point out that though their analyses 

are not perfect, they are of the highest standard possible given the current data available, and 
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thus comprise the best available evidence (Vellend, Dornelas, et al. 2017). Regardless of global 

average trends, the variability found across the wide range of communities included in these 

meta-analyses underscores the need for research into the plethora of specific processes 

underlying such trends in local communities.  

The need to understand both the context in which a community is embedded, and the 

underlying processes at play, when investigating biodiversity trends in local communities thus 

seems clear. Biodiversity change does not necessarily correlate across scales, and it is possible 

for patterns of local, regional and global change to differ substantially (McGill et al. 2015). 

Indeed, it should be no surprise to find variable patterns in biodiversity change across 

communities in differing environments, particularly those composed of different groups of 

species, as the contingent nature of processes underlying community dynamics has been a 

longstanding finding in community ecology (Lawton 1999). Asking how diverse co-occurring 

taxa collectively react to environmental change is a pressing issue for the practical purposes of 

management and conservation – particularly when potentially isolated protected local areas are 

the spatial units of conservation for collectives of taxa, as is often the case under current 

practices (Gillingham et al. 2015). 

 

1.1.1  The role of abiotic environmental change 

Surprisingly few studies have documented how compositional change tracks temporally 

changing abiotic environments over periods of decades (Leibold and Chase 2018). This is 

despite the well-documented influence of the abiotic environment on species composition 

across spatial extents (Chase and Leibold 2003, Austin 2007). Again, this is almost certainly 

due to logistical limitations and a lack of appropriate long-term datasets. As usual however, 

some excellent exceptions do exist; for instance in studies of ecological succession (Connell 
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and Slatyer 1977), experimental manipulations of soil nutrients (Crawley et al. 2005), and 

range adaptations to climate change (Parmesan 2006). 

The impact of abiotic environmental change on species richness and composition has generally 

been an important underlying factor in cases where data have been available to investigate it 

effects. Species richness often remains stable even where large compositional change occurs, 

and there is evidence to suggest that this may be due to suitably adapted species tracking 

environmental fluctuations (Brown et al. 2001). Environmental stochasticity was also a major 

driver of compositional change in temporal studies spanning microbes, plants and animals 

(Mutshinda et al. 2009, Hatosy et al. 2013, Kalyuzhny et al. 2014). 

Studies illustrating long-term effects of abiotic drivers on richness and composition spanning 

multiple co-occurring taxa are rarer still than single taxon studies. However, Özkan et al. 

(2014) found limited effects of environmental factors underlying 20 years of biodiversity 

change in co-occurring phyto- and zoo-plankton data. Contrastingly, Ewald et al. (2015) found 

that extreme hot or cold weather events had short-term effects on abundances in 11 out of 26 

insect taxa in a 42 year time-series of co-occurring insects recorded at genus, family and class 

level in cereal fields in Southern England. They also found correlations in abundance trends 

with temperature and precipitation, and detrimental effects of pesticide use on temporal 

abundance trends across taxa. Ernest et al. (2008) found that changes in precipitation patterns 

altered the composition of grass species which had knock-on effects on types of rodents present 

due to trophic dependencies. It remains unclear however, how co-occurring taxa respond in 

tandem to direct effects of abiotic environmental change in most ecosystems. This is clearly an 

important area of research for conservation biology in the decades to come under expected 

climate scenarios (Masson-Delmotte et al. 2018). 
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Where species composition does change due to changes in the abiotic environment, this is 

because species with relevant physiological or behavioural traits to exploit new conditions 

arrive, while unsuited species are excluded (e.g. Silvertown et al.2015). Thus when studying 

biodiversity responses to abiotic change, analyses focusing on trait composition of species 

present are valuable and informative (Mcgill et al. 2006, Violle et al. 2007). Throughout this 

thesis, I will place a large emphasis on functional traits explicitly defined in terms of how 

species perform along environmental gradients. I will use such traits in models to predict 

whether species have been lost or gained between time-periods, thus indirectly inferring abiotic 

environmental factors which have driven biodiversity change across the study area. 

 

1.1.2  The role of interactions between taxa 

That interactions between co-occurring taxa can have important effects on temporal 

biodiversity patterns within those taxa is almost a tautological statement; one need just imagine 

the effects of removing all plant species on a co-occurring assemblage of herbivores. However, 

effects of such group level interactions may be less obvious – while still being of utmost 

importance (Kiers et al. 2010) – in cases of less extreme temporal change in one or another 

group of co-occurring species. For example, long-term species richness differences in co-

occurring plants and pollinators are closely correlated (Biesmeijer 2006), and while the 

direction of causation is unclear, the importance of each of these taxa for one another for 

pollination suggests it is a strong underlying driver. Similarly, a study out of the Rothamsted 

monitoring scheme found correlated migration patterns between aphids and their parasitoids 

(Pérez-Rodríguez et al. 2015). Hunting and habitat destruction of large seed dispersers have 

also had detrimental effects on plant biodiversity in tropical forest ecosystems (Dirzo and 

Miranda 1990). 
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Correlated patterns of biodiversity change between taxa are not always due to biotic 

interactions however; shared responses to environmental change can also underlie correlations 

(Ranta et al. 2008a). It is thus important to partition abiotic and biotic drivers of biodiversity 

change where possible, in order to fully understand temporal patterns of change (Mutshinda et 

al. 2009). Throughout this thesis, I attempt to identify such correlated changes in biodiversity 

among co-occurring plant and insect taxa, and where possible, attribute such correlations to 

shared responses to the abiotic environment or biotic interactions between taxa. 

 

1.1.3  Biodiversity trends in plants and insects 

The sedentary nature of plants, and their direct dependence on the abiotic environment, make 

them ideal for study in permanent plots analysing factors affecting community dynamics (e.g. 

Crawley et al. 2005). Numerous studies have assessed biodiversity change in plant 

communities over the time-period of this doctoral research (1930s-2010s), finding a range of 

drivers including species dispersal mode (Lavergne et al. 2006), effects of topography on soils 

and microclimate (Bennie et al. 2006) and stress tolerance of plant species (Newton et al. 2012). 

However, the majority of studies of local-scale temporal vegetation change deal with 50 year 

intervals or less (Vellend, Baeten, et al. 2017), and trends display a large degree of variation 

depending on the environmental context within which a community is embedded (Vellend et 

al. 2013). Nonetheless, specific changes in species richness and composition of plant 

communities are likely to be ubiquitously important for co-occurring taxa, as trophic and 

structural dependencies make plants a vital cornerstone of wider ecological communities 

(Scherber et al. 2010; Rzanny et al. 2013). 

Insects comprise a large Class of taxa likely to experience effects of biodiversity change in 

plants both directly and indirectly (Kagata and Ohgushi 2006). Insects provide vital ecosystem 
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services (e.g. pollination and decomposition), and like plants, form a foundational component 

of terrestrial ecological networks. Furthermore, habitat specificity and environmental filtering 

due to narrow physiological constraints for many insect species also allow them to serve as 

useful ecological indicators of wider environmental change (Thomas 2005). Despite a relative 

lack of information on global biodiversity change in insects (Diniz‐Filho et al. 2010; Cardoso 

et al. 2011), there are reasons to believe that they may be experiencing an even more extreme 

extinction crisis than plants and macrofauna (Thomas et al. 2004, Dunn 2005, Dunn et al. 2009, 

Dirzo et al. 2014, Sánchez-Bayo and Wyckhuys 2019). 

Spatiotemporal trends in select insect taxa in the UK – including Bees, Wasps, Ants, Hoverflies 

and Butterflies – have been documented in more detail in recent decades than in any 

comparable region (Thomas et al. 1994, 2015). These taxa are also well documented in some 

other north-western European countries over this period (e.g. Biesmeijer 2006; Carvalheiro et 

al. 2013). Monitoring schemes have revealed general declines in species richness throughout 

the 20th century, though trends have varied across spatial scales (Keil et al. 2011). Declines 

have also proceeded at differing rates during distinct time-periods, with extensive richness 

declines and biotic homogenisation occurring before 1990 in an era of intense landscape 

modification, and a slowing of declines post 1990 coinciding with increased investment in 

conservation efforts (Carvalheiro et al. 2013a, Thomas et al. 2015). 

Modern declines in insect biodiversity have likely been driven by a combination of abiotic and 

biotic factors (Sánchez-Bayo and Wyckhuys 2019). Widespread land use change for 

agricultural intensification, along with use of pesticides which are physiologically damaging 

to insects were likely important causal factors (Potts et al. 2010).  Correlated biodiversity trends 

in pollinators and outcrossing plant species dependent on insects for pollination also suggest a 

causal pathway via trophic dependencies as previously discussed, although the direction of 

causality is uncertain (Biesmeijer 2006). Climate change is another important factor, though it 
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may be more likely to increase species richness in insects in more northerly areas such as the 

UK, as many species have thermophilus life-history stages preferring warmer conditions 

(Thomas et al. 2015).  

In order to aid the development of effective conservation management strategies for insects, a 

better understanding is needed of detailed drivers of community change, and in particular, how 

species specific traits mediate community responses (Thomas 2005, Carvalheiro et al. 2013a). 

While broad trends in biodiversity change may be described in relation to external causal 

factors (eg. climate warming (Parmesan et al. 1999)), different species can respond to 

environmental change in diametrically opposing ways. Responses of generalist and specialist 

species within closely related groups are a prime example of such conflicting trends (Dennis et 

al. 2011, Eskildsen et al. 2015, Aguirre-Gutiérrez et al. 2016). Data on insect communities 

documented within the Studland case study presented herein – particularly the hoverfly 

community – provide a valuable opportunity to make a contribution to the understanding of 

mechanisms underlying long-term biodiversity change in insects relating to the abiotic and 

biotic environment. 

 

1.2  The Cyril Diver Project: A re-visitation study 80 years on 

The empirical basis of the research presented in this thesis is a historical resurvey study of the 

Studland peninsula in Dorset on the south coast of England (figure 1.1). Species occurrences 

and distributions of a wide range of plants and insects were recorded by Cyril Diver and 

contemporaries in the 1930s (Diver and Diver 1933, Good 1935, Diver 1938), and resurveyed 

in a citizen science innovative led by the National Trust between 2013 and 2015 (“The Cyril 

Diver Project”). 
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Diver was strongly active in debates concerning the direction of ecological research when the 

field was still relatively young, arguing in 1944 that increasing trends towards theoretical 

modelling introduced a danger of misrepresenting “Biological Reality” (Cooper 2003). These 

empirical principals are clearly apparent in his meticulous approach towards data collection on 

Studland, aimed at building an understanding of plant and insect communities from the ground 

up as outlined in his 1938 publication entitled “The Plant-Carpet in relation to Animal 

Distribution” (Diver 1938). 

 

 

 

Figure 1.1 The Studland peninsula (inset) is situated in Poole harbour in the county of Dorset on the south coast of England. 
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1.2.1 The Studland study system: Habitats and “Sampling compartments” 

Diver went to great pains to reconstruct the physiography of Studland and its development over 

hundreds of years as dune ridges gradually formed (Diver 1933). He described the peninsula 

in terms of both underlying abiotic conditions and the resulting vegetative communities that 

developed. The Studland peninsula is composed of several broad habitat types, described by 

Diver as follows: 

“…though it may be loosely described as a heath, several distinct types of country are 

recognizable: sandy beach, marram dunes, dry and damp heaths, the harbour shore and 

various saltings, freshwater marshes and swamps, Little sea and smaller freshwater pools, 

scrub and woodland, grass and turf, and recently disturbed areas. These general types 

considered in reference to their physiography, history, and geological basis, form the natural 

major units or loci.” (Diver 1938) 

These habitat types remain a useful category for analysis of the ecological communities of 

Studland, and for comparisons between the communities of the 1930s and the present day. 

Diver’s original habitats have been adapted into seven broad categories for analyses presented 

in this thesis, namely: Lowland Heath (Wet and Dry), Dune heath, Dune, Woodland, Marsh 

(Saline), Shoreline, and Aquatic (edge) (figure 1.2). Habitat type will be a key factor of 

analyses in the following chapters. 
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Figure 1.2 Habitats and sampling compartments of Studland. Habitats are colour coded, while sampling compartments 

are demarcated by dashed lines. 

 

Analyses of biodiversity change on Studland will be primarily based on complimentary lists of 

species occurrences from the 1930s and 2010s. The sampling units for species lists (hereafter 

‘sampling compartments’) were established by Diver in the 1930s from sets of what he called 

‘locus-habitats’ (figure 1.3). He offered the following description of these locus habitats in 

1938: 
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“The term ‘locus-habitat’ is here used to denote a place characterized by a more or less 

uniform set of conditions. Within such a unit several separable sets of conditions are usually 

represented, but they are only treated as a biotic complex if they are so distributed as to form 

a relatively fine mosaic throughout which they freely interact” (Diver 1938). 

 

 

Figure 1.3 Diver’s original ‘locus-habitats’ (left) and the reconstructed contemporary sampling compartments (right). 

Diver’s sampling compartments were reconstructed in a GIS in the 2010s as part of the CDP 

by Dorset Environmental Records Centre (DERC) using his original ordinance survey maps 

for guidance (figure 1.3). In this way project members could collect contemporary data that 

was directly comparable with data from the 1930s. It is worth noting the great efforts that went 

into relocating compartment boundaries, particularly by Robin Walls of the CDP plant resurvey 

group, and David Brown of the National Trust, but also with inputs from many others 

contributors to the project. 
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Resurveys of historical vegetation plots can be quite robust to approximate errors in relocation 

of plots (Kopecký and Macek 2015), and the effort and expertise underlying the relocation of 

the Studland compartment boundaries allows for great confidence on analyses bases upon 

them. As part of a special feature on vegetation resurvey in the journal Applied Vegetation 

Science, Kapfer et al. 2017 suggested that sample plots for resurvey of historical vegetation 

data should be divided into three categories: Permanent, Quasi-permanent, and Non-traceable. 

Permanent plots are physically marked in the field, Quasi-permanent plots can be relocated 

using a plot-specific geographic position, and Non-traceable plots are those for which plot-

specific location information is not available and plots can only be relocated to a physically 

and environmentally relatively homogenous area. I consider the sampling compartments of 

Studland to fall somewhere between the Permanent and Quasi-permanent categories, as though 

they were be relocated using various physical indicators and detailed ordinance survey maps 

and notes, the precise boundaries between them may not always be in the exact same positions 

for historical and contemporary sampling. 

 

1.2.2 Dorset’s changing plant communities: Spatiotemporal metacommunity 

context 

Long-term biodiversity change is unusually well documented in plant communities across the 

English county of Dorset – the wider setting of the Studland case study presented in this thesis. 

From 1931 to 1936 Ronald Good surveyed plant communities in 7575 local plots distributed 

widely throughout Dorset, and a series of studies over the past decade resurveying many of 

Good’s plots have investigated biodiversity change in the intervening years (Keith et al. 2009, 

2011; Hooftman & Bullock 2012; Newton et al. 2012; Jiang et al. 2013; Diaz et al. 2013). 

When extrapolated across the county, Dorset has seen a significant decline in α-diversity (local 
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richness) of plants on average due to widespread habitat loss and agricultural intensification 

(Jiang et al. 2013), while patch size and connectivity of remaining semi-natural habitat 

fragments have also seen large reductions (Hooftman and Bullock 2012). Furthermore, there 

remains only one biodiversity hotspot for plants in Dorset presently, located in the southeast of 

the county – surrounding the study area of this thesis – yet such hotspots were widespread 

across the county in the 1930s (Jiang et al. 2013). 

Biodiversity change in Dorset’s plant communities is further complicated when broken down 

into remaining fragments of differing ecological habitat types. Woodland, lowland heath and 

calcareous grasslands have seen variable patterns of richness and compositional change at the 

county level and within intact local patches, with each habitat experiencing idiosyncratic 

drivers of change between sampling periods (Keith et al. 2009, 2011; Newton et al. 2012; Diaz 

et al. 2013: table 1.1). Despite detailed documentation of biodiversity change in Dorset’s plant 

communities, it remains unknown in most cases whether higher taxa co-occurring with the 

plants have undergone analogous changes, either through expressing shared responses to 

environmental change, or through direct biotic interactions with the plants (but see eg,: 

Senapathi et al. 2015 for analyses of changes in hymenoptera in a subset of contemporaneous 

plots). Identifying such linkages in Dorset, which is unusually rich in historical data, should 

provide clues as to how long-term biodiversity changes transverse taxa in communities more 

generally which have seen, or will see, similar changes in environmental conditions. 
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Table 1.1 Summary of published findings on biodiversity change in Dorset’s plant communities between the 1930s and 

2000s based on resurveys of Good’s sample plots across the county. Each resurvey concerned a specific ecological 

habitat type. Results highlight the variable manner in which biodiversity change can occur across a landscape and how 

specific ecological or environmental contexts can affect changes driven in part by shared drivers. 

Paper Habitat Diversity 

metric 

Increase/Decrease 

Newton et al. 

2012 

Calcareous 

Grasslands 

α 29.31 +/- 7.65 to 40.18 +/- 

16.41 ~ Increase 

β No change detected 

γ 219 to 280 ~ Increase 

Notes: Decrease in “stress-tolerant” species. Increase in 

mesotrophic grassland species. Increase in Ellenberg N 

indicator on average. 

Diaz et al. 2013 Lowland 

Heath (All 

patches = AP, 

intact patches = 

IP) 

α 17.5 to 16 (µ), P = 0.023 ~ AP 

Marginal decrease 

18 to 11 (µ), P = 0.023 ~ IP 

Decrease 

β No change detected ~ AP 

Significant decrease ~ IP 

γ 380 to 263 ~ AP Decrease 

291 to 173 ~ IP Decrease 

Notes: Overall AP’s shifted somewhat towards grasslands and 

IP’s shifted towards woodlands. IP’s became more 

homogenised. 

Keith et al. 2009, 

2011 

Woodlands α 57 +/- 2.8 to 53 +/- 1.6 ~ 

Small Decrease (not 

significant) 

β Not reported. However 

taxonomic homogenisation 

headline finding. 

γ 117 species lost, 47 species 

gained, net loss of 70 species 

~ Decrease 

Notes: Invasive species not responsible for biotic 

homogenisation. Rather, it was due to reorganisation of 

remaining species. 

 

1.2.3 Data collection 

The first of two broad periods of data collection took place in the 1930s largely between 1931 

and 1938, and the second between 2013 and 2015. Though the duration of sampling periods 

differed by approximately four years, Diver and his colleagues did not live permanently close 
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to Studland and thus their sampling was restricted to weekends and holidays, whereas the 

naturalists performing the resurvey effort sampled weekly throughout the year for the three 

years from 2013 to 2015. The resurvey effort in the 2010s also had more people involved in 

sampling comprising a range of experts and amateurs, and had Diver’s lists to perform targeted 

searches for species present in the 1930s. Though the differing sampling regimes in each time-

period are clearly not ideal, the discrepancies just described go some way to evening out the 

differences in sampling effort. As each sampling effort aimed at recording the full biota of taxa 

subject to analysis in this thesis through extensive within time-period resurveys, it can be 

considered that comparative analyses of biodiversity change between time-periods are both 

reasonable and meaningful. 

Sampling efforts in each time-period recorded occurrences and distributions of a wide range of 

plant and insect species across the peninsula. However, analyses of biodiversity change for the 

purposes of this thesis are focused on six broadly defined taxa; vascular plants, non-vascular 

plants, grasshoppers and crickets (Orthoptera), ants (Hymenoptera, Formicidae), hoverflies 

(Dipteral, Syrphidae), and dragonflies and damselflies (Odonata). These groups were selected 

primarily on the basis that sampling efforts were explicitly focused on them as taxonomic units, 

and were sufficient in each time-period to compile close to full or full species lists at the 

sampling compartment level, although minor omissions due to sampling error are of course 

possible, and even likely. These taxa also span a range of broad taxon level differences 

desirable for comparative analyses to address the research questions of this thesis. These 

include differing trophic levels, mobility and life-history characteristics, and inter-taxa trophic 

interactions. 

Analyses of biodiversity change for these six focal taxa were based on slightly differing subsets 

of compartments for each taxon depending on the availability of data. The baseline set of 

sampling compartments used for analyses of biodiversity change included the 74 compartments 
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for which reliable vascular plant species lists were available for both sampling periods 

(depicted in figure 1.2). Species lists for each of the other 5 taxa were available for differing 

subsets of the baseline sampling compartments, as reliable lists were not available for all taxa 

in all compartments (table A1.1). In some instances, species lists were unavailable because the 

focal taxon was unlikely to inhabit the compartment, this is particularly true for compartments 

in the aquatic habitat. In other cases, historical lists were missing, or the compartment was not 

heavily targeted for sampling under the more recent survey, and thus meaningful biodiversity 

comparisons could not be made. 

 

1.3  Hierarchical Regression and Bayesian Inference 

Throughout this thesis I heavily utilise hierarchical regression models applied in a Bayesian 

statistical framework. Here I lay out some of the key concepts underlying these methods. 

Hierarchical Bayes has been widely used in ecology for some time (e.g. Kéry 2010), so I focus 

primarily on the manner in which these approaches help overcome some of the shortfalls of an 

observational dataset such as that produced by the Cyril Diver Project. 

A common feature of naturally occurring ecosystems subject to observational studies is 

hierarchical structures of organisation – individuals within populations, populations within 

species, species within genera, and so on. Similarly, hierarchical organisation can be identified 

in the spatial and temporal structuring of populations and communities. On the Studland 

peninsula for example, we have sampling compartments within broad habitat types, and 

habitats nested within the peninsula as a whole (figure 1.2). Within a hierarchical regression 

modelling framework, such structures can be identified, and estimates of how response 

variables (eg. proportions of species gains vs losses) vary at distinct levels of the hierarchy can 

be computed (eg. compartment and habitat level) (Gelman and Hill 2006). This type of analysis 
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offers several benefits, including improved estimates at each level of the model by sharing 

information across levels (Gelman and Pardoe 2006). Further, one can easily combine separate 

hierarchies within a single model; for instance allowing a response variable to vary by species 

ID and sampling compartment simultaneously. Explanatory variables can thus be added within 

models at any level of the hierarchy pertinent to the scientific question being explored (eg. 

compartment, species or data level predictors) (Kéry and Royle 2016). 

While hierarchical regression models can be fitted in a frequentist statistical framework (Bolker 

et al. 2009), fitting such models the Bayesian way using software packages such as jags 

(Denwood 2016) or stan (Stan Development Team 2018a) offers a number of benefits. These 

models can become complex, with many parameter estimates based on sparse data, and in such 

cases Bayesian methods will often fit models that are not computationally viable for frequentist 

methods (Kéry and Schaub 2012). Prior information on parameter values can be incorporated 

in a Bayesian framework where such information is available. Derived parameters can be easily 

computed from posterior distributions of Bayesian models, a feature I make use of while 

estimating congruence in biodiversity changes between taxa in chapter 3. Bayesian methods 

also offer a number of benefits for model fitting and validation, discussed in detail in the 

following section. Finally, philosophical interpretations of Bayesian model outputs and 

inferences are preferred by many, myself included, who do not care for the hypothetical reruns 

of reality encountered in frequentist statistics (Gelman and Shalizi 2013). 

 

1.3.1 Posterior predictive checks, Regularisation and Information Criteria 

Bayesian models fitted using Markov Chain Monte Carlo (MCMC) offer a number of specific 

benefits for model fitting, validation, and evaluation, some of which I will briefly outline here. 
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MCMC produces a posterior distribution for each parameter of a fitted model comprising a 

chain of plausible estimates for parameter values, usually at least 1000 iterations in length. 

With posterior predictive checks, we can use posterior distributions to examine whether 

parameter estimates obtained from fitted models are reasonable given the real world ecological 

data we have collected (Gelman et al. 1996). This approach works as a means of testing model 

adequacy, and is analogous to a form of reverse engineering. It works by taking posterior 

distributions of parameter estimates from fitted models and using them to simulate fake datasets 

– one for each iteration of the model output – which are compared with the real world data used 

to fit the model (Kéry 2010). Comparisons with real world data can be performed using test 

statistics computed to test specific aspects of fitted models, or with simple comparisons of raw 

data (Gelman et al. 2004). Essentially, if there is a large divergence between the distribution of 

the ecological data used to fit the models and the simulated datasets derived from parameter 

estimates, we can conclude that the fitted model does not fit the data well (Kéry 2010). We 

must then go back to the drawing board to specify a new model, or attempt to figure out why 

the model is not working as expected. 

Overfitting of a model to a dataset is a danger present when conducting most types of statistical 

analyses. The use of regularizing priors in Bayesian analyses is one good means of minimising 

this risk. In practice, models fitted in a Bayesian framework often use prior distributions that 

are as uninformative as possible, in essence saying that we know nothing about value of a 

parameter before the model estimates it (Gelman and Hill 2006, Kéry 2010). However, it is 

often the case that a large range of “possible” parameter values are extremely unlikely. For 

example, in looking for an average height difference between men and women, values above 

1 meter in difference may be deemed unreasonable. This also tends to be particularly true in 

instances where standardised predicters are used (McElreath 2016a). Regularizing priors allow 

us to make more conservative estimates of parameter values where appropriate. 
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Bayesian models also have an explicit set of information criteria for use in out of sample 

predictive assessment, analogous to the AIC of frequentist statistics (McElreath 2016a). These 

include DIC, BIC, WAIC and LOOIC – LOOIC being an approximation of leave one out cross 

validation. Of these, WIAC and LOOIC have the advantage of being computed as an entire 

posterior distribution of their own, thus allowing for uncertainty in the information criteria 

themselves to be computed (Vehtari et al. 2017). 

 

1.4  Research Aims and Thesis Structure 

The aim of this thesis is to investigate how effects of long-term environmental change 

propagate through co-occurring plant and insect communities, driving changes in species 

richness and composition across taxa. Throughout, I attempt to partition the roles of direct 

abiotic disturbances and biotic interactions among broad taxa which underlie such changes. To 

achieve my aim, I use historical and contemporary data on the plants and insects of Studland 

collated through the Cyril Diver Project. As historical CDP data were not accompanied by 

coincidental data on environmental conditions, a subtheme of this research involved inferring 

environmental change, and effects thereof, from data derived from aggregated traits of 

occurring species. I will also attempt to synthesise my results in terms of future implications 

for biodiversity at Studland and beyond in order to aid conservation management. 

The specific questions I address to achieve the overall thesis aims are: 

i) How have the vascular plant assemblages of Studland changed in response to a 

changing abiotic environment between the 1930s and the present day? 

ii) Have plant and insect taxa with differing evolutionary histories, ecological 

requirements, and phenotypic characteristics undergone congruent richness and 
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compositional changes under shifting environmental conditions after an 80 year 

period? 

iii) What biotic and abiotic factors relating to adult and larval ecological requirements 

have influenced long-term biodiversity change in a community of insects which 

undergo complete metamorphosis? 

iv) How are the plant and insect communities of Studland likely to change in the 

coming decades under proposed management interventions? 

I address these questions through chapters 1 to 6 of this thesis in the following manner: 

1. Thesis introduction and background. 

2. How have the plant assemblages of Studland changed in response to changing 

environmental conditions between the 1930s and the present day? 

In chapter 2, I use Hierarchical Logistic Regression modelling on Ellenberg Indicator 

Values of the plant species occurring across Studland to reveal the manner in which the 

plant community has adapted to a changing environment via changes in species 

composition. In addition to revealing factors influencing the functional composition of 

the plant community, this chapter also provides a quantitative metric of abiotic change 

across the peninsula between time-periods which I use in later chapters to assess the 

effects of these changes on other taxa. 

3.  Have plant and insect taxa with differing evolutionary histories, ecological 

requirements, and phenotypic characteristics undergone congruent richness and 

compositional changes under shifting environmental conditions after an 80 year 

period? 

Cross-taxon congruence (CTC) is a measure of correlated patterns of change or 

turnover across taxa. Here I assess temporal CTC in biodiversity change (species 

richness and composition) across six plant and insect taxa, and attempt to partition 
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observed congruencies resulting from shared responses to environmental change vs 

other causes (eg. biotic interactions). In contemporary communities CTC is sometimes 

used as an ecological indicator to infer the state of taxa which are difficult to sample 

from knowledge of more cryptic taxa. I also discuss the potential of temporal CTC for 

use as an ecological indicator using historical resurvey data of plants and insects. 

4. What biotic and abiotic factors relating to adult and larval ecological 

requirements influence long-term biodiversity change in a community of insects 

which undergo complete metamorphosis? 

In this chapter I uncover abiotic and biotic drivers of change in species richness and 

composition in the hoverfly community of Studland, testing hypotheses relating to 

ecological factors affecting hoverfly species at both larval and adult life-history stages, 

with a particular focus on factors relating to biodiversity change in the plant 

community. Hypotheses are based on both results from the preceding chapters and the 

scientific literature. 

5. How are the plant and insect communities of Studland likely to change in the 

coming decades under proposed management interventions? 

Here I use Bayesian Belief Networks to synthesise the results from preceding chapters 

and information from the scientific literature in order to project future change under 

various management interventions. 

6. Thesis Discussion and Conclusions 
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2. Improving estimates of environmental change using multilevel regression 

models of Ellenberg indicator values 

2.1  Abstract 

Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a 

semi-quantitative description of species‘ ecological requirements. Typically, point estimates 

of mean EIV scores are compared over space or time to infer differences in the environmental 

conditions structuring plant communities – particularly in resurvey studies where no 

historical environmental data are available. However, the use of point estimates as a basis for 

inference does not take into account variance among species EIVs within sampled plots, and 

gives equal weighting to means calculated from plots with differing numbers of species. 

Traditional methods are also vulnerable to inaccurate estimates where only incomplete 

species lists are available. 

I present a set of multilevel (hierarchical) models – fitted with and without group-level 

predictors (for eg. habitat type) – to improve precision and accuracy of plot mean EIV scores, 

and to provide more reliable inference on changing environmental conditions over spatial and 

temporal gradients in resurvey studies. I compare multilevel model performance to GLMM’s 

fitted to point estimates of mean EIVs. I also test the reliability of this method to improve 

inferences with incomplete species lists in some or all sample plots. 

Hierarchical modelling led to more accurate and precise estimates of plot-level differences in 

mean EIV scores between time-periods, particularly for datasets with incomplete records of 

species occurrence. Furthermore, hierarchical models revealed directional environmental 

change within ecological habitat types, which less precise estimates from GLMM’s of raw 

mean EIVs were inadequate to detect. The ability to compute separate residual variance and 

adjusted 𝑅2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in 
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multilevel models also allowed us to uncover a prominent role of hydrological differences as 

a driver of community compositional change in our case study, which traditional use of EIVs 

would fail to reveal. 

Assessing environmental change underlying ecological communities is a vital issue in the 

face of accelerating anthropogenic change. I have demonstrated that multilevel modelling of 

EIVs allows for a nuanced estimation of such from plant assemblage data changes at local 

scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. 

Further, the ability of these methods to perform well with missing data should increase the 

total set of historical data which can be used to this end. 

 

2.2 Introduction 

Resurvey studies, where communities are resampled after years or decades have elapsed, are 

becoming increasingly common in ecology due to interest in how ecosystems are responding 

to global environmental change (e.g. Diaz et al. 2013; Krause et al. 2015). However, 

contemporaneous environmental data alongside historical data on species records are often 

lacking, which can hamper attempts to identify drivers of community change. As one solution, 

Ellenberg Indicator Values (EIVs) are widely used to infer environmental change over time 

where no data are available for abiotic conditions (Prach 1993, McGovern et al. 2011, Newton 

et al. 2012, Wesche et al. 2012, Häring et al. 2014, Krause et al. 2015). EIVs score plant species 

on an ordinal scale based on estimated optimal environmental conditions for moisture, light, 

soil nutrient levels, reaction (pH) and salt tolerance (F, L, N, R and S respectively) (Ellenberg 

1988; Hill et al. 2004). Typically, ecologists compare mean EIV scores of plants sampled from 

stands of vegetation to infer differences in abiotic conditions (Diekmann 2003). However, use 

of point-estimate plot mean EIVs fails to account for variation in EIV scores of plant species 
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within sample plots, which I hypothesise could improve accuracy of inferences if included. 

Furthermore, incomplete species occurrence records for some or all plots may lead to 

inaccurate estimates of plot means and thus poor inference of environmental changes over time. 

The population parameter one attempts to estimate when calculating a mean EIV score from 

plant occurrence records – for example describing soil reaction (EIV R) – is the mean EIV 

score for all plant species able to establish at this plot given the soil pH, all other things being 

equal (Ellenberg 1988, Dupré 2000). However, as well as environmental filtering for pH, a 

myriad of factors, including abiotic conditions and interactions with other species present in 

the community, will affect the probability of a particular species establishing a local population 

(Grime 1977, Keddy 1992, Vellend 2016). This complex filtering process leads to the diverse 

plant assemblages I see in nature, which in turn lead to variation in EIV scores of species within 

and between plots. 

Environmental heterogeneity is an important factor in plant ecology studies generally (e.g. 

Maslov 1989), and by failing to account for different levels of variation within a system, 

traditional methods discard much information, which may result in over- or underestimation of 

the extent of change over time (Gelman and Hill 2006). Figure 2.1 depicts three distinct levels 

of variation that can be identified within a typical ecological study estimating environmental 

change using EIVs: i) variation among EIV scores of species recorded within sampled plots 

(𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠); ii) variation between plots in mean EIV scores (𝜎𝛼), and; iii) variation in between 

time-period differences in plot mean EIVs as environmental conditions change differentially 

across a landscape over time (𝜎𝛽). Traditional methods using point estimates of mean EIVs 

from sampled plots (the x̅’s in Figure 2.1) to infer differences between groups of plots in space 

or time – either broken down by a grouping factor (eg. habitat type), or on average across all 

sample plots – fail to incorporate variation within plots in species EIV scores (𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠). 
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The suitability of hierarchical modelling to account for structure and variability in ecological 

systems is well established (Royle and Dorazio 2008, Cressie et al. 2009, Kéry and Royle 

2016), and this approach provides an ideal framework to account fully for the structure and 

variability identified in figure 2.1. Instead of using point estimates of mean EIVs, data enter 

the model as species-specific EIV scores, and inferred plot means – with all of their associated 

uncertainty – are estimated and used at a higher level within the model to infer differences 

between groups of plots in space and time (McElreath 2016a). In this way information is shared 

between plots, with mean EIV estimates augmented through partial pooling – that is, plot-level 

estimates being pulled towards the overall mean to an extent dependant on the number of 

species a mean estimate is composed of, and the variability of estimates between plots (Gelman 

and Hill 2006). More fully accounting for uncertainty in this way should lead to more reliable 

estimates of individual plot mean values, and of differences between groups of plots in space 

and time (Gelman and Hill 2006). Furthermore, because estimates are pooled according to 

shared information content, differences between any pair or combination of individual plots or 

habitats in the system can be inferred without having to contend with the issue of multiple 

comparisons, which should provide more power to detect change over time in conventional 

null hypothesis testing frameworks (Gelman et al. 2012). 

A multilevel (hierarchical) modelling approach may also help to improve estimates of plot 

mean EIVs in instances where lists of recorded species are incomplete for some or all plots. 

Incomplete sampling is a common nuisance in ecological studies as some species are more 

difficult to detect than others, and ease of detection may vary depending on the time of year a 

particular plot is sampled, and among species (Kéry and Gregg 2003, Kéry 2004, Chen et al. 

2013). This issue may be further compounded if recorders with differing botanical skills sample 

different plots, or in resurvey studies where it can be difficult to confirm the completeness of 

records, and where differing sampling methods may have been used. As long as data are not 
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missing systematically across all plots, multilevel modelling should improve mean estimates 

for plots with missing data – and any inference based on these estimates – by pooling 

information across plots. 

The aim of this paper is to demonstrate how hierarchical modelling can lead to higher 

discriminatory power than traditional methods when using EIVs to assess environmental 

changes underlying plant communities. This is achieved by accounting for uncertainty at all 

levels of the ecological system and by explicitly identifying and estimating components of 

temporal and spatial variation in plot mean EIVs. 

I demonstrate the utility of this method in studies with both complete and incomplete plot 

records for species occurrence by fitting models to a real resurvey dataset. The models describe 

two scenarios: 1) A set of plots across a landscape, resampled in a second time-period, assumed 

to be replicates of a similar habitat type; and 2) A similar set of plots sampled in two time-

periods, but in this case groups of plots differ by some grouping factor (eg. habitat type in our 

case study). I ask: 1) Do inferences on changes in environmental conditions in space and 

between time-periods differ between hierarchical models of EIVs with a full multilevel 

structure and models using point estimates of raw mean EIVs from sampled plots as data, to an 

extent that will effect conclusions about change in the system? 2) Do hierarchical models 

improve mean estimates – and consequently inferences on temporal differences based on these 

estimates – for datasets where the full cohort of species is not recorded in all sampled plots? I 

provide code in the Appendix 2 to fit the models in R and Jags. 
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Figure 2.1 Typical spatiotemporal sampling structure of a resurvey study where Ellenberg Indicator Values (EIVs) are 

used to infer environmental differences underlying plant assemblages. Each colour/number combination represents the 

EIV score of a specific plant species. In this example plots are sampled within two separate ecological habitat types, and 

plant species occurrences are recorded for all plots in two separate time-periods.  The 𝛔 values denote components of 

variation i) in EIVs among species within sampled plots (𝛔𝐬𝐩𝐞𝐜𝐢𝐞𝐬), ii) in mean EIVs between plots (𝛔𝛂), and iii) in 

differences in plot mean EIVs between time-periods (𝛔𝛃). Methods using pre-averaged mean values ( x̅’s) as a starting 

point for inference fail to account for 𝛔𝐬𝐩𝐞𝐜𝐢𝐞𝐬, and as a result can lead to less reliable plot mean estimates and 

inferences across the wider landscape and between time-periods 

 

2.3  Methods 

2.3.1 Data 

All models were fitted to a real ecological dataset for EIVs  describing moisture, light, soil 

nutrient levels, reaction (pH) and salt tolerance (F, L, N, R and S respectively) from the 

PLANTATT dataset which provides EIVs adjusted for use in the UK and Ireland (Hill et al. 

2004). Historical data were collected by Cyril Diver and contemporaries in the 1930s from the 

Studland Peninsula, Dorset, UK (Lat: 50.66, Lon: -1.9) (Good 1935, Diver 1938). The 
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Peninsula consists of a habitat mosaic (~3𝑘𝑚2) characterised as dune, dune heath, tertiary 

heath, woodland, harbour shore, marsh and edge aquatic plant assemblages. Diver and 

colleagues recorded lists of species occurrences in 74 sample plots (“compartments”) which 

varied in size and shape (size in 𝑚2: min = 899.98, max = 200764.4, mean = 44452.52), and 

were based on the topographical properties and local ecological characteristics of Studland 

(Diver 1938). The sampling compartments of Studland fall somewhere between Permanent and 

Quasi-permanent categories by the framework presented in Kapfer et al. 2017, as though they 

were relocated using various physical indicators and detailed ordinance survey maps, the 

precise boundaries between them may not always be in the exact same positions for historical 

and contemporary sampling. The National Trust resurveyed the area between 2013 and 2015 

in a citizen science initiative coined “The Cyril Diver Project” following Divers’ original 

sampling plots. (https://www.nationaltrust.org.uk/studland-beach/features/the-cyril-diver-

project). Both sampling and resampling efforts aimed to record all species present in their 

respective time-periods by repeatedly visiting plots throughout the year and scouring them 

carefully in teams for the duration of respective study periods. The number of species in each 

sample in each plot time-period, area and coordinates of sample plots are detailed in Appendix 

2. 

 

2.3.2 Models 

2.3.2.1 Estimating environmental change over time in resurvey studies 

The first scenario I consider is one in which I estimate between time-period differences in mean 

EIVs for a resurvey study, where sample plots are considered replicates of similar, homogenous 

stands of vegetation in the same type of habitat. As such, model M2.1 below is equivalent to 

compiling a series of t-tests, one for each plot, to estimate differences in mean EIV scores at 
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plot level – though to use it for statistical testing in this manner would require major corrections 

for multiple testing. I formulate this simple linear model to emphasise fully the progression 

from fixed effects models with no-pooling, to those with partial pooling under a multilevel 

structure – and to use as a baseline against which to compare plot mean estimates from 

hierarchical models. The appropriateness of using mean values of ordinal EIVs and means of 

ordinal values more generally has been widely discussed in the literature and is not the topic 

of this paper, however I agree that it has proven a useful method in applied plant ecology and 

should continue to be so (Diekmann 2003, Pasta 2009). 

M2.1 

𝑦𝑖 ~  𝑁(𝛼𝑗[𝑖] + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠), for i = 1,…., n 

𝑦𝑖 is the EIV score for species i in plot j, and 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 is the estimated residual variance for EIV 

scores of n species within sampled plots. In this no-pooling model the 𝛼𝑗 values are the plot 

means from time period 1, and each 𝛽𝑗 parameter is an estimate of the difference in mean EIV 

in compartment j between time-periods 1 and 2. 𝑥𝑖 is the binary (0,1) predictor for the time-

period that species 𝑦𝑖 was sampled in. 

To move from “no-pooling” to hierarchical models I allow the 𝛼𝑗′𝑠 and 𝛽𝑗’s from model M2.1 

to share information through partial pooling, changing them from fixed to random effects. As 

such, model M2.2 below can be viewed as a type of mixed effects model which allows us to 

use more conservative estimates of plot-level between time-period differences (slopes) by 

sharing information content across plots, and thus arrive at a more accurate estimate of overall 

change. 

M2.2 

𝑦𝑖 ~  𝑁(𝛼𝑗[𝑖] + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠), for i = 1,…., n 
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(𝛼𝑗, 𝛽𝑗) ~  𝑀𝑉𝑁((𝜇𝛼, 𝜇𝛽), (𝜎𝛼 , 𝜎𝛽 , 𝜌𝜎𝛼
2𝜎𝛽

2)), for j = 1,…., j 

Slope and intercept parameters are constrained to come from bivariate normal distribution 

(MVN) with mean vector (𝜇𝛼, 𝜇𝛽) to account for correlation between them (Gelman and Hill 

2006). The covariance matrix is defined by the variance in plot intercepts (𝜎𝛼) and slopes(𝜎𝛽), 

and the covariance between the two sets of parameters (𝜌𝜎𝛼
2𝜎𝛽

2), where 𝜌 is the correlation 

coefficient. Allowing information on temporal differences across plots to be shared in this way 

makes sense particularly if the sampled plots come from a spatial area within which I expect 

abiotic drivers of change to be linked. 

 

2.3.2.2 Inferences between plots differing by a grouping factor 

Sampled plots may differ by some categorical factor (eg. Habitat type, grazing regime etc...). I 

can extend model M2.2 to include a group-level predictor within the sub-models of 𝛼𝑗′𝑠 and 

𝛽𝑗
′𝑠. Thus plot-level estimates in model M2.3 below are improved when groups of plot differ 

by habitat, as now the estimates are pooled towards the habitat-level mean value rather than 

the mean across all plots. M2.3 also allows us to estimate differences in mean changes at habitat 

level. 

M2.3 

𝑦𝑖 ~  𝑁(𝛼𝑗[𝑖] + 𝛽𝑗[𝑖]𝑥𝑖 , 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠), for i = 1,…., n 

(𝛼𝑗, 𝛽𝑗) ~  𝑀𝑉𝑁(𝜇𝛼[𝑘], 𝜇𝛽[𝑘]), (𝜎𝛼 , 𝜎𝛽 , 𝜌𝜎𝛼
2𝜎𝛽

2)), for j = 1,…., j 

In hierarchical model M2.3 the data (𝑦𝑖) still enter the model at the level of plant species within 

plots, and the plot intercepts and slopes are still constrained to come from a multivariate normal 

distribution. Here however, the means of this distribution (𝜇𝛼[𝑘] 𝑎𝑛𝑑 𝜇𝛽[𝑘]) take on a different 
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value for each of k groups (habitat types in our case study). 𝜎𝛼 and 𝜎𝛽now estimates variation 

in plot-level intercepts and slopes respectively, after taking habitat type into account. 

Model M2.3 allows us to estimate differences between groups of plots by essentially nesting a 

two-way ANOVA within the model structure. To compare inferences on habitat level 

differences from the hierarchical model with those using point estimates of mean EIVs as data, 

I fitted Generalized Linear Mixed Models (GLMM’s) with plot ID as a random effect nested 

in time-period to account for repeat sampling. While this technically is a hierarchical model, it 

does not incorporate the multilevel structure which is the focus of this paper. I compared these 

models to their hierarchical (multilevel) counterparts in terms of differences in magnitude, 

precision and sign of habitat level estimates, and whether differences in habitat-level EIVs 

between time-periods were significant at the standard α= 0.05 significance level. To perform 

these tests of significance, habitat-level differences in EIVs for each GLMM were corrected 

for multiple comparisons using the multcomp package in R (Hothorn et al. 2008). I also 

calculated Bayesian 𝑅2 for each level within the hierarchical models (data level, varying 

intercepts and varying slopes) (Gelman and Pardoe 2006). 

 

2.3.2.3 Analyses with incomplete species records 

I refitted the models with incomplete sets of species artificially subsampled from a selection of 

plots to test model performances in predicting plot mean EIVs where not all species present in 

a plot are recorded. Since improving plot mean EIV estimates by pooling information across 

plots – and thus improving inferences based on these estimates – is the mechanism by which I 

suggest that multilevel modelling is an improvement on methods using point estimates of plot 

mean values as data, this missing species analysis also served as our most important validation 

procedure (following Lin et al. 1999). If these methods can accurately estimate plot mean 
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values primarily from information shared across plots, with most of the species missing from 

the focal plot, then it is clear that the models use the pooled information in a valuable way. 

Plots were chosen in a random stratified manner; one plot with >50 recorded species from each 

habitat type in each time-period (14 total). 90% of species in each of these 14 plots were 

selected at random and excluded from the dataset, representing severe undersampling. Models 

M2.1, M2.2 and M2.3 were refitted and model outputs compared to the raw mean values when 

all data were included, under the assumption that plots with >50 species provided an adequate 

estimate of the “true mean” value. This process was repeated iteratively 120 times with a 

different random 90% of species removed from each plot during each iteration. Model 

performances were compared graphically, and using calculated summary statistics to assess 

precision and accuracy of plot level estimates for plots with missing species. Precision was 

assessed as the mean width of 50% and 95% credible intervals of plot estimates, and as the 

inverse variance of plot mean estimates. Accuracy was assessed as the proportion of times the 

“true mean” value was within the 50% and 95% credible intervals, and as the mean distance of 

point mean estimates from the “true mean” value. 

 

2.3.3 Software and validation 

Models were fitted in JAGS and R version 3.3.1 using package runjags with minimally 

informative priors following Gelman & Hill 2006  (see Appendix 1 for a description of the 

models in the Jags language) (Denwood 2016, R Core Team 2017). Additional R packages 

were used for analyses of mcmc chains and graphics (Plummer et al. 2006, Wickham 2009). 

In addition to the validation discussed in section 3.2.3 I performed a range of posterior 

predictive checks and comparisons between simulated and real world datasets to assess model 

adequacy (following Gelman & Hill 2006; Kéry & Schaub 2012). 
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2.4  Results 

2.4.1 Analyses with incomplete species records 

Multilevel model estimates from both models M2.2 and M2.3 were consistent across separate 

runs of the simulation, regardless of which 10% species remained, with high levels of precision 

and accuracy (Figure 2.2, Table 2.1). Plot mean estimates with missing species were closer to 

the true means for hierarchical vs. non-hierarchical models for all four EIVs, often by more 

than a factor of two – averaging across replications and depleted plots (Table 2.1). The 

proportions of “hits” for 50% and 95% credible intervals about the mean estimates differed 

between models and EIVs, but underperformed for some hierarchical models due to consistent 

misses across replications for some individual sample plots (Figure 2.2). Models without 

group-level habitat predictors performed slightly better in this respect (Table 2.1). 
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Figure 2.2 Mean estimates with 50% uncertainty intervals of plot-level Ellenberg Indicator Values (EIVs) F, L, N R and S 

from plots with a random 90% of species removed. One plot with 50 or more recorded species was randomly chosen from 

each habitat type in each of two sampling periods. Red lines are plot mean EIVs with full cohort of species remaining. The 

three clouds of points from left to right in each grid panel display uncertainty intervals from: 1) No-pooling models, 

representing raw mean estimates of 10% of species randomly remaining in each iteration; 2) Estimates from hierarchical 

models with partial pooling of plot intercept and slope parameters, and; 3) Estimates from hierarchical models with partial 

pooling including group level habitat predictors. Plot shows a subset of 20 out of 120 iterations run in total for clarity. 
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Table 2.1 Model performances from analyses of plots with a random 90% of species removed. All statistics were 

calculated for 14 depleted plots over 130 simulations of the validation analysis. 

Model Mean 
width 
50% CI 

Mean 
width 
95% CI 

Mean 
precision 

Proportion 
of hits 
50% CI 

Proportion 
of hits 
95% CI 

Avg. 
dist. 
from 
true 

mean 

EIV F       

RV M2.1 0.87 2.54 3.97 0.53 0.96 0.51 
RV M2.2 0.61 1.77 14.58 0.58 0.96 0.32 
RV M2.3 0.51 1.5 27.48 0.53 0.87 0.36 

EIV L       

RV M2.1 0.46 1.33 11.52 0.52 0.96 0.25 
RV M2.2 0.2 0.6 412.84 0.46 0.89 0.15 
RV M2.3 0.19 0.57 429.94 0.39 0.82 0.17 

EIV N       

RV M2.1 0.83 2.41 4.02 0.54 0.97 0.46 
RV M2.2 0.36 1.07 193.62 0.45 0.99 0.2 
RV M2.3 0.39 1.05 170.69 0.58 1 0.16 

EIV R       

RV M2.1 0.78 2.25 4.45 0.5 0.97 0.44 
RV M2.2 0.39 1.16 77.89 0.5 0.92 0.26 
RV M2.3 0.37 1.09 96.02 0.55 0.9 0.21 

EIV S       

RV M2.1 0.54 1.58 32.99 0.64 0.92 0.3 
RV M2.2 0.24 0.72 671.08 0.66 0.89 0.18 
RV M2.3 0.21 0.62 605.52 0.55 0.85 0.19 

 

2.4.2 Plot-level inference 

Out of sample predictive accuracy was markedly better in hierarchical vs. non-hierarchical 

models for all five EIVs as estimated by DIC (ΔDIC between 8.6 and 40), and models including 

group-level habitat predictors (M2.3) were invariably the best by this criteria (Table 2.2). 

Estimates of variance among species EIVs within sample plots (𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠) from hierarchical 

models were much larger in all cases than between plot (𝜎𝛼) and between time-period 

(𝜎𝛽) variance estimates. The inclusion of ecological habitat type in the M2.3 models 

significantly reduced residual variance in plot-level intercepts and slopes (𝜎𝛼  𝑎𝑛𝑑 𝜎𝛽) for 
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models of all EIVs. The extent to which intercepts and slopes were pooled (𝜆𝛼 𝑎𝑛𝑑 𝜆𝛽) 

differed between models of the five EIVs, but was much higher for model M2.3 vs. M2.2 in all 

cases, which exemplifies how adding habitat type provided a better target for pooled estimates 

by reducing residual variance in plot-level parameter estimates (Table 2.2). The inclusion of 

ecological habitat type in the M2.3 models explained over 40% of variation in the pooled plot-

level slope parameters for EIVs L, N, R and S, while it explained 33% for EIV F, which also 

had higher estimates of 𝜎𝛽 both before and after the inclusion of habitat than the other EIVs 

(Figure 2.3). 

 

Table 2.2 Residual variance (𝝈), Bayesian 𝑹𝟐, mean pooling of estimates (𝝀), effective number of parameters (pD), and 

DIC values for models fit to Ellenberg Indicator Values F, L, N, R and S of plant species from a re-visitation study on the 

Studland peninsula between the 1930’s and 2010’s.  NP are “no-pooling”, H are “hierarchical”, and HG are “Hierarchical 

with group-level predictor” models. Parameters with subscripts 𝜶 and 𝜷 were estimated at the level of varying intercepts 

and slopes respectively. 

Model 𝝈𝒑𝒍𝒂𝒏𝒕 𝝈𝜶 𝝈𝜷 𝑹𝒑𝒍𝒂𝒏𝒕
𝟐  𝑹𝜶

𝟐  𝑹𝜷
𝟐  𝝀𝜶 𝝀𝜷 pD DIC 

EIV F           

M2.1(NP) 1.74 - - 0.22 - - - - 149.1 36391.8 
M2.2(H) 1.74 1.09 0.62 0.22 0 0 0.05 0.25 127.5 36383.2 
M2.3(HG) 1.74 0.47 0.53 0.22 0.83 0.33 0.3 0.38 117.8 36371.2 
EIV L           

M2.1(NP) 0.91 - - 0.12 - - - - 148.9 24561.4 
M2.2(H) 0.91 0.28 0.18 0.12 0 0 0.13 0.41 98.7 24526.8 
M2.3(HG) 0.91 0.18 0.15 0.12 0.63 0.41 0.36 0.61 94.7 24521.9 
EIV N           

M2.1(NP) 1.64 - - 0.06 - - - - 148.8 35330.1 
M2.2(H) 1.64 0.33 0.3 0.06 0 0 0.24 0.42 90.4 35290.8 
M2.3(HG) 1.64 0.25 0.24 0.06 0.42 0.44 0.43 0.62 87.1 35289.5 
EIV R           

M2.1(NP) 1.56 - - 0.08 - - - - 148.9 34100.7 
M2.2(H) 1.54 0.45 0.35 0.08 0 0 0.17 0.42 107.5 34071.4 
M2.3(HG) 1.54 0.34 0.28 0.08 0.43 0.44 0.33 0.6 100.9 34068.6 
EIV S           

M2.1(NP) 1.08 - - 0.22 - - - - 148.9 27596.9 
M2.2(H) 1.08 0.56 0.21 0.22 0 0 0.06 0.52 108 27577 
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M2.3(HG) 1.08 0.27 0.18 0.19 0.76 0.43 0.29 0.62 95 27563.6 
 

 

Figure 2.3 Changes in Ellenberg Indicator Values (EIVs) between sampling in the 1930s and resampling in 2010s. Plots show 

mean and 95% Bayesian credible intervals for estimates of plot-level changes between sampling-periods for each of seven 

habitats (Map inset). Each grid cell contains varying slope parameters (𝜷’s) from models M2.1 (no-pooling), M2.2 

(hierarchical), and M2.3 (hierarchical) from left to right respectively. Horizontal red lines indicate zero change between 

sampling-periods. White textboxes show unexplained variance in slope parameters in hierarchical models with and 

without habitat as a predictor (𝝈𝜷
𝑴𝟐and 𝝈𝜷

𝑴𝟑 respectively) and the estimated proportion of variance explained by habitat 

as a group-level predictor for slope parameters (Bayesian 𝑹𝟐). Each column represents numbered plots within habitat 

types. 
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2.4.3 Habitat-level inference 

Estimates of change in mean habitat-level EIVs between time-periods 1 and 2 differed to a 

large extent between full multilevel models (M2.3) and GLMM’s using raw mean EIVs as data 

(Figure 2.4). While mean estimates of habitat level change were often similar between the two 

sets of models, hierarchical model estimates were more precise with narrower 95% Bayesian 

credible intervals than GLMM estimates. Furthermore, to infer differences at the standard α = 

0.05 level as commonly practiced, GLMM confidence intervals need to be adjusted for multiple 

comparisons, whereas pooled estimates from hierarchical models do not (Gelman et al. 2012), 

which led to a rejection of a null hypothesis of no change in environmental conditions in six of 

35 instances in this system using estimates from the full multilevel model where I would have 

to accept the null hypothesis of no change using the GLMM estimates (Figure 2.4). This may 

lead one to conclude that there has been no significant change in the harbour shore habitat from 

GLMM results for instance, whereas hierarchical model results show strong, precise directional 

change in soil nutrients (N), pH (R) and salinity (S) underlying these assemblages. Similarly, 

GLMM results would underestimate the extent of change in the marsh, woodland and dune 

heath habitats compared with the more precise hierarchical estimates. However, despite the 

adjusted confidence intervals in the GLMM’s, pooling of estimates in the multilevel models 

led to more conservative estimates of change in the dune habitat, which would lead us to 

conclude minimal change over time (accept the null hypothesis of no change) for EIVs L and 

S, while I would conclude stronger negative change from GLMM estimates (reject the null 

hypothesis of no change). 
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Figure 2.4 Mean and 95% Bayesian credible intervals (top) and confidence intervals (bottom) for habitat level differences 

in mean Ellenberg Indicator Values (EIVs) for Moisture (F), Light (L), Nutrients (N) Reaction (R) and Salinity (S) on the 

Studland peninsula between the 1930s and 2010s. Top row shows estimates from multilevel models with recorded species 

EIVs as data (model M2.3 from text), while the bottom row shows estimates from mixed effects models using raw means 

of plot EIVs as data. Red extensions to the GLMM confidence intervals represent corrections for multiple testing; 

hierarchical estimates do not need to be corrected due to pooling of estimates. 

 

2.5  Discussion 

I have shown that multilevel modelling provides improved discriminatory power when 

estimating differences in mean Ellenberg indicator values between historical and contemporary 

plant assemblages, both at the level of individual plots and across the wider community. 

Multilevel models suggested a prominent role of hydrological changes – alongside succession 

processes – in driving compositional change between sampling periods in our case study, the 

extent of which would not be revealed by inference using point estimates of plot mean EIVs as 

data. When I removed 90% of plant species from a selection of species rich plots, estimates of 
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plot mean EIVs from hierarchical models were very close in the majority of cases to mean 

values with the full cohort of species remaining. This was in stark contrast to raw means for 

randomly remaining species, and it demonstrates the rich potential for improving estimation 

and inference by pooling information across plots in hierarchical models in instances of non-

systematic missing data, which are common in ecological studies. Taken together these 

findings highlight the potential value of information discarded when point estimates of plot 

mean EIVs are used as the starting point for inference, and show how hierarchical modelling 

can increase the utility of EIVs in suggesting the nature of environmental factors likely 

underlying changes in plant community composition. 

 

2.5.1 Model performance with missing data 

The phenomenon of recorders overlooking species present when performing surveys is a 

consistent feature of ecological sampling and can lead to bias in estimates of many ecological 

rate and state variables (Kéry and Gregg 2003, Kéry 2004, Chen et al. 2013). While missing 

species may not be an issue when using weighted averages of EIVs (Ewald 2003), our analyses 

on artificially depleted plots for presence/absence data show the utility of hierarchical models 

to help alleviate inaccuracy in estimates due to imperfect sampling and non-systematic missing 

data. The ability of the multilevel models to estimate plot mean EIVs accurately when the 

majority of species are missing should also allay any apprehensions over using the ordinal EIVs 

fit to a Gaussian distribution at the data level of these models; improvement in plot mean values 

is the primary aim of this paper, and results from analyses on depleted datasets demonstrate 

that this has been achieved. 
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2.5.2 Habitat-level inference 

Hierarchical model performances improved with habitat type as a group-level predictor by 

providing better targets for pooled estimates. Furthermore, the ability to infer change over time 

from resulting habitat estimates without correcting for multiple comparisons allows us to build 

a more nuanced and precise picture of environmental change over time. Effect sizes for changes 

in habitat level mean EIVs in the Studland case study were small (<1) in all cases, but as these 

specify average changes across entire habitats they still indicate meaningful directional changes 

in environmental conditions. With small effect sizes – as will usually be the case given the 

scale on which EIVs are quantified – the increased precision of estimates gained from 

hierarchical modelling is a major advantage in revealing the direction and magnitude of 

environmental change in a study system. 

Broad increases in EIV N across the habitats of Studland are in-line with studies over a similar 

period both across the county of Dorset (Newton et al. 2012) and further afield (Bennie et al. 

2006), possibly resulting from atmospheric nitrogen deposition. Other trends are likely more 

specific to Studland, including wetter conditions across the marsh habitat, and decreases in EIV 

L across the woodland and dune heath habitats probably indicating ecological succession. Such 

location specific changes in the environment could have important effects on co-occurring 

animal assemblages. For example, changes in precipitation levels can lead to shifts in 

vegetation structure and resulting changes in rodent community composition (Ernest et al. 

2008). The wetter marshes of Studland may have similarly affected local invertebrate and 

mammal assemblages, and we have shown that hierarchical modelling is better suited to 

uncover such effects when using EIVs. 

While pooled habitat level estimates from multilevel models suggested more widespread 

change across the Studland system than did estimates from the GLMM’s, they were also more 

conservative than the GLMM estimates in an important way, exemplified by the dune habitat. 
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Larger changes estimated from the GLMM’s in dune plots result from a large influence of one 

plot (dune plot number 6, Figure 2.3), whereas in the multilevel models the influence of this 

plot was dampened by the pooling of this plot’s slope (β) estimate.  In time-period 1 this was 

a newly formed dune which only seven plant species had colonised. From typical dune 

succession I would expect this plot to become more shaded, more acidic and more nutrient rich 

over time (Jones et al. 2008). While the raw mean estimates do suggest that it has become more 

shaded and more acidic by time-period 2, they would also suggest that it has become less 

nutrient rich. It seems likely that the apparent decrease in soil nutrient levels in this plot is a 

confounded estimate driven by the strong correlation between EIV R and N (Diekmann 2003), 

at a plot where soil pH was probably a stronger driver of species recruitment in time-period 1 

(Jones et al. 2008). I would suggest that without specific ecological knowledge of a plot, in 

general it is a worthwhile trade-off to underweight plot mean values as the multilevel models 

should do, rather than overweighting it as is probable using point estimates from plots with 

sparse data. This should reduce overconfidence in specific plot values, giving a more accurate 

estimate of change in this plot despite the few plant species present in the 1930s, while also 

reducing the effect of outliers on habitat level estimates of change (McElreath 2016a). 

2.5.3 Plot-level inference 

By using hierarchical models to account explicitly for different variance components in a study 

system, I can build a more in-depth picture of changes that have occurred. In the Studland case 

study, variance in EIV scores among plant species within sample plots (𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠) was larger in 

all cases than variance between plots (𝜎𝛼) and variance in plot-level changes between time 

periods (𝜎𝛽) for all EIVs, which illustrates the value in pooling information between plots in 

this way to improve estimates of plot mean values. High variance estimates within plots reflect 

the fact that the environmental parameter an EIV represents tends to play just a small role in 

determining whether a plant species occurs in a given area, and that in any sample plot only a 
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subset of species likely to occur despite environmental constraints will do so at a given time 

(Pärtel 2014). Species may be absent from plots they could potentially occupy for various 

stochastic and mechanistic reasons (Callaway and Walker 1997, Chave 2004, Leibold et al. 

2004), or they may be missed by recorders in a given sampling instance as previously discussed 

(Kéry & Royle 2010). Computation of separate 𝑅2 values for variance explained by habitat 

type for intercept and slope parameters is also highly valuable, as practitioners will often be 

interested only in the changes over time, and not the baseline differences between habitat types.  

The ability to provide a plot specific picture of local change alongside estimates of average 

trends across the wider landscape should also prove valuable to those wishing to concentrate 

on finer details to aid management, or to use as indicators of dynamics affecting ecological 

communities contemporaneous with plant assemblages. For example, when I look at changes 

in plot mean EIVs over the 80 year period across the Studland Peninsula (𝛽 parameters), I see 

it was far more variable for EIV F (moisture) than for the other EIVs both before and after 

accounting for habitat type. While some changes in this system – such as levels of shade (EIV 

L) across the woodland plots – may have clear ecological explanations (e.g. succession) 

specific to habitat types, highly variable changes in plot mean EIV F estimates suggest that 

changes in the hydrological profile of the peninsula is an important abiotic driver of change in 

community composition across habitat boundaries. With hierarchical models, I can pinpoint 

outliers or plots within which change does not match plots in a similar habitat because pooling 

allows us to view each estimated plot mean in isolation with more confidence that it is a 

balanced estimate (Gelman et al. 2012). Inspection of these plot values could lead one to 

develop new hypotheses about drivers of change – for instance spatial proximity to a body of 

water, or height above sea level – which can be easily incorporated back into the model once 

data is compiled on them to assess their influence. In this way hierarchical models can be used 
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in conjunction with knowledge of the details of a specific system to uncover drivers of change 

as part of an iterative scientific process. 

 

2.5.4 Model extensions and flexibility 

The multilevel models presented here, particularly fitted in a flexible Bayesian framework, can 

be extended or adapted to specific study systems in many useful ways. For instance, other 

grouping factors – in place of or in addition to habitat type – may be added to the sub-models 

for intercepts and/or slopes (e.g. natural vs. semi-natural, grazing regime, management 

practice). Similarly, continuous predictors could be added if they are of interest (e.g. plot 

elevation, plot area). One could also add predictors at the level of species within plots such as 

%cover or invasive vs. non-invasive species, depending on specific study aims. Informative or 

regularising priors may be used, which could be particularly useful in instances of small sample 

sizes in terms of numbers of plots or species richness within plots (McElreath 2016a). Finally, 

the method could be adapted for use on any quantitative trait values which are averaged across 

species, which may help address issues of robustness (Aiba et al. 2013). 

2.5.5 Conclusions 

The increasing prevalence of resurvey studies in plant ecology, coupled with the importance of 

understanding accelerating environmental change, has led to Ellenberg indicator values 

becoming an important tool in the ecologists’ kit. I have demonstrated how multilevel 

modelling can provide a more powerful discriminatory framework when using EIVs to 

hypothesise the nature of environmental dynamics underlying compositional change in plant 

communities. These methods also perform very well in situations where some or all plots 

sampled do not have the full cohort of species recorded. Our contribution describes one more 

way hierarchical modelling, particularly applied in a flexible Bayesian framework, provides an 
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ideal way to describe the multitude of hierarchical structures we see at all levels in biological 

systems, from cells to meta-communities. Furthermore, I contest that identifying and explicitly 

modelling components of variation within an ecological system in this way can lead to the 

development of further hypotheses about environmental drivers shaping plant community 

functional characteristics in a way that is difficult using traditional statistical techniques, as our 

case study demonstrates. 
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3. Congruent change over 80 years in plant and insect communities across a 

dynamic habitat mosaic 

3.1 Abstract 

Changes in the abiotic and biotic environment are important drivers of biodiversity change by 

causing species losses and gains. However, the extent to which distinct co-occurring taxa 

experience similar long-term patterns in species richness and compositional differences when 

exposed to environmental change is unclear, as historical data on co-occurring taxa are 

extremely rare. 

Using the CDP data, I investigated whether local communities display cross-taxon congruence 

– correlated patterns of species richness and compositional change – across six co-occurring 

plant and insect taxa: vascular plants, non-vascular plants, grasshoppers and crickets 

(Orthoptera), ants (Hymenoptera: Formicinae), hoverflies (Diptera: Syrphidae), and 

dragonflies and damselflies (Odonata). Using hierarchical logistic regression (HLR) and 

multivariate statistical analyses, I also examined to what extent observed congruencies were 

explained by shared responses to abiotic environmental change vs other causal factors (e.g. 

biotic interactions). 

All taxa displayed high levels of turnover across the ca. 80-year time period, though overall 

species richness did not change substantially. I found widespread evidence of cross-taxon 

congruence in species richness change across the study system, with HLR results suggesting a 

prominent role for shared responses to environmental change underlying many of these 

congruencies. HLR models also indicated stronger congruencies between vascular plant and 

their direct consumers, suggesting a role for biotic interactions between these groups. 
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In this chapter, I have provided a unique illustration of cross-taxon congruence in biodiversity 

change across an 80-year period, likely driven both by abiotic and biotic environmental change. 

Results highlight the potential for cascading community effects of environmental change on 

local plant and insect communities. Such effects need to be accounted for when planning 

biodiversity management in the face of projected anthropogenic disturbances. 

 

3.2  Introduction 

Species losses and gains are a widespread consequence of environmental change, with poorly 

understood repercussions for long-term biodiversity patterns and ecosystem functioning (Sax 

and Gaines 2003, Wardle et al. 2011). In local communities undisturbed by major human 

encroachment, long-term monitoring has indicated as much as 10% turnover in species 

composition per decade (Dornelas et al. 2014). Understanding connections between patterns of 

such changes across co-occurring taxa is vital in order to assess the probability of cascading 

effects of environmental change, as anthropogenic disturbances continue throughout the 21st 

century. However, a paucity of historical records has meant the majority of long-term 

biodiversity studies have focused on one or very few taxa (but see: Ernest et al. 2008, Özkan 

et al. 2014, Ewald et al. 2015), and as such, the prevalence and drivers of correlated biodiversity 

trends in locally co-occurring taxa are not well understood. 

Ecological communities commonly display cross-taxon congruence (CTC) – correlated 

patterns in species richness or composition  – over spatial extents (Westgate et al. 2014). 

However, the strength of such congruencies is variable and depends on the taxa involved and 

on the spatial scale of analysis (Pearson and Carroll 1999). When correlations are strong, cross-

taxon congruence can be used as an ecological indicator, whereby easily surveyed taxa indicate 

approximate richness or composition in more cryptic taxa (Fattorini et al. 2012). It follows 
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then, that correlated biodiversity trends across taxa could similarly be used for ecological 

indication of temporal biodiversity change. 

Temporal CTC in species richness and compositional change could occur due to abiotic or 

biotic mechanisms, or to a combination of both. Temporally variable abiotic conditions play a 

dominant role underlying biodiversity change across a range of taxa and systems (Mutshinda 

et al. 2009), and therefore environmental change may be expected to drive congruent 

biodiversity trends in taxa which co-occur locally as they respond in tandem to a changing 

abiotic environment. Interactions between taxa – particularly those with strong trophic or 

mutualistic dependencies  – also play a key role in determining species composition, with plant 

community richness and composition in particular often associated with biodiversity in higher 

taxa (e.g. Scherber et al. 2010). Thus biodiversity change in interacting taxa could drive 

negative or positive changes in the interaction partners depending on the nature of the 

interaction (Pace et al. 1999, Kiers et al. 2010). 

To assess temporal CTC at relevant time-scales, resurvey or time-series data over long periods 

are needed, as many important drivers of environmental change act over decades (e.g. climate 

(Vázquez et al. 2017) and agriculture (Robinson and Sutherland 2002)). Plant and insect 

occurrence data from the Cyril Diver Project provide an ideal opportunity to do so. Using these 

data, I assessed the degree of temporal CTC across plant and insect taxa in the dynamic 

Studland system with ca. 80 years between sampling periods. 

I aimed to investigate whether local plant and insect communities display cross-taxon 

congruence in species richness and compositional change over an approximately 80 year 

period, and to what extent revealed congruencies are driven by shared responses to abiotic 

environmental change (inferred from the plant community (Chapter 1; Carroll et al. 2018)). I 

assessed temporal CTC across six taxa which represent distinct evolutionary histories, 
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ecological requirements, and trophic characteristics (table 3.1.), at three relevant local scales 

within the study system (figure 3.1.). I expected distinct responses to environmental change 

among these taxa at group level due to niche conservatism within clades (Wiens et al. 2010). 

To quantify temporal CTC and its probable drivers, I asked: i) To what extent have species 

richness and composition in each taxon changed between sampling-periods, and how do 

changes compare across taxa?; ii) What environmental factors best predict species composition 

within each taxon during each sampling-period, and have composition/environment 

relationships changed between sampling-periods?;  iii) Do plant and insect groups display 

temporal congruence in local species richness change among sampling compartments? (figure 

3.1.); iv) To what extent is congruence between taxa in species richness change associated with 

shared responses to environmental change? 

I hypothesised that changes in composition of herbivore communities would correlate more 

closely with changes in plant community composition with than would the changes in the 

omnivore and carnivore groups due to trophic dependencies. I further hypothesised that 

congruencies observed in pairwise comparisons among the other five taxa would be driven 

largely by shared responses to abiotic changes, as no strong trophic dependencies exist between 

these groups. 
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Figure 3.1 The Studland peninsula in Dorset consists of a mosaic of ecological habitats surveyed in the 1930s and 2010s. 

Dashed lines separate the sampling compartments of historical and contemporary surveys, and colours denote habitat 

types. Even within this small peninsula (~𝟑𝒌𝒎𝟐), biodiversity change in plant and insect communities can unfold in 

differing ways at distinct spatial scales: A) Changes at the level of the whole study system; B) Changes within the distinct 

ecological habitat types, and; C) Changes within and among the sampling compartments. Species richness and 

compositional changes may correlate across taxa (Cross-taxon congruence) at any or all scales due to shared responses 

to a changing environment or biotic interactions. 

 



 
 

54 
 

Table 3.1 Focal taxa and their trophic status. 

 

Taxon Trophic status 

Vascular Plants Primary producers 

Non-Vascular plants Primary producers 

Orthoptera  

(Grasshoppers/Crickets) 

Herbivores 

Hymenoptera Formicidae  

(Ants) 

Omnivores  

(herbivorous/carnivorous 

diet depends on species) 

Diptera Syrphidae  

(Hoverflies) 

Larva: Omnivores (diet 

varies by species) 

Adult: Herbivores (strong 

dependency on 

nectar/pollen)  

Odonata 

(Dragonflies/Damselflies) 

Carnivores 

 

 

 

3.3  Methods 

See chapter 1 for details on species occurrence data collection. 

3.3.1 Environmental data 

Between sampling periods in the 1930s and 2013-2015 the peninsula underwent considerable 

and heterogeneous change driven by hydrological differences, vegetative succession and 

nitrogen deposition (Carroll et al. 2018). Environmental data used in statistical analyses 

consisted of categorical variables describing the ecological habitat type (figure 3.1.), and 

compartment mean Ellenberg Indicator Values (EIVs) for moisture (F), Light (L), Soil 

Nutrients (N), pH (R) and Salinity (S) derived from hierarchical regression models with 

improved accuracy by pooling information across compartments in chapter 1. EIVs provide a 

species-specific score which grades plant species according to observed environmental 
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associations, and site mean EIVs are widely used in re-visitation studies as proxies for 

alternative environmental drivers (e.g. Newton et al. 2012; Diaz et al. 2013) in the absence of 

directly measured environmental data. 

 

3.3.2 Statistical analyses 

To quantify temporal CTC and drivers thereof, I performed a set of analyses at three different 

scales: the whole study system, ecological habitat types, and local sampling compartments (fig 

1.). I first quantified absolute biodiversity change (species losses and gains) within each taxon 

at study system and habitat levels to provide a context of the overall change to compare between 

taxa. I then assessed taxon-specific relationships between species composition and 

environmental conditions within each sampling-period at sampling compartment level to 

identify important environmental predictors which may have driven community change and 

underlie congruencies between taxa. I examined pairwise correlations in species richness 

differences between sampling-periods at sampling compartment level as a measure of temporal 

CTC. Finally, I re-estimated these correlations after accounting for species richness change 

associated with environmental change (EIVs & Habitat type) to assess the degree of 

congruence due to shared responses to the abiotic environment between each pair of taxa. 

 

3.3.2.1 Compositional change between time-periods (species losses and 

gains) 

To quantify changes in species richness and composition at the levels of study system and 

ecological habitat type between sampling-periods, I used the Temporal β-diversity Indices 

(TBI) of Legendre & Salvat (2015). TBI are a simple but intuitive and information rich method 

based on breaking down components of the classical dissimilarity indices used in community 
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ecology, in this case the Jaccard similarity. For presence/absence data this amounts to simply 

counting the number of species losses and gains between two sampling periods in a sampling 

unit (whole peninsula, habitat), and calculating the sum of species gains plus losses as a 

proportion of the total number of species present in either or both time-periods (losses + gains 

+ species found in both time-periods) to find the proportional change in species composition 

between sampling periods. I calculated TBI for each taxonomic group within each ecological 

habitat type, and for the peninsula as a whole, to compare proportional changes in community 

composition between sampling-periods across taxa. I also calculated species richness 

differences as the difference between the number of losses and gains for each sampling unit. 

 

3.3.2.2 Species composition in relation to the environment 

To identify environmental factors underlying compositional differences between the 1930s and 

2010s, I assessed relationships between species composition and environmental conditions for 

each taxon within each sampling period and how these relationships changed between sampling 

periods. To quantify composition/environment relationships, I performed redundancy analyses 

(RDA) and variation partitioning on multivariate Hellinger transformed species-by-

compartment occurrence matrices for each taxon within sampling periods 1 and 2 (Legendre 

and Gallagher 2001, Legendre and Legendre 2012). RDA is a form of constrained ordination 

analogous to multivariate regression, which allows the user to quantify proportions of 

explained variance in species composition (adjusted 𝑅2) attributable to continuous or 

categorical predictor variables across a set of sampling units (Legendre & Legendre 2012). 

I fitted RDAs for each of the six focal taxa using two sets of environmental explanatory 

variables across the sampling compartments: 1) broad ecological habitat types as categorical 

predictors, and 2) mean within sampling-period EIVs for moisture (F), Light (L), Soil Nutrients 
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(N), pH (R) and Salinity (S) (Carroll et al. 2018). EIVs for nutrients (N) and pH (R) were highly 

collinear across sampling compartments, so final models only included EIV R (not EIV N) as 

EIV R explained more variance (by adjusted 𝑅2 criteria) in almost all cases. I selected 

statistically significant EIV predictors at the alpha = 0.05 level for each taxon using the 

forwardsel function from package VEGAN in R (Oksanen et al. 2013). Finally, I used 

multivariate variation partitioning with VEGAN’s varpart function for each set of models to 

determine the shared and unique contributions to the explanation of variation in species 

composition attributable to Habitat type vs EIV explanatory variables. 

 

3.3.2.3 Cross-taxon congruence in pairwise comparisons of species richness 

change 

To quantify temporal CTC in species richness change between sampling compartments – that 

is, the magnitude of correlations in richness differences between pairs of taxa – I used a 

hierarchical logistic regression (HLR) based approach. I extracted just the species lost and 

gained between sampling periods for each compartment and coded them as 0 and 1 

respectively. I fitted a HLR with intercepts varying by compartment for the vascular plant 

taxonomic group, and five separate sets of slope parameters, also varying by compartment, for 

each of the other five focal taxa (coded as dummy variables) (Model M2.1, Appendix 3). I 

included a random effect for species ID to ensure I estimated the average change of species 

within taxa for comparison. I reconstructed intercepts from the fitted model for each taxon on 

the inverse logit scale, corresponding to the proportion of species gained vs lost in each 

sampling compartment after controlling for species ID. This proportion provided me with a 

proxy for species richness change that I could compare across taxa: a proportion greater than 

0.5 represents an increase in richness, while a proportion less than 0.5 represents a decrease. I 
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then computed Pearson’s correlations of the intercepts between each pair of taxa over the full 

posterior distribution of estimates from the models across the subset of sample plots with 

records for both taxa within a pair. This provided a measure of cross-taxon congruence for 

average richness change between taxa. 

 

3.3.2.4 Congruence due to shared responses to environmental change 

To assess whether correlations in species richness change between taxa were driven by shared 

responses to environmental change, I fitted a second HLR model (M2.2 Appendix 3), extending 

the variable intercept and slope parameters of M2.1 to include predictors for habitat type and 

for the change in mean EIVs between sampling periods. The inclusion of habitat type as a 

proxy for environmental change entails the assumption that environmental conditions in 

distinct habitat types changed in different ways to one another as indicated in chapter 1. 

The additional predictor terms were included as varying offsets for habitat type with varying 

slopes for change in EIV scores and were fitted using a Multivariate Normal distribution with 

an associated variance/covariance matrix with a non-centred parameterization to aid model fit 

(McElreath 2016a, Stan Development Team 2018b). EIV predictors included in this model 

were those found to be significant predictors of community composition from RDA analyses 

in section 3.3.2.2 for each taxon (see figure 3.3.), so that we were only using environmental 

covariates found to have an association with assemblage composition for a specific taxon, and 

to help avoid overfitting. Pairwise correlations were then recomputed over the posterior 

distributions having controlled for these components of environmental change.  

In order to test for potential sampling bias and bias introduced due to rare, cryptic or transient 

species, I refitted the hierarchical models from sections 3.3.2.3 and 3.3.2.4 including species 

loss/gains only for species present in 20% or more sampling compartments in the time-period 
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in which a species was more widespread (taxon-specific). I then re-computed cross-taxon 

correlations to check if they differed substantially to correlations computed under the full 

dataset. This should serve to minimise effects of rare or “vagrant” species on cross-taxon 

correlations, and increase the likelihood that species recorded as lost or gained were 

legitimately present in one time-period and not the other under this analysis. 

Hierarchical models were fitted with MCMC in Stan using the rethinking package in R version 

3.5.0 with 4 parallel chains of 4000 iterations each (McElreath 2016b, R Core Team 2018, Stan 

Development Team 2018a). Details of fitted models and validation including posterior 

predictive checks can be found in Appendix 3. 

 

3.4 Results 

3.4.1 Compositional change between time-periods (species losses and gains) 

All six taxa displayed large proportional differences in species composition between sampling 

periods, both across the peninsula as a whole, and within ecological habitat types (figure 3.2.). 

Peninsula-wide differences in species composition were of a similar order of magnitude across 

taxa (proportional difference in species composition ≈ 0.5) with the exception of Odonata 

(proportional difference = 0.24), but proportions of species losses vs gains which contributed 

to differences were less uniform across the groups. Orthoptera, ants and Odonata in particular 

showed larger species gains than losses, but these were from much smaller total species 

numbers than the other three groups (figure 3.2.). At the level of ecological habitat types, 

compositional differences were variable both within and between taxa, but the total differences 

tended to be larger than at the whole peninsula level.  
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Species richness marginally increased at the study system level for all taxa apart from 

hoverflies (net loss of 5 species), but net gains or losses in richness across the peninsula as a 

whole were composed of gains in some ecological habitat types and losses in others for five of 

the six taxa (excluding Orthoptera which experienced no net losses) (figure 3.2.). In general, 

gains dominated in the heath, dune heath, harbour shore and aquatic habitats, while losses 

tended to be more prominent in the wood and marsh habitats. 
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Figure 3.2 Between time-period compositional change for six plant and insect taxa within ecological habitat types and 

for the whole Studland peninsula for sampling-periods in the 1930s and 2010s. Proportional differences (y-axes) in 

species composition (blue) are computed as the number of species losses (red) + gains (green) as a proportion of the 

total number of species present in either or both time-periods combined, and are identical to the Jaccard dissimilarity 

index computed between two time-periods. A value of 1 on the y-axis for blue bars indicates that the identity of every 

species in the assemblage has changed between sampling-periods, while a value of 0 indicates the exactly the same 

species were present in each time-period. Numbers labelling the bars are the raw species counts for each sampling unit 

from which the proportions were derived. Change in species richness can be calculated as gains minus losses in each 

instance. 
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3.4.2 Species composition in relation to the environment 

The most influential factors in predicting species composition across taxa at compartment level 

within each sampling-period were wetness and light availability (EIVs F and L), along with 

ecological habitat type, though composition/environment relationships showed widespread 

changes for all six taxa between sampling-periods (figure 3.3.). Variation partitioning revealed 

that habitat type and EIVs shared a large amount of explained variation for models of all taxa 

in time-period 1, and for five of the six taxa in time-period 2 (excluding Odonata). Explained 

variance (adjusted 𝑅2) increased in the 2010s vs the 1930s for vascular plants, non-vascular 

plants and Orthoptera (by 0.07, 0.07 and 0.04 respectively) – mostly explained jointly by 

habitat type and EIVs, rather than being exclusively explained by either set of predictors. This 

indicates that species composition differed more among habitats in the 2010s for these groups, 

possibly due to a greater contrast in environmental conditions compared with the 1930s. 

Adjusted 𝑅2 for ant and hoverfly groups showed decreases between sampling-periods in the 

2010s vs the 1930s (by 0.08 and 0.04 respectively), and both groups exhibited a shift towards 

variance explained jointly by habitat and EIVs in the latter time-period. 
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Figure 3.3 Relationships between species composition and the environment across the Studland peninsula derived from 

Canonical Redundancy analyses (RDA) and multivariate variation partitioning performed separately on Vascular plants 

(VA), Non-vascular plant (NV), Orthoptera (OR), Ant (AN), Hoverfly (SY) and Odonata (OD) assemblages for sampling 

periods in the 1930s and 2010s. Venn diagrams display proportions of variation explained (adjusted 𝑹𝟐) by A) ecological 

habitat type alone, B) jointly by habitat type and site mean Ellenberg indicator values (EIVs), and C) EIVs alone. EIVs F, L, 

R and S represent soil moisture, light availability, pH and salinity respectively. Only significant EIVs included in the final 

models were used for calculations of adjusted 𝑹𝟐. Red numbers indicate that more variation was explained by 

environmental predictors in that time period for a taxon. 

 

3.4.3 Cross-taxon congruence in pairwise comparisons of species richness change 

HLR models revealed strong evidence for cross-taxon congruence in temporal species richness 

change across the study area, illustrated by pairwise correlations between plant and insect taxa 

in figure 3.4. Mean pairwise correlations between taxa in species richness change were non-

negative in all cases before accounting for environmental change, and the 95% credible 

intervals were fully positive (did not cross zero) in 7 of the 15 comparisons (analogous to 

frequentist statistically significant congruencies at the α = 0.05 level, black intervals figure 

3.4.). Correlations between vascular plants and other taxa (excluding ants) were strong and 

positive, and correlations between vascular plants and the two herbivorous groups (hoverflies 

and Orthoptera) were stronger than those with non-herbivores. Non-vascular plants displayed 
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the weakest correlations with other taxa, with the only notable correlations between them and 

vascular plants, and a weaker (mean ≈ 0.25) correlation with Odonata. Pairwise correlations 

between insect groups were broadly positive, with 3 out of 6 of the distributions “statistically 

significant” before accounting for environmental change. 

 

3.4.4 Congruence due to shared responses to environmental change 

When environmental covariates were controlled for, 8 of the 15 pairwise correlation 

distributions shifted in a negative direction, including all 6 insect-insect group comparisons 

(figure 3.4., blue intervals). Correlations between vascular plants and herbivores stayed strong 

and positive, but the correlation between vascular plants and Odonata shifted to centre at 

approximately zero. Correlations between non-vascular plants and all other groups shifted in a 

positive direction, but remained weak in all comparisons apart from correlations with vascular 

plants and with Odonata. 

Both models fitted for the partial dataset with species present in 20% or more compartments 

produced cross-taxon correlations that were strikingly similar to those under the full dataset 

(Appendix 3). This is almost certainly due to the species level random effect, which means that 

correlations were computed for an average species within a taxonomic group, and therefore 

rare and transient species will not have made large contributions. 
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Figure 3.4 Pearson correlations between pairs of taxa in average proportions of species gained vs lost across the 

sampling compartments of the Studland peninsula between the 1930s and 2010s. Black credible intervals are pairwise 

correlations derived from a hierarchical logistic regression model including a varying compartment level intercept for 

vascular plants, varying slopes for the other five taxa, and a random offset for species ID. Blue credible intervals are 

pairwise correlations from the same model extended to include habitat and environmental change covariates and hence 

give residual correlations after controlling to some extent for shared responses to environmental changes between 

time-periods. Correlations were computed over the full posterior distribution of Bayesian models with plot showing 

medians (red dots), 50% credible intervals, and 95% credible intervals (thick lines and thin lines respectively). 
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3.5 Discussion 

In this chapter, I have shown strong evidence of cross-taxon congruence in species richness 

and compositional changes in plant and insect communities over a period of ca. 80 years. The 

study system experienced high levels of turnover for all taxa, both within habitat types and 

across the system as a whole. However, overall species richness did not change substantially 

for any group at the study system level. Hierarchical model estimates suggest a prominent role 

for shared responses to environmental change underlying observed congruencies in richness 

differences at the sampling compartment level. Furthermore, biotic interactions between plants 

and herbivores were also likely drivers of biodiversity change, as these correlations were 

stronger than were correlations between plants and non-consumer groups. They were the only 

correlations to remain positive after accounting for environmental change. 

High levels of compositional change are in line with findings from meta-analyses of 

biodiversity trends over this time period across a wide range of taxa (Vellend et al. 2013, 

Dornelas et al. 2014, McGill et al. 2015). Proportional changes were remarkably similar for 

five of the six taxa at the study system level (excluding Odonata), suggesting cross-taxon 

congruence in compositional change. This result reflects findings of CTC in species 

composition across spatial extents in contemporary communities (Westgate et al. 2014). 

However care must be taken when comparing raw proportions, as total numbers of species in 

each group differed. Compositional differences were much more variable within and between 

taxa within ecological habitat types than at the study system level, which also highlights the 

importance of scale and habitat classification in studies of cross-taxon congruence (Westgate 

et al. 2014, Schuldt et al. 2015). 

Cross-taxon congruence in sampling compartment level species richness differences was 

widely prevalent in pairwise comparisons between taxa, adding to the few studies which have 
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documented temporal CTC in biodiversity change. Ewald et al. (2015) found that extreme 

weather events had interannual effects on abundances in 11 out of 26 insect taxa in a 42 year 

time-series of insects recorded at genus, family and class level in cereal fields. They also found 

correlations in temporal abundance trends with temperature and precipitation, and detrimental 

effects of pesticide use across taxa, which could be interpreted as temporal CTC driven by 

shared responses to abiotic change. Özkan et al. (2014) also reported temporal CTC in 

phytoplankton and zooplankton, apparently driven by environmental factors and trophic 

interactions. 

HLR models revealed strong congruencies between vascular plants and all other groups except 

for ants, and pairwise congruencies were stronger between vascular plants and herbivores 

(hoverflies and Orthoptera) than with other insect groups. Although causation cannot be 

determined from these results, the fact that this hypothesis was borne out suggests a role for 

bottom up effects of the plant community on composition of at least these herbivore groups – 

a finding in-line with previous experimental and observational results (Schaffers et al. 2008; 

Scherber et al. 2010; Rzanny et al. 2013). This is because I have already shown in chapter 1 

that changes in the abiotic environment likely had large effects on plant community 

composition. However, I can not rule out the possibility of bottom-up causation, or a 

combination of top-down and bottom-up. 

The relationship between vascular plants and hoverfly richness differences was particularly 

strong, and echoes the national trend over this time-period (Biesmeijer et al. 2006). Adult 

Hoverflies feed exclusively on nectar and pollen from flowering plants and some species have 

associations with specific vegetation types while attempting to attract mates (Gilbert and 

Rotheray 2011). Larva of many species also have trophic associations with particular plant 

species, either feeding on them directly or searching for invertebrate prey which feed upon 

them (Almohamad et al. 2009), Some plant species may also rely on hoverflies as pollinators 
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(Rader et al. 2016). Due to the number of potential pathways underlying this correlation more 

work is needed to determine the nature of underlying mechanisms, which may comprise a 

combination of the above. 

Changes in the abiotic environment likely played a key role underlying observed compositional 

changes, as soil moisture (EIV F) and light availability (EIV L) were important predictors of 

species composition across taxa (RDA results). Abiotic environmental forcing is often an 

important driver of biodiversity change in dynamic environments (Mutshinda et al. 2009; 

Vellend 2016), and hydrology and vegetation structure are both important determinants of plant 

and invertebrate community composition (De Szalay & Resh 2000; Silvertown et al. 2015). As 

the study system has undergone widespread hydrological change and varying degrees of 

vegetative succession between the sampling-periods (Carroll et al. 2018), changes in these 

factors have likely affected which species occupy the study system.  

Effects of environmental forcing were further underlined by congruent species richness 

differences at the sampling compartment level. Controlling for environmental factors broadly 

reduced model estimates of temporal CTC in species richness differences, suggesting a 

prominent role for shared responses to environmental change underlying observed 

congruencies. Abiotic factors drive CTC across contemporary plant and insect communities 

(Duan et al. 2016), and it is therefore not surprising that environmental changes would have 

similar effects on temporal richness differences across insect groups.  

Non-vascular plants and ants were outliers to some extent in analyses of biodiversity change. 

Accounting for environmental factors increased congruence estimates between non-vascular 

plants and all other groups, which may suggest an opposing response to environmental changes 

when compared with the other taxa, masking temporal CTC in the original correlations 

(McElreath 2016a). Many non-vascular plant species thrive in wetter conditions (Silvertown et 
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al. 2015), and increases in soil moisture at Studland (Carroll et al. 2018) may have increased 

species richness in this group while causing reductions in species richness across other taxa. 

Meanwhile RDA models described far more variance in ant community composition in the 

1930s than in the 2010s (0.18 and 0.1 respectively), and they were also the only group not to 

display any congruence with vascular plant changes. Widespread gains across the study area 

made by the now dominant ant species Formica rufa may go some way to explain the 

idiosyncratic trend in this group, as competitive and predatory effects of this species may have 

had overwhelming effects on ant community structure through dominance hierarchy effects 

(Halaj and Wise 2001). 

When comparing data collected under non-identical sampling regimes biased estimates of 

ecological phenomena are an inherent danger. This can be due, for example, to differences in 

sampling effort causing rare or cryptic species to be differentially represented (Chen et al. 

2013), or spatiotemporal variance in sampling effort throughout the study area (e.g. (Fithian et 

al. 2015). By refitting hierarchical models for only species present in 20% or more sampling 

compartments I have at least partially mitigated such concerns, as cross-taxon correlations 

computed from these models were very similar to models under the full dataset (see Appendix 

3.). This convergence of models under full and depleted datasets is likely due to the species 

level random effect giving less weight to rare and transient species, and estimating correlations 

between the “average” species within taxa. However, if sampling effort differed among 

sampling compartments in a consistent manner across taxa, spurious cross-taxon correlations 

in species loss/gain patterns remain a possibility I cannot rule out. 

Assessing the relative contributions of different drivers of biodiversity changes can be difficult, 

even with good estimates of environmental change at hand, as positively or negatively 

correlated responses can mask the true nature of relationships (Ranta et al. 2008b). The 

hierarchical modelling framework used here circumvents this issue by modelling separate 
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intercept and slope parameters for each taxon with associated predictors of taxon-specific 

effects of environmental change. However, it cannot account for possible effects of missing 

predictors, and neither can it account for the fact that estimates of environmental change were 

derived from the plant community. Consistent sampling bias across taxa could also have the 

potential to produce spurious shared responses to environmental change. 

In conclusion, I have shown that congruent biodiversity change occurs across diverse plant and 

insect taxa, and is likely driven by changes in both abiotic and biotic environmental factors. 

These drivers do not act independently from one another, as demonstrated by apparent effects 

of biotic interactions between the plant community and herbivores, which were also responding 

to abiotic changes. These results therefore strongly point towards the existence of interacting 

effects of abiotic and biotic drivers on richness and compositional changes across co-occurring 

taxa. Further, as communities of disparate taxa respond in tandem to environmental change, 

these results suggest that the wide ranging anthropogenic environmental changes projected to 

continue throughout the 21st century are likely to have cascading effects on species richness 

and composition across local communities. 
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4. Abiotic and Biotic drivers of biodiversity change in a local hoverfly 

community over an 80-year period 

4.1 Abstract 

As insect communities adapt to continuing environmental change, component species face 

distinct ecological challenges as larval and adult individuals. However, a lack of long-term data 

documenting biodiversity change has meant that studies of community level effects of long-

term environmental change are rare. In addition, the consequences of distinct ecological 

pressures acting on different life-history stages have remained largely unstudied in local insect 

communities. These species provide vital ecosystem services including pollination, biocontrol 

and decomposition, and as such, it is important to establish how long-term environmental 

changes affect temporal biodiversity patterns. 

I investigated abiotic and biotic drivers of species richness and species compositional change 

in a local hoverfly community using the CDP data. I used a hierarchical logistic regression 

approach at local and wider landscape scales, combined with species level trait data, to examine 

effects of:  i) hydrological change; ii) biodiversity change in the vascular plant community, and 

iii) ecological habitat type on species losses and gains. A particular emphasis was placed on 

distinct ecological pressures exerted at larval and adult life-history stages.  

I found strong evidence for an effect of hydrological change on hoverfly composition at the 

peninsula level. Species whose larvae overwinter on or under the ground surface, and are also 

intolerant to flooding, have largely declined or been excluded from the community. However, 

more localised changes in soil moisture, indirectly estimated from the plant community 

(chapter 1), did not predict hoverfly species richness differences in observed adult flies between 

time-periods. Species richness differences at this localised scale were strongly associated with 

changes in vascular plant species richness. This effect was likely to have been driven via trophic 
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interactions between adult flies and the plant community, as there was no clear pattern in 

species loss/gains in larval feeding guilds. Species richness change in observed adult flies also 

varied by ecological habitat type, with higher richness in the 2010s in aquatic edge habitat 

types, and lower richness in marsh habitats. There was a small negative effect of habitat 

specialisation on hoverfly composition. 

Together, these results suggest that species richness in hoverfly assemblages is limited by adult 

resource availability at highly localised scales, while compositional change is strongly affected 

by the availability of suitable larval microhabitat at the wider scale of a few kilometres. This 

work provides a unique empirical example of long-term community change which supports 

findings in contemporary systems highlighting the need to cater for idiosyncratic needs across 

the life-cycles of holometabolous insect species at relevant spatial scales under environmental 

change. 

 

4.2  Introduction 

Species richness and composition are undergoing substantial change in modern ecological 

communities, as human induced pressures cause widespread disturbances across a range of 

scales and taxa (Thomas et al. 2004, Potts et al. 2010, Barnosky et al. 2011). Mechanisms 

underlying such biodiversity change within communities can become particularly complex 

when species have contrasting ecological requirements at different life-history stages (Chesson 

2000). Holometabolous insects – with egg, larval, pupal and adult forms – experience specific 

ecological pressures at each life-history stage, any or all of which can affect long-term 

abundance of individual species, leading to changes in species richness and composition. These 

species provide vital ecosystem services including pollination, biocontrol and decomposition, 

and as such, it is important to establish how long-term environmental changes affect temporal 
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biodiversity patterns (Oliver et al. 2015). However, few studies have examined the effect of 

long-term change in the abiotic and biotic environment on different life-history stages, and how 

these impact on local species richness and composition. 

There is an argument to suggest that an overemphasis has been placed on changes in species 

richness within the ecological literature, with too little concern for compositional change 

(McGill et al. 2015). Both richness and compositional changes can have important implications 

for ecosystem functioning (Oliver et al. 2015). Thus, as climate and land use changes proceed 

to alter the environment throughout the 21st century (Foley et al. 2005, Watts et al. 2015), it is 

important to understand factors affecting which species are recruited and excluded from 

communities, as well as monitoring the total numbers of species present. 

Though there is evidence that declines in species richness have slowed across some 

holometabolous insect taxa in recent decades across Western Europe (Carvalheiro et al. 2013b), 

declines persist in many populations (eg. Hallmann et al. 2017). Compositional change also 

prevails in many such communities (e.g. Aguirre-Gutiérrez et al. 2016), including evidence for 

taxonomic homogenisation in some taxa and regions (Eskildsen et al. 2015). However, the full 

consequences of such change for community structure and functioning are as yet unclear. 

Establishing the drivers of change across spatial scales, taxa, and life-history stages are 

important goals to help mitigate effects of impending environmental change. 

A multitude of biotic and abiotic drivers can underpin richness and compositional change in 

holometabolous insect communities. The availability of flowering plants as nectar and pollen 

food resources is vital for adult individuals of many species (Carvell et al. 2006). Larval 

individuals may also display strong dependencies on the plant community through direct or 

indirect trophic interactions; feeding either directly on plants (Gilbert and Rotheray 2011), or 
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on herbivorous insects or microorganisms inhabiting them (Honěk 1983; Almohamad et al. 

2009). 

Habitat specific environmental change can play an important role in determining biodiversity 

patterns, as species display varying degrees of habitat specialisation (Casey et al. 2015). More 

resilient habitats with higher complexity may be less susceptible to species losses (Tscharntke 

et al. 2012). Differing micro- and macro-habitat requirements for adult and larval individuals 

must also be considered, as changes in either can affect biodiversity trends in differing ways 

(Moquet et al. 2018). 

Another important factor in terrestrial ecological communities is how ecosystems differ along 

hydrological gradients, as component species will be morphologically adapted to suit 

specifically wet or dry conditions (Silvertown et al. 2015). Thus hydrological change can be 

an important driver of biodiversity change, to the extent that composition of plant and 

invertebrate communities is commonly used as an ecological indicator of environmental 

conditions at a specific location and time (eg. De Szalay & Resh 2000). 

Finally, the scale of analysis is a vital factor to be taken into account when inspecting drivers 

of biodiversity change, as governing processes will act at differing scales (Keil et al. 2011, 

2012, Chave 2013). This may be especially true in communities where species display large 

differences in dispersal abilities at different points in their life-cycle. 

Hoverflies (Diptera, Syrphidae) represent an ideal taxon within which to study biodiversity 

change in holometabolous insect communities, as they comprise a group of species sensitive 

to all of the prevalent drivers of biodiversity change outlined above, as well as being 

particularly amenable to analysis with respect to such drivers. This is due to a combination of 

diverse ecological requirements and relative ease of monitoring within this group (Gilbert and 

Rotheray 2011), which make hoverflies useful ecological indicators (Sommaggio 1999, Dziock 
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2006, Burgio and Sommaggio 2007). Further, the diverse ecological requirements of hoverflies 

resulting from species specific traits and preferences have been particularly well documented, 

due to a combination of wide ranging academic research and fervent amateur interest in 

studying and recording (Speight and Sarthou 2014). 

Dispersal abilities vary greatly among hoverflies, from highly localised to migratory species, 

but availability of suitable larval microhabitat and adult resources within 2 to 5 km in the 

landscape context can have large effects on hoverfly biodiversity (Gatter and Schmid 1990, 

Schönrogge et al. 2006, Jauker et al. 2009, Rotheray et al. 2014). Adult dispersal abilities are 

exponentially greater than that of larvae, and as such, larval microhabitat availability across the 

wider landscape can be an important predicter of hoverfly biodiversity, while adult resources 

may be more important in the immediate local vicinity, as adult flies can more freely disperse 

to meet their needs (Moquet et al. 2018). It thus seems clear that a variety of long-term changes 

across an ecosystem could have wildly differing effects on the biodiversity of subgroups of 

hoverfly species depending of their larval and adult needs. 

 The aim of this study was to determine which factors influenced long-term (ca. 80 years) 

species richness and compositional change in local hoverfly communities, particularly in 

relation to larval and adult ecological requirements. Using CPD species occurrence data, I 

identified three types of biotic and abiotic environmental drivers likely to affect hoverfly 

diversity across life-history stages, and asked the following questions to determine their 

importance: 

1) How does hydrological change drive biodiversity change in the hoverfly community? 

In chapter 1, I showed that Studland has become wetter across much of its area in the 

2010s vs the 1930s. I hypothesised that i) Areas which have increased in wetness would 

display lower hoverfly species richness in the 2010s than the 1930s via exclusion of 



 
 

76 
 

species susceptible to disturbance by flooding at this scale, and ii) Changes in seasonal 

hydrology would predict compositional change in hoverflies through exclusion of 

species susceptible to disturbance by flooding at the larval stage across the wider 

peninsula. 

2) How are long-term changes in hoverfly richness and composition affected by 

biodiversity change in the local plant community? 

I hypothesised that iii) Reductions in species richness in the hoverfly community would 

be associated with reductions in vascular plant species richness via trophic interactions 

between adult hoverflies and their food plants, and iv) Changes in the plant community 

would affect hoverfly species composition by favouring some larval feeding guilds. 

Larval feeding guilds are here defined in terms of how larvae directly or indirectly 

interact (or not) with the plant community. Further, these two components of plant 

community driven biodiversity change may interact, with species richness in differing 

larval feeding guilds displaying distinct associations with changes in vascular plant 

species richness. This interaction is explored as hypothesis v). 

3) Do richness and compositional changes in hoverflies differ by ecological habitat type, 

and by the degree to which hoverfly species specialise on specific habitats? 

I hypothesised that vi) Species richness changes in hoverflies would differ between 

habitat types, and vii) Habitat generalists would fare better than habitat specialists 

(compositional change), as their populations would be more robust to habitat specific 

drivers within the study area. 
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4.3 Methods 

4.3.1 Study Area 

The peninsula has undergone considerable and heterogeneous change between sampling-

periods driven by hydrological change, vegetative succession and nitrogen deposition, as 

shown by analysis of differences in mean Ellenberg Indicator Values (EIVs) (Chapter 1). Most 

notably for the present study, the indicator values for soil moisture (EIV F) have displayed 

increases across many sampling compartments, particularly in the marsh habitat type, 

indicating generally wetter conditions in the 2010s compared with the 1930s. I used these EIV 

F change estimates to test hypothesis i). 

 

4.3.2 Data 

4.3.3 Hoverfly and plant surveys 

Both historical and contemporary surveys aimed to sample and record the full cohort of 

hoverfly and plant species present in each compartment across the peninsula. This chapter, only 

sampling compartments for which full species lists for both hoverflies and vascular plants are 

available in both time-periods were used (Appendix 1). 

 

4.3.4 Hoverfly trait data 

To test hypotheses concerning factors driving change in species composition (Hypotheses ii, 

iv, and vii), I compiled hoverfly trait data from the “Syrph the Net” (StN) database (Speight 

and Sarthou 2014), and “Britain’s Hoverflies” (Ball and Morris 2015). Compiled traits describe 

how individual hoverfly species interact with the biotic and abiotic environment, and aggregate 
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changes in the nature of such traits between time-periods can reveal environmental factors 

underlying changes in species composition. 

To test Hypothesis ii) on the effects of hydrological change on larval hoverflies, I classified 

species as 1) susceptible to, and 2) tolerant of disturbance by flooding. For susceptibility to 

flooding, I identified species whose larvae are classified as being active on or under ground-

surface debris (GS), species whose larvae are active in the root zone of herb layer plants (RZ), 

and species whose hibernation/overwintering zone is under or in terrestrial ground surface 

microhabitats (WGS) (Speight and Sarthou 2014). Of these only WGS was a useful predictor 

in preliminary modelling, so RZ and GS were dropped from the final set of models presented 

in the results. For tolerance to flooding we used the Inundation tolerance variable (Inun) from 

the StN database. 

To test whether the plant community affected hoverfly composition through larval feeding 

associations (Hypotheses iv & v)), I categorised the hoverfly species present during either or 

both sampling-periods into six separate larval feeding guilds based on how larvae interact 

directly or indirectly (or do not interact) with the plant community as follows: 1) Larvae which 

feed in decaying materials. These are primarily wet adapted and will generally feed around 

plants at the water’s edge; 2) Larvae with direct or indirect trophic interactions with trees. 

These include species whose larvae feed in sap runs, on tree aphids, or in decaying timber; 3) 

Larvae which feed on a wide variety of aphids, and therefore are dependent on a wide variety 

of aphid host plants; 4) Larvae which are generalist ground layer and leaf litter predators, 

including root aphids; 5) Larvae which are brood parasites of various Hymenoptera 6) Larvae 

with species-specific associations with plants on which they feed directly. I used both StN and 

“Britain’s Hoverflies” to derive these associations. 
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I used the total number of broad habitat types hoverfly species were associated with (Speight 

and Sarthou 2014) (StN database) as a measure of habitat specialisation to test Hypothesis vii). 

Habitat specialisation may be due to associations between hoverfly species and specific 

habitats at larval or adult stages of development, or both. This numeric variable was 

standardised for use as a predictor in models described below. 

 

4.3.5 Statistical methods 

4.3.5.1 Hierarchical logistic regression 

To assess the influence of factors on changes in species richness and composition across the 

hoverfly community of Studland, I used Bayesian hierarchical logistic regression (HLR) 

models. I subset the cohort of species from each sampling compartment representing 

biodiversity change by extracting just species lost or gained between sampling-periods, and 

coding them as 0’s and 1’s respectively to use as a response variable. This allowed me to use 

grouping factors of sample compartment and species ID as random offsets in HLR models to 

quantify the probability that a species was gained rather than lost on average in a given 

compartment, or that a given species was gained rather than lost on average across the study 

area respectively. 

Compartment-level gain/loss probabilities are directly proportional to changes in species 

richness at this scale, and thus factors affecting these probabilities will be associated with 

hoverfly richness change within sampling compartments across the study area (figure 2.1). 

Similarly, factors affecting species-level gain/loss probabilities are those contributing directly 

to compositional change, as species losses and gains directly change composition in the 

hoverfly community. Compositional changes linked with species specific traits in these models 

concern the wider scale of the whole peninsula, as they relate the proportion of sampling 
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compartments across the peninsula in which a species was lost or gained to trait values across 

species (figure 2.1). 

I specified a baseline model with the species gain/loss response variable, and varying offsets 

for sample plot and species ID as follows: 

Eqn 1 

𝐺𝑎𝑖𝑛\𝐿𝑜𝑠𝑠𝑖  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) =  𝛼
0 + 𝛼𝑗 [𝑖]

𝑃𝑙𝑜𝑡 + 𝛼𝑘 [𝑖]
𝑆𝑝𝑒𝑐𝑖𝑒𝑠

 

𝛼𝑗
𝑃𝑙𝑜𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑃𝑙𝑜𝑡) 

𝛼𝑘
𝑆𝑝𝑒𝑐𝑖𝑒𝑠 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑆𝑝𝑒𝑐𝑖𝑒𝑠) 

α0 here is a global intercept, with αj
Plota varying offset for sampling compartments, and 

αk
Species

 a varying offset for species. σPlot and σSpecies are residual variance parameters for plot 

and species intercepts respectively. 

To test hypotheses relating to factors driving species richness and compositional changes in 

the hoverfly community I extended the compartment-level and species-level submodels 

respectively to include the relevant predictors. The compartment-level submodel was extended 

as  

Eqn 2 

𝛼𝑗
𝑃𝑙𝑜𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑗

𝛼𝑃𝑙𝑜𝑡 , 𝜎𝑃𝑙𝑜𝑡) 

𝜇𝑗
𝛼𝑃𝑙𝑜𝑡 = 𝑋 ∗ 𝐵𝑒𝑡𝑎_𝑝𝑙𝑜𝑡 
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Where 𝜇𝑗
𝛼𝑃𝑙𝑜𝑡  replaces 0 as the mean value of the compartment offset, and is a product of the 

predictor for compartment j (𝑋) and the estimated predictor coefficients (𝐵𝑒𝑡𝑎_𝑝𝑙𝑜𝑡). 

The species-level submodel was extended as  

Eqn 3 

𝛼𝑘
𝑆𝑝𝑒𝑐𝑖𝑒𝑠 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑘

𝛼𝑆𝑝𝑒𝑐𝑖𝑒𝑠 , 𝜎𝑆𝑝𝑒𝑐𝑖𝑒𝑠) 

𝜇𝑘
𝛼𝑆𝑝𝑒𝑐𝑖𝑒𝑠 = 𝑋 ∗ 𝐵𝑒𝑡𝑎_𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

Where 𝜇𝑘
𝛼𝑆𝑝𝑒𝑐𝑖𝑒𝑠  replaces 0 as the mean value of the species offset, and is a product of the 

predictor for species k (𝑋) and the estimated predictor coefficients (𝐵𝑒𝑡𝑎_𝑠𝑝𝑒𝑐𝑖𝑒𝑠). 

 

 Q1. Effects of hydrological change on hoverfly diversity 

To test Hypothesis i), that compartment level hoverfly species richness was affected by changes 

in soil moisture at that scale, I included a standardised predictor for compartment level EIV F 

estimates derived from chapter 1 to the compartment-level submodel (M4.1). To test 

Hypothesis ii), that changes in seasonal hydrology would predict hoverfly compositional 

change I included binary categorical predictors to the species-level submodel (Eqn 3) for 

species whose larvae overwinter at ground surface level (WGS), and for larval inundation 

tolerance, as well as an interaction term between these two variables (M4.2). 
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 Q2. Effects of the plant community on hoverfly diversity 

To test Hypothesis iii), I expanded the compartment-level submodel (Eqn 2) to include the 

standardised difference in plot-level plant species richness, derived from the “Cyril Diver 

Project” data, as a continuous predictor variable (M4.3).  

In Chapter 2 I found a strong correlation between species richness change in the hoverfly and 

plant communities of Studland, which suggested the possibility of a direct biotic interaction 

between these taxa. There may be a number of drivers behind this correlation, including trophic 

dependencies of adult hoverflies feeding on nectar and pollen, other species-specific 

hoverfly/plant associations like use as larval feeding sites, or unquantified shared responses to 

environmental change. To assess whether the trophic association of adult hoverflies was the 

dominant factor, I fitted the model described in Eqn 2 using two separate plant species richness 

predictor variables; one with all plant species included (𝑃𝑙𝑎𝑛𝑡𝑆𝑃_𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓 (𝐴)), and another 

with only plant species suitable for use as adult hoverfly food sources 

(𝑃𝑙𝑎𝑛𝑡𝑆𝑃_𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓 (𝐵)). I postulate that if the relationship were primarily due to the adult 

hoverfly trophic dependencies 𝑃𝑙𝑎𝑛𝑡𝑆𝑃_𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓 (𝐵) would explain a higher proportion of 

variation given that a significant relationship is found. However, this was not the case, as 𝑅2 

values for plot level submodels were higher in every instance for models including 

𝑃𝑙𝑎𝑛𝑡𝑆𝑃𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓(𝐴) rather than 𝑃𝑙𝑎𝑛𝑡𝑆𝑃_𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓 (𝐵). In the remainder of the manuscript I 

present results for models including 𝑃𝑙𝑎𝑛𝑡𝑆𝑃_𝑟𝑖𝑐ℎ𝐷𝑖𝑓𝑓 (𝐴). 

To test Hypothesis iv) I included plant related larval feeding guild as a categorical predictor to 

estimate a varying intercept for this factor (M4.4). To test Hypothesis v) I extended this varying 

intercept model to also include a slope parameter which also varied by plant related larval 

feeding guild, in which the correlation was also modelled between the varying intercept and 
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slope parameters (M4.7). This model was fitted using a non-centred parameterisation with the 

rethinking package in R, following McElreath (2016). 

 

 Q.3 Effects of Ecological Habitats on hoverfly diversity 

To test Hypothesis vi), assessing the effects of the habitat type a compartment occupied on 

changes in hoverfly species richness, I included a variable offset for habitat type as a categorical 

predictor in the compartment-level submodel (Eqn 2, M4.8). To test Hypothesis vii) that habitat 

generalists would do better than habitat specialists I extended the species-level submodel (Eqn 

3, M4.9) to include the predictor for standardised number of broad habitats a species is 

associated with. 

 

 Models with overlap between questions 

As well as the models described in preceding subsections alluding to our specific questions, I 

present three models with parameters including overlap between questions, in order to assess 

potential confounding effects of predictors on one another. These were i) a model including 

the standardised difference in plot-level plant species richness and an offset for habitat type; ii) 

a model including the standardised difference in plot-level plant species richness and the soil 

moisture proxy (EIV F), and iii) a model including the plant related feeding guild offset and 

the predictors for Hypothesis ii) on the effects of seasonal hydrology (M4.11, M4.12 and 

M4.13). Finally, I fitted a “full” model including all predictors except the soil moisture proxy 

(EIV F), as this was not a useful predictor in any model fitted (M14). 
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4.3.6 Software and model evaluation, comparison and validation 

Hierarchical logistic regression models were fitted using the probabilistic programming 

language stan with package RStan in R version 3.5.0 (R Core Team 2018, Stan Development 

Team 2018a). Models were evaluated using a combination of loo information criteria and 

inspection of parameter values. Loo is a form of information criteria based on leave one out 

cross validation, which can be used in a similar manner to the classic AIC whereby a smaller 

loo value indicates a better fitting model  (Vehtari et al. 2017). All model comparisons were 

contrasted with the baseline model in Eqn 1, as any simpler model without plot and species 

level offsets would have suffered from pseudoreplication. Parameters were evaluated by 

conducting a Bayesian analogue to significance testing using means and central 95% 

percentiles of the posterior parameter samples as Bayesian credible intervals (CRI) (Chen et 

al. 2013). I assessed the utility of group level parameters by computing explained variance for 

plot and species level submodels (𝑅𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠
2  and 𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

2  respectively) (Gelman and Pardoe 

2006). Model validation was performed using posterior predictive checks and examination of 

mean residuals. 

 

4.4 Results 

4.4.1 Results overview and model comparisons 

Hoverfly species richness largely decreased across the study area, with more species losses 

than gains recorded in in 23 of the 34 sampling compartments. Compositional change was high 

within every sampling compartment, with a minimum proportional change in species 

composition of 0.64, and 13 out of 34 compartments where the identity of every species 

recorded differed between the two time-periods. All these compartment-level losses and gains 

culminated in 30 species being lost and 25 gained across the whole study system out of 109 
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total species found in both time-periods combined (as was reported in chapter 3). These 109 

species represent a substantial proportion of the roughly 270 hoverfly species found in the UK. 

Changes in the plant community, hydrology and ecological habitats of Studland all contributed 

to change in the hoverfly community; as assessed via loo information criteria, Bayesian 𝑅2 

values and inspection of model parameters (table 4.1). Effects of changes in the plant 

community on local hoverfly richness (Hypothesis iii), M4.4 table 4.1) had the greatest 

predictive utility from a model concerning a single hypothesis, with a Δloo of 3.8 and a 

𝑅𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠
2  value of 0.44. This was closely followed by the effects of hydrological change on 

hoverfly composition across the wider peninsula (Hypothesis ii, M4.2 table 4.1; Δloo of 3.4 

and 𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
2  of 0.11).  

In general, effects of changes in the plant community and hydrological change were more 

useful predictors of hoverfly richness and compositional change than ecological habitat type, 

though habitat level effects were also apparent (table 4.1). The full model including all 

predicters (except EIV F) was by far the best model for out of sample predictive performance 

and explained variance (𝑅2), with a Δloo of 10.2 (M4.14 table 4.1). However, it should be 

noted that while parameter estimates obtained from the full model were generally similar to 

those of simpler models, the estimate of the global intercept was highly uncertain due to 

collinearity with mean parameters for habitat and feeding guild offsets. This resulted in wide 

uncertainty intervals from the full model when uncertainty in the intercept was included. 
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Table 4.1 Summary of fitted hierarchical logistic regression models with plot-level submodels describing changes in species 

richness and species-level submodels describing changes in species composition between sampling-periods in the 1903s 

and 2010s. Whether changes are driven by ecological pressures at larval or adult stages is shown where possible. 

Model Predictors Adult / 

Larva 

Richness / 

Composition 
𝑹𝒓𝒊𝒄𝒉𝒏𝒆𝒔𝒔
𝟐  𝑹𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏

𝟐  looic Δloo 

Baseline model       

M0 NA A + L NA - - 452.4 - 

Q1. Hydrological change 

effects models 

      

M4.1 EIV F A + L Rich 0.05 - 452.7 0.3 

M4.2 Hydro L Comp - 0.11 449 -3.4 

M4.3 EIV F, Hydro A + L Rich + Comp 0.05 0.11 449.8 -2.6 

Q2. Plant community 

effects models 

      

M4.4 PLNT.A A Rich 0.44 - 448.6 -3.8 

M4.5 F.guild L Comp - 0.06 450.6 -1.8 

M4.6 F.guild  + 

PLNT.A 

A + L Rich + Comp 0.44 0.06 447.4 -5 

M4.7 F.guild  X 

PLNT.A 

A + L Rich + Comp NA NA 447.1 -5.3 

Q3. Habitat effects models       

M4.8 HAB A + L Rich 0.4 - 450.5 -1.9 

M4.9 Hab.gen A + L Comp - 0.03 449.8 -2.6 

M4.10 HAB, Hab.gen A + L Rich + Comp 0.4 0.03 448.4 -4 

MISC. Models with overlap 

between questions 

      

M4.11 PLNT.A, HAB A + L Rich 0.7 - 446.4 -6 

M4.12 EIV F, 

PLNT.A 

A + L Rich 0.42 - 450.1 -2.3 

M4.13 F.guild, 

Hydro 

A + L Comp - 0.16 449.2 -3.2 

Full model       

M4.14 NA A + L Rich + Comp 0.69 0.16 442.2 -10.2 
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4.4.2 Q1) Effects of hydrological change on hoverfly richness and composition 

4.4.2.1 Hypothesis i) Effects of local soil moisture changes on hoverfly species 

richness 

Changes in soil moisture as measured by the Ellenburg Indicator Value proxy (EIV F) had no 

effect on hoverfly species richness differences at the level of sampling compartment (Mean 

parameter estimate = -0.96, 95% Bayesian CRI = -2.45 to 0.52). This null effect was further 

highlighted when the EIV F predictor was included in a model which also included the plant 

species richness difference predictor (M4.12, Mean parameter estimate = -0.15, 95% Bayesian 

CRI = -1.43 to 1.16), as the parameter centred even more closely on a value of zero. This 

suggests that any apparent effect of soil moisture was probably due to confounding effects of 

losses of plant species. 

 

4.4.2.2 Hypothesis ii) Effects of hydrology on hoverfly composition via larval 

exclusion 

Changes in hydrology across the study area showed a clear influence on changes in hoverfly 

species composition between the two time-periods (figure 4.1). Species which are active on the 

ground surface during winter, and are also inundation intolerant, displayed clear proportional 

declines between time-periods, while species in the other three flood susceptibility/tolerance 

categories showed no distinct trends (𝑅𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
2  = 0.11, figure 4.1, Blue shaded uncertainty 

intervals). This effect was maintained in model M4.13 including offsets for plant related larval 

feeding guilds (figure 4.1, Grey shaded uncertainty intervals), and in the full model M4.14. 

While 𝑅2 value for the hydrological hypothesis is smaller than for plant effects, it is explaining 

a smaller proportion of a larger variability in species level effects vs compartment level effects. 
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Figure 4.1 Effects of hydrological change on hoverfly species composition across the Studland peninsula between 

sampling-periods in the 1930s and the 2010s. Species are divided into four categories depending on whether they 

overwinter on/under the ground surface and whether they tolerant of flooding (inundation) or not. Posterior distributions 

are displayed for Bayesian hierarchical logistic regression models with i) just hydrological hypothesis predictors (95% 

uncertainty interval as blue shaded region and thin white line as median estimate), and ii) hydrological hypothesis 

predictors and an offset for species’ plant related larval feeding guilds (95% uncertainty interval as grey shaded region 

and thick white line as median estimate). Species intercepts (with 50% (unshaded) and 95% (shaded) uncertainty intervals) 

show the probability a species was lost or gained across the study area for species which were gained (green), lost (red), 

or found in both time-periods (blue) within the peninsula between time-periods. Species which overwinter on or under 

the ground surface, but which are not inundation tolerant were largely excluded by the 2010s 
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4.4.3 Q2) Plant community effects on hoverfly richness and composition 

4.4.3.1 Hypothesis iii) Effects of plant species richness difference on hoverfly 

richness 

Species richness differences in hoverflies had a strong association with richness differences in 

vascular plants using both 𝑅𝑟𝑖𝑐ℎ𝑛𝑒𝑠𝑠
2  and Δloo criteria, bearing out our Hypothesis iii) (M4.4, 

table 4.1). This relationship remained strong and positive when estimated from models M1 

with only the plant species richness difference predictor (figure 4.2, blue shaded region, Mean 

slope parameter = 1.29, 95% Bayesian CRI = 0.68 to 1.93), and the full model M4.14 (figure 

4.1, grey shaded region, Mean slope parameter = 1.34, 95% Bayesian CRI = 0.71 to 2.01).  

A compartment level increase of 1 standard deviation of plant richness differences across 

compartments (41 plant species) equated to an increase in the proportion of hoverfly species 

gained, rather than lost, of approximately 0.3 around the midrange. Though the slope estimate 

remained approximately the same under models M4.4 and M14, compartment level 

proportional gain estimates were invariably higher from M14 (faded blue intervals, figure 4.2) 

compared with M4.4 (black intervals, figure 4.2). This is because estimates displayed from 

M4.14 are counterfactual estimates after accounting for detrimental effects of hydrological 

change (see section 4.5.2.2 above). The wide uncertainty interval around the regression line of 

M4.14 in figure 4.2 is an artefact of uncertainty in the global intercept of this model rather than 

the slope parameter. 

 



 
 

90 
 

 

Figure 4.2 Association between hoverfly species richness differences and vascular plant species richness differences in 

sampling compartments between sampling-periods in the 1930s and 2010s. Regression lines (with 95% uncertainty 

intervals) show relationship between the standardised difference in plant species richness and the proportion of hoverfly 

species gained vs lost from a given compartment (logistic scale) from hierarchical logistic regression models with i) just 

plant richness difference predicter (Thick line, Blue shade, M4.4), and ii) all predictors (Thin line, Grey shade, M14). 

Compartment-level intercepts from models M4.4 (black intervals) and M4.14 (shaded intervals) are also shown on the 

logistic scale (with 50% uncertainty intervals), and the associated proportional gain vs losses are shown on the right axis. 

Intercepts above proportion of 0.5 on right axis represent compartments which have gained more species than they’ve 

lost. Absolute values for plant species richness differences are shown on the top axis for clarity. Compartment intercepts 

are coloured by ecological habitat type. 

 

4.4.3.2 Hypothesis iv) Larval related plant community effects on hoverfly 

composition 

Of the six plant related larval feeding guilds of hoverfly species, three saw notable overall 

proportional declines across the study area between sampling periods; generalist ground 

predators, Hymenoptera nest parasites and herbivores of specific plant species (figure 4.3 A, 

M4.5). Of these three groups, generalist ground predators showed the strongest evidence for 
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declines, with the full 95% CI lying below 0.5 proportional gains, while the 95% CI’s of the 

other two crossed 0.5, indicating small probabilities of proportional gains (figure 4.3. A, M4.5). 

However, once species level predictors for the hydrological effects of ground surface winter 

activity and inundation tolerance were added (Hypothesis ii)), model estimates of proportional 

losses in generalist ground predators and herbivores of specific plant species were negated 

(figure 4.3 A, M4.13), suggesting that these effects were confounded and actually due to 

flooding of these species’ larval habitat. This was also true, though to a slightly lesser extent, 

for Hymenoptera nest parasites. Wet adapted species and those with larvae associated with 

trees showed the least evidence of declines (figure 4.3 A). 
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Figure 4.3 Effects of plant related larval feeding guilds on proportions of hoverfly species gains vs losses on the Studland 

peninsula between the 1930s and 2010s. A) Proportions of species gained vs lost in sampling compartments at the 

peninsula level in hierarchical logistic regression models including just the feeding guild offset (M5), and species level 

predictors for inundation tolerance and susceptibility (M13). B) Association between hoverfly species richness differences 

and vascular plant species richness differences in sampling compartments between sampling-periods on average across 

feeding guilds (M4, constant), and broken down as slope parameter varying by plant related larval feeding guilds (M7). 

 

4.4.3.3 Hypothesis v) Interacting effects of plant community change 

When broken down by plant related larval feeding guilds, all groups retained positive median 

associations with species richness differences in the vascular plant community at the sampling 

compartment level (figure 4.3 B). However, the posterior slope estimated for the relationship 

with plant richness differences displayed some negative probability for the generalist ground 

predator guild (Mean estimate = 1.34, 95% Bayesian CRI = 0.71 to 2.01), which suggests that 

wider species losses in this group driven by hydrological change (section 4.5.2.2 above) may 

have overridden effects of plant diversity. Interestingly, the other guild to show a slightly more 
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negative relationship with plant richness differences than the average (figure 4.3 B, M4.14) 

across guilds were wet adapted species, while uncertainty ballooned in estimates for tree 

associated species and herbivores of specific plant species. 

 

4.4.4 Q3) Effects of habitat type on hoverfly richness and composition 

4.4.4.1 Hypothesis vi) Effects of ecological habitat type on hoverfly richness 

Ecological habitat type was a strong predictor of compartment-level hoverfly species richness 

change both before and after including the effects of plant species richness differences (table 

4.1, M4.8 before plant richness difference, M4.11 after plant richness difference). The most 

notable habitat differences were a strong positive richness increases in aquatic edge habitat 

type, and a strong negative offset in the marsh habitat type, where all 11 compartments saw 

reductions in species richness (figure 4.4). While the woodland compartments also saw 

reductions in hoverfly richness in every sample plot, the mean offset for this habitat type shifted 

towards zero when plant richness differences and habitat type were included in the same model, 

suggesting that species richness loss may be largely due to reduced flower availability in this 

habitat type. The reverse was true in Dune heath, and to a lesser extent in the Heath habitats, 

where the effect of plant species richness differences may have masked a decline in hoverfly 

richness (McElreath 2016a). 
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Figure 4.4 Proportion of hoverfly species gained vs lost in sample plots in different ecological habitat types between 

sampling-periods in the 1930s and 2010s from hierarchical logistic regression models including (blue) and not including 

(black) predictors for change in vascular plant species richness. Thick lines represent 50% Bayesian uncertainty intervals, 

thin lines represent 95% uncertainty intervals, and red dots the medians of posterior distributions of effects. 

 

4.4.4.2 Hypothesis vii) Effects of habitat specialisation on hoverfly 

composition 

We found no support for Hypothesis vii) that habitat generalists would fare better than habitat 

specialists, in fact the relationship went in the opposite direction, though it was not significant 

at the 95% level (mean parameter estimate -0.5, 95% CRI = -1.18 to 0.14). However, a Δloo of 

-2.6 compared with the baseline model suggests that there may be some predictive power in 

this relationship (table 4.1.). Its possible that wetter conditions favoured species which 

specialise in fewer wetter habitats over more generalist species, as this effect centred further 

towards zero in the full model (M14 Appendix 4.1 fig Hab Gen/Spe)). 
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4.5  Discussion 

Long-term changes in hoverfly species richness were strongly associated with changes in 

species richness in the vascular plant community across the sampling compartments of 

Studland. However, when species were categorised into plant related larval feeding guilds there 

was limited evidence of differing associations with plant species richness between guilds. This 

suggests that the association between plant and hoverfly richness differences is largely due to 

forces acting on adult flies. At the larval level, it appears that annual winter flooding by the 

2010s – compared with the 1930s – has been a strong driver of compositional change across 

the wider peninsula. However, effects of hydrological change were not observed in more 

localised assemblages of observed adult flies in sampling compartments, with no association 

between adult hoverfly richness differences and approximated changes in soil moisture (via 

EIV F) at this scale. Together, these findings suggest that species richness in adult hoverfly 

assemblages is limited by adult resource availability at highly localised scales, while 

compositional change is strongly affected by the availability of suitable larval microhabitat at 

the wider scale of a few kilometres. 

Wetter winter conditions in 2010s vs 1930s appear to have strongly driven compositional 

change at the peninsula level via the exclusion of maladapted larval flies (Hypothesis ii)), 

though increases in soil moisture levels had no apparent effect on observed adult species 

richness at the more localised scale of sampling compartments (negating Hypothesis i)). 

However, this assertion is derived only from the differential success of species with suitable 

traits and behaviours to exploit such conditions, and not from direct data on changes in 

hydrological conditions. In the Studland study system, species which are both susceptible to, 

and intolerant of, flooding have largely declined, suggesting wetter ground-surface conditions 

during winter months in the 2010s compared with 1930s. Species composition in invertebrate 

communities – particularly hoverflies – has been widely used as an ecological indicator 
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(Sommaggio 1999, Burgio and Sommaggio 2007), and here I have provided another method 

to do so in areas which have experienced hydrological change by combining species occurrence 

and trait data.  

This indirect indication of wetter conditions in the 2010s vs the 1930s is in agreement with 

inferences based on the plant community across large swathes of the peninsula over the same 

period, particularly in the marsh habitat (Chapter 1; Carroll et al. 2018). However, the non-

association between local hoverfly richness and changes in soil moisture at the more localised 

scale of sampling compartments seemingly points toward differing scales at which 

hydrological processes underlying biodiversity change have acted on larval and adult flies. 

Further, though much of the peninsula has gotten wetter in the intervening period, large 

sections have also retained similar levels of wetness, and some have even become drier (REF: 

Carroll et al. 2018). The present result would therefore suggest that many species lost had 

larvae reliant on the now wetter marsh habitats, otherwise the result would be called into 

question. Unfortunately species were not sampled at the larval stage in either time-period to 

verify or disconfirm this. 

Strong associations between changes in hoverfly species richness and local richness differences 

in the vascular plant community is consistent with Hypothesis iii) which posited a trophic 

association with the plant community driving long-term changes in hoverfly species richness. 

However, while the trophic link may have contributed to hoverfly richness differences, the fact 

that richness differences with models including all plant species produced higher explained 

variance that models with hoverfly pollinated species suggests that it is not the sole underlying 

driver. Model estimates of proportional changes in both vascular plant and hoverfly species 

richness both displayed temporal autocorrelation and this may have contributed to the vascular 

plant richness effect (see Appendix 5.). It is also possible that sampling issues could have 

played a role. For instance, if both hoverflies and vascular plant sampling efforts were spatially 
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biases in a similar way, this could manifest as an association in model estimates. However, it 

seems unlikely that this would be solely responsible for such a strong and consistent effect. 

The association between hoverfly and plant species richness change mirrors national trends in 

the UK and Netherlands over the same period, where hoverflies and out-crossing plant species 

relying on insect pollination have declined in parallel (Biesmeijer et al. 2006). Further, I found 

only limited evidence of differences in local richness – or wider compositional changes – 

among plant related larval feeding guilds (Hypotheses iv) & v)), particularly once the above-

mentioned effects of winter flooding had been accounted for. This result adds credence to the 

likelihood that the association with plant richness differences was driven by processes acting 

on adult rather than larval flies. 

Species richness in contemporary hoverfly communities is also positively associated with floral 

resource diversity (Meyer et al. 2009), but there may be a number of  mechanistic causes 

underlying trophic links between adult flies and the plant community. Morphological 

differences in feeding apparatus can lead pollinating species to specialise on differing groups 

of plant species, and thus increases in floral diversity may increase the probability that more 

hoverfly species’ preferred food plants are present (Branquart and Hemptinne 2000). Temporal 

niche complementarity can also be an important factor, whereby the flight periods of different 

species are staggered throughout the year, overlapping flowering periods of differing plant 

species (Martínez-Falcón et al. 2011). Such temporal niche complementarity in floral 

exploitation is also common in other holometabolous insect groups including bees (Dante et 

al. 2013; Scriven et al. 2016), and may be a vulnerability under future climate change if the 

phenology of insect species and their host food plants diverge (Watt and McFarlane 2002, 

Thuiller et al. 2008, Wolkovich et al. 2012). It is also possible that local hoverfly richness in 

our study system was limited by more direct interspecific competition for fewer floral 

resources, though this was unmeasured here. 
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The dichotomy of scale suggested between adult food resources limiting highly localised 

species richness differences and changes in larval microhabitat availability due to flooding  

altering species composition at wider spatial scales closely mirrors contemporary findings on 

hoverfly biodiversity in Belgian heathlands (Moquet et al. 2018). There, species richness 

decreased with distance to larval habitat and increased with floral density, but distance to larval 

habitat was relevant at the landscape scale, while floral density was relevant at the scale of 

sample plots. Not only did analyses reveal the potential for differing effects of scale between 

adult floral resource limitation and hydrology related larval conditions, but within the 

hydrological analyses local richness in observed adult flies was not at all influenced by adjacent 

wetter conditions, even though the amalgamation of such local wetter conditions clearly 

influenced composition across the wider community. Biodiversity change in Dutch and UK 

hoverfly communities more generally over the time-scale of this study was scale dependent, 

local environmental changes thought to be important for hoverfly diversity dynamics (Keil et 

al. 2011). This chapter sheds further light on such dynamics, and highlights the way in which 

dispersal abilities at differing life-history stages contribute to biodiversity patterns across a 

landscape.  

It is also possible that differences between habitat types in hoverfly species richness change at 

Studland (Hypothesis v)) were due to changes in availability of larval microhabitats among 

habitats (e.g. fallen trees (Rotheray et al. 2014), hymenopteran nests), which operate at a scale 

intermediate between sampling compartments and the whole peninsula in this study system. 

Aquatic habitat compartments were less saline in the 2010s vs the 1930s (Chapter 1), and also 

saw large gains in hoverfly species richness, which may be partly due to less saline conditions 

being more suitable for aquatic larvae. Further, it is possible that processes linking plant related 

larval feeding guilds to hoverfly biodiversity change operate at this intermediate scale between 
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sampling compartments and the whole peninsula level, though this is speculative without 

further investigation. 

In conclusion, long-term changes in hoverfly species richness were strongly associated with 

changes in species richness of the vascular plant community, likely due to a trophic link with 

adult flies; while composition was influenced by changes in seasonal hydrology excluding 

species with larval individuals exposed to, and unsuited for, wetter conditions. This chapter 

provides evidence for two mechanisms for how resource limitation and environmental change 

act at contrasting life-history stages to determine overall diversity in hoverfly communities: 1) 

a strong influence of adult resource limitation on species richness at highly localised scales; 2) 

marked effects of larval microhabitat availability on community composition at a broader scale 

of a few kilometres. As a charismatic and popular species group with well understood 

microhabitat requirements and relative ease of monitoring, hoverflies should increasingly be 

used as ecological indicators in the face of future environmental change, and I have highlighted 

another method by which to do so. This work provides a unique empirical example from long-

term community change which supports findings in contemporary systems highlighting the 

need to cater for species idiosyncratic needs across the life-cycle at relevant spatial scales. 
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5. Projecting effects of local management interventions under three regional 

metacommunity scenarios using a Bayesian Belief Network 

5.1 Abstract 

In order to restore and conserve ecological networks, practitioners need both to provide strong 

management and maintenance of ecosystems at local scales and maintain connectedness 

between ecological communities. However, conservation managers can often find themselves 

in the position of making decisions with limited empirical data to inform quantitative models 

on processes affecting populations and communities. As a result, semi-quantitative techniques 

for producing predictive models to inform management decisions, integrating whatever data 

are available, can be important tools.  

Here, I use a recent adaptation of classical Bayesian Belief Networks (BBNs), synthesising 

results from previous data chapters and information from peer-reviewed literature to project 

probable outcomes of management on future biodiversity trends at Studland under three 

regional metacommunity scenarios. I investigate potential effects of management on species 

richness of plants and insects in functional groups and broad ecological habitats. I examine 

three broad categories of management intervention: 1) Increased drainage to influence 

hydrology; 2) Management of sika deer and cattle grazing, and; 3) Artificial disturbances 

induced to slow down ecological succession. I project the effects of these local management 

interventions under three regional scenarios in which metacommunity richness and 

connectivity are assumed to be stable, in decline or increasing respectively.  

Under the assumption of a stable metacommunity, BBN models projected modest probabilities 

of increasing species richness in functional groups and ecological habitats for all three 

management intervention strategies. The only exceptions were projected reductions in richness 

of wetland species in scenarios increasing drainage to reduce flooding, and reductions in 
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richness in woodland habitats in scenarios in which ecological succession was curtailed. 

However, projections of positive probabilities of increasing species richness under local 

management were small in comparison to effect of regional metacommunity. Scenarios in 

which the regional metacommunity was assumed to be deteriorating or increasing in 

connectivity and richness, predicted widespread declines and increases in biodiversity 

respectively no matter what local management was included. 

These results suggest that the range of local management strategies explored here can provide 

useful contributions to biodiversity conservation and management at Studland. Increased 

drainage is predicted to increase species richness across the plants and insects of Studland if 

past trends are reversible. However, such increases would come at the expense of wetland 

species, and the potential of losses of priority species should be weighed up before 

implementing this management practice. Management to control grazing and succession could 

also have beneficial effects, but without any specific losses foreseen. However, BBN 

projections also highlight the crucial importance of maintaining the health of the regional 

metacommunity in order to maintain a healthy local system, as local practices were negligible 

in comparison with metacommunity effects. Therefore it seems that effective conservation on 

Studland can only be achieved in conjunction with responsible regional practices.  

 

5.2  Introduction 

Although the international community has begun taking steps to assuage human induced 

biodiversity declines, collectively we are falling short of stated targets both within nations and 

internationally (Tittensor et al. 2014). Downward trends are pervasive across taxa and regions 

(Chamberlain et al. 2000; Dunn et al. 2009; Barnosky et al. 2011; Ceballos et al. 2017), but 

there is mounting evidence to suggest that insects are facing even more serious declines than 
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vertebrates and plants (Thomas et al. 2004, Dirzo et al. 2014, Sánchez-Bayo and Wyckhuys 

2019). Insect declines have the potential to cause cascading effects across ecosystems via 

collapses of trophic and mutualistic interaction networks (Kiers et al. 2010, Sánchez-Bayo and 

Wyckhuys 2019), and may also interrupt vital ecosystem services including decomposition and 

pollination (Oliver et al. 2015). System specific projections of biodiversity trends in insects are 

therefore urgently needed to inform local management for conservation, as are projections for 

the plants upon which they depend. In preceding chapters I used compositional change in plant 

and insect communities to infer how abiotic and biotic changes have driven biodiversity change 

across the Studland peninsula (chapter’s 2-4). Here, I synthesise these results, in combination 

with information from peer-reviewed literature, to project possible outcomes of management 

strategies on the future health of plant and insect biodiversity across Studland.  

Effective management for conservation is difficult to implement, and although management 

strategies informed by data intensive studies are highly desirable (e.g. Gormley et al. 2012), 

high quality, systematically collected data are not always available to inform quantitative 

models. As a result, techniques to produce predictive models integrating whatever eclectic data 

are available to inform management decisions are potentially very useful. A recent adaptation 

of classical Bayesian Belief Networks (BBNs) for ecological systems is one such method 

(Stafford et al. 2015). This approach allows for the combined use of data – sparse or otherwise 

– along with expert opinion and results derived from the scientific literature, to project 

scenarios with which to inform management for conservation (Spiers et al. 2016, Stafford et 

al. 2016). 

A review of the state of England’s wildlife sites reported in 2010 made clear the need to both 

provide strong management and maintenance of ecosystems at local scales, and to maintain 

connectedness between ecological communities, in order to restore and conserve ecological 

networks in the UK (Lawton et al. 2010). Results from preceding chapters have identified a 
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number of local abiotic and biotic drivers of biodiversity change in the plant and insect 

communities of Studland between the 1930s and the present day (Ref: Ch’s 1-3). These provide 

a strong foundation upon which to parameterise BBN models to project future trends in species 

richness across the taxa and habitats of Studland under proposed management interventions. 

High rates of observed turnover across taxa recorded by the Cyril Diver Project also highlighted 

the relevance of dispersal from the surrounding metacommunity for species to exploit 

ecological opportunities presented in the face of local environmental change over this time-

scale. Given that habitat fragmentation across landscapes is a serious and pervasive driver of 

biodiversity declines in plant and insect taxa (Thies et al. 2008; Potts et al. 2010), BBN 

projections should also take potential trajectories of the surrounding metacommunity into 

account. 

The aim of this chapter is to project possible biodiversity outcomes for Studland under 

proposed local management implementations, under scenarios where the regional 

metacommunity is assumed to be in differing states. Biodiversity outcomes are quantified as 

directional changes in species richness for key species groups and habitat types. The broad 

management strategies I will project are those already under consideration – and in some 

instances under implementation – by the National Trust to aid in conservation and maintenance 

of biodiversity at Studland. These are grouped into three broad categories of management 

practice: 1) Increased drainage to influence hydrology; 2) Management of sika deer and cattle 

grazing, and; 3) Artificial disturbances induced to slow down ecological succession. As the 

effectiveness of management interventions applied locally will also depend on regional 

processes, I project the effects of local management under three regional scenarios; firstly, a 

scenario in which richness and connectivity in the metacommunity is assumed stable; secondly 

where it is assumed that the metacommunity is in decline and colonisation of species is more 
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problematic, and finally where it is assumed the metacommunity is increasing in richness and 

connectivity. 

 

5.3 Methods 

5.3.1 Conceptual models of the study system 

To begin constructing a BBN to project probable outcomes of biodiversity trends under 

management interventions, I first broke down the Studland study system into a conceptual 

model with five broad levels  (figure 5.1). These levels are: 1) Specific management 

interventions (subdivided from the three broad management categories above); 2) Direct effects 

of management interventions on processes driving ecological change; 3) Key species groups 

which should be affected by these processes; 4) The habitats of Studland composed of the key 

species groups, and 5) The metacommunity context within which the local ecosystem of 

Studland is embedded. The aim of the BBN introduced below is to project probable outcomes 

of species richness trends for Studland, quantified as directional changes in species richness 

for the key species groups and habitats specified in levels 3 and 4 of the conceptual model. A 

more detailed description of the components of each group is given in table 5.1. Each row in 

the table describes a node in the BBN. 
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Figure 5.1 Conceptual model of the study system. Nodes are represented by text in boxes, while edges are arrows between 

nodes.  
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Table 5.1 Description of each node in the Studland conceptual model / Bayesian Belief Network. 

Node Definition 

Marsh/Aquatic Overall species richness of marsh and aquatic edge habitats 

Woods Overall species richness of woodland habitats 

Heath Overall species richness of heathland habitats 

Dune Heath Overall species richness of dune heath habitats 

Dune Overall species richness of dune habitats 

Wetland species Plant and invertebrate species specialising in wet conditions 

Ground Inverts Invertebrate species which spend some or all of their life cycle at ground 

level 

Herbs/Shrubs Herbaceous plants and shrubs 

Pollinators Invertebrate species which actively pollinate plants 

Formica rufa Abundance and spread of the red wood ant Formica rufa across the 

peninsula 

Hydrology The overall wetness of conditions across the peninsula 

Grazing Overall levels of sika deer and cattle grazing 

Succession Ecological succession, particularly with heath succumbing to woodlands 

Footfall Disturbance by footfall of humans and cattle 

Drainage Dig out old drainage ditches to reduce levels of flooding, particularly in 

winter 

Deer cull Culling to reduce deer populations 

Fencing Erection of fencing to exclude deer and/or people 

Cattle grazing Introduction of cattle grazing in selected areas across the heaths 

Disturbance Disturbance of thick heather or bryophyte mats (Digger, cutbacks etc.) to 

encourage pioneer species 

Metacommunity Connectivity richness and abundance within regional metacommunity 

 

 

5.3.2 Bayesian Belief Network of the study system 

To project the effects of management on plant and insect richness at Studland I translated the 

conceptual model of Studland from figure 5.1 into a modified Bayesian Belief Network 

following Stafford et al. (2015). Traditional BBNs consist of a collection of nodes (e.g. 

representing a management intervention or species richness of a functional group in the 

Studland system), each of which can have a prior probability of increasing or decreasing. Nodes 

are connected to each other in the network via connectors called edges, each of which specifies 

the probability of a directional effect of one node on another. For example, in the case of a 

Studland BBN derived from figure 5.1, it could be specified that if drainage (node) was 
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definitely increasing (probability of 1), then there is a 0.8 probability of hydrology (node) 

decreasing, representing drier conditions on the peninsula. This probabilistic directional effect 

of drainage on hydrology is specified by the edge between these two nodes. 

The modified BBN of Stafford et al. (2015) introduces a number of features useful to ecological 

studies, including the ability to include two-way reciprocal interactions, and individual 

computation of interactions rather than the need to compute combined effects. Further, under 

this BBN implementation, priors need only be specified for targeted nodes for which we wish 

to specifically examine the effects of change (e.g. management interventions, metacommunity 

state), whereas all other nodes are set to have an equal prior probability of increasing or 

decreasing before effects of change in targeted parameters occurs (prior of 0.5). These models 

can be fitted in an easy to use Microsoft Excel interface which requires minimal training to 

parameterise (Stafford and Williams 2014). Table 5.2. presents the structure and probabilistic 

relationships between nodes of the Studland BBN used in this chapter.  

 

5.3.3 Determining parameters for the Bayesian Belief Network 

BBNs utilise the concept of probability as a subjective degree of belief (De Finetti et al. 2017), 

using Bayes theorem to update prior probabilities given defined relationships among nodes 

within the network. However, such subjective probabilities can (and should) be informed by 

available data and results of scientific studies where possible. Parameter values for the Studland 

BBN were chosen using information from a combination of previous chapters of this thesis and 

published peer reviewed literature (Appendix 5, table 1), and are displayed in table 5.2. 

Parameters for which table 1 in Appendix 5 provides no evidence from either this thesis or the 

literature are assumed to be self-evident (e.g. the reduction in grazing with the addition of 

fencing, as deer cannot physically access an area in which to graze). In the remainder of this 
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section I give an overview of results from chapter’s 2 to 4, outlining how they have logically 

informed BBN parameterisation in relation to the three management intervention strategies 

outlined above. 

Chapter’s 2 and 4 (on plants and hoverflies respectively) both highlighted the impact of 

hydrological change on biodiversity trends on Studland over the 80-year time span. It is likely 

that a cessation of the maintenance of drainage tracts running along the peninsula between 

sampling-periods has contributed to wetter conditions (David Brown, Personal comms), 

although the effects of underground hydrological processes and runoff from the mainland are 

as yet unclear and may also be important. Wetter conditions have likely led to reductions in 

species richness in wetter areas of the peninsula, evidenced in chapter’s 3 and 4, but also 

allowed for colonisation of wet adapted species. Given these results, it seems likely that the 

reintroduction of drainage tracts is a management intervention which could have major effects 

on Studland’s biodiversity – probably increasing local richness at the expense of wet adapted 

species. 

The development of plant assemblages which are better suited to conditions of reduced light 

availability in the 2010s vs the 1930s, as inferred from EIV analysis in chapter 2, suggests that 

ecological succession has played an important role in biodiversity change at Studland in the 

interim period. Further, in chapter 3 I found that the EIV for light was the second most 

important EIV predictor of species composition across taxa within each time-period (after soil 

moisture), suggesting that changing vegetation structure due to succession may have played an 

important role in changing composition in plants and insects over time. 

Studland’s Heath and Woodland habitats have undergone the highest levels of ecological 

succession between the 1930s and 2010s according to inferences from chapter 2. Heathlands 

are a plagioclimax successional stage – with woodlands and forests as the climax community 
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(Gimingham 1994, Bokdam and Gleichman 2000) – but they are highly valued for both 

ecological (e.g. conservation of heath adapted species) and cultural reasons (Gimingham 1994). 

The termination of historical land use practices has seen the widespread loss of heathlands 

across Europe in the 20th and 21st centuries (Loidi et al. 2010), and thus slowing or halting 

succession in heathlands is a common aim of conservationists and a stated conservation priority 

for the National Trust at Studland. Management interventions which could slow the progression 

of ecological succession include cutting vegetation, artificial physical disturbances (e.g. via 

diggers), and conservation grazing. 

As well as influencing succession, a change in the grazing regime between the 1930s and 2010s 

may have limited the availability of adult food resources for hoverflies and other pollinators. 

Cattle grazing on the heathlands was widespread in the 1930s, but no longer occurs, while sika 

deer are now pervasive since their introduction in the 1940s (David Brown personal comms). 

The grazing behaviour of these two species are very different, and it seems likely that the loss 

of cattle grazing and trampling across the heathlands has encouraged succession, while deer 

grazing was likely a major component of the reduction of understory plant species across the 

woodlands. The loss of such understory plant species has had detrimental effects on the 

hoverfly community as seen in chapter 4, which suggests the potential for similar implications 

for other species of pollinators also relying on nectar and pollen food sources. Management 

interventions to offset these differing effects of grazing include fencing and deer culls to control 

for the effects of deer on herbaceous plants, and the re-introduction of cattle across the 

heathlands.  

Finally, the metacommunity effect on wetland and ground invertebrates assumed under the 

models are greater than on herbs/shrubs and pollinators as the latter have generally higher 

dispersal abilities, and thus could likely colonise from further and/or sparser patches.  
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Table 5.2 Interactions in the Bayesian Belief Network. For each cell, the number is the probability of increase in the column variable, given that the corresponding row variable is increasing. 

Values above 0.5 mean that there is a positive probability of increase, while values below 0.5 mean that a decrease is more probable. 

 

 

Prob of column increasing given row is increasingMarsh/AquaticWoods Heath Dune heathDune Wetland speciesGround InvertsHerb/ShrubsPollinatorsFormica rufaHydrologyGrazing SuccessionFootfall

Marsh/Aquatic

Woods

Heath

Dune heath

Dune

Wetland species 0.9 0.65 0.8

Ground Inverts 0.65 0.85 0.85 0.85 0.85 0.75

Herb/Shrubs 0.75 0.9 0.9 0.8 0.6 0.7 0.9

Pollinators 0.75 0.9 0.9 0.9 0.7 0.75

Formica rufa 0.15

Hydrology 0.9 0.1 0.2 0.35

Grazing 0.4 0.1

Succession 0.6 0.4 0.4 0.4 0.2 0.8

Footfall 0.2 0.4

Drainage 0.25

Deer cull 0.15 0.65

Fencing 0.1 0.6 0.2

Cattle grazing 0.7 0.2

Disturbance 0.1

Mettacommunity 0.7 0.7 0.65 0.65
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5.4  Results 

All of the results I present below are for probabilities of nodes in the Bayesian Belief Network 

increasing. Probabilities > 0.5 indicate that increases are more likely than not that, while 

probabilities < 0.5 indicate the opposite. Increasingly higher and lower probability values 

relative to 0.5 indicate an increasingly positive and negative chance respectively of nodes 

increasing following management scenarios under the model. 

 

5.4.1 Management under a stable metacommunity 

All probabilities in this subsection are given from model runs with the prior probability of the 

health of the regional metacommunity increasing set to 0.5 (increase or decrease equally likely) 

(table 5.3 A). In general, model predictions in the face of a stable metacommunity led to mostly 

modest negative and positive probabilities of increases of the key ecological outcome – species 

functional groups and overall richness of habitats – in the range of 0.33 to 0.63. 

Increasing drainage to reduce flooding (by altering the prior for drainage to 0.8) resulted in 

increased probabilities of species richness gains for the functional species groups of ground 

invertebrates, herbs and shrubs, and pollinators (all posterior p ≥ 0.6), and smaller but notable 

increases in the probabilities of increasing succession and abundance/distribution of Formica 

rufa (both p = 0.57 table 5.3 A). There was also an unsurprising reduction in the probability of 

wetland specialist species increasing due to drier conditions (p = 0.35). There were no 

reductions in richness in any of the broad habitat types under this management scenario, though 

a probability of increase of 0.55 was the highest probable outcome. 

Management to reduce the effects of deer grazing by introducing widespread deer culls and 

fencing (alter prior of 𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 to 0.9 for both parameters) resulted in similar probabilities of 

increases to the previous scenario in nodes for herbs and shrubs, pollinators and F. rufa, but no 
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probable increase in richness of ground invertebrates (𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.5) (table 5.3 A). Similar 

outcomes are projected across the broad habitats as in the drainage scenario, except that the 

dune habitat is predicted do marginally better than dune heath. Perhaps the biggest difference 

between this management scenario and increasing drainage is a projected probable increase in 

richness in wetland species of 0.58. 

In a management scenario designed to halt the progress of ecological succession (alter prior of 

𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 for introduction of cattle grazing and increased disturbance and cutbacks to 0.8 and 

0.9 respectively) the most notable outcomes are increased probabilities for heath, dune heath 

and dune habitats increasing in richness (𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.56 for all three). However, we also see 

a slight probability of decrease in richness in the woodland habitats (0.45), and a more likely 

decrease in F. rufa abundance/distribution (0.33), both likely due to direct effects of succession 

on these nodes (table 5.3 A). The cattle have a direct positive effect on grazing (0.68). 

I also projected the three management scenarios using pairwise combinations of two from the 

drainage, deer control and succession control management strategies reported in the preceding 

paragraphs with the same alterations to prior probabilities of increases to each management 

practice as before (table 5.3 A). Pairwise combinations of the introduction of drainage along 

with the other two management practices had the most wide-ranging positive effects of the 

three implemented strategy pairs, though the combination of drainage and disturbance saw 

decreases in probabilities for woodland richness, wetland species and F. rufa of 0.45, 0.41 and 

0.44 respectively. The combination of deer and succession control management strategies 

predicted perhaps the most stable outcome of the three, with only F. rufa marginally predicted 

to decrease by the Bayesian Belief Network (0.45 table 5.3 A). 

Finally, I ran a scenario implementing all three management strategies together. All functional 

species groups were predicted to increase with posterior probability values ≥ 0.6, apart from 
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wetland species (𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.44). Dune and dune heath habitats were predicted to increase in 

this scenario, while the other habitats should remain stable (table 5.3 A). 

 

5.4.2 Management under deteriorating/improving metacommunity 

Deteriorating or improving metacommunity connectivity and richness completely outweighed 

the effects of local management interventions in BBN projections (table 5.3 B & C). In the face 

of a deteriorating metacommunity (prior of 𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 for metacommunity node of 0.2), the 

probability of an increase in richness in all species functional groups and habitats was ≤ 0.45 

under all local management combinations explored (table 5.3 B). The only exceptions were 

richness in the dune habitat for which the inland metacommunity was not deemed to be 

important source of species dispersal, and stable abundance/distributions of F. rufa in 2 of the 

7 local management combinations (𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.5), where induced succession control 

presumably kept them stable. 

When metacommunity connectivity and richness were assumed to be improving (prior of 

𝑝𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 for metacommunity node of 0.8) the converse was true, with the probability of an 

increase in richness in most functional groups and habitats ≥ 0.55 under all local management 

combinations (table 5.3 C). Again, the notable exceptions here were F. rufa and the dune 

habitats, although the dune habitat was projected to increase in 4 out of 7 local management 

scenarios, while the probability of increase/decrease of was more variable depending on the 

specific combination of local management interventions. 
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Table 5.3 Results of different management scenarios from the Bayesian Belief Network. Bold values represent 

probabilities of nodes increasing ≥ 0.55, light grey values in italics represent probabilities of nodes increasing ≤ 0.45 (or of 

nodes decreasing ≥ 0.55). All values in section A have prior probability of connectivity and richness in the metacommunity 

increasing of 0.5. All values in section B have prior probability metacommunity increase of 0.2 (probability decreasing = 

0.8). All values in section C have prior probability of connectivity and richness in the metacommunity increasing of 0.8. 

 Increase 
drainage 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 
0.8) 

Increase Deer 
cull & Fencing 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.9, 
0.9) 

Increase Cattle 
& Disturb 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.8 
& 0.9) 

Increase 
Drainage, Deer 
cull & Fencing 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.8, 
0.9, 0.9) 

Increase 
Drainage, 
Cattle & 
Disturb 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.8, 
0.8, 0.9) 

Increase Deer 
cull, Fencing , 
Cattle, & 
Disturb 
(𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 0.9, 
0.9, 0.8, 0.9) 

All prev 
column 
combo  

 A. 𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒Metacommunity = 0.5 

Marsh/Aquatic 0.51 0.54 0.5 0.52 0.51 0.53 0.52 

Woods 0.54 0.54 0.45 0.55 0.45 0.49 0.49 

Heath 0.53 0.49 0.56 0.49 0.56 0.54 0.54 

Dune heath 0.55 0.49 0.56 0.49 0.56 0.54 0.55 

Dune 0.51 0.57 0.56 0.57 0.56 0.59 0.59 

Wetland species 0.35 0.58 0.47 0.46 0.41 0.54 0.44 

Ground Inverts 0.63 0.5 0.56 0.63 0.64 0.53 0.63 

Herb/Shrubs 0.6 0.61 0.53 0.61 0.56 0.61 0.61 

Pollinators 0.6 0.58 0.53 0.6 0.58 0.58 0.6 

Formica rufa 0.57 0.57 0.33 0.58 0.44 0.45 0.51 

Hydrology 0.28 0.5 0.5 0.28 0.28 0.5 0.28 

Grazing 0.5 0.11 0.68 0.11 0.68 0.27 0.27 

Succession 0.57 0.64 0.16 0.6 0.2 0.4 0.41 

Footfall 0.5 0.17 0.5 0.17 0.5 0.17 0.17 

 B. 𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒Metacommunity = 0.2 

Marsh/Aquatic 0.43 0.43 0.43 0.43 0.43 0.43 0.43 

Woods 0.42 0.44 0.42 0.44 0.42 0.43 0.43 

Heath 0.41 0.42 0.44 0.42 0.44 0.43 0.43 

Dune heath 0.42 0.43 0.45 0.43 0.45 0.44 0.44 

Dune 0.47 0.52 0.5 0.52 0.5 0.53 0.53 

Wetland species 0.32 0.37 0.35 0.35 0.34 0.36 0.35 

Ground Inverts 0.38 0.35 0.36 0.38 0.38 0.35 0.38 

Herb/Shrubs 0.4 0.42 0.4 0.42 0.42 0.42 0.42 

Pollinators 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

Formica rufa 0.44 0.5 0.36 0.5 0.37 0.43 0.43 

Hydrology 0.28 0.5 0.5 0.28 0.28 0.5 0.28 

Grazing 0.5 0.11 0.68 0.11 0.68 0.27 0.27 

Succession 0.57 0.64 0.16 0.64 0.2 0.4 0.41 

Footfall 0.5 0.17 0.5 0.17 0.5 0.17 0.17 

 C. 𝑃𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒Metacommunity = 0.8 

Marsh/Aquatic 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

Woods 0.58 0.57 0.56 0.57 0.56 0.56 0.56 

Heath 0.59 0.57 0.59 0.57 0.59 0.58 0.58 

Dune heath 0.58 0.56 0.58 0.56 0.58 0.57 0.57 

Dune 0.53 0.56 0.54 0.56 0.54 0.57 0.57 

Wetland species 0.62 0.66 0.64 0.63 0.61 0.66 0.62 

Ground Inverts 0.66 0.65 0.65 0.66 0.66 0.65 0.66 

Herb/Shrubs 0.62 0.63 0.61 0.63 0.62 0.63 0.63 

Pollinators 0.64 0.64 0.63 0.64 0.64 0.64 0.64 

Formica rufa 0.58 0.58 0.45 0.58 0.45 0.51 0.52 

Hydrology 0.28 0.5 0.5 0.28 0.28 0.5 0.28 

Grazing 0.5 0.11 0.68 0.11 0.68 0.27 0.27 

Succession 
 

0.57 0.64 0.16 0.64 0.2 0.4 0.41 

Footfall 0.5 0.17 0.5 0.17 0.5 0.17 0.17 



 

116 
 

5.5 Discussion 

Under the scenario of a stable metacommunity, all three management strategies 

predicted modest probabilities of increasing species richness in the key functional 

species groups and across the ecological habitats of Studland more broadly. The only 

exceptions to this general pattern were projected reductions in richness of wetland 

species in scenarios increasing drainage to reduce flooding, and reductions in richness 

in the woodland habitats in scenarios in which ecological succession was curtailed. 

However, these projections of modest effects of local management were completely 

swamped in scenarios in which the regional metacommunity was assumed to be 

deteriorating or increasing in connectivity and richness, where projections of 

widespread declines and increases in biodiversity respectively prevailed. 

Results from the Bayesian Belief Network predicted that the potential management 

implementations under consideration are likely to accrue some benefits to the 

biodiversity of Studland such as increased species richness in understory vegetation 

and resulting increases in pollinator species richness. However, there is a high degree 

of uncertainty inherent in the various outcomes. While it would be desirable to have a 

higher degree of certainty, ecological systems are notoriously complex and in some 

cases even display chaotic dynamics (Hastings et al. 1993), and thus the uncertainty of 

BBN predictions may be apt. Stochastic environmental events, such as the predicted 

increasing frequency of flooding and freezing weather conditions under climate 

change (Watts et al. 2015, Blöschl et al. 2017), could perturb the desired outcomes of 

management, as could unexpected disturbances such as outbreaks of disease in plant 

or invertebrate populations (e.g. (Strauss et al. 2012)). Predictions from the Studland 

BBN are based primarily on results from preceding chapters of this thesis, with the 

implicit assumption that biodiversity change that has occurred in the last 80 years is 



 

117 
 

somewhat reversible if appropriate management conditions are put in place. Such 

assumptions are bold in ecological systems, given that they often exhibit regime shifts 

(Hastings and Wysham 2010), and alternative stable states (Suding et al. 2004), 

whereby upon reaching a certain level of change a system may reach a tipping point 

beyond which it is difficult to return to conditions of old (Reyer et al. 2015). 

The BBN models do, however, provide us with a useful quantification of the 

conceptual model of the study system and how its components are linked together, 

given what we have learned throughout this thesis. The models suggest that any or all 

of the proposed management strategies should benefit the biodiversity of Studland. 

Despite resulting projections being directional rather than estimates of effect sizes of 

proposed management strategies, these models can encourage practitioners to think 

probabilistically and in terms of second order (knock-on) effects of interventions. I 

would suggest that this conceptual model combined with BBN projections should be 

of greater value in the hands of in-house ecologists and rangers of the National Trust 

who have a better applied knowledge of the system, and of the implementation and 

outputs of management practices to date. 

The key predictions of interest from the Studland BBN are concerned with broad 

species richness trends across key functional groups of species and ecological habitat 

types, but in reality management concerns may be more focused on individual species 

or species groups. There is a general desire to conserve species which are particularly 

at risk, or which are nationally rare, and it is possible that management which protects 

many species may damage some specific populations in need of protection  – for 

example rare wetland species under the drainage management strategy. Some species 

are also objectively more important than others in the context of a healthy ecosystem; 

keystone species (Mills and Doak 1993) and ecosystem engineers (Jones et al. 1994) 
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can have disproportionate effects compared to others. It is thus important to take such 

factors into consideration when introducing disruptive management strategies. 

The most striking finding to emerge from the BBN projections were the overwhelming 

effect of the surrounding metacommunity. The fact that the metacommunity node was 

directly fed into the key functional species groups explains this effect, but I would 

argue that it is a very reasonable model assumption given the high rates of species 

turnover at the peninsula level over the past 80 years documented in chapter 2 of this 

thesis. Though it is unclear how much degradation or rejuvenation the metacommunity 

would have to undergo to see the projected effects of the BBN realised, its importance 

is well established both generally (Leibold and Chase 2018), and specifically in the 

context of Dorset county (Keith et al. 2011, Diaz et al. 2013a). Further, the importance 

of metacommunity dynamics in maintaining local biodiversity has also been widely 

documented in the recent decades (Harrison 1999, Fukami 2015), and the Cyril Diver 

Project data provide another striking example. However, the large number of species 

gained at Studland between the 1930s and 2010s may suggest that a stable 

metacommunity existed during this time in the vicinity of Studland from which species 

arrived. Thus high projected probabilities of increasing richness at Studland under 

increases in metacommunity richness and connectivity may be a less realistic scenario 

than the adverse effects in the case of reduced metacommunity richness and 

connectivity in future years. 

To conclude, BBN models predict that each or any of the proposed management 

implementations would likely benefit the biodiversity of Studland via the metric of 

species richness, though the benefits of any management strategy for any given 

functional species group or habitat are highly uncertain. Crucially, it is likely that the 

health of the regional metacommunity is of the utmost importance in maintaining a 
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healthy local system. I would thus suggest that local management strategies should be 

implemented using the conceptual model of the Studland system and BBN predictions 

to aid decisions, in conjunction with dedicated conservation efforts at the landscape 

scale. 
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6. Discussion and Conclusions 

6.1 Introduction and Thesis Overview 

Historical and contemporary occurrence data from the Cyril Diver Project revealed 

major differences in the composition of plant and insect species present on Studland 

between the 1930s and 2010s. Changes in aggregated traits of species indicated 

widespread change in the abiotic environment as an underlying driver of species 

compositional change. The most prominent abiotic driver was the transition to wetter 

conditions across the peninsula in the 2010s compared with the 1930s, which were 

independently inferred from plant and hoverfly traits. Within time-period analyses and 

correlated species loss/gains across taxa provided further indirect evidence to suggest 

that changes in the abiotic environment also contributed to biodiversity change in non-

vascular plants, orthoptera, ants and odonata. Biotic interactions were also an 

important factor underlying biodiversity change, exemplified by a strong association 

between species richness differences in vascular plants and hoverflies. Taken together, 

these results show how effects of long-term abiotic and biotic changes can propagate 

through local plant and insect communities driving changes in species richness and 

composition. In conjunction with BBN projections, they underline the importance of 

conservation efforts focused on both local communities and surrounding landscapes, 

and highlight the need to improve understanding of interactions and feedbacks 

between local and regional communities. 
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6.2 Discussion: Main body 

Results of analyses presented throughout chapters 2, 3 and 4 revealed that widespread 

species losses and gains across the study area resulted, at least in part, due to a suite of 

abiotic and biotic drivers acting locally at Studland. Although this finding is perhaps 

intuitive and unsurprising, long-term empirical examples of factors affecting 

biodiversity change are surprisingly rare (Magurran and Dornelas 2010, Leibold and 

Chase 2018). Where long-term studies of factors underlying biodiversity change have 

been undertaken, variability in abiotic conditions have been a dominant underlying 

driver (Mutshinda et al. 2009), and results herein seem to confirm their importance 

within local plant and insect communities. EIV analyses of chapter 2 indicated clear 

changes in plant community composition across the peninsula with respect to abiotic 

environmental change (Carroll et al. 2018). Differing composition/environment 

relationships between time-periods revealed through RDA analyses of chapter 3 also 

suggest that the other focal taxa investigated have experienced similar environmental 

pressures. Results from chapter 4 confirmed the existence of such abiotic and biotic 

drivers of change in Studland’s hoverfly communities; a group of species for which 

factors underlying biodiversity change at wider spatial scales over this time-period 

have previously been demonstrated (Biesmeijer 2006, Keil et al. 2011).  

Cross-taxon congruencies (CTC) in species richness differences (chapter 3) further 

implied a set of mechanistic factors underlying species losses and gains, as opposed 

compositional changes due purely to random drift, as there would be no reason to 

expect correlated changes across taxa if they occurred randomly with respect to abiotic 

and biotic environmental conditions (Vellend et al. 2014). Indeed, diminished 

correlations in species richness change across taxa in analysis including environmental 
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and habitat predictors suggest a key role for shared responses to abiotic environmental 

change underlying congruencies.  

Studies of long-term biodiversity change including multiple co-occurring taxa are very 

rare, but findings of existing research are not unsimilar to my results. Ewald et al. 

(2015) found correlations between abundance trends of multiple co-occurring 

invertebrate taxa and temperature, precipitation and pesticide use over a 42 year 

period. This result may point towards a shared responses to abiotic environmental 

changes driving cross-taxon congruence in biodiversity trends, similar to congruencies 

uncovered in chapter 2 of this thesis. Ernest et al. (2008) documented cascading effects 

of changing precipitation levels in desert ecosystems on occurrences of grass species, 

which in turn had knock-on effects on the rodent community mediated through trophic 

interactions. My results show that biotic interactions between plants and hoverflies 

may have been driven by hydrological changes in a similar fashion (discussed further 

below). While cascading effects on the vertebrate populations of Studland are 

unknown, risks of insect losses to insectivore populations are well documented 

(Brickle et al. 2000, Chamberlain et al. 2000, Hart et al. 2006, English et al. 2017).  

Notwithstanding findings of mechanistic drivers, a large proportion of variation in 

species richness and compositional change was left unexplained in all analyses across 

chapters 2, 3 and 4. As such, effects of neutral processes cannot be ruled out as an 

important component underlying observed biodiversity change, though unmeasured 

abiotic and biotic factors may also have played a key role. For instance, it seems likely 

that changes in dominance hierarchies within the ant community altered by the spread 

of the dominant competitor Formica rufa have effected species richness and 

composition among  ants and other ground-dwelling invertebrates (Halaj & Wise 

2001; Hawes et al. 2002; Hawes et al. 2013). Similarly, the spread of the invasive 
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moss Campylopus introflexus across Studland since the 1930s may also have affected 

plants and invertebrates (Ketner-Oostra & Sýkora 2004; Schirmel et al. 2011). Coastal 

erosion and trampling due to increased numbers of visitors using paths are examples 

of further abiotic and anthropogenic forces that may have affected the dune and 

shoreline communities of Studland (Ciccarelli 2014). 

Hydrological change across the peninsula represents the most convincing finding of 

an abiotic factor affecting the plants and insects of Studland, as it was implied 

independently through trait based analyses of both vascular plants and hoverflies. As 

well as being the most robust finding of an abiotic driver of biodiversity change, 

changes in soil moisture (EIV F) was also found to drive compositional change in 

vascular plant communities in a manner independent of ecological habitat type (Carroll 

et al. 2018), and was a consistently important predictor of within time-period species 

composition across taxa (RDA analyses chapter 3). It is not surprising that such 

hydrological changes as have occurred on Studland have had wide ranging effects on 

the plant and insect communities present, as species composition of both groups are 

known to display distinct adaptations to wetter or drier conditions (Silvertown et al. 

2015a, Turić et al. 2015). The exclusion of hoverfly species which were both 

susceptible to, and intolerant of, ground surface flooding in winter months provides a 

clear demonstration of a mechanism by which such a compositional change has 

occurred. 

Biodiversity change across plant and hoverfly communities resulting from increased 

winter flooding underlines the complexity with which abiotic and biotic factors can 

combine to drive changes in species richness and composition. It is possible that wetter 

conditions in the 2010s have detrimentally affected Studland’s hoverflies in two 

distinct ways; firstly, as previously discussed, via the direct exclusion of unsuited 
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larval individuals, and secondly, indirectly via species richness limitation mediated 

through the loss of plant species. In chapter 4 I already discussed a range of 

mechanisms by which the loss of plant species could lead to an accompanying loss of 

hoverfly species. I will further outline here why I am inclined to think that this was the 

direction of causality underlying the hoverfly/plant richness association. Sampling 

compartments in the marsh habitat type lost 101 plant species between time-periods 

(figure 3.2), and EIV analysis in chapter 2 strongly suggests that this loss of species 

was driven largely by increases in soil moisture (figure 2.4). Though overall hoverfly 

species richness on Studland decreased by only five species, sampling compartments 

in the marsh habitat saw major proportional declines in richness. Model estimates of 

these proportional species richness declines remained consistently negative across all 

marsh compartments for hoverflies even after having accounted for the effects of 

flooding on susceptible hoverfly larvae (figure 4.4). Had plant species been present in 

the marsh habitat, it seems likely that the mobile hoverfly adults would have found 

their way from others parts of the peninsula to exploit them as food resources, and 

therefore that the loss of plant species limited the number of hoverfly species present. 

The fact that there was no general decline in the occurrence of wet adapted hoverfly 

species further bolsters the likelihood of this hypothesis. 

 The effects of wetter winter conditions on biodiversity change in co-occurring plant 

and insect taxa may prove to be a particularly pertinent case study in the face of climate 

change in coming decades. Increasing frequency of flooding and droughts are a major 

element of climate change projections (Trenberth 2011; Trenberth et al. 2015; Arnell 

& Gosling 2016; Winsemius et al. 2016), in regions including Europe and the UK 

(Watts et al. 2015, Blöschl et al. 2017). Such hydrological change is likely to have 

widespread effects on ecological communities (Medlock & Vaux 2015; Moor et al. 
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2015; Mainwaring et al. 2017), and as such, this threat demands a diverse array of 

research approaches to help mitigate negative ecological consequences (Leigh et al. 

2015). I have shown that hydrological change can indeed cause major shifts in species 

composition in local communities, and that these effects may cascade through co-

occurring taxa in unexpected ways. It seems that the plant and insect communities of 

Studland have had time to change in response to a changing hydrological context, as 

many suitably adapted species have colonised the peninsula between time-periods. 

However, rates of hydrological change may increase more rapidly in many areas in 

coming decades (Vitousek et al. 2017), and it is not clear that communities will have 

time to respond via compositional change, particularly if hydrological disturbances 

occur simultaneously over large spatial extents. 

Bayesian Belief Network projections of chapter 5 further illustrate how rapid changes 

in local abiotic environments could interact with processes occurring at wider scales 

to the detriment of biodiversity in local communities. BBN projections suggest that a 

species rich meta-community is needed in order to provide a reservoir of suitably 

adapted species within dispersal range to exploit new conditions. However, 

widespread habitat fragmentation due primarily to agricultural intensification, both in 

Dorset (Hooftman and Bullock 2012, Jiang et al. 2013) and more broadly (Cordingley 

et al. 2015), limits the ability of species to disperse among local communities (Henle 

et al. 2004; Thompson et al. 2017). Such dispersal limitation, in conjunction with 

cascading effects of changing abiotic conditions on local biodiversity (chapter’s 2, 3 

& 4), may deprive local communities of necessary colonisers to compensate for 

species losses. It seems that this risk would be amplified if the direction of abiotic 

changes were variable throughout a landscape, with some ecosystems drying up while 

others became wetter, as this would lead to local losses of species adapted to both wet 
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and dry conditions simultaneously. I would therefore suggest that research is needed 

into specific interactions between landscape fragmentation and dispersal limitation 

under changes in local abiotic conditions to investigate precisely how such local and 

regional dynamics interact. 

Of course the research I have presented here suffers from a number of limitations as 

one would expect. Ideally research on factors affecting temporal biodiversity trends 

would consist of more than two time points. A lot may have happened in the 80 years 

between sampling, and it is even possible that trends observed here have played out 

multiple times. For instance, the peninsula may have gotten wetter, and drier, and 

wetter again. The snapshots of Studland in the 1930s have told us a lot about how plant 

and insect communities, but we still don’t know how long it took these processes to 

play out. Differing sampling methodologies in each time-periods are also less than 

ideal, and may have obscured certain signals from the analyses I conducted. However, 

I believe the plants and insects of the Studland have shed a lot of light on the processes 

affecting long-term changes in species richness and composition despite these 

limitations. 

 

6.3  Final Conclusions 

Throughout this body of work I have provided a rare empirical example of long-term 

environmental change propagating through co-occurring taxa in local communities, 

ultimately driving changes in species richness and composition. Richness and 

compositional change resulted both from direct effects of abiotic drivers – most 

notably due to wetter conditions – and from effects of interactions between co-

occurring taxa, exemplified by the association between species richness differences in 
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vascular plants and hoverflies. I also presented congruent trends in species richness 

change between diverse plant and insect taxa, which seem to have been driven at least 

partially by shared responses abiotic environmental change, and thus highlight the 

value of a whole system approach to management for conservation.  

High observed turnover across the plant and insect taxa of the dynamic Studland 

environment – strongly influenced by underlying abiotic and biotic factors – may have 

troubling implications for ecological communities in coming decades. If, as 

climatologists predict, drought and flood conditions become increasingly frequent,  the 

composition of species in local communities should adapt to track abiotic 

environmental change, as species colonise areas or become locally extinct depending 

on the possession of suitable traits to survive under new conditions. The CDP data 

shows that Studland’s communities of plants and insects have had both time within 

which to adapt to a changing environment, and a reservoir of colonising species on 

hand within a distance over which they were able to disperse. However, we do not 

know how long it this took to unfold, only that it happened between the 1930s and 

2010s in a biodiverse region of Dorset. More rapidly changing environments, 

particularly in fragmented landscapes which limit species dispersal, have the potential 

to allow local extinctions to overtake colonisations leading to ecological communities 

impoverished of species.  

Therefore the take home message of this thesis must be to encourage an approach to 

conservation which maximises connectivity between local, species rich systems, 

which represent diverse ranges of abiotic conditions, as this may help insure 

communities against rapid changes in local abiotic environments.  
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8. Appendices 

 Appendix 1. 

Table A1.1 Compartment level data for six taxa. “c.n” is taxa specific compartment list. 

Compartment c.n_VA c.n_NV c.n_OR c.n_AN c.n_SY c.n_OD Eco.habitat cmpt.area_m^2 x_coord_BNG y_coord_BNG 

Brands heath 1 1 1 1 1 1 Heath_T 72367.88 402378.5 84712.94 

Curlew cottages 2 2 NA NA NA 2 Heath_T 899.5889 402577.2 85086.06 

Curlew heath 3 3 3 3 3 3 Heath_T 74255.92 402704.5 85241.86 

Little sea enclosure 4 4 NA NA 4 4 Heath_T 10853.81 402690 84739.12 

Pipley heath 5 5 NA NA 5 NA Heath_T 15024.35 402919.5 83773.62 

Plateau heath north 6 6 6 6 6 6 Heath_T 97817.7 402884.5 85772.53 

Plateau heath south 7 7 7 7 7 7 Heath_T 200764.4 402518.2 85397.56 

Spur heath 8 8 8 8 NA 8 Heath_T 114452.2 402594.9 84582.95 

Western Arm Heath 9 9 9 9 9 9 Heath_T 46662.21 402587.6 84965.55 

Wood Heath 10 10 NA 10 NA NA Heath_T 6391.836 402853.3 84017.74 

East heath pines 11 NA NA NA NA 11 Heath_D 7744.334 403315.3 84887.3 

First ridge north 12 12 12 12 NA 12 Heath_D 129864.2 403911.5 85617.07 

First ridge south 13 13 13 13 13 13 Heath_D 172979.8 403478 84606.38 

Inner Ridge 14 14 NA 14 NA 14 Heath_D 24413.98 403295.2 84417.08 

Pipley hollow 15 15 15 15 15 NA Heath_D 3204.267 403272.5 83961.11 

Second ridge N 16 16 16 16 16 16 Heath_D 144635.4 403657.7 85675 

Second ridge S 17 17 17 17 NA 17 Heath_D 29201.24 403411.7 85252.74 

Southern heath 18 18 18 18 18 18 Heath_D 127788.7 403250.3 84240.32 

Third ridge central 19 19 19 19 NA 19 Heath_D 67848.99 403334.6 85863.15 
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Third ridge north 20 20 20 20 NA 20 Heath_D 38697.82 403272.4 86066.33 

Third ridge south 21 NA 21 21 NA 21 Heath_D 26285.42 403137.3 85339.74 

Third ridge west 22 22 22 22 NA NA Heath_D 11127.94 403128.5 85555.2 

Third ridge west heath 23 23 NA NA NA NA Heath_D 12711.96 403131.4 85727.11 

Aspen wood 24 24 NA 24 24 NA Wood 9446.228 403146.1 83713.37 

Northern enclosure 25 NA NA NA NA 25 Wood 24884.99 403561.7 86244.78 
Northern Enclosure 
Extension 26 26 NA 26 NA 26 Wood 7066.84 403501 86283.17 

Pipley enclosure 27 27 27 27 27 27 Wood 34921.55 403111.6 83743.02 

Pipley wood 28 28 28 28 NA 28 Wood 30188.62 403194.8 83795.34 

Plateau enclosure 29 29 NA 29 29 29 Wood 13318.97 403021.2 85607.95 
Plateau enclosure 
extension 30 30 30 30 NA 30 Wood 7791.239 403001 85636.02 

Third ridge pines 31 31 NA 31 31 31 Wood 7865.834 403044.4 85455.08 

Three acre wood 32 32 NA 32 NA NA Wood 9910.083 402911.9 84003.27 

Twelve acre wood 33 33 NA 33 33 33 Wood 50491.84 402914.2 84195.13 

Western Arm Pines 34 NA NA 34 NA 34 Wood 24283.05 402583 84743.82 

Knoll Dunes 35 NA NA NA NA NA Dune 4541.302 403391.7 83654.48 

Lone dune 36 NA NA 36 NA 36 Dune 5878.515 403243.5 84335.71 

Northern dunes 37 NA 37 NA NA 37 Dune 10973.43 403666.3 86262.08 

Shell bay dunes 38 38 38 38 38 38 Dune 78455.08 403754.6 86154.26 

South haven flats 39 NA NA NA 39 NA Dune 6286.17 403451.5 86346.55 

Zero ridge south 40 NA NA NA NA NA Dune 104029.1 403608.7 84623.99 

Bramble bush bay 41 NA 41 41 NA 41 H_shore 131970.6 403101.9 86109.75 

Brands creek 42 42 42 42 NA 42 H_shore 26117.14 402276.8 84788.05 

Dyke bay 43 43 43 NA NA NA H_shore 76795.11 402703.1 85840.35 

Dyke bay saltmarsh 44 NA NA NA NA NA H_shore 6624.107 402531.3 85683.51 

Gravel Spit 45 NA 45 45 NA NA H_shore 4574.459 402924.7 85982.3 
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Plateau bay 46 NA NA NA NA NA H_shore 49603.62 402335.1 85642.19 

Redhorn bay ex ciffs 47 NA 47 47 NA NA H_shore 65331.81 402255.8 85251.07 

Redhorn quay ex shore 48 48 NA 48 NA NA H_shore 5514.588 402283.1 85493.83 

Sandy point 49 NA NA NA 49 NA H_shore 1170.44 402481 85708.04 

Central marsh north 50 50 50 50 50 50 Marsh 131093.8 403488.1 85829.4 

Central marsh south 51 51 51 51 51 51 Marsh 114065.2 403203.5 85228.98 

Central tongue 52 52 NA 52 NA 52 Marsh 4295.939 403708.3 85316.46 

East marsh 53 53 53 53 53 53 Marsh 64881.64 403228.7 84752.52 

Eastern lake marsh 54 54 54 54 54 54 Marsh 89181.82 403394.1 85071.19 

Little sea swamp 55 NA 55 NA NA 55 Marsh 35265.17 402857 84740.26 

Lone dunes marsh 56 NA NA NA NA NA Marsh 1919.025 403203.6 84368.73 

New pool marsh 57 57 57 NA 57 57 Marsh 49369.14 403076 85404.74 

Northern dunes marsh 58 NA 58 58 NA NA Marsh 5918.71 403644.8 86198.01 

Northern tongues 59 NA 59 59 NA NA Marsh 7408.769 403991.6 85868.52 

One Acre Pool Marsh 60 NA 60 60 60 60 Marsh 22383.47 403204.4 85735.34 

Pipley swamp 61 61 61 61 61 61 Marsh 57982.68 403011.1 83871.71 

Saltings strip 62 62 62 62 62 62 Marsh 49044.66 403766.1 85581.13 

Spur bog 63 63 63 63 63 63 Marsh 33773.25 402725.1 84294.74 

Western Arm Marsh 64 64 NA NA 64 64 Marsh 15544.56 402739.7 84998.22 

Wood Marsh 65 65 NA NA 65 NA Marsh 3016.789 402843.8 83925.32 

Eastern lake 66 NA NA NA NA 66 Aquatic 25373.45 403469.7 85047.66 

Little sea central 67 NA NA NA NA 67 Aquatic 86303.72 402994.9 84876.4 

LS Northern one 68 NA NA NA 68 68 Aquatic 6590.469 402984.4 85512.43 

LS Northern two 69 NA NA NA 69 69 Aquatic 58613.8 402879.7 85235.29 

LS Southern one 70 NA NA NA NA 70 Aquatic 108148.2 402969 84469 

LS Southern two 71 NA NA 72 NA 71 Aquatic 41159.31 403082 84155.51 

One acre pool main pool 72 NA NA NA NA 72 Aquatic 4465.494 403237.4 85831.78 

Pipley pools 73 NA 73 73 73 73 Aquatic 9825.182 403250 83748.87 
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Western Arm 74 NA NA NA 74 74 Aquatic 29835.04 402748.4 84844.74 
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 Appendix 2. Supplementary materials to chapter 2. 

  

 Code to fit models in R and Jags 

 

##================## Model 1 ~ No pooling 

M1 <- "model{ 

 

  for(i in 1:n){ 

    y[i] ~ dnorm(yN.hat[i], tau) 

    y.hat[i] <- alpha[Cmpt[i]]  + beta[Cmpt[i]]*Time[i]    # Cmpt and Time are sampling-
compartment and sampling-period variables 

 

      # Assess model fit using a sums-of-squares-type discrepancy 

      resid[i] <- y[i] - y.hat[i]                          # residuals for observed data 

      predicted[i] <- y.hat[i]                               # Predicted values 

      sq[i] <- pow(resid[i], 2)                               # Squared residuals for observed data 

 

      # Generate replicate data and compute fit stats for them 

      y.new[i] ~ dnorm(y.hat[i], tau)                         # One new data set at each MCMC 
iteration 

      sq.new[i] <- pow(y.new[i] - predicted[i], 2)            # Squared residuals for new data 

  } 

 

  ## Priors   

  for (j in 1:max(Cmpt)){              

    alpha[j] ~ dnorm(0,0.001)  

    beta[j] ~ dnorm(0,0.001) 
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      alpha.t2[j] <- alpha[j] + beta[j]         ## Compute means for time-period two as 
derived variables. 

  } 

 

tau <- 1/(sigma * sigma) 

sigma ~ dunif(0, 100)  

 

s.y <- sd(resid[])         ## Data level finite-population standard deviation 

  fit <- sum(sq[])                       # Sum of squared residuals for actual data set 

  f.sim <- sum(sq.new[])               # Sum of squared residuals for new data set 

 

#data# n, y, Cmpt, Time 

#Inits# sigma 

#monitor# alpha, alpha.t2, beta, sigma, s.y, fit, f.sim, resid, dic 

 

}" 

 

## Initial values 

sigma <- list(rlnorm(1), rlnorm(1))  

 

## Fit model using the "run.jags" function in R package runjags 

results.M1 <- run.jags(M1, n.chains=3, sample = 10000) 

 

## Calculate the Bayesian R^2 adjusted: 

M1.resid <- as.mcmc(results.M1, vars="resid") 

rsquared.yN <- 1 - mean(apply(M1.resid, 1, var))/var(y)              

 

## Calculate summary of pooling factor 
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M1_y.lambda <- 1 - var(apply(M1.resid, 2, mean)) / mean(apply(M1.resid, 1, var))     

##================## Model 2 ~ Partial pooling for group-level slopes and 
intercepts 

 

M2 <- "model{ 

 

  for(i in 1:n){ 

    y[i] ~ dnorm(y.hat[i], tau) 

    y.hat[i] <- alpha[Cmpt[i]]  + beta[Cmpt[i]]*Time[i]  # Cmpt and Time are sampling-
compartment and sampling-period variables 

 

      # Assess model fit using a sums-of-squares-type discrepancy 

      resid[i] <- y[i] - y.hat[i]                          # Residuals for observed data 

      predicted[i] <- y.hat[i]                               # Predicted values 

      sq[i] <- pow(resid[i], 2)                               # Squared residuals for observed data 

 

      # Generate replicate data and compute fit stats for them 

      y.new[i] ~ dnorm(y.hat[i], tau)                         # One new data set at each MCMC 
iteration 

      sq.new[i] <- pow(y.new[i] - predicted[i], 2)            # Squared residuals for new data 

  } 

 

  ## Group-level model   

  for (j in 1:max(Cmpt)){              

    alpha[j] <- B[j,1]  

    beta[j] <- B[j,2] 

     

    B[j,1:2] ~ dmnorm(B.hat[j,], Tau.B[,])   ## Constrain the varying intercepts and 
slopes to come from a 
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                                             # bivariate normal distribution to covariance between 
parameters. 

 

    B.hat[j,1] <- mu.a                ## Mean EIV across all sampling-compartments for time-
period 1 

    B.hat[j,2] <- mu.b                ## Estimated mean difference across all sampling-
compartments between tp1 and tp2 

        

 

      alpha.t2[j] <- alpha[j] + beta[j]       ## Mean for time-period two as a derived 
variable. 

 

      for(k in 1:2){ 

        E.B[j,k] <- B[j,k] - B.hat[j,k]   ## Residuals from the group-level intercepts and 
slopes 

      } 

  } 

 

## Priors 

tau <- 1/(sigma*sigma) 

sigma ~ dunif(0, 100)     ## Species-level residual variation 

 

mu.a ~ dnorm(0,0.001) 

mu.b ~ dnorm(0,0.001) 

 

Tau.B[1:2, 1:2] <- inverse(Sigma.B[,])     ## Convert variance/covariance matrix to 
precision for jags. 

 

Sigma.B[1,1] <- pow(sigma.a, 2) 

sigma.a ~ dunif(0, 100) 

Sigma.B[2,2] <- pow(sigma.b, 2) 
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sigma.b ~ dunif(0, 100) 

 

Sigma.B[1,2] <- rho*sigma.a*sigma.b 

Sigma.B[2,1] <- Sigma.B[1,2] 

rho ~ dunif(-1,1) 

 

s.y <- sd(resid[])         ## Data level finite-population standard deviation 

s.a <- sd(E.B[,1])       ## Intercept level finite-population standard deviation 

s.b <- sd(E.B[,2])      ## Slope level finite-population standard deviation      ## These 
are calculated as the residual standard deviation at each level of the model 

 

  fit <- sum(sq[])                       # Sum of squared residuals for actual data set ## Plant 
level 

  f.sim <- sum(sq.new[])               # Sum of squared residuals for new data set 

 

#data# n, y, Cmpt, Time 

#Inits# sigma, sigma.a, sigma.b 

#monitor# mu.a, mu.b, B, Sigma.B, y.hat, B.hat, fit, f.sim, resid, E.B, dic 

 

}" 

 

 

## Initial values 

sigma <- list(rlnorm(1), rlnorm(1))  ## Note rlnorm for positive variance component 

sigma.a <- list(rlnorm(1), rlnorm(1)) 

sigma.b <- list(rlnorm(1), rlnorm(1)) 

 

## Run model 

results.M2 <- run.jags(M2, n.chains=3, sample = 10000) 



 

155 
 

 

 

## Calculate the Bayesian R^2 adjusted: 

 

# For the data level model 

M2.resid <- as.mcmc(results.M2, vars="resid") 

rsquared.y.M2 <- 1 - mean(apply(M2.resid, 1, var))/var(y.N)   

 

 

## Calculate summary of pooling factors 

# Data level model 

M2_y.lambda <- 1 - var(apply(M2.resid, 2, mean)) / mean(apply(M2.resid, 1, var))   

 

# Group level model 

E.B <- as.matrix(as.mcmc(results.M2b_N_With_residuals, vars="E.B"))    ## Extract 
group level residuals 

e.a_m2 <- E.B[,1:74]   

e.b_m2 <- E.B[,75:148]  

 

# Group level intercepts 

M2_alpha.lambda <- 1 - var(apply(e.a_m2, 2, mean)) / mean(apply(e.a_m2, 1, var))      

# Group level slopes 

M2_betaN.lambda <- 1 - var(apply(e.b_m2b, 2, mean)) / mean(apply(e.b_m2b, 1, 
var))    
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##================## Model 3 ~ Partial pooling with group-level predictors for 
slopes and intercepts 

 

 

M3 <- "model{ 

 

  for(i in 1:n){ 

    y[i] ~ dnorm(y.hat[i], tau) 

    y.hat[i] <- alpha[Cmpt[i]]  + beta[Cmpt[i]]*Time[i]   # Cmpt and Time are sampling-
compartment and sampling-period variables 

 

      # Assess model fit using a sums-of-squares-type discrepancy 

      resid[i] <- y[i] - y.hat[i]                          # Residuals for observed data 

      predicted[i] <- y.hat[i]                              # Predicted values 

      sq[i] <- pow(resid[i], 2)                               # Squared residuals for observed data 

 

      # Generate replicate data and compute fit stats for them 

      y.new[i] ~ dnorm(y.hat[i], tau)                         # One new data set at each MCMC 
iteration 

      sq.new[i] <- pow(y.new[i] - predicted[i], 2)            # Squared residuals for new data 

  } 

 

  ## Group-level model   

  for (j in 1:max(Cmpt)){              

    alpha[j] <- B[j,1]  

    beta[j] <- B[j,2] 
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    B[j,1:2] ~ dmnorm(B.hat[j,], Tau.B[,])   ## Constrain the varying intercepts and 
slopes to come from a 

                                             # bivariate normal distribution to covariance between 
parameters. 

 

    B.hat[j,1] <- gamma.a[Eco.hab[j]]                ## Habitat-level means for time-period 
1 

    B.hat[j,2] <- gamma.b[Eco.hab[j]]                ## Habitat-level differences between 
time-periods 

 

 

      alpha.t2[j] <- alpha[j] + beta[j]       ## Means for time-period two as derived 
variables. 

 

      for(k in 1:2){ 

        E.B[j,k] <- B[j,k] - B.hat[j,k]   ## Residuals from the group-level intercepts and 
slopes 

      } 

  } 

 

## Priors 

tau <- 1/(sigma*sigma) 

sigma ~ dunif(0, 100)     ## Species-level residual variation 

 

for(i in 1:7){ 

  gamma.a[i] ~ dnorm(0,0.001)       ## Ecological habitat-level Eberg means for time 
period one 

  gamma.b[i] ~ dnorm(0,0.001)       ## Ecological habitat-level between time-period 
difference 

 

    ## Derived means for habitat groups in time-period 2 
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    gamma.a.2[i] <- gamma.a[i] + gamma.b[i]     ## Habitat-level Eberg means for time 
period 2 

} 

 

Tau.B[1:2, 1:2] <- inverse(Sigma.B[,])     ## Convert variance/covariance matrix to 
precision for jags. 

 

Sigma.B[1,1] <- pow(sigma.a, 2) 

sigma.a ~ dunif(0, 100) 

Sigma.B[2,2] <- pow(sigma.b, 2) 

sigma.b ~ dunif(0, 100) 

 

Sigma.B[1,2] <- rho*sigma.a*sigma.b 

Sigma.B[2,1] <- Sigma.B[1,2] 

rho ~ dunif(-1,1) 

 

s.y <- sd(resid[])         ## Data level finite-population standard deviation 

s.a <- sd(E.B[,1])       ## Intercept level finite-population standard deviation 

s.b <- sd(E.B[,2])      ## Slope level finite-population standard deviation       # These are 
calculated ast the residual standard deviation at each level of the model 

 

fit <- sum(sq[])                       # Sum of squared residuals for actual data set Species-
level 

f.sim <- sum(sq.new[])               # Sum of squared residuals for new data set 

 

#data# n, y.N, Cmpt, Time, Eco.hab 

#Inits# sigma, sigma.a, sigma.b 

#monitor# alpha, alpha.t2, beta, sigma, sigma.a, sigma.b, s.y, s.a, s.b, gamma.a, 
gamma.b, rho, resid, E.B, dic  

}" 
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## Initial values 

sigma <- list(rlnorm(1), rlnorm(1))  ## Note rlnorm for positive variance component 

sigma.a <- list(rlnorm(1), rlnorm(1)) 

sigma.b <- list(rlnorm(1), rlnorm(1)) 

 

## Fit the model 

results.M3 <- run.jags(M3, n.chains=3, sample = 10000) 

 

 

## Calculate the Bayesian R^2 adjusted: 

 

# For the data level model 

M3.resid <- as.mcmc(results.M3, vars="resid") 

rsquared.y.M3 <- 1 - mean(apply(M3.resid, 1, var))/var(y.N)  

 

# Group level model 

E.B.M3 <- as.matrix(as.mcmc(results.M3, vars="E.B"))  ## Extract group-level 
residuals 

e.a.M3 <- E.B.M3[,1:74] 

e.b.M3 <- E.B.M3[,75:148] 

 

# For the group-level intercepts 

alpha.M3 <- as.mcmc(results.M3, vars="alpha") 

rsquared.alpha.M3 <- 1 - mean(apply(e.a.M3, 1, var))/mean(apply(alpha.M3, 1, var)) 

 

# And the group-level slopes 
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beta.M3 <- as.mcmc(results.M3, vars="beta") 

rsquared.beta.M3 <- 1 - mean(apply(e.b.M3, 1, var))/mean(apply(beta.M3, 1, var))      

 

 

## Calculate summary of pooling factors: 

 

# Data level model 

M3.lambda <- 1 - var(apply(M3.resid, 2, mean)) / mean(apply(M3.resid, 1, var))     

 

# Group level intercepts 

M3_alpha.lambda <- 1 - var(apply(e.a.M3, 2, mean)) / mean(apply(e.a.M3, 1, var))     

 

# Group level slopes 

M3_beta.lambda <- 1 - var(apply(e.b.M3, 2, mean)) / mean(apply(e.b.M3, 1, var))     
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Supplementary materials submitted for publication of chapter 2. 

Compartment cmpt.n

um 

cmpt.num_within.eco.

hab.type 

Eco.hab

itat 

Eco.habitat.

num 

num.spe

cies 

time.per

iod 

cmpt.area_

m^2 

x_coord_

BNG 

y_coord_

BNG 

Brands heath 1 1 Heath_

T 

1 73 0 72367.88 402378.5 84712.94 

Curlew cottages 2 2 Heath_

T 

1 48 0 899.5889 402577.2 85086.06 

Curlew heath 3 3 Heath_

T 

1 43 0 74255.92 402704.5 85241.86 

Little sea 

enclosure 

4 4 Heath_

T 

1 41 0 10853.81 402690 84739.12 
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Pipley heath 5 5 Heath_

T 

1 84 0 15024.35 402919.5 83773.62 

Plateau heath 

north 

6 6 Heath_

T 

1 69 0 97817.7 402884.5 85772.53 

Plateau heath 

south 

7 7 Heath_

T 

1 51 0 200764.4 402518.2 85397.56 

Spur heath 8 8 Heath_

T 

1 64 0 114452.2 402594.9 84582.95 

Western Arm 

Heath 

9 9 Heath_

T 

1 99 0 46662.21 402587.6 84965.55 

Wood Heath 10 10 Heath_

T 

1 81 0 6391.836 402853.3 84017.74 
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East heath pines 11 1 Heath_

D 

2 34 0 7744.334 403315.3 84887.3 

First ridge north 12 2 Heath_

D 

2 80 0 129864.2 403911.5 85617.07 

First ridge south 13 3 Heath_

D 

2 41 0 172979.8 403478 84606.38 

Inner Ridge 14 4 Heath_

D 

2 32 0 24413.98 403295.2 84417.08 

Pipley hollow 15 5 Heath_

D 

2 22 0 3204.267 403272.5 83961.11 

Second ridge N 16 6 Heath_

D 

2 60 0 144635.4 403657.7 85675 
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Second ridge S 17 7 Heath_

D 

2 32 0 29201.24 403411.7 85252.74 

Southern heath 18 8 Heath_

D 

2 44 0 127788.7 403250.3 84240.32 

Third ridge central 19 9 Heath_

D 

2 111 0 67848.99 403334.6 85863.15 

Third ridge north 20 10 Heath_

D 

2 116 0 38697.82 403272.4 86066.33 

Third ridge south 21 11 Heath_

D 

2 74 0 26285.42 403137.3 85339.74 

Third ridge west 22 12 Heath_

D 

2 63 0 11127.94 403128.5 85555.2 
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Third ridge west 

heath 

23 13 Heath_

D 

2 33 0 12711.96 403131.4 85727.11 

Aspen wood 24 1 Wood 3 73 0 9446.228 403146.1 83713.37 

Northern 

enclosure 

25 2 Wood 3 71 0 24884.99 403561.7 86244.78 

Northern 

Enclosure 

Extension 

26 3 Wood 3 93 0 7066.84 403501 86283.17 

Pipley enclosure 27 4 Wood 3 268 0 34921.55 403111.6 83743.02 

Pipley wood 28 5 Wood 3 56 0 30188.62 403194.8 83795.34 

Plateau enclosure 29 6 Wood 3 124 0 13318.97 403021.2 85607.95 

Plateau enclosure 

extension 

30 7 Wood 3 55 0 7791.239 403001 85636.02 
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Third ridge pines 31 8 Wood 3 38 0 7865.834 403044.4 85455.08 

Three acre wood 32 9 Wood 3 73 0 9910.083 402911.9 84003.27 

Twelve acre wood 33 10 Wood 3 112 0 50491.84 402914.2 84195.13 

Western Arm 

Pines 

34 11 Wood 3 32 0 24283.05 402583 84743.82 

Knoll Dunes 35 1 Dune 4 18 0 4541.302 403391.7 83654.48 

Lone dune 36 2 Dune 4 12 0 5878.515 403243.5 84335.71 

Northern dunes 37 3 Dune 4 45 0 10973.43 403666.3 86262.08 

Shell bay dunes 38 4 Dune 4 62 0 78455.08 403754.6 86154.26 

South haven flats 39 5 Dune 4 128 0 6286.17 403451.5 86346.55 

Zero ridge south 40 6 Dune 4 7 0 104029.1 403608.7 84623.99 

Bramble bush bay 41 1 H_shore 5 117 0 131970.6 403101.9 86109.75 

Brands creek 42 2 H_shore 5 77 0 26117.14 402276.8 84788.05 
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Dyke bay 43 3 H_shore 5 46 0 76795.11 402703.1 85840.35 

Dyke bay 

saltmarsh 

44 4 H_shore 5 22 0 6624.107 402531.3 85683.51 

Gravel Spit 45 5 H_shore 5 65 0 4574.459 402924.7 85982.3 

Plateau bay 46 6 H_shore 5 57 0 49603.62 402335.1 85642.19 

Redhorn bay ex 

ciffs 

47 7 H_shore 5 54 0 65331.81 402255.8 85251.07 

Redhorn quay ex 

shore 

48 8 H_shore 5 86 0 5514.588 402283.1 85493.83 

Sandy point 49 9 H_shore 5 42 0 1170.44 402481 85708.04 

Central marsh 

north 

50 1 Marsh 6 62 0 131093.8 403488.1 85829.4 
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Central marsh 

south 

51 2 Marsh 6 70 0 114065.2 403203.5 85228.98 

Central tongue 52 3 Marsh 6 44 0 4295.939 403708.3 85316.46 

East marsh 53 4 Marsh 6 49 0 64881.64 403228.7 84752.52 

Eastern lake marsh 54 5 Marsh 6 94 0 89181.82 403394.1 85071.19 

Little sea swamp 55 6 Marsh 6 43 0 35265.17 402857 84740.26 

Lone dunes marsh 56 7 Marsh 6 15 0 1919.025 403203.6 84368.73 

New pool marsh 57 8 Marsh 6 38 0 49369.14 403076 85404.74 

Northern dunes 

marsh 

58 9 Marsh 6 67 0 5918.71 403644.8 86198.01 

Northern tongues 59 10 Marsh 6 61 0 7408.769 403991.6 85868.52 

One Acre Pool 

Marsh 

60 11 Marsh 6 105 0 22383.47 403204.4 85735.34 
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Pipley swamp 61 12 Marsh 6 108 0 57982.68 403011.1 83871.71 

Saltings strip 62 13 Marsh 6 99 0 49044.66 403766.1 85581.13 

Spur bog 63 14 Marsh 6 112 0 33773.25 402725.1 84294.74 

Western Arm 

Marsh 

64 15 Marsh 6 68 0 15544.56 402739.7 84998.22 

Wood Marsh 65 16 Marsh 6 63 0 3016.789 402843.8 83925.32 

Eastern lake 66 1 Aquatic 7 50 0 25373.45 403469.7 85047.66 

Little sea central 67 2 Aquatic 7 6 0 86303.72 402994.9 84876.4 

LS Northern one 68 3 Aquatic 7 16 0 6590.469 402984.4 85512.43 

LS Northern two 69 4 Aquatic 7 8 0 58613.8 402879.7 85235.29 

LS Southern one 70 5 Aquatic 7 14 0 108148.2 402969 84469 

LS Southern two 71 6 Aquatic 7 21 0 41159.31 403082 84155.51 
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One acre pool 

main pool 

72 7 Aquatic 7 17 0 4465.494 403237.4 85831.78 

Pipley pools 73 8 Aquatic 7 17 0 9825.182 403250 83748.87 

Western Arm 74 9 Aquatic 7 35 0 29835.04 402748.4 84844.74 

Brands heath 1 1 Heath_

T 

1 146 1 72367.88 402378.5 84712.94 

Curlew cottages 2 2 Heath_

T 

1 49 1 899.5889 402577.2 85086.06 

Curlew heath 3 3 Heath_

T 

1 59 1 74255.92 402704.5 85241.86 

Little sea 

enclosure 

4 4 Heath_

T 

1 49 1 10853.81 402690 84739.12 
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Pipley heath 5 5 Heath_

T 

1 72 1 15024.35 402919.5 83773.62 

Plateau heath 

north 

6 6 Heath_

T 

1 98 1 97817.7 402884.5 85772.53 

Plateau heath 

south 

7 7 Heath_

T 

1 98 1 200764.4 402518.2 85397.56 

Spur heath 8 8 Heath_

T 

1 90 1 114452.2 402594.9 84582.95 

Western Arm 

Heath 

9 9 Heath_

T 

1 74 1 46662.21 402587.6 84965.55 

Wood Heath 10 10 Heath_

T 

1 29 1 6391.836 402853.3 84017.74 
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East heath pines 11 1 Heath_

D 

2 23 1 7744.334 403315.3 84887.3 

First ridge north 12 2 Heath_

D 

2 47 1 129864.2 403911.5 85617.07 

First ridge south 13 3 Heath_

D 

2 55 1 172979.8 403478 84606.38 

Inner Ridge 14 4 Heath_

D 

2 65 1 24413.98 403295.2 84417.08 

Pipley hollow 15 5 Heath_

D 

2 96 1 3204.267 403272.5 83961.11 

Second ridge N 16 6 Heath_

D 

2 67 1 144635.4 403657.7 85675 
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Second ridge S 17 7 Heath_

D 

2 47 1 29201.24 403411.7 85252.74 

Southern heath 18 8 Heath_

D 

2 154 1 127788.7 403250.3 84240.32 

Third ridge central 19 9 Heath_

D 

2 66 1 67848.99 403334.6 85863.15 

Third ridge north 20 10 Heath_

D 

2 137 1 38697.82 403272.4 86066.33 

Third ridge south 21 11 Heath_

D 

2 45 1 26285.42 403137.3 85339.74 

Third ridge west 22 12 Heath_

D 

2 37 1 11127.94 403128.5 85555.2 
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Third ridge west 

heath 

23 13 Heath_

D 

2 65 1 12711.96 403131.4 85727.11 

Aspen wood 24 1 Wood 3 74 1 9446.228 403146.1 83713.37 

Northern 

enclosure 

25 2 Wood 3 34 1 24884.99 403561.7 86244.78 

Northern 

Enclosure 

Extension 

26 3 Wood 3 112 1 7066.84 403501 86283.17 

Pipley enclosure 27 4 Wood 3 164 1 34921.55 403111.6 83743.02 

Pipley wood 28 5 Wood 3 95 1 30188.62 403194.8 83795.34 

Plateau enclosure 29 6 Wood 3 75 1 13318.97 403021.2 85607.95 

Plateau enclosure 

extension 

30 7 Wood 3 62 1 7791.239 403001 85636.02 
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Third ridge pines 31 8 Wood 3 24 1 7865.834 403044.4 85455.08 

Three acre wood 32 9 Wood 3 29 1 9910.083 402911.9 84003.27 

Twelve acre wood 33 10 Wood 3 105 1 50491.84 402914.2 84195.13 

Western Arm 

Pines 

34 11 Wood 3 17 1 24283.05 402583 84743.82 

Knoll Dunes 35 1 Dune 4 44 1 4541.302 403391.7 83654.48 

Lone dune 36 2 Dune 4 27 1 5878.515 403243.5 84335.71 

Northern dunes 37 3 Dune 4 59 1 10973.43 403666.3 86262.08 

Shell bay dunes 38 4 Dune 4 111 1 78455.08 403754.6 86154.26 

South haven flats 39 5 Dune 4 90 1 6286.17 403451.5 86346.55 

Zero ridge south 40 6 Dune 4 46 1 104029.1 403608.7 84623.99 

Bramble bush bay 41 1 H_shore 5 94 1 131970.6 403101.9 86109.75 

Brands creek 42 2 H_shore 5 92 1 26117.14 402276.8 84788.05 
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Dyke bay 43 3 H_shore 5 60 1 76795.11 402703.1 85840.35 

Dyke bay 

saltmarsh 

44 4 H_shore 5 37 1 6624.107 402531.3 85683.51 

Gravel Spit 45 5 H_shore 5 38 1 4574.459 402924.7 85982.3 

Plateau bay 46 6 H_shore 5 58 1 49603.62 402335.1 85642.19 

Redhorn bay ex 

ciffs 

47 7 H_shore 5 76 1 65331.81 402255.8 85251.07 

Redhorn quay ex 

shore 

48 8 H_shore 5 73 1 5514.588 402283.1 85493.83 

Sandy point 49 9 H_shore 5 40 1 1170.44 402481 85708.04 

Central marsh 

north 

50 1 Marsh 6 80 1 131093.8 403488.1 85829.4 
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Central marsh 

south 

51 2 Marsh 6 73 1 114065.2 403203.5 85228.98 

Central tongue 52 3 Marsh 6 18 1 4295.939 403708.3 85316.46 

East marsh 53 4 Marsh 6 59 1 64881.64 403228.7 84752.52 

Eastern lake marsh 54 5 Marsh 6 51 1 89181.82 403394.1 85071.19 

Little sea swamp 55 6 Marsh 6 57 1 35265.17 402857 84740.26 

Lone dunes marsh 56 7 Marsh 6 24 1 1919.025 403203.6 84368.73 

New pool marsh 57 8 Marsh 6 56 1 49369.14 403076 85404.74 

Northern dunes 

marsh 

58 9 Marsh 6 71 1 5918.71 403644.8 86198.01 

Northern tongues 59 10 Marsh 6 32 1 7408.769 403991.6 85868.52 

One Acre Pool 

Marsh 

60 11 Marsh 6 44 1 22383.47 403204.4 85735.34 
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Pipley swamp 61 12 Marsh 6 98 1 57982.68 403011.1 83871.71 

Saltings strip 62 13 Marsh 6 72 1 49044.66 403766.1 85581.13 

Spur bog 63 14 Marsh 6 78 1 33773.25 402725.1 84294.74 

Western Arm 

Marsh 

64 15 Marsh 6 58 1 15544.56 402739.7 84998.22 

Wood Marsh 65 16 Marsh 6 49 1 3016.789 402843.8 83925.32 

Eastern lake 66 1 Aquatic 7 16 1 25373.45 403469.7 85047.66 

Little sea central 67 2 Aquatic 7 33 1 86303.72 402994.9 84876.4 

LS Northern one 68 3 Aquatic 7 20 1 6590.469 402984.4 85512.43 

LS Northern two 69 4 Aquatic 7 21 1 58613.8 402879.7 85235.29 

LS Southern one 70 5 Aquatic 7 38 1 108148.2 402969 84469 

LS Southern two 71 6 Aquatic 7 48 1 41159.31 403082 84155.51 
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One acre pool 

main pool 

72 7 Aquatic 7 21 1 4465.494 403237.4 85831.78 

Pipley pools 73 8 Aquatic 7 61 1 9825.182 403250 83748.87 

Western Arm 74 9 Aquatic 7 19 1 29835.04 402748.4 84844.74 
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 Appendix 3. Supplementary materials chapter 3. 

 The Models 

𝑆𝐺𝐿𝑖 ~Bernoulli (𝑝𝑖) 

Logit (𝑝𝑖) = 𝐴𝑖
𝑉𝐴 + 𝐵𝑖

𝑁𝑉 𝐵𝑖
𝑂𝑅+ 𝐵𝑖

𝐴𝑁 + 𝐵𝑖
𝑆𝑌 + 𝐵𝑖

𝑂𝐷 + 𝑆𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖  

𝐴𝑖
𝑉𝐴  = α + α𝑐𝑚𝑝𝑡 𝑖 𝜎𝛼 𝑐𝑚𝑝𝑡 

𝐵𝑖
𝑁𝑉 = 𝛽𝑁𝑉 + 𝛽𝑐𝑚𝑝𝑡 𝑖

𝑁𝑉  𝜎𝛽 𝑐𝑚𝑝𝑡
𝑁𝑉  

𝐵𝑖
𝑂𝑅 = 𝛽𝑂𝑅 + 𝛽𝑐𝑚𝑝𝑡 𝑖

𝑂𝑅  𝜎𝛽 𝑐𝑚𝑝𝑡
𝑂𝑅  

𝐵𝑖
𝐴𝑁 = 𝛽𝐴𝑁 + 𝛽𝑐𝑚𝑝𝑡 𝑖

𝐴𝑁  𝜎𝛽 𝑐𝑚𝑝𝑡
𝐴𝑁  

𝐵𝑖
𝑆𝑌 = 𝛽𝑆𝑌 + 𝛽𝑐𝑚𝑝𝑡 𝑖

𝑆𝑌  𝜎𝛽 𝑐𝑚𝑝𝑡
𝑆𝑌  

𝐵𝑖
𝑂𝐷 = 𝛽𝑂𝐷 + 𝛽𝑐𝑚𝑝𝑡 𝑖

𝑂𝐷  𝜎𝛽 𝑐𝑚𝑝𝑡
𝑂𝐷  

(

 
 
 
 

α𝑐𝑚𝑝𝑡

𝛽𝑐𝑚𝑝𝑡
𝑁𝑉

𝛽𝑐𝑚𝑝𝑡
𝑂𝑅

𝛽𝑐𝑚𝑝𝑡
𝐴𝑁

𝛽𝑐𝑚𝑝𝑡
𝑆𝑌

𝛽𝑐𝑚𝑝𝑡
𝑂𝐷

)

 
 
 
 

 ~ MVNormal (0, 𝑆 𝑐𝑚𝑝𝑡) 

𝑆𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖 ~ Normal (0, 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 

(α, 𝛽𝑁𝑉, 𝛽𝑂𝑅, 𝛽𝐴𝑁, 𝛽𝑆𝑌, 𝛽𝑂𝐷) ~ Normal (0, 5) 

(𝜎𝛼 𝑐𝑚𝑝𝑡 , 𝜎𝛽 𝑐𝑚𝑝𝑡
𝑁𝑉  , 𝜎𝛽 𝑐𝑚𝑝𝑡 

𝑂𝑅 , 𝜎𝛽 𝑐𝑚𝑝𝑡
𝐴𝑁  , 𝜎𝛽 𝑐𝑚𝑝𝑡 

𝑆𝑌 , 𝜎𝛽 𝑐𝑚𝑝𝑡
𝑂𝐷 ) ~ HalfCauchy(0, 2.5) 

𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ~ HalfCauchy(0, 2.5) 
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Above is an algebraic representation of model M3.1 from chapter 3. The model is 

parameterised with an intercept 𝐴𝑖
𝑉𝐴 which estimates the proportion of vascular plant 

species gains vs losses. 𝐴𝑖
𝑉𝐴 varies by sampling compartment and is broken down into 

a mean (α) and compartment offset in the submodel (𝐴𝑖
𝑉𝐴  = α + α𝑐𝑚𝑝𝑡 𝑖 𝜎𝛼 𝑐𝑚𝑝𝑡), where 

𝜎𝛼 𝑐𝑚𝑝𝑡 provides an estimate of the variance among compartments. There are five sets 

of similarly varying slope parameters (𝐵𝑖
𝑁𝑉, 𝐵𝑖

𝑂𝑅 , 𝐵𝑖
𝐴𝑁, 𝐵𝑖

𝑆𝑌 and 𝐵𝑖
𝑂𝐷), each of which 

estimates the difference in the proportion of species gains vs losses by compartment 

between the vascular plants and one of the remaining five focal taxa (non-vascular 

plants, Orthoptera, ants, hoverflies and Odonata). To construct intercept for any of 

these five taxa, we simply add the vascular plant intercept (𝐴𝑖
𝑉𝐴  ) and the relevant 

slope value for the taxa of interest (eg. 𝐴𝑖
𝑉𝐴  + 𝐵𝑖

𝑆𝑌 to construct intercepts for the 

hoverflies). To get a measure of pairwise congruencies in local changes (gains vs 

losses) between taxa across the peninsula, we construct posterior intercepts for each 

taxa and compute Pearson’s correlations between them for each pair across the entire 

posteriors. 

We now have pairwise distributions of correlations between taxa. However, we don’t 

know what’s causing these correlations; is it shared responses to environmental 

change, or possibly biotic interactions between taxa? We try to shed some light on the 

answer to this question by controlling for the effects of local changes in the 

environment on proportions of species gains vs losses, and recomputing the 

correlations. I present model M3.2 with environmental predictors in the R code used 

to fit the model, rather than expressing it algebraicly. 
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mFull_RDA__Ch2 <- map2stan( 

  alist( 

    # likeliood 

    LG ~ dbinom(1,p), 

     

    # linear models 

    logit(p) <- (A + B_NV*NV + B_OR*OR + B_AN*AN + B_SY*SY + B_OD*OD) + Sp_offset[Species], 

     

    A        <-      a +   a_Cmpt[Cmpt] +   a_Hab[Hab] +  ba_F[Hab]*EIV_F +  ba_L[Hab]*EIV_L +  ba_R[Hab]*EIV_R +  ba_S[Hab]*EIV_S, 

    B_NV <- bnv + bnv_Cmpt[Cmpt] + bnv_Hab[Hab] + bnv_F[Hab]*EIV_F + bnv_L[Hab]*EIV_L + bnv_R[Hab]*EIV_R + 
bnv_S[Hab]*EIV_S, 

    B_OR <- bor + bor_Cmpt[Cmpt] + bor_Hab[Hab] + bor_F[Hab]*EIV_F                                        + bor_R[Hab]*EIV_R, 

    B_AN <- ban + ban_Cmpt[Cmpt] + ban_Hab[Hab] + ban_F[Hab]*EIV_F + ban_L[Hab]*EIV_L                                      + 
ban_S[Hab]*EIV_S, 

    B_SY  <- bsy + bsy_Cmpt[Cmpt] + bsy_Hab[Hab] + bsy_F[Hab]*EIV_F + bsy_L[Hab]*EIV_L, 

    B_OD <- bod + bod_Cmpt[Cmpt] + bod_Hab[Hab] + bod_F[Hab]*EIV_F + bod_L[Hab]*EIV_L + bod_R[Hab]*EIV_R + 
bod_S[Hab]*EIV_S, 

     

    # adaptive priors 

    c(a_Cmpt,bnv_Cmpt,bor_Cmpt,ban_Cmpt,bsy_Cmpt,bod_Cmpt)[Cmpt] ~ dmvnormNC(sigma_Cmpt,Rho_Cmpt), 

    c(a_Hab,bnv_Hab,bor_Hab,ban_Hab,bsy_Hab,bod_Hab, 

      ba_F, bnv_F, bor_F, ban_F, bsy_F, bod_F, 

      ba_L, bnv_L,        ban_L, bsy_L, bod_L, 

      ba_R, bnv_R, bor_R,               bod_R, 

      ba_S, bnv_S,        ban_S,        bod_S)[Hab] ~ dmvnormNC(sigma_Hab,Rho_Hab), 

    Sp_offset[Species] ~ dnorm(0,sigma_Sp), 

     

    # fixed priors 

    c(a,bnv,bor,ban,bsy,bod) ~ dnorm(0,5), 

    sigma_Cmpt ~ dcauchy(0,2.5), 

    sigma_Hab ~ dcauchy(0,2.5), 

    sigma_Sp ~ dcauchy(0,2.5), 

    Rho_Cmpt ~ dlkjcorr(1), 

    Rho_Hab ~ dlkjcorr(2) 

     

  ) , data=df , iter=4000, warmup=1000, chains=4, cores=2) 
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Now the submodel for the vascular plant intercept is further broken down to include a 

variable offset for the habitat type a compartment belongs to, and varying slopes for 

mean changes per compartment in Ellenberg F, L, R, and S values (specifying wetness, 

light availability, pH, and salinity respectively). To get an estimate of the proportional 

species gains vs losses after controlling for these factors, we just add the mean and 

compartment offset (α + α𝑐𝑚𝑝𝑡 𝑖). We similarly account for any systematic differences 

between the other taxa and the vascular plant attributable to these factors by adding 

them as predictors in the submodels for the slope parameters. We then recompute the 

posterior correlations having controlled for responses to these environmental changes 

(eg. correlation between vascular plants and hoverflies is the correlation between (α + 

α𝑐𝑚𝑝𝑡 𝑖) and (α + α𝑐𝑚𝑝𝑡 𝑖 + 𝛽𝑆𝑌 + 𝛽𝑐𝑚𝑝𝑡 𝑖
𝑆𝑌 )). 

Because the slope parameters are differences between the other taxa and the baseline 

(within the model) of the vascular plants, any shared signal in gains vs losses between 

vascular plants and another taxa which is caused by shared responses to environmental 

change will be contained within the intercept parameters. Once we strip out these 

shared effects, and any remaining systematic differences between vascular plants and 

another taxa, the residual correlations should be due to direct biotic interactions, and 

to shared responses to environmental change which was not included in the model. 

 

Including varying habitat-level slope/intercept parameters allows us to account for 

these factors while not overloading the model with parameters. 
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Figure 8.1 Parameter estimates from submodel predictors of model M3.2 
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 Posterior predictive checks 

 

Figure 8.2 PPcheck for model m0 without the species offset. 

All good and above board. 
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Figure 8.3 PPcheck for model M3.1. 

Adding the species offset does introduce uncertainty into the compartment level 

estimates as we would expect – particularly for Orthoptera and ant groups. However, 

they are still mostly congruent with the raw proportions. 
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Figure 8.4 PPcheck for model M3.2 with environmental predictors. 

Again, adding the submodel predictors causes a little more uncertainty in the 

compartment level estimates, but they are still mostly in agreement with the raw 

proportions. 
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 Cross-taxon correlations data subset 

 

Figure 8.5 Cross-taxon correlations in proportional species gain vs losses (i.e. proportional species richness 

differences) computed for subset of data in which species were only included for each taxonomic group if they 

were recorded in 20% or more of the total (taxon specific) number of sampling compartments in the time-

period in which that species was more widespread across compartments. 

 

Figure 8.6 Cross-taxon correlations in proportional species gain vs losses for full dataset. The same as in main 

body of the text, but reproduced here for comparison.  
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 Appendix 4. Supplementary materials chapter 4. 

 

Figure 8.7 Effect of standardised number of habitats hoverfly species are associated with of the proportional 

gains vs losses between 1930s and 2010s. Blue interval is from model with just habitat gen/spe, grey interval 

is from full model. 
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 Appendix 5. Spatial Autocorrelation 

Spatial autocorrelation was tested for in R by computing Moran’s I values on sampling 

compartment level proportional species gain vs losses for each taxa, and for model 

estimates of the same and compartment level model residuals. Autocorrelation was 

tested for on an adjacency matrix of compartments following (Brunsdon & Comber 

2018). The adjacency matrix is a matrix indicating whether each sampling 

compartment pair share a boundary. 

Min and max possible values of Moran’s I, given W-matrix for compartments for each taxa 
are: 

VA: [1] -1.082229  1.230397; NV:[1] -1.036326  1.104035; OR: [1] -1.031874  1.113671; AN: 

[1] -1.223380  1.278873; SY: [1] -1.154701  1.154701; OD: [1] -1.039250  1.133289 

 

Table of Moran’s I with associated p-values for mean species gains vs losses at 

sampling compartment level for Vascular plants (VA), Non-vascular plants (NV), 

Orthoptera (OR), Ants (AN), Hoverflies (SY) and Odonata (OD). 

 VA NV OR AN SY OD 

Moran’s I: 0.39 -0.156 0.123 0.149 0.23 -0.105 

p-value: < 0.005 0.85 0.15 0.09 0.06 0.79 

 

Table of Moran’s I with associated p-values for model estimates of proportional 

species gains vs losses at sampling compartment level for Vascular plants (VA), Non-

vascular plants (NV), Orthoptera (OR), Ants (AN), Hoverflies (SY) and Odonata (OD). 

Models are m000 and mFULL from chapter 3 in the main body of the thesis. 
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Model  VA NV OR AN SY OD 

m000 Moran’s I: 0.4 -0.145 0.234 0.176 0.39 -0.061 

 p-value: < 0.005 0.85 0.04 0.06 0.005 0.65 

mFULL Moran’s I: 0.39 -0.15 0.242 0.212 0.412 -0.088 

 p-value: < 0.005 0.84 0.03 0.03 0.004 0.74 

 

Table of Moran’s I with associated p-values for model residuals for proportional 

species gains vs losses at sampling compartment level for Vascular plants (VA), Non-

vascular plants (NV), Orthoptera (OR), Ants (AN), Hoverflies (SY) and Odonata (OD). 

Models are m000 and mFULL from chapter 3 in the main body of the thesis. 

Model  VA NV OR AN SY OD 

m000 Moran’s I: 0.08 -0.088 -0.078 0.169 -0.223 -0.105 

 p-value: 0.13 0.71 0.64 0.06 0.88 0.79 

mFULL Moran’s I: 0.187 -0.077 -0.074 0.179 -0.511 -0.06 

 p-value: 0.009 0.67 0.63 0.05 0.99 0.65 

 

Vascular plants, Ants and Hoverflies showed distinct patterns of autocorrelation in 

both compartment mean observations of proportional species gain vs losses, and 

model estimates of gains vs losses. However, statistically significant spatial 

autocorrelation was only apparent in model compartment level binned model 

residuals for vascular plants under the model (surprisingly) including habitat and EIV 

predicters. 
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Autocorrelated compartment means for model estimates may have contributed to 

pairwise correlations between taxa autocorrelation is present for both taxa out of the 

pair (REF: Legendre book). However, the underlying cause of spatial autocorrelations 

are unclear, and uncovering spatiotemporal correlations was a main aim of chapter 

3 of this thesis. 

In chapter 4, spatial autocorrelation may have contributed to the strength of the 

effect of plant species richness difference on the compartment level change in 

hoverfly species richness. However, spatial autocorrelation should not have affected 

any other parameters in the models for this chapter, as model m000 above was the 

starting point for hierarchical models in this chapter, and this model did not display 

any autocorrelation in the residuals.  

 

 


